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Continuum modeling of spatial and dynamic equilibrium in a travel corridor with heterogeneous 
commuters - a partial differential complementarity system approach 

David Z. W. Wang∗, Bo Du 

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 
639798, Singapore 

Abstract 

This paper studies on modeling and solving spatial and dynamic equilibrium travel pattern in a travel corridor. 
Consider a travel corridor connecting continuously distributed commuters to the city center. The traffic is 
subject to flow congestion and the commuter heterogeneity is captured. The traffic flow dynamics is described 
by flow continuity equation and the equilibrium travel pattern is assumed to follow trip-timing condition. The 
continuous spatial and dynamic equilibrium travel pattern is formulated into a partial differential 
complementarity system, which is then solved through Godunov scheme. The proof of solution existence is 
provided, and a set of numerical experiments are demonstrated.  
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1. Introduction 

Equilibrium dynamics of peak-hour traffic congestion has received much research attention since the pioneer 
work of Vickrey (1969), wherein a deterministic queueing model was developed to describe a single bottleneck. 
As an extension to Vickrey (1969), Newell (1987) assumed different values to queueing delay and schedule 
delay when considering travellers with different work starting time in the morning commute problem. The result 
showed that most travellers choose to arrive at workplace on time, and the queueing patterns were quite 
different from those in the previous studies of identical travellers. Arnott et al. (1990) investigated the 
commuters’ route and departure time choice behaviour on a simple network following user equilibrium and 
system optimum principles, and the efficiency of various tolls was analysed as well. Liu and Nie (2011) 
extended the bottleneck model by considering route choice, heterogeneous users, no-toll equilibrium, two 
system optima and related transportation economics analysis. Han et al. (2011) formulated a single origin-
destination dynamic user equilibrium (DUE) problem as a complementarity problem based on cell transmission 
model (CTM) (Daganzo, 1994, 1995), wherein two methods, maximum and average travel time, were used to 
estimate the travel time. Gonzales and Daganzo (2012) studied a morning commute problem with auto and 
public transit modes, considering commuters heterogeneity and distributed demand. It showed that public transit 
was a Pareto improvement and it reduced the duration of the rush hours and the overall cost. Pang et al. (2012) 
applied a linear complementarity system approach for a DUE model with single bottleneck, which was 
approximated by a time-stepping discretization scheme and solved by Lemke’s algorithm. Han et al. (2013a, b) 
conducted a series of studies to reformulate the classic single point queue model as a partial differential equation 
(PDE) and obtained the explicit solution via a variational method. Yang et al. (2013) investigated how the 
morning commute problem with consideration of bottleneck congestion and parking space constraints 
simultaneously differed from the traditional bottleneck model. They determined certain proportion of the two 
classes (with/without reserved parking spot) of commuters that can reduce the traffic congestion as well as the 
total system cost. Raadsen et al. (2015) proposed an event-based algorithm to solve simplified first-order 
dynamic network loading problem, which could generate exact, as well as approximate solutions. 

However, very few of the research works investigated the spatial and temporal dynamics of the peak-hour 
traffic congestion simultaneously. Newell (1988) extended the bottleneck problem to a travel corridor context 
by applying the Lighthill-Whitham-Richards (LWR) traffic flow regulation (Lighthill and Whitham, 1955; 
Richards, 1956). Arnott and DePalma (2011) studied the corridor problem by applying an analytical approach to 
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solve the equilibrium spatial dynamics of traffic congestion in a travel corridor. Classical flow congestion was 
assumed and the equilibrium travel pattern satisfied the trip-time condition. The solution of the model was 
determined by deriving a necessary condition of the problem solution, i.e., at each location, the departure rate 
was constant over the interior of the departure set. Later, DePalma and Arnott (2012) analysed a single entry 
corridor problem. It presented closed-form solutions for the social optimum and quasi-analytic solutions for the 
user optimum. Indeed, the sought-after model of solving spatial dynamics of equilibrium travel pattern and 
traffic congestion is very important in paving the way to solve many other interesting problems, such as optimal 
time-distance based road toll scheme to achieve system optimal, multi-modal travel equilibrium and 
transportation system design, understanding how urban density distribution affects the transportation system 
performance.  

In this paper, we investigate a similar corridor problem as defined in Arnott and DePalma (2011). Consider a 
travel corridor connecting the continuum residential locations to the central business district (CBD), which is 
subject to traffic congestion. The equilibrium travel pattern in the travel corridor is assumed to follow trip-
timing condition, i.e., commuters choose their departure times to minimize their individual travel cost. 
Moreover, it is assumed that the travel demand along the corridor is exogenously given. Heterogeneous 
commuters are considered, with different value of time and scheduling delay. This paper formulates a 
mathematical model to solve the spatial and dynamic equilibrium travel pattern in the corridor, basically, to 
answer what departure rates satisfy the equilibrium condition across the corridor? The key to address this 
problem lies in how to integrate the modelling of flow congestion dynamics and commuters’ departure time 
choice into one single modelling framework. In this study, we will employ a partial differential complementarity 
system approach to model the corridor problem, wherein classical flow congestion model combining the 
equation of continuity with an assumed traffic speed-density relationship, as well as the travel time interrelation 
among commuters, is captured by PDEs; while complementarity conditions are applied to describe commuters’ 
departure time choice behaviour following trip-timing condition. The differential complementarity system 
approach employed in this study belongs to a big class of modeling paradigm of differenital variational 
inequalities (DVI), introduced in Pang and Stewart (2008), which was applied in many research works (Ban et 
al., 2012a, b; Pang et al., 2012; Wang and Du, 2013; Du and Wang, 2014; Wang and Du, 2015; Wang and Xu, 
2016). The formulated model is then solved through a discretization scheme and the results are demonstrated in 
the numerical examples.    

This study mainly aims to apply the partial differential complementarity system approach to model and solve 
the “corridor problem”, i.e., to model and solve the spatial traffic congestion dynamics along a continuous travel 
corridor. In the corridor problem, it is assumed that travel demand is continuously distributed along the corridor, 
and travellers could enter the travel corridor through continuously distributed entry points. Therefore, the 
continuum modeling approach, rather than the discrete one, is applied in modeling the “corridor problem”. 
Indeed, the corridor problem, as well as the adopted continuum modeling approach, is different from the 
conventional study of DUE and dynamic traffic assignment on a concrete discrete transportation network, and 
more suitable for the initial phase of planning in regional study, when there is insufficient data of the system for 
setting up a dense network for detailed analysis using the discrete modeling approach. The analysis result of the 
corridor problem has more policy implications on such issues as how the urban development density distribution 
planning may affect the corridor traffic flow congestion, which is more important question to be answered in the 
initial phase of corridor transportation planning. More applications of the corridor problem include the urban 
economics issues like better understanding the economics of traffic congestion and residential location choice 
behaviour, etc. To summarize, this study carries the work in Arnott and DePalma (2011) a step forward by 
applying partial differential complementarity system approach to modeling and solving the corridor problem. 
Extensions are made in the following aspects: firstly, the model formulation allows for the consideration of 
heterogeneous commuters in analysing the corridor problem. In reality, commuters may be classified into 
different groups with different preferred arrival times, values of time and scheduling delay, etc., therefore the 
heterogeneity assumption has to be incorporated in the model to capture the realistic equilibrium travel pattern. 
Secondly, the model formulation enables the adoption of well-established complementarity theory and methods 
to prove the equilibrium solution existence and obtain a complete numerical solution of the corridor problem. 
As a relevant study, in Arnott and DePalma (2011), a solution scheme is proposed for solving the corridor 
problem, which is based on implication of trip-timing conditions, i.e., the departure rate is constant over the 
interior of the departure set. However, the solution is incomplete, as was pointed out by the authors, because the 
equilibrium solution exists only for some specific population distribution along the road. In this study, although 
the model formulation is only solved in its discretized approximation form, the proof of solution existence is 
provided by employing complemetrarity theory and complete numerical solution is obtained. Thirdly, in 
considering the scheduling cost, late arrival dealy is explicitly accounted in this model. In Arnott and DePalma 
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(2011), only early arrival is allowed. However, late arrival is rather common in reality, and the consideration of 
late arrival would make the model more relastic, for example, in analyzing how congestion mitigation measure 
like flexible work time scheme or various work starting time scheme (late arrival is allowed) may affect the 
peark-hour traffic congestion.  

