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Continuum models for twisted bilayer graphene: the effects of lattice deformation and

hopping parameters

Francisco Guinea1,2∗ and Niels R. Walet1†
1School of Physics and Astronomy, University of Manchester, Manchester, M13 9PY, UK and

2Imdea Nanoscience, Faraday 9, 28015 Madrid, Spain

(Dated: April 16, 2019)

We analyze a description of twisted graphene bilayers, that incorporates the deformation of the
layers using state of the art interlayer atomic potentials, and a modification of the hopping pa-
rameters between layers in the light of the classic Slonczewski-Weiss-McClure parametrisation. We
obtain narrow bands in all cases, but that their nature can be rather different. We will show how to
describe the results by equivalent continuum models. Even though such models can be constructed,
their complexity can vary, requiring many coupling parameters to be included, and the full in-layer
dispersion must be taken into account. The combination of all these effects will have a large impact
on the wave functions of the flat bands, and that modifications in details of the underlying models
can lead to significant changes. A robust conclusion is that the natural strength of the interlayer
couplings is higher than usually assumed, leading to shifts in the definition of the magic angles. The
structure at the edges of the narrow bands, at the Γ point of the Brillouin Zone is also strongly
dependent on parametrization. As a result, the existence, and size, of band gaps between the flat
bands and the neighboring ones are changed. Hence, the definition of Wannier functions, and de-
scriptions based on local interactions are strongly dependent on the description of the model at the
atomic scale.

I. INTRODUCTION

The discovery of strong interactions and superconduc-
tivity in twisted graphene bilayers has been one of the
main achievement in two-dimensional materials in the
past year; it has been chosen as the Physics World break-
through of the year 2018 [1–3], see also Ref. [4]. This
field has grown so rapidly that it now carries its own
dedicated label, “twistronics”. Twisted graphene layers
show a rich phenomenology, likely due to the interplay
of a complex electronic structure and the effects of elec-
tron interactions. The core ideas build on previous work
on the behavior of graphene superlattices on a BN sub-
strate, see for example Refs. [5–10]. In all of these cases
we have a periodic, long wavelength, Moiré modulation,
but for graphene on BN the mismatch in lattice spac-
ing between the different materials in the layers limits
the maximum wavelength, and thus the diversity of elec-
tronic structures for the accessible modulations [11–13].
On the other hand, the two graphene layers in a twisted
bilayer have the same spacing and the periodicity of the
Moiré structure has no limit, and diverges at small twist
angles [14–19], LM = d/

(

2 sin(θ/2)
)

, where d ≈ 2.42 Å is
the lattice unit of graphene. For sufficiently small angles
almost flat bands arise near the charge neutrality point
[16, 17, 20]. The effects of the intrinsically small inter-
action effects in graphene are expected to be enhanced
for special ‘magic’ angles where the width of the low en-
ergy bands is smallest. Novel magnetic phases become
possible when the lowest band is half filled [21]. Layer
dependent strains can also lead to Moiré structures and
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FIG. 1. Examples of a graphene bilayer in (approximate) AA
and AB alignment.

narrow bands [22, 23].
When we (almost) align two graphene layers, we have

two minimum energy options as shown in Fig. 1. We
can either replicate the two layers with only a change in
the height (AA alignment), or we can translate one of
the layers over a single nearest neigbor distance, which
gives AB alignment. In areas with AB alignment half
of the carbon atoms in one layer align with those of the
other one, but the other half aligns with the midpoints
of the hexagons in the other layer. This situation has a
lower energy than that with AA alignment. If we con-
sider a twisted bilayer, where both layers are perfectly
hexagonal but rotated by an angle relative to a common
axis, we find areas with both alignments that are of the
same size. At a small cost, the graphene layers can warp,
both in and out of plane, to enlarge the beneficial effect
of the AB alignment. Doing a fully microscopic calcula-
tion (which in this case would require a computationally
extremely expensive Green’s function Monte Carlo anal-
ysis, since density functional theory calculations struggle
to describe bilayer graphene [24], see also[25, 26]) is out
of the question for the more than 10, 000 carbon atoms
that are contained in a single unit cell, so we need to fall
back to simpler models. A few DFT studies are available
in the literature[25–27], although it does not (yet) seem



2

γ1 γ4 γ3

γ1

γ0

B2

A2

B1A1

γ4

FIG. 2. The definition of the hopping parameters γi as used
in the SWM model for B1A2 aligned layers. We denote γ0 by
a black line, γ1 by a red line, γ3 in green and γ4 in purple.

feasible to carry out calculations at the size required to
deal with small twist angles.