The reminder of this paper is organized as follows. In section 2, we present the continuous-spatial-temporal 
equilibrium travel pattern model formulation in a travel corridor. In section 3, the continuous model is 
approximated through a discretization scheme, and the proof of solution existence is illustrated. Section 4 
provides a set of numerical examples. Finally, section 5 concludes with short discussion. 

2. Continuum spatial-temporal instantaneous dynamic user equilibrium model 

Consider a travel corridor connecting the continuous residential locations to the city centre. Here, we 
consider the travel corridor in a one-dimensional domain. It is assumed that trip demand density along the 
corridor is given exogenously, vehicles are identical, and all commuters at different locations choose departure 
times to minimize individual travel cost to go to CBD for work, i.e., following the trip-timing condition. The 
preferred arrival time is given and both early arrival and late arrival are allowed with different scheduling cost 
penalties. Note that all the variables and parameters in this paper are nonnegative. Suppose the study horizon is 
T , the length of corridor is L , and the location and time are indexed as x  and t  respectively. It should be noted 
that x  here represents the distance between the location to the city boundary, and the boundary of the corridor is 
located at 0x =  and the CBD lies at x L= . Then, we develop a model to describe the continuous spatial-
temporal travel equilibrium. Due to the dynamic features of traffic flow, the formulation is based on a time-
space plane.  

2.1. Flow propagation 

For almost all [0, ] [0, ]t T x L∈ ∈， , 

x x
xt t

t
f k r
x t

∂ ∂
+ =

∂ ∂
                                                                                                                                             (1) 

 ( )x x x x
t t t tf k u k=                                                                                                                                              (2) 

 ( )x x x
t t tu k ak b= − +                                                                                                                                        (3) 

where  
x
tk  - the traffic density at location x  and time t , max0 x

tk k≤ ≤ ; 

x
tf  - the traffic flow at location x  and time t , max0 x

tf f≤ ≤ ; 

x
tu  - the velocity of vehicle at location x  and time t , max0 x

tu u≤ ≤ ; 

x
tr  - the departure rate at location x  and time t . 

Eq. (1) entails equation of continuity for traffic flow, stating the flow conservation law on the highway, 
which is indeed the key postulate of LWR theory. The LWR model is a well-known PDE, which can be solved 
with proper initial/boundary conditions. Eq. (2) and Eq. (3) describe the flow-velocity-density relationship. Let 

maxk  represent the maximum/jam density, maxu  denote the maximum/free-flow speed and maxf  represent the 

maximum flow capacity, and for simplicity, we assume the maximum density maxk  is identical and constant at 

each location along the corridor, so are the maximum speed maxu  and maximum flow capacity maxf , and this 
assumption is easy to be relaxed without theoretical obstacles. For simplicity, we apply the Greenshields model 

(Greenshields, 1935), max
max

( ) (1 )ku k u
k

= − , and express it in a succinct form as Eq. (3) with 

max
max

max

0,  0ua b u
k

= > = > . It is easy to obtain the maximum flow capacity maxf  by combining Eq. (2) with Eq. 
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(3); the velocity at jam density is zero: max( ) 0u k = ; the velocity is equal to the free flow speed when the density 

is zero: max(0)u u= . Moreover, substitute Eq. (3) into Eq. (2) to obtain the following equation: 

2( )x x x
t t tf a k bk= − +                                                                                                                                                    (4) 

The standard first-order LWR model without source term is given as 0
x x

t tf k
x t

∂ ∂
+ =

∂ ∂
, which is a hyperbolic 

PDE and can be solved with proper initial/boundary data as a Riemann problem. Due to the existence of shock 
wave in reality, a weak solution to LWR model is often applied. Mathematically, a weak solution is a function 

( )( , ), x tk f  that satisfies 
x x

xt t
t

f k r
x t

∂ ∂
+ =

∂ ∂
 everywhere except at a certain ( )x t , and ( )( , ), x tk f  is discontinuous 

but obeys the integral forms of the conservation law on ( )x t  (Gartner et al., 2001). The complete theories of 
LWR model and the hyperbolic system of conservation law can be referred to Daganzo (1997); Bressan (2000); 
Gartner et al. (2001); Garavello and Piccoli (2006); Dafermos (2009). 

2.2. Instantaneous travel time cost 

In the continuum formulation of the travel corridor, traffic flow x
tf  can be regarded as the outflow from 

location x  at time t  to neighbouring downstream location x dx+ , as well as the inflow into location x dx+ . 
Therefore the inflow at location x  consists of new departure x

tr  and the flow from neighbouring upstream 
x dx

tf
− , and the outflow at location x  is equal to x

tf . Considering the fact that the new departure may not be 
satisfied due to the flow capacity constraint, we devise a simple mechanism to capture this additional queueing 
delay for new departures. Thus the total travel time for users departing at time t  from location x  to CBD 

consists of three parts: travel time on highway x
tTT , queueing time 

max

x
tQ

f
 and schedule delay, where x

tQ  

represents the number of vehicles in the queue or queue length at location x  at time t . 

For almost all [0, ] [0, ]t T x L∈ ∈， , 

 
1

( )

x
t

x x
t t

TT
x u k σ

∂
= −

∂ +
                                                                                                                                  (5) 

 max

x
x x x dxt
t t t

Q r f f
t

η −∂
= + + −

∂
                                                                                                                       (6) 

0 0x x
t tQη≤ ⊥ ≥                                                                                                                                             (7) 

The partial differential equation (5) reflects the spatial interaction of the travel time along the corridor, where 
x

tTT  represents the instantaneous travel time for the commuters departing from location x  at time t  to CBD. In 
this study, it is assumed that the boundary of the corridor is located at 0x =  and the CBD lies at x L= , thus 

0
lim 0

x x dx x
t t t

dx

TT TT TT
x dx

+

→

∂ −
= <

∂
 and ( )

x x dx
t t x x

t t

dxTT TT
u k σ

+= +
+

, and it is reasonable to assume that travel time is 

strictly positive. σ  is an extremely small and positive dummy speed value to refrain from zero denominator. To 
capture the queueing time for new departures, a simple point queue model is applied here: if the departure 
demand exceeds the maximal flow capacity, queue arises and the queue length is described as 

max

max

min{ , },   if 0
,                              if 0

x x dx xx
x x dx t t tt

t t x
t

r f f QQ r f
t f Q

−
−  + ≤∂

= + − 
∂ >

. An equivalent complementarity system approach as in (6) 

with (7) is adopted to describe the dynamics of the queue at time instance t , wherein the notation “⊥ ” means 
“perpendicular” (i.e., vectors 0Ta b a b⊥ ⇔ = ), and x

tη  is an auxiliary variable to determine whether there is a 

positive queue or not, and these functions guarantee the non-negativity of the queue length x
tQ . Specifically, 

when 0x
tQ > , we have 0x

tη =  from (7), then the outflow x
tf  is at its maximal capacity maxf  with queue length 
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calculated by the equation max

x
x x dxt

t t
Q r f f
t

−∂
= + −

∂
; otherwise if no queue, then the outflow x

tf  is determined by 

the LWR model with the auxiliary variable x
tη , as described in Eqs. (1) - (3). By doing so, the queueing time 

due to the capacity constraint is explicitly considered in the model formulation. Interested readers can refer to 
Ban et al. (2012a); Pang et al. (2012); Han et al. (2013c) for further analysis and the proof of the continuous 
dependence of this point queue model. It should be noted that, we assume an average queueing time for all the 
travellers at one specific location. To model a more realistic travel cost, one may need to take into account the 
situation that some of the travellers may not be accommodated immediately into the highway, which would be 
addressed in the future study. 

2.3. Trip-timing condition 

For almost all [0, ] [0, ]t T x L∈ ∈， , 

 
0

T x
w xr dw D=∫                                                                                                                                                (8) 

 
max max max

0 ( )+ (0, ) (0, ) 0
x x x

x x x x xt t t
t t t t

Q Q Qr TT max t t TT max t TT t
f f f

α β γ π≤ ⊥ + − − − + + + − − ≥                        (9) 

Eq. (8) ensures that integration of trip departure rates over the time horizon amounts to the given travel 
demand xD  at any location x . The complementarity condition (9) guarantees the trip-timing condition that no 
commuter can experience a lower travel cost by departing at a different time, wherein xπ  denotes the minimum 
travel cost for commuters departing from location x , and t  denotes the preferred arrival time. The travel cost 

consists of both travel time cost and scheduling delay costs. Specifically, 
max

(0, )
x

x t
t

Qmax t t TT
f

− − −  and 

max

(0, )
x

x t
t

Qmax t TT t
f

+ + −   represent the early and late arrival delay respectively, and α , β , γ  denote the value 

of time (VOT) for travel time, early arrival delay and late arrival delay, respectively. It is reasonable to assume 
that γ α β> > . It is noted that travellers’ choice behaviour other than rational behaviour (like bounded 
rationality, Wu et al. (2013)) is not considered in this paper and could be further addressed in the future study. 

Moreover, negative exponential distribution function is commonly used to describe the fact that population 
density, as well as travel demand density, declines from the CBD towards the city boundary. For illustration 
purpose, we apply Eq. (10) to depict the spatial distribution of the travel demand along the travel corridor. It 
should be noted that many other distribution functions can also be applied without theoretical obstacles. 

 ( )0 L xxD D e φ− −=                                                                                                                                          (10) 

where 0D  denotes the demand density at CBD and φ  is a parameter. Eq. (10) can be substituted into Eq. (8) 
and expressed as a complementarity condition readily as follows: 

 ( )0

0
0 0

T L xx x
wr dw D e φπ − −≤ ⊥ − ≥∫                                                                                                               (11) 

2.4. The overall model 

For almost all [0, ] [0, ]t T x L∈ ∈， , the overall continuous spatial and dynamic travel equilibrium model can 
be expressed as a partial differential complementarity system (PDCS) as follows: 

 
x x

xt t
t

f k r
x t

∂ ∂
+ =

∂ ∂
                                                                                                                                         (12) 

 
1x

t
x
t

TT
x ak b σ

∂
= −

∂ − + +
                                                                                                                             (13) 
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 max

x
x x x dxt
t t t

Q r f f
t

η −∂
= + + −

∂
                                                                                                                     (14) 

 0 0x x
t tQη≤ ⊥ ≥                                                                                                                                          (15) 

 ( )0

0
0 0

T L xx x
wr dw D e φπ − −≤ ⊥ − ≥∫                                                                                                               (16) 

 
max max max

0 ( ) (0, ) (0, ) 0
x x x

x x x x xt t t
t t t t

Q Q Qr TT max t t TT max t TT t
f f f

α β γ π≤ ⊥ + + − − − + + + − − ≥                    (17) 

The above formulated PDCS model fully describes the spatial and dynamic equilibrium travel pattern in the 
travel corridor, and the initial and boundary conditions of the PDCS are given as 0 0

0, 0 x x
t tt t

k f
= =
= = , 

0 max0
(0, ),  [0, ]xx

t t
max r f x LQ

=
= − ∀ ∈  and 0,  [0, ]x

t x L
t TTT

=
= ∀ ∈ . 

3. Discretization scheme and approximated complementarity problem 

The model formulation PDCS will be solved via a discretization scheme, wherein the study horizon is 
divided into v  subintervals indexed by {0,1,..., }t v∈  with equal time length /t T v∆ = , and the corridor is 
divided into n  cells indexed by {1,2,..., }i n∈  with uniform length /x L n∆ = . Commuters are allowed to 
arrive at workplaces earlier or later than their preferred arrival time t , but they are supposed to depart no later 
than t . As is shown in Fig.1, the sequence of cells 1 to n  is the direction from the boundary of the corridor to 
CBD, and all commuters along the corridor travel to CBD (sink cell / cell +1n ) for work. 

Cell 1 Cell 2 Cell n-1 Cell n. . . . . . Sink cell
(CBD)

L

 

Fig. 1 A corridor with many-to-one OD pattern 

To present our discretized model, we first introduce the variables and parameters used throughout this paper 
(shown in Table 1), and note that all of the parameters and variables are nonnegative. 
Table 1 List of notations and descriptions in discretization scheme 
Notation Description 
Indices  
t  Index of time intervals, {0,1,..., }t v∈  
i  Index of cells, {1,2,..., }i n∈  
g  Index of commuter groups, { }1,...,g G∈G =  
Variables  

,
i

t gf  Traffic flow from group g  in cell i  at the beginning of time interval t  

,
i
t gk  Traffic density from group g  in cell i  in time interval t  

,
i

t gr  Number of vehicles from group g  departing from cell i  at the beginning of time interval t  
i

tTT  Travel time for commuters departing in time interval t  from cell i  
i
tQ  Number of vehicles queueing in cell i  in time interval t  
i
tη  Slack variable for queueing time computation in cell i  in time interval t  

,
i
t gθ  Auxiliary variable for travel cost computation for group g  in cell i  in time interval t  
i
gπ  Equilibrium cost for commuters from group g  departing from cell i  

Parameters  
L  Length of the corridor 
n  Total number of cells 
v  Total number of time intervals 
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G  Total number of commuter groups 
0
gD  Total travel demand along the corridor for commuters from group g  
i
gD  Travel demand for commuters from group g  departing from cell i  

gα  Unit cost of travel time for group g  

gβ  Unit cost of arriving early to work for group g  

gγ  Unit cost of arriving late to work for group g  

gt  Preferred arrival time for group g  
a  Parameter of the velocity-density function 
b  Parameter to the velocity-density function  

gφ  Parameter of the negative exponential distribution function for group g  

3.1. Discretization scheme  

One of the most commonly used and efficient method for solving the continuum formulation of the LWR 
model (12) is Godunov scheme (Godunov, 1959). To apply Godunov method, a regular grid is assumed and the 
corridor is discretized into sections/cells, then the cell average of the analytical solution is regarded as the 
numerical value of the solution. At each cell boundary, the resulting Riemann problem is then solved and the 
union of all Riemann solutions averaged over each cell to give the updated numerical solution values (Sweby, 
2001). As was done in Leclercq (2007), in the discretization scheme, i

tk  and i
tf  are used to approximate the 

traffic density and flow respectively in cell i  in time interval t . Moreover, the traffic flow i
tf  can be expressed 

in the following supply-demand method by applying the Godunov scheme (Lebacque, 1996). 

 { }1min ( ), ( )i i i
t t tf UD k DS k +=                                                                                                                      (18) 

where ( )i
tUD k  and 1( )i

tDS k +  denote the upstream demand and downstream supply respectively, which are 
defined by 

 c

max c

,    if 
( )

,    if 

i i i
i t t t
t i

t

k u k k
UD k

f k k
 ≤

= 
>

                                                                                                                      (19) 

 max c

c

,    if 
( )

,    if 

i
i t
t i i i

t t t

f k k
DS k

k u k k
 ≤

= 
>

                                                                                                                       (20) 

where ck  denotes the critical density associated with the flow capacity maxf . The LWR model (12) can be 
approximated with a finite difference equation, where the density can be updated. 

 ( )1
1

i i ii i
t t tt t

tk k t rf f
x

−
+

∆
= + + ∆ ⋅−

∆
                                                                                                               (21) 

where the discretization scheme should satisfy the Courant-Friedrichs-Lewy (CFL) condition: 
max

1t
x u
∆

≤
∆

 

(Courant et al., 1928). 