We can use elegant and simple continuum models
when we have no deformation [14, 17], or we can use
semi-microscopic atomistic models, such as classical force
models for the interatomic forces, both within each
layer and between different layers, combined with tight-
binding methods for the electronic structure. As we shall
discuss below, this latter approach, which relies implic-
itly on many-body interactions, is likely to give the most
realistic description.

At the same time we need to ask ourselves what is the
“best” tight-binding description for the electronic struc-
ture: For a single layer of graphene the standard ap-
proach is to use a nearest-neighbor hopping, and maybe a
next nearest neighbor one, to describe the spectra. That
approach work very well, even for systems with deformed
lattices (typically Moiré supercells). The structure of
classical potential models that describe the atomic po-
sitions of the atoms in a 2D layer is well understood, and
most modern potential models describe the structure of
graphene both near and far from equilibrium very well.

The description of both the binding of a bilayer, and
the electronic hopping between the layers is much more
challenging. The most realistic potential models contain
complex many-body interactions, that are necessary to
describe the complexities of intra- and inter-layer bind-
ing. It is also reasonably well established that one must
include many-body effects in the hopping parameters for
both graphite and graphene. The key signature of the
problems with a two-body description is the difference
between nearest-neighbor hopping parameters for differ-
ent positions in an AB-aligned the lattice. As origi-
nally described for graphite in the Slonczewski-Weiss-
McClure (SWM) model [28–30] the hopping parameter
γ1, between vertically displaced carbon atoms in B1A2

alignment, which has a value of about 0.4 eV in graphene
[31–33], differs strongly from the two hopping parame-
ters for slightly larger distances: γ4 = 0.04− 0.15 eV for
the hopping near vertical alignment (B1B2, etc.), and
γ3 = 0.3 eV for midpoint aligned carbon atoms (usu-
ally labelled A1B2). In Fig. 2 we show how γ4 (B1B2)

occurs next to γ3, and that both have the same hop-
ping distanc. Nevertheless γ4 is much smaller than γ3 in
graphite, which is not captured by the standard distance-
dependent two-center Koster-Slater hopping. As dis-
cussed in a recent review [34], for bilayer graphene there
is a spread in the values found and used. The consensus
is that the value of γ4 is still substantially smaller than
γ3, see also Ref. [18]. A useful form of a model where
the screening is dominated by in-layer nearest-neighbor
atoms is given in Ref. [35], see also Refs. [36, 37]. This
is very similar to the case of the interatomic potentials,
which also require a many-body screening largely dom-
inated by nearest-neighbors. Clearly both the graphene
lattice deformation and the many-body effects in the hop-
ping will play an important role in describing the band
structure obtained in a tight-binding model.

Once we have determined the atomic positions and
the hopping parameters for the tight-binding model, we
need to deal with the large dimensionality which arises
from the size of the unit cell, which leads to a large
number of bands. Especially for small angles and thus
long Moiré wavelengths, the matrices become extremely
large. However, these matrices are very sparse and can
be dealt with sparse matrix methods such as ARPACK
[38]. Even using those methods numerical calculations
are still time consuming. Thus, especially if we want to
study many-body physics, we would like to reduce the
full tight-binding model to a more efficient low-energy
effective model. The one usually used is discussed in
Refs. [14, 17], but only works for the simplest lattice and
hopping parameters. Since we will use a more complex
tight-binding model than normally considered and lattice
deformation on top of that, we need to more be careful
in making this reduction. We shall investigate this in de-
tail, using an approach that incorporates and generalises
the ideas of Ref. [39].