Eq. (13) can be expressed in a discretized form as follows: 

 
1 1i i

t t
i
t

TT TT
x ak b σ

+ −
= −

∆ − + +
                                                                                                                     (22) 

which can also be converted to a complementarity condition as follows:  

 10 0i i i
t t t i

t

xTT TT TT
ak b σ

+ ∆
≤ ⊥ − − ≥

− + +
                                                                                                 (23) 

7 
 



It can be proved that the complementarity condition (23) is equivalent to Eq. (22), which holds only at 

0i
tTT >  with right side of (23) as an equality, i.e., 1 0i i

t t i
t

xTT TT
ak b σ

+ ∆
− − =

− + +
. Specifically, if 0i

tTT > , the 

right side of (23) must be zero, thus we get Eq. (22); otherwise if 0i
tTT = , the right side of (23) reduces to 

1 0i
t i

t

xTT
ak b σ

+ ∆
− − ≥

− + +
. Since all the variables in this paper are nonnegative, thus 0i

tk ≥ . If 0i
tk = , we have 

0i
t

x
ak b σ

∆
>

− + +
 since 0b >  and 0σ > , therefore we can get the right side of (23) is negative, 

1 0i
t i

t

xTT
ak b σ

+ ∆
− − <

− + +
, which is contradictory with the complementarity condition; if 0i

tk > , it is easy to 

observe that 2( ) 0i i
t ta k bk− + ≥  from Eq. (4), thus we have 0i

tak b− + ≥ . Moreover, since 0σ > , thus 

0i
t

x
ak b σ

∆
>

− + +
, therefore we can get the right side of (23) is negative, 1 0i

t i
t

xTT
ak b σ

+ ∆
− − <

− + +
, which is 

also contradictory with the complementarity condition. To summarize, we have an important positive property 
of travel time, 0i

tTT > , and the complementarity condition (23) is equal to Eq. (22). 

Similarly, Eq. (14) in discretized form is shown as: 

 11
1 1 1 max=

i i
i i it t
t t t

Q Q r f f
t

η −+
+ + +

−
− − +

∆
                                                                                                             (24) 

which can be substituted into Eq. (15) in discretized form and multiplied by t∆  as follows: 

 ( )1
1 1 1 1 max0 0i i i i i

t t t t tQ Q Q t r f f−
+ + + +≤ ⊥ − − ∆ ≥+ −                                                                                          (25) 

Moreover, complementarity conditions can also be applicable to represent max  function by adding a 
nonnegative auxiliary variable i

tθ . Specifically, the complementarity condition (17) can be recast into the 
following conditions: 

 
max max

0 ( ) [ ( )] 0
i i

i i i i i it t
t t t t t

Q Qr TT t t TT
f f

α βθ γ θ π≤ ⊥ + + + − − − − − ≥                                                           (26) 

 
max

0 ( ) 0
i

i i i t
t t t

Qt t TT
f

θ θ≤ ⊥ − − − − ≥                                                                                                  (27) 

In the above conditions, the auxiliary variables i
tθ  is introduced to define the scheduling delays, i.e., 

max

(0, )
i

i i t
t t

Qmax t t TT
f

θ = − − −  and 
max max

( ) (0, )
i i

i i it t
t t t

Q Qt t TT max t TT t
f f

θ − − − − = + + −  . One can easily verify the 

equivalence between these two complementarity conditions and (17). Basically, if early arrival is triggered, i.e., 

max

0
i

i t
t

Qt t TT
f

− − − > , we must have 0i
tθ >  and 

max

i
i i t
t t

Qt t TT
f

θ = − − − , and thus 
max

(0, )
i

i i t
t t

Qmax t t TT
f

θ = − − −  

and 
max max

( ) (0, )
i i

i i it t
t t t

Q Qt t TT max t TT t
f f

θ − − − − = + + −  ; if late arrival occurs, then 
max

0
i

i t
t

Qt t TT
f

− − − <  and 

max

( ) 0
i

i i t
t t

Qt t TT
f

θ − − − − > , and we must have 0i
tθ = , thus 

max

(0, )
i

i i t
t t

Qmax t t TT
f

θ = − − −  and 

max max

( ) (0, )
i i

i i it t
t t t

Q Qt t TT max t TT t
f f

θ − − − − = + + −  ; if arrival on time, we have 
max

0
i

i t
t

Qt t TT
f

− − − =  and 0i
tθ = , 

and the equivalence also holds. 

The complementarity condition (16) in a discretized form is shown as follows: 
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 ( )
1

0

0
0 0

v
n ii i

t
t

r D e φπ
−

− −

=

≤ ⊥ − ≥∑                                                                                                               (28) 

3.2. Heterogeneous case 

Heterogeneity across commuters is considered in this study mainly on the preferred arrival time, value of 
travel time and schedule delays. With heterogeneous commuters, the flow conservation function (21) is not 
suitable to determine the flow for each individual commuter group. In particular, the commuters are classified 
into different groups indexed by { }1,...,g G∈ G . To distinguish the flow of each commuter group ,

i
t gf  and the 

total flow '
'

,
1

G
i

t g
g

f
=
∑ , i

tf  is used to represent the aggregate flow '
'

,
1

G
i

t g
g

f
=
∑  hereafter. Similarly, we use i

tk  and i
tr  

instead of '
'

,
1

G
i
t g

g

k
=
∑  and '

'
,

1

G
i

t g
g

r
=
∑  respectively. In the discretized scheme, in order to obtain the heterogeneous flow 

,
i

t gf  among the aggregate flow i
tf , a proportional allocation procedure is used to determine the flow fraction as 

follows: 

 
,

,
,      0 

0,             

i
t gi i

i t ti
t g t

k
f if k

f k
otherwise


>= 




                                                                                                              (29) 

Thus, for each commuter group g , Eq. (21) can be approximated in a discretized form as: 

 ( )1
1, , ,, ,

i i ii i
t g t g t gt g t g

tk k t rf f
x

−
+

∆
= + + ∆ ⋅−

∆
                                                                                                 (30) 

     These flow evolvement equations can be readily solved with given departure pattern and initial/boundary 
conditions. Moreover, Eq. (4) in discretized form is shown as follows, which regulates the total flow in an 
aggregated form. 

 ( )2i i i
t t tf a k bk= − +                                                                                                                             (31) 

Based on Eq. (29), the disaggregated flow can be derived as follows: 

 , , ,
i i i i

t g t g t t gf ak k bk= − +                                                                                                                             (32) 

Let { }, 0,1,..., 1; 1,..., ; =1,...,
i

t g t v i n g G
f

= − =
f  , { }, 0,1,..., 1; 1,..., ; =1,...,

i
t g t v i n g G

k
= − =

k   and { }, 0,1,..., 1; 1,..., ; =1,...,
i

t g t v i n g G
r

= − =
r  , 

then with Eqs. (18)-(20), (29) and the initial conditions, 0, 0i
gk =  and 0, 0i

gf = , 1,..., ;  =1,...,i n g G∀ = , one can 

observe that the traffic flow ,
i

t gf  and traffic density ,
i
t gk  are determined by the departure rate r . Moreover, 

traffic flow ,
i

t gf  can also be regarded as a function of k  as well. These properties are formally stated in the 
following lemmas with proof. 

Lemma 1. Traffic flow , ( )i
t gf k  is continuous in k  for each 0,1,..., 1;  1,..., ;  =1,...,t v i n g G= − = . 

Proof. Since the flow propagation equation (30) is linear, its continuity is obvious. As for (29), it can be derived 
that , ( )i

t gf k  is continuous in k  when 0i
tk > . Moreover, with Eqs. (18)-(20) and max

i
tu u≤ , we have 

           { }, , 1
max0 min ,  0,1,..., 1;  1,..., ;  =1,...,( ), ( )

i i
t g t gi i i ii i

t t t tt ti i
t t

k k
f k u k u t v i n g GUD k DS k

k k
+≤ = ≤ ≤ ∀ = − =   

therefore it is easy to get that 

           
( )

,

0
lim 0,  0,1,..., 1;  1,..., ;  =1,...,

i
t

i
t gi

t ik t

k
f t v i n g G

k→
= ∀ = − =     
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This concludes the proof. □ 

Lemma 2. Traffic density , ( )i
t gk r  and flow , ( )i

t gf r  are continuous in r  for each 0,1,..., 1;  1,...,t v i n= − =  and 
=1,...,g G . 

Proof. In terms of the linearity of Eq. (30), it suffices to show that , ( )i
t gk r  is continuous in r . It has been 

demonstrated that , ( )i
t gf k  is continuous in k  by Lemma 1, therefore it is ready to derive that , ( )i

t gf r  is also 
continuous in r . This concludes the proof. □ 
 
Lemma 3. ( )i

tTT r  is continuous in r  for each 0,1,..., 1;  1,...,t v i n= − = . 

Proof. As discussed in previous analysis in this study, we have 0i
tak b σ− + + > , therefore 

1
i
tak b σ− + +

 is 

continuous in k . Moreover, , ( )i
t gk r  has been proved to be continuous in r , thus it is straightforward to derive 

that 
1

i
tak b σ− + +

 is continuous in r  as well. Therefore, the travel time ( )i
tTT r  is continuous in r . This 

concludes the proof. □ 

As mentioned in previous content, in this study, the travel time function represents the time on highway, which 
does not includes the queueing time. Interested readers can refer to Ban et al. (2012a); Pang et al. (2012); Han et 
al. (2013c) for further analysis and the proof of the continuous dependence of the queueing time function. 

3.3. The overall complementarity model 

Now the PDCS model can be presented in standard complementarity problem (CP) form, CP(q,M), to find a 
vector of variables z  satisfying 

 ( )0 0F≤ ⊥ ≥z z                                                                                                                                         (33) 

As we have discussed in Lemma 1 and Lemma 2, the traffic density ,
i
t gk  can be written as a function of the 

departure rate r , denoted by , ( )i
t gk r , so can the aggregate traffic density ( )i

tk r . Similarly we also have traffic 

flow as a function of departure rate in both disaggregate and aggregate form: , ( )i
t gf r , ( )i

tf r . For all 
0,1,..., 1;  1,..., ;  =1,...,t v i n g G= − = , the overall model with heterogeneity assumptions in this study is given as 

follows with variables as { } { }, , 0,1,..., 1; 1,..., ; =1,...,
,  ,  ,  ,  ,  ,  ,  ,  i i i i i

t g t g t t g t v i n g G
r Q TTθ π

= − =
= z r θ Q TT π .  

 

( )
( )

1

1
1 1 1 1 max

1
0

,
0

, ,
max

, ,
max

0 0
( )

0 0( )

0 0

( )
0 ( ) ( ) ( ) 0

0

g

i i i
t t t i

t
i i i i i
t t t t t

v
n ii i

g t g g
t

g gi i i i i
gt g g g t t g g t g g g

i
i i i t
t g t g t

xTT TT TT
ak b

Q Q Q t r f f

r D e

r TT Q t t
f

QTT t
f

φ

σ

π

α γ
α γ β γ θ γ π

θ θ

+

−
+ + + +

−
− −

=

∆
≤ ⊥ − − ≥

− + +
≤ ⊥ − − ∆ ≥+ −

≤ ⊥ − ≥

+
≤ ⊥ + + + + + − − ≥

≤ ⊥ + + +

∑



r
r

0gt− ≥

                                            (34) 

wherein the initial traffic density, traffic flow and queueing size in any cell at the beginning of time 0t =  is set 
as 0, 0i

gk = , 0, 0i
gf = , 0 0 max(0, )i iQ max r f= − , 1,..., ;  =1,...,i n g G∀ =  and the travel time, 1 0n

tTT + = , 1,...,t v∀ =  
guarantees that travel time for passengers departing from CBD is zero. Some other properties can be derived 
from the CP model (34), which are formally stated as follows. 

Lemma 4. Suppose there exist a solution to the CP model (34), then it must hold that 
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           ( )
1

0
,

0
,   1,..., ;  =1,...,g

v
n ii

t g g
t

r D e i n g Gφ
−

− −

=

= ∀ =∑  

Proof. Suppose there exists a i  and a g  such that ( )
1

0
,

0
0g

v
n ii

t g g
t

r D e φ
−

− −

=

− >∑ , hence we can derive 0i
gπ =  from the 

third complementarity condition in (34), and there must exist a t  such that , 0i
t gr > . Based on the fourth 

complementarity condition in (34), we have , ,
max max

( ) ( ) 0
i i

i i i i it t
gg t g t g g t g t g

Q QTT TT t t
f f

α β θ γ θ π+ + + + + + − − = . 

Since 0i
gπ = , then , ,

max max

( ) ( + ) 0
i i

i i i it t
gg t g t g g t g t

Q QTT TT t t
f f

α β θ γ θ+ + + + + − = . Moreover, we have , 0i
t gθ ≥  and 

,
max

+ 0
i

i i t
gt g t

QTT t t
f

θ + + − ≥  based on the last complementarity condition in (34), and 0i
tQ ≥ , 0i

tTT >  as 

discussed in previous analysis in this study, thus , ,
max max

( ) ( + ) 0
i i

i i i it t
gg t g t g g t g t

Q QTT TT t t
f f

α β θ γ θ+ + + + + − > . This 

is a contradiction. □ 

     In addition, the boundedness properties of ,
i

t gf  and ,
i
t gk  will be derived from Eqs. (18)-(20), (29)-(30) and 

the initial conditions, 0, 0i
gk =  and 0, 0i

gf = , 1,..., ;  =1,...,i n g G∀ = . The following lemmas with proofs are given 
as follows. 

Lemma 5. The boundedness of ,
i

t gf  holds for each 0,1,..., 1;  1,...,t v i n= − =  and =1,...,g G . 

Proof. Obviously, based on Eqs. (18)-(20) and (29), it is easy to derive the following condition: 

          { }1
, maxmin ( ), ( )i i i

t g t tf fUD k DS k +≤ ≤   

for all 0,1,..., 1;  1,...,t v i n= − =  and =1,...,g G . This concludes the proof. □ 
 
Lemma 6. The boundedness of ,

i
t gk  holds for each 0,1,..., 1;  1,...,t v i n= − =  and =1,...,g G . 

Proof. Based on the flow propagation equation (30), we have 

           ( ) 11
1, , , , , ,, ,

i i i i i ii i
t g t g t g t g t g t gt g t g

t tk k t r k f t rf f
x x

−−
+

∆ ∆
= + + ∆ ⋅ ≤ + + ∆ ⋅−

∆ ∆
 

for all 0,1,..., 1;  1,...,t v i n= − =  and =1,...,g G . From Lemma 4, we can find that ,
i

t gr  is bounded. With 

, max
i

t gf f≤  from Lemma 5, we have 

           0 0 0
, 1, max 2, max max

2 2i i i
t g t g g t g g g

t t v tk k f t D k f t D f v t D
x x x− −

∆ ∆ ∆
≤ + + ∆ ⋅ ≤ + + ∆ ⋅ ≤ + ∆ ⋅

∆ ∆ ∆
 

This concludes the proof. □ 

3.4. Solution existence of the formulation 

As was done in Han et al. (2011); Pang et al. (2012), we apply Lemma 7 as follows to analyse the solution 
existence of CP model (34), and one can refer to Facchinei and Pang (2003) for the proof of Lemma 7 and more 
complete theories of complementarity problem.  