In this work we shall study in a holistic way both the
effects of lattice deformation and the change in hopping
due the change in alignment, which should be contrasted
to related work in Refs. [40, 41]. Our calculation of de-
formation bears some similarity to the work by van Wijk
et al [42, 43], but the authors of those references mainly
study a single layer on either bulk graphite or hBN. There
are a few other papers that take a related approach [44–
49] to lattice deformation, often in a slightly different con-
text. We start out by selecting a few modern potentials
for graphene, and will analyze in detail the deformation
of the bilayer systems. This will be validated by compar-
ison to experimental results for strain solitons in bilayers,
and will also be compared to the results of a simplified
technique originally developed by Nam and Koshino [50].
[We shall show in the Appendix that we can get a sim-
ple analytical series expansion for this model with minor
modifications.] We then analyze the tight-binding model
based on these data, and show that the lowest energy
bands remain flat in the presence of a lattice deformation.
Then we analyse a general way to extract a low-energy
model from such data, and discuss potential issues there.
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In this work we concentrate on the study of lattice relax-
ation and electronic structure for a twisted sample at a
fixed twist angle, θ ≈ 1.05◦. For this angle, the electronic
properties depend on the choice of parameters used. In
this respect, our analysis is rather different from those
which select a given parametrization and modify the an-
gle in order to obtain the narrowest band [26, 40, 51].
Note, finally, that experiments determine the twist an-
gles mostly from measuring the electron density required
to fill the bands in the Moiré superlattice. The angles
observed in this way need not coincide with the theoreti-
cally defined “magic angles” where the Fermi velocity at
the K and K ′ points in the superlattice Brillouin Zone
vanishes[17]. Also, it may make sense to use other defi-
nitions of the magic angles, such as those which lead to
the narrowest bands, or to the largest gaps between the
lowest states and the next ones.
Our goal is to quantify the uncertainty that exists in

the basic description that is used as a starting point in
most calculations of novel features in bilayer graphene.
We shall not directly draw conclusions which approach is
best; this should ideally be resolved by further exper-
imental measurements of the Moiré structure and the
local density of states, as should be accessible to STM
measurements. We will, however, compare the lattice re-
laxation results to the measurements from Ref. [52], and
show that we can obtain results that are rather compara-
ble to the interface solitons seen in free-standing bilayers.
Finally, we discuss the robustness of results that rely on

a particular Wannier function to describe superconduc-
tivity [39, 51, 53–63]. We shall argue that the electron-
assisted hopping model of Ref. [64] looks like the most
robust way to obtain superconductivity, independent of
the unknown details of the model.

II. CLASSICAL ATOMISTIC SIMULATIONS

In this section we shall investigate the deformation of
free-standing graphene bilayers using atomistic poten-
tial models. We will employ a small number of well-
established potential models, and for calculational sim-
plicity we restrict our attention to those implemented in
the LAMMPS package [65].
For a single layer graphene, we shall use AIREBO-

M [66] form of the AIREBO potential [67], as well as
the LCBOP-I potential [68], all of which work well for
graphene. The reason we shall not use the AIREBO is its
small equilibrium C-C spacing of 1.397 Å, unlike the stan-
dard value of 1.420 Å recovered for the AIREBO-M and
LCBOP potentials. The nature of the interlayer interac-
tion is a subtle question; the long-range and many-body
nature of these potentials is discussed in Refs. [42, 68–71].
Most potential models are modifications of models first
used for the interaction of graphene and HBN, and there
is some indication that that this leads to a small underes-
timate of the corrugation of the graphene layers [42]. In
this work we shall only use the Kolmogorov-Crespi (KC)

potential [69] and the interlayer potential (ILP) [70, 71].
Note that in the “overlay” implementations of the ILP
and KC potentials used in LAMMPS, the long range part
of the AIREBO is switched off, effectively turning these
potentials in re-parameterized REBO potentials [72].
A different interlayer potential makes a difference in

the results reported below. A detailed comparison be-
tween a large variety of choices in Table I of Ref. [73],
who derive a rather different form for the potential. In
some of those more emphasis is placed on the vertical
corrugation of bilayers (which is indeed important for
the magnitude of interaction, and even though included
in our work, may be slightly underestimated due to the
nature of the potentials used). Others concentrate on
strained graphene bilayers. The work by Jain et al [46]
employs a potential that is specifically designed for the
out of layer deformation, but may be less well suited to
the details of the in-layer deformation. Nevertheless, this
reference also contains an interesting discussion of the
lattice deformation. Even though in Ref. [39] the im-
portance of the corrugation is strongly emphasized, we
shall argue that the in plane deformation of the lattice
actually dominates when we take into account the sub-
tleties of interlayer hopping in AB stacking–rather than
the pure two-body form used in that reference. Also, we
expect vertical corrugation to be suppressed when the
two layers are encapsulated within BN, as is the case in
most experiments. In all cases we expect the formation
of AB and BA aligned regions separated by domain walls
(“interface solitons”). This problem is also discussed in
Ref. [74] using an analytic description of domain wall
formation, but for rectangular domains.
We have performed simulations for a variety of super-