Lemma 7. (Facchinei and Pang, 2003) Let : n nF R R→  be a continuous function, if there exists a constant 
0d >  such that all the solutions of the CP: 0 ( ) 0, 0z F z zτ τ≤ ⊥ + ≥ ∀ >  satisfy z d≤ , then the CP: 

0 ( ) 0z F z≤ ⊥ ≥  has a solution. 

As indicated by Lemma 7, the solution to the original CP 0 ( ) 0z F z≤ ⊥ ≥  exists if the solutions to the 
extended CP 0 ( ) 0z F z zτ≤ ⊥ + ≥  are uniformly bounded. Using Lemma 7, we will show the following 
Theorem 1 holds. 
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Theorem 1. The CP model (34): 0 ( ) 0z F z≤ ⊥ ≥  has a solution. 

Proof. Based on the above analysis, we can apply Lemma 7 to prove the solution existence in Theorem 1. Since 
the continuity has been demonstrated in the previous content, now it is ready to prove the uniform boundedness. 

Suppose there exists a sequence of positive scalars { }
1

l

l
λ

∞

=
 and a sequence of vectors { }

1
,  ,  ,  ,  l l l l l

l

∞

=
TT Q π r θ  

satisfying for each 1,...,l = ∞ . For all 0,1,..., 1;  1,..., ;  =1,...,t v i n g G= − = , we have 

 , , 1, ,
,0 0
( )

i l i l i l l i l
t t t ti l l

t

xTT TT TT TT
ak b

λ
σ

+ ∆
≤ ⊥ − − + ≥

− + +r                                                                      (35) 

 ( ), , , ,, 1,
1 1 11 1 max0 0( )i l i l i l l i li l i l l

t t t tt tQ Q Q t Qr f f λ−
+ + ++ +≤ ⊥ − − ∆ + ≥+ −r                                                                    (36) 

 ( )
1

, , 0 ,
,

0
0 0g

v
n ii l i l l i l

g t g g g
t

r D e φπ λ π
−

− −

=

≤ ⊥ − + ≥∑                                                                                                 (37) 

 , , , , , ,
, , ,

max

( )
0 ( ) ( ) ( ) 0g gi l i l i l i l i l l i l

gt g g g t t g g t g g g t gr TT Q t t r
f

α γ
α γ β γ θ γ π λ

+
≤ ⊥ + + + + + − − + ≥                               (38) 

 
,

, , , ,
, , ,

max

0 + 0
i l

i l i l i l l i lt
gt g t g t t g

QTT t t
f

θ θ λ θ≤ ⊥ + + − + ≥                                                                                    (39) 

where ,i l
tr  denotes '

'

,
,

1

G
i l

t g
g

r
=
∑ , , ( )i l l

tk r  represents '
'

,
,

1

( )
G

i l l
t g

g

k
=
∑ r  and 1,

1 ( )i l l
tf
−
+ r  represents '

'

1,
1,

1

( )
G

i l l
t g

g

f −
+

=
∑ r  for simplicity. 

Boundedness of { },
1,..., ; 1,..., 1

( )i l
g i n g G l

π
∞

= = =
 

Suppose that this is not true for some { }1,...,i n∈  and { }1,...,g G∈ . We may assume without loss of 
generality that 

,lim i l
gl

π
→∞

= ∞  

and , 0i l
gπ >  for all 1,...,l = ∞ . It follows from (37) that 

( )
1

, 0 ,
,

0
0g

v
n ii l l i l

t g g g
t

r D e φ λ π
−

− −

=

− + =∑  

for all 1,...,l = ∞ . It suffices to deduce that 

( )
1

0 ,
0,

, 0

g
v

n i i l
g t g

gi l t
g l l

D e r D
φ

π
λ λ

−
− −

=

−
= ≤

∑
. This is a contradiction, so the 

boundedness of { },
1,..., ; 1,..., 1

( )i l
g i n g G l

π
∞

= = =
 follows. 

Boundedness of { },
, 0,1,..., 1; 1,..., ; 1,..., 1

( )i l
t g t v i n g G l

r
∞

= − = = =
 

Suppose that this is not true for some { }0,1,..., 1t v∈ − , { }1,...,i n∈ , { }1,...,g G∈ . We may assume without 
loss of generality that 

,
,lim i l

t gl
r

→∞
= ∞  

and ,
, 0i l

t gr >  for all 1,...,l = ∞ . It follows from (38) that 

, , , , ,
, ,

max

( )
( ) ( ) ( ) 0g gi l i l i l i l l i l

gg g t t g g t g g g t gTT Q t t r
f

α γ
α γ β γ θ γ π λ

+
+ + + + + − − + =  

for all 1,...,l = ∞ . It suffices to deduce that 
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, , , ,
,,

max,
,

( )
( ) ( ) ( )g gi l i l i l i l

g i lg g g g t t g g t g
gg g

l l
i l

t g

t t TT Q
tfr

α γ
γ π α γ β γ θ

γ π

λ λ

+
− + − + − − +

+
≤=



  

Note that ,i l
gπ  has been proved to be bounded, thus this is a contradiction, so the boundedness of 

{ },
, 0,1,..., 1; 1,..., ; 1,..., 1

( )i l
t g t v i n g G l

r
∞

= − = = =
 follows.  

Boundedness of { },
, 0,1,..., 1; 1,..., ; 1,..., 1

( )i l
t g t v i n g G l
θ

∞

= − = = =
 

Suppose that this is not true for some { }0,1,..., 1t v∈ − , { }1,...,i n∈ , { }1,...,g G∈ . We may assume without 
loss of generality that 

,
,lim i l

t gl
θ

→∞
= ∞  

and ,
, 0i l

t gθ >  for all 1,...,l = ∞ . It follows from (39) that 

,
, , ,
, ,

max

0
i l

i l i l l i lt
gt g t t g

QTT t t
f

θ λ θ+ + + − + =  

for all 1,...,l = ∞ . It suffices to deduce that 

,
,

, max
, 1 1

i l
i l t

g t
gi l

t g l l

Qt TT t
f tθ

λ λ

− − −
= ≤

+ +





. This is a contradiction, so the 

boundedness of { },
, 0,1,..., 1; 1,..., ; 1,..., 1

( )i l
t g t v i n g G l
θ

∞

= − = = =
 follows. 

Boundedness of { },
0,1,..., 1; 1,..., 1

( )i l
t t v i n l

Q
∞

= − = =
 

Let { }* 0,1,..., 1t v∈ −  be the smallest t  such that 
*

,
1

i l
tQ +  is unbounded. We may assume that  

*

,
1lim i l

tl
Q +→∞

= ∞  

and 
*

,
1 0i l

tQ + >  for all 1,...,l = ∞ . It follows from (36) that 

( )* ** * *

, 1,, , ,
1 1 max1 1( ) 0i l i l li l i l l i l

t tt t tr f fQ Q t Qλ−
+ ++ ++ −− − ∆ + =r  

for all 1,...,l = ∞ . This implies that 

( ) ( )* ** *

, 1,, ,
1 1 max1 ( )1 i l i l li l i ll

t tt t r f fQ Q tλ
−

+ ++ + −− = ∆+ r  

for all 1,...,l = ∞ . Note that the boundedness of 
*

1,
1 ( )i l l

tf
−
+ r  and 

*

,
1

i l
tr +  have been proved, therefore we can conclude 

that 
*

,i l
tQ  is also unbounded. This contradicts the definition of index *t , so the boundedness of 

{ },
0,1,..., 1; 1,..., 1

( )i l
t t v i n l

Q
∞

= − = =
 follows. 

Boundedness of { },
0,1,..., 1; 1,..., 1

( )i l
t t v i n l

TT
∞

= − = =
 

Let { }* 1,...,i n∈  be the smallest i  (note that the sequence of cell 1 to n  is the direction from the corridor 

boundary to CBD, i.e., 1 2 ,  0,1,..., 1n
t t tTT TT TT t v> > > ∀ = − ) such that ,i l

tTT  is unbounded. We may assume that  

* ,lim i l
tl

TT
→∞

= ∞  

and * , 0i l
tTT >  for all 1,...,l = ∞ , thus, 
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* * *

*

, 1, ,
, 0
( )

i l i l i ll
t t ti l l

t

xTT TT TT
ak b

λ
σ

+ ∆
− − + =

− + +r
 

for all 1,...,l = ∞ . This implies that 

( ) * *

*

, 1,
,1
( )

i l i ll
t t i l l

t

xTT TT
ak b

λ
σ

+ ∆
+ − =

− + +r
 

for all 1,...,l = ∞ . Due to the boundedness of * , ( )i l l
tk r  as stated in previous analysis, we can conclude that 

* 1,i l
tTT +  is also unbounded. This contradicts the definition of index *i . Therefore the boundedness of ,i l

tTT  holds 
readily. This concludes the whole proof. □ 

4. Numerical experiments 

In this section, a set of numerical examples are presented with an idealized travel corridor for three different 
scenarios: homogeneous commuters with no late arrival, homogeneous commuters allowing for late arrival and 
heterogeneous commuters. A corridor with length of 10km is adopted here for illustration, which connects the 
city centre with residential locations. The corridor is divided into 10 sections, and the sequence of section 1 to 
10 is the direction from the boundary of the corridor to CBD. The time horizon is set between 8:00am to 8:40am, 
which is divided into 100 intervals with each time interval 0.4min. The free flow speed is set at 60km/h and the 
maximum density is given at 150veh/km. 

4.1. Scenario I: homogeneous commuters with no late arrival 

In this scenario, homogeneous users are assumed to be uniformly distributed along the corridor (i.e., 
parameter 0φ =  in Eq. (10)) with travel demand of 150 veh at each section, and the preferred arrival time is set 
at 8:28am, the 70th time interval. No late arrival is allowed for all commuters along the corridor. One interesting 
finding is that, when the ratio /β α  (VOT for early arrival time/travel time) becomes small, there exists the 
phenomenon of constant departure rate at some sections, and the smaller the ratio is the longer time range the 
constant departure rate occupies. For example, Fig. 2 shows the departure rate over time at each location along 
the corridor at a small ratio / =0.03β α  ( =S$1α , =S$0.03β ), wherein the blue solid line denotes the departure 
rate, and specially, the red dashed line represents the constant departure rate. 

It is easy to observe that, the commuters located further toward the corridor boundary depart much earlier 
than those living closer to CBD, and the time interval with positive departure rate reduces from the locations 
around corridor boundary towards CBD. As stated in previous content, another interesting finding is that, except 
for the last two sections (9 and 10), the departure rate at each location is constant at most of the departure time 
interval (red dashed line in Fig. 2), which is consistent with the conclusion in Arnott and DePalma (2011) that, 
for no late corridor problem, the departure rate is constant at each location along the corridor. However, one can 
also observe the “discontinuity” of the departure rates at many locations, which is indeed allowed and induced 
by the complementarity conditions formulation applied in this study. Despite that the model formulation in this 
study is only solved to its form of discretized approximation, one can still observe from the numerical results 
that the discontinuity may occur in the solution. However, in Arnott and DePalma (2011), the solution 
derivation is based on the strict assumption that the differential variable, ( )ˆ ,T x a , is not only continuous but 
also differentiable everywhere. This could be the assumption that somehow “over-constrains” the problem, as 
was pointed out in Arnott and DePalma (2011), and produces incomplete solution, which only exists for some 
special type of population density distribution. In the subsequent section, we will demonstrate that our model 
formulation is able to handle various types of population density distribution. 

Fig. 3 illustrates the evolution of traffic density over time at each location along the corridor. The general 
trend is that, as time elapses at each location along the corridor, traffic density rises from zero to a certain level 
and then keeps constant for some time interval due to the constant departure rate as showed in previous results. 
It is easy to observe that the peaks of density are higher at locations closer to CBD, and positive traffic density 
occurs earlier at locations further away from CBD.  
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Fig. 2 Departure rate over time at each location along the corridor 

 
Fig. 3 Traffic density at each location over time along the corridor 

Fig. 4 shows the travel time at each location over time along the corridor, and one can find that at each 
location travel time raises as positive departure rates occur and then keeps a constant growth rate to a peak, 
before it drops until all the commuters at this location complete the trips to CBD. 
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Fig. 4 Travel time at each location over time along the corridor 

Next, to figure out how the ratio /β α  affects the departure pattern, a comparison of the departure sets with 
different values of travel time and values of early arrival delay time is shown in Fig. 5. Departure set depicts the 
trajectory of the first and last departure time at each location along the corridor. For comparison, the VOT for 
travel time remains at constant S$1 as stated previously, while the values of early arrival delay varying, and 
their ratios are shown clearly in Fig. 5. In Fig. 5, ‘width’ at 1i =  denotes the range of departure set at this 
location, i.e., how many time intervals the departure set covers. For example, at the first case / 0.03β α = , the 
departure time range covers 58 time intervals at location 1. It is easy to find that as the ratio /β α  raises, the 
width of departure set becomes narrower, which is consistent with the result in Arnott and DePalma (2011). 
Moreover, as the ratio  /β α   raises, the upper boundary (solid line) varies slightly, but the lower boundary 
(dashed line) rises up significantly. It is easy to understand that commuters would prefer earlier departure to 
avoid traffic congestion and minimize the travel cost if the unit early arrival penalty is low, however, with 
higher value of early arrival delay, commuters depart late to avoid early arrival and the departure set is squeezed 
for this situation.  

 

Fig. 5 Comparison of departure sets at each location along the corridor 
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4.2. Scenario II: homogeneous commuters allowing for late arrival 

In this numerical test, late arrival is allowed for commuters to consider more general cases of scheduling 
costs, and the VOTs of travel time, early arrival time and late arrival time delay are set at S$1, S$0.4 and S$1.5 
respectively. Moreover, different types of demand density distribution are compared in this section to 
demonstrate that the model results are indicative in answering such macroscopic urban planning questions as 
how the urban density distribution pattern may affect the traffic congestion spatial dynamics in a travel corridor. 
First of all, negative exponential distribution is considered here with the parameters 0.1φ = , 0 150D = . The 
equilibrium travel pattern in terms of departure rates over time at each location along the corridor is shown in 
Table 2 (the time intervals with zero departure rates are omitted in the table). Compared to the scenario I with 
no late arrival and uniform density distribution, the departure time range is shorter at all locations along the 
corridor. It can be interpreted by that fact that, higher unit early arrival penalty and late arrival penalty render 
the commuters no incentives to depart earlier or later to avoid congestion and most of the commuters would 
select departure time in a more concentrated time interval. 

Table 2 Departure rate over time at each location 

Time Location 
1 2 3 4 5 6 7 8 9 10 

58 0 0 0 0 0 0 0 0 0 0 
59 23.485 37.500 24.203 9.344 0 0 0 0 0 10.903 
60 37.500 29.899 24.000 28.444 33.856 33.336 33.340 32.122 37.500 37.500 
61 0 0 26.285 20.854 22.211 24.000 25.351 25.350 25.752 24.000 
62 0 0 0 23.680 34.913 16.934 17.699 17.698 17.923 16.934 
63 0 0 0 0 0 26.277 13.169 13.169 13.309 12.688 
64 0 0 0 0 0 0 21.563 10.232 10.327 9.908 
65 0 0 0 0 0 0 0 24.239 30.914 7.975 
66 0 0 0 0 0 0 0 0 0 30.091 
67 0 0 0 0 0 0 0 0 0 0 
68 0 0 0 0 0 0 0 0 0 0 
69 0 0 0 0 0 0 0 0 0 0 
70 ( t ) 0 0 0 0 0 0 0 0 0 0 