cell sizes, but will concentrate here on the case of a su-
perlattice with periodicity 32a1+31a2, with an angle be-
tween the two graphene lattices at the “canonical value”
of 1.05◦, where we can also compare directly to the semi-
analytical work by Nam and Koshino [50]. This last ap-
proach is discussed in detail, in a simplified version that
is susceptible to analytic solution, in the appendix.
We relax the lattice using a single supercell, with the

dimensions chosen to contain a graphene bi-layer lattice
without deformation. We then relax, using a conjugate-
gradient minimization, first the positions within flat lay-
ers, followed by a full relaxation of the carbon atoms.
We have checked that these results do not depend on the
method or specific order of relaxation used.
A useful way to analyze the in-plane deformation of the

relaxed layers is to expand the new positions in terms of
a lattice harmonics,

r‖iσ = r
(0)
‖iσ + uσ(r

(0)
‖iσ), (1)

uσ(r) = σu(r) =
∑

q∈Hr

5
∑

j=0

1

i
uR2πj/3qe

i(R2πj/3q)·r. (2)

Here Rθ is a 2D rotation over an angle θ, Hr is the first
sextant of the reciprocal lattice, i.e., the yellow domain
in Fig. 18, and σ = ± denotes the top (bottom) graphene
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TABLE I. Lattice harmonic expansion of the deformation: the values of uq (in units of Å ) for the points labeled as in Ref. [50].

n1, n2 LCBOP+KC AIREBO-M+KC AIREBO-M+ILP N&K

(1,0) (0.00042,0.04972) (0.00141,0.07689) (0.00129,0.07302) (0.,0.02660)

(2,0) (0.00006,0.00323) (0.00025,0.01307) (0.00026,0.01078) (0.,0.00270)

(2,1) (-0.0019,0.00347) (-0.00442,0.00809) (-0.0051,0.00928) (-0.00100,0.0017)

(3,0) (0.00001,0.00015) (0.00008,0.00272) (0.00007,0.00191) (0.,0.00036)

(3,1) (0.00001,0.00001) (-0.00051,0.00182) (-0.00075,0.00269) (-0.00002,0.00035)

(3,2) (-0.00005,0.00005) (-0.00132,0.00153) (-0.00189,0.00216) (-0.00028,0.00020)

(4,0) (0.00001,-0.00002) (0.00003,0.00064) (0.00002,0.00039) –

(4,1) (0.00004,-0.00014) (0.,0.00016) (-0.00013,0.00071) –

(4,2) (0.00003,-0.00006) (-0.0002,0.00038) (-0.00042,0.00078) –

(4,3) (0.00009,-0.0001) (-0.00015,0.00015) (-0.00055,0.00053) –

(a) (b) (c)

FIG. 5. Alignment for a 32a1 + 31a2 (a), 50a1 + 49a2 (b)
and 100a1 + 99a2 (c) bilayer graphene lattice described by
the AIREBO-M+ILP potential.

- 10 - 5 0 5 10
0.0

0.5

1.0

1.5

d (nm)

w
A
B

FIG. 6. Results for the interface soliton for a bilayer graphene
lattice with periodicity 50a1 + 49a2 (green), 100a1 + 99a2

(blue) and 150a1 + 149a2 (red) described by the AIREBO-
M+ILP potential. In each case the strain soliton has a full
width at half maximum of 2.3 nm.

(a) (b) (c)

FIG. 7. Alignment for a 32a1 + 31a2 (a), 50a1 + 49a2 (b)
and 100a1 + 99a2 (c) bilayer graphene lattice described by
the LCBOP+KC potential.

d (nm)

w
A
B

FIG. 8. Results for the interface soliton for a 50a1 + 49a2

(green), 100a1 + 99a2 (blue) graphene lattice described by
the LCBOP+KC potential. In the largest case the soliton
has a full width at half maximum of 3.1 nm.
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FIG. 9. The atomic positions in the soliton region (range as in
Fig. 8). This should be compared to Fig. 3A/B from Ref. [52].

in Ref. [52]. Of course our analysis is based on only on
atomic positions, unlike the results in the paper cited,
which are obtained either experimentally using an indi-
rect measure of position, or described with substantial
modelling of the probe from the position data. Never-
theless, the similarities are striking.
It is well-known from various simulations cited earlier

that vertical corrugation of the graphene layers is im-
portant. We would expect a slight underestimate of the
corrugation for our current choice of potentials. From
potential models fitted specifically to reproduce defor-
mation data [46] we would expect a corrugation of about
dAA = 0.360 nm and dAB = 0.335 nm. The values
we find are dAB = 0.335 nm and dAA = 0.351 nm for
the LCBOP+KC calculations, and dAB = 0.336 nm and
dAA = 0.356 nm for the AIREBO-M+ILC one. This
may show a small underestimate of the vertical corru-
gation, especially for the LCBOP+KC potentials. Since
the AA regions are very small, there is little sensitivity
of the binding energy to the AA distance, and thus small
changes in the binding can have large effects on this dis-
tance without changing the in-lattice deformation and
the energy balance appreciably.

III. TIGHT BINDING

Having determined the atomic positions, we need to
turn our attention to the electronic degrees of freedom,
which we describe using a tight-binding approach. We
assume that the lattice unit of the Moiré superlattice is
much larger than the graphene unit cell. Without de-
formation, the Moiré unit cell can then be divided into
regions with AA,AB, and BA stacking, which each oc-
cupy a similar fraction of the unit cell. tight-binding cal-
culations suggest that the wavefunctions which describe
the approximately flat bands near the neutrality point
are then localized within the AA regions[20]. Since this
relies on many approximations, this deserves a detailed
investigation.
We start from a tight-binding model for a single layer

graphene given by

H(l) = t
∑

〈ij〉
c
(l)†
i c

(l)
j + t′

∑

〈〈ij〉〉
c
(l)†
i c

(l)
j . (7)

Since we have allowed for deformation, we in principle
have t → tij . Since we shall concentrate on the intralayer
coupling, and the changes in tij are actually very small,
we take tij = t = γ0 = −2.7 eV[75] and for simplicity
we shall use t′ = 0 (we have checked this makes no ap-
preciable difference to our results). The fact that we use

the same value of t independent of lattice deformation
is important: it means that the in-plane wave functions,
which only depend on the in-plane hopping parameters,
are the same as those of the undeformed lattice; this sim-
plifies the calculations, and is not a real restriction since
bond-stretching is extremely small, as explained above.
We use three sets of interlayer hopping parameters;

first of all a Koster-Slater exponential parametrisation

t(r) = 0.4 exp(−a(r − r0)), (8)

where we use r0 as the flat-layer average distance as de-
fined in Eq. 12, which means that we cannot use this
parametrisation for the deformed lattices, since the AB
couplings become too strong due to the shorter inter-
layer distance in the AB regions. In principle, we could
replace r0 by the AB distance, but since it is not clear
that this makes sense, we will not do so, but only apply
this parametrisation for flat layers at an interlayer dis-
tance r0. (Note, however, that Ref. [39] appears to have
carried out this program).
We use two sets of environmentally dependent (many-

body) hopping parameters, both based on the work in
[35], who have designed a many-body screening function
that is completely saturated by nearest neighbors only.

The form we use is (with r = r
(2)
2 − r

(1)
1 )

V1(r
(1)
1 , r

(2)
2 ) = V0

( |z1 − z2|
r

)α1

exp (−(α2r)
α3)

× (1− tanh(ξ)) , (9)

ξ =
∑

r3,l

f

(

|r(l)3 − r
(2)
2 |+ |r(l)3 − r

(1)
1 |

r

)

,

(10)

f(x) = β1 exp
(

−β2x
β3

)

. (11)

We choose two sets of parameters; one, called “screened-
1”, is essentially the parameter set from Ref. [35] (with
minor modifications); in the other one, “screened-2”, a
few parameters have been modified to even more closely
represents the parameters in the bilayer SWM parametri-
sation as reported in Ref. [34]. The parameters for these
two potentials are given in Table II, and we study the
behavior of the resulting γi as a function of distance in
Fig. 10. We see that our “screened-2” potential only
has a weak dependence on interlayer spacing, and gives
γ1 ≈ 0.4eV, γ3 ≈ 0.3eV and γ4 ≈ 0.1 − 0.2eV, in
agreement with the values quoted in [34]. The original
screened potential is essentially identical for γ1, has a
slightly smaller and more variable γ3, and has a value
of γ4 more appropriate to graphite. The Koster-Slater
coupling has a great sensitivity to the interlayer spacing,
which is especially problematic for γ1, and follows the
relation γ3 = γ4, where γ3 is rather small. Also, it has a
6-fold symmetry for the couplings near γ3, whereas only
a threefold symmetry is present.
We use two sets of deformation parameters,

LCBOP+Kolmogorov-Crispi (LKC) and AIREBO-
M+ILP (AILP). We also study the effect of fixing the
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TABLE II. Table of parameters used in Eqs. (9–11) for our
two many-body screened hopping models.

parameters screened-1[35] screened-2

V0 1.06191 eV 1.06191 eV

α1 0.476 1.0

α2 0.295 Å−1 0.295 Å−1

α3 1.411 1.411

β1 6.811 6.811

β2 0.01 0.01

β3 19.176 20.5

γ4

d (Å)

γ3

γ1

d (Å)

(a)

(b)

(c)

FIG. 10. The values of the SWM γ parameters for bilayer
graphene in eV as a function of interlayer distance for each
of our hopping parameters. The blue line is the Koster-Slater
parametrisation; the yellow line is the screened-1 hopping [35],
the solid green line is our screened-2 modification, see Table
II. For the two-body Koster-Slater choice we always have
γ3 = γ4.

separation, keeping the in plane deformation. For such a
flat layer, as might be more appropriate when graphene
bilayers are each mounted on HBN, we fix the separation
of the layers at an average value of

r0 = 3.460 Å . (12)

For the case studied here (with a unit vector of 32a1 +
31a2, and a Moiré angle of 1.05◦) the distance in the
deformed lattices is given in Table III.
In Fig. 11 we analyze the effect on the spectrum from

both the deformation and interlayer coupling. Again, we
only show results for a superlattice twist angle θ = 1.05◦,
where the length of the superlattice unit vector is LM =

TABLE III. Lattice displacements for each of our classical
potential models

.

model max (AA) min (AB) mean

LKC 3.506 Å 3.347 Å 3.378 Å

AILP 3.556 Å 3.378 Å 3.398 Å

|b1| ≈ 134.2 Å, and the unit cell contains 11908 carbon
atoms.

All of these results are for a regular bilayer without
deformation. So what is the effect of deformation?

As we can see in Fig. 11a, for an undeformed flat lat-
tice and the Koster-Slater hopping parameters, we indeed
get flat bands. There also is a secondary Dirac point, so
we have probably gone a little bit beyond the first magic
angle, which for this interaction is slightly larger. Both
of the environment-dependent potentials are a bit too
long-range for flat layers, and leads to a larger spitting,
but still of the order of 40meV. Adding lattice deforma-
tion leads to much more complicated spectra; secondary
Dirac points appear in many places, and culminate in the
complicated spectra seen in Fig. 11j-m. These still have
a high density of states near the Fermi energy, mostly
in a range of ±5,meV, so are likely to be susceptible to
superconducting instabilities. None of these show a gap
between the “flat bands” and the remaining states at the
Γ point. This will be investigated further below, but it
seems unavoidable with the strength of the SWM pa-
rameters required, unless we look at a larger twist angle:
Whenever we have a second Dirac point for the flat-band
calculation, we find that bands touch at the Γ point.

The tight-binding models shown here, even though for
the canonical angle, show that this is not the magic angle
as determined by the band structure. Since our results
should at least be close to those by Koshino et al [39],
who find clear flat bands and a gap, we first investigate
what effects reducing the interlayer coupling and reduc-
ing the in-layer Fermi velocity have (these authors use
a 10% reduced Fermi velocity). Note that experimental
STM data seem more consistent with the larger band-
width, and the larger Fermi velocity[76, 77] ,(see also
related capacitance measurements in[78]).

As can be seen in Fig. 12, we see that the most im-
portant effect is the scaling of the Fermi velocity, as in-
troduced in Ref. [39], which removes the secondary Dirac
point, and opens a gap at the Γ point. A reduction in only
the interlayer hopping has almost the same effect, but
the secondary Dirac point still remains. This also means
that no gap opens at the Γ point, where a degeneracy
remains. Finally, making both changes has an effect that
seems very similar to the bands studied elsewhere. From
the discussion in this paper, it should become clear that
at an angle of 1.05◦ this is not the behavior seen; note
that only a model with a gap at Γ gives the possibility
to project on the 2-band Wannier states.

Clearly we could have reached a similar result by choos-
ing a larger alignment angle; again, keep in mind that all
calculations have been done at the same angle, but note
that the combination of interlayer couplings and Fermi
velocities means that in many cases our chosen twist an-
gle is smaller than the first magic angle for those param-
eters.

We believe that the in-plane deformation is crucial; the
out of plane deformation is likely to be suppressed by the
encapsulation of the graphene layer by BN.
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FIG. 11. Band structure (left) and density of states (right) of a Moiré commensurate superlattice of lattice parameter b1 =
32a1 + 31a2. The twist angle is θ ≈ 1.05◦. All of these figures have a constant