Next, we want to figure out how urban population density distribution affects the equilibrium departure 
pattern and the transport system performance. By doing so, one can understand that, what urban density 
distribution may lead to the best performance for individual commuters and the whole transportation system. 
More specifically, given the same total population, how the urban density distribution should be planned to 
accommodate the population while ascertaining best transport system performance. Besides the negative 
exponential distribution, other different types of distribution functions can also be applied in this model 
formulation. For illustration purpose, here we compare the uniform, linear and negative exponential distribution 
patterns of the travel demand along the corridor. For fair comparison, the total travel demand along the corridor 
is kept identical with previous numerical experiments. A simple computation is conducted to find the optimal 
parameters for the exponential and linear distribution functions so that their total travel cost minimized. By 
varying φ  in a practically reasonable range ( 0.02,0.04,...,0.2φ = ), we find the negative exponential 
distribution ( 0.14φ = ) with lowest total travel cost along the corridor. Similarly, as for the linear distribution 
function iD Ai B= + , 0,  0A B≥ ≥ , with given identical total demand, we have 0 99.6B≤ ≤ , a simple scenario 
study (calculation of the total travel cost with each 0,10,...,90B = ) is conducted to find the best parameter 

16.298A =  and 10B =  to induce the lowest total travel cost. Therefore, with best negative exponential and 
linear distribution patterns, we demonstrate the comparison among these three distribution types, as shown in 
Fig. 6. 
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Fig. 6 Comparison of equilibrium costs along the corridor with different travel demand distributions 

Fig. 6 compares the equilibrium costs along the corridor with different urban density distributions. One can 
easily find that, for this specific problem setting, the negative exponential distribution leads to lower equilibrium 
cost at each location along the corridor, as well as the lowest total travel cost, and uniform distribution results in 
a higher total travel cost compared to the other two types of distribution. Generally, with the aid of the model 
formulation and solution, one can evaluate how the urban density distribution may affects the transport system 
performance by conducting similar sensitivity analysis, which is vital in answering the urban planners’ question 
on how urban density should be planned to ensure best transportation system performance. Moreover, it also 
demonstrate that the model formulate is suitable for various types of distribution functions. 

4.3. Scenario III: heterogeneous commuters allowing for late arrival 

In this scenario, heterogeneity is considered with two group commuters for illustration. For illustration 
purpose, travel demands are given as uniform distribution ( 100 veh, =1,2,...,10, =1,2i

gD i g= ) and identical for 
two group commuters, and the heterogeneity is mainly on the VOTs and different preferred arrival time. Users 
in group 1 have lower unit VOTs, and later preferred arrival time than those in group 2. The preferred arrival 
time for group 1 and group 2 commuters are set at the 70th and 50th time interval respectively, and the other 
heterogeneous parameter values are given as: 1 1 S$ / minα = , 1 0.4 S$ / minβ = , 1 1.5 S$ / minγ = , 

2 1.5 S$ / minα = , 2 0.8 S$ / minβ = , 2 2 S$ / minγ = . 

 
Fig.7 Comparison of minimum costs along the corridor between different user groups 
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Fig. 7 demonstrates the minimum costs of two group commuters along the corridor at equilibrium status. It is 
obvious that commuters from different groups have different equilibrium travel costs at each location. 
Specifically, the equilibrium travel cost for group 2 commuters is higher at each location along the corridor as 
they have larger VOTs and earlier preferred arrival time. 
 
Table 3 Departure rates over time at each location 

 
 
 
 
 
 
 
 
 
 

Group 1 

1 70t =  
 

Time Location 
1 2 3 4 5 6 7 8 9 10 

51 0 0 0 0 0 0 0 0 0 0 
52 0 0 0 0 0 0 0 0 2.861 13.826 
53 0 0 0 0 0 0 0 0 35.792 21.096 
54 0 0 0 0 0 0 0 9.370 17.652 11.217 
55 0 0 0 0 0 0 0 5.135 10.000 4.649 
56 0 0 0 0 0 0 8.430 8.239 6.219 4.890 
57 24.999 18.007 13.576 0 0 4.802 0 7.787 0 4.069 
58 37.498 28.161 30.572 31.813 19.145 0 0 9.455 0 4.252 
59 37.503 19.255 20.534 21.172 22.840 24.876 21.357 11.275 3.799 4.281 
60 0 14.123 15.128 15.291 16.267 17.432 15.397 8.940 3.334 3.722 
61 0 20.454 11.161 11.580 12.272 13.002 11.704 7.279 2.941 3.268 
62 0 0 9.029 9.206 9.785 10.122 9.236 6.373 2.627 2.893 
63 0 0 0 10.940 7.589 8.099 7.496 5.115 2.356 2.585 
64 0 0 0 0 12.103 6.682 15.971 4.413 2.592 2.325 
65 0 0 0 0 0 4.691 0 16.618 9.826 2.094 
66 0 0 0 0 0 10.293 0 0 0 1.286 
67 0 0 0 0 0 0 3.215 0 0 13.544 
68 0 0 0 0 0 0 3.460 0 0 0 
69 0 0 0 0 0 0 3.733 0 0 0 
70 0 0 0 0 0 0 0 0 0 0 

Group 2 

2 50t =  

36 0 0 0 0 0 0 0 0 0 0 
37 24.990 17.996 21.456 16.271 4.809 8.862 1.912 0 0 0 
38 37.503 28.162 30.635 29.388 31.127 27.352 5.254 1.045 0 0 
39 37.507 53.842 45.323 19.910 20.968 23.170 24.897 27.325 5.401 0 
40 0 0 2.586 34.431 15.124 16.424 17.434 22.069 24.336 9.786 
41 0 0 0 0 27.971 12.363 13.000 15.688 17.502 15.439 
42 0 0 0 0 0 11.829 10.167 11.347 13.076 11.781 
43 0 0 0 0 0 0 7.043 1.071 0.439 9.316 
44 0 0 0 0 0 0 20.293 7.588 0.697 9.451 
45 0 0 0 0 0 0 0 13.868 38.550 9.447 
46 0 0 0 0 0 0 0 0 0 34.780 
47 0 0 0 0 0 0 0 0 0 0 

 48 0 0 0 0 0 0 0 0 0 0 
 49 0 0 0 0 0 0 0 0 0 0 
 50 0 0 0 0 0 0 0 0 0 0 

The departure rates of these two group users are shown in Table 3 (the time intervals with zero departure 
rates are omitted in the table). One can note that group 1 users have wider departure time choice than group 2 
users. It is because group 1 commuters have lower VOTs, and they may choose early or late arrival to avoid 
traffic congestion. The model capability of incorporating commuter heterogeneity is practically useful and 
important in enabling the answer of transport managers’ question that how the peak-hour congestion mitigation 
measures like flexible work time scheme and various work starting time scheme may affect commuters’ 
departure time choice and how effective these schemes could be in containing peak-hour congestion. 

5. Conclusion 

In this study, a traffic corridor with many-to-one OD pattern and heterogeneous commuters is considered and 
the spatial and dynamic equilibrium with traffic congestion is modelled by applying a partial differential 
complementarity system (PDCS) approach. To solve the PDCS formulation numerically, a discretization 
scheme is applied to transform the PDCS model into a complementarity problem formulation. Solution 
existence is proved and a series of numerical studies are conducted to verify the model validity. Numerical 
examples are conducted to show how values of time and scheduling delay, as well as the population density 
distribution, may affect the equilibrium departure pattern. There are several limitations to the current model. For 
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example, to capture the queueing effect, we assume an average queueing time for all the travellers at one 
specific location, which is more suitable for the case with a relative low level of travel demand. To develop a 
more realistic model that can handle more congested scenario, it may be necessary to distinguish the 
accommodated demand from the desired demand as some travel demand may not be accommodated 
immediately into the highway. These limitations would be addressed in the future study. Moreover, although the 
continuum model is formulated, the numerical solution of this model is based on the discretization scheme. 
Besides, instantaneous travel time estimation, rather than real time one, is applied in this study to simplify the 
formulation. These issues are also supposed to be further addressed in the future study. 
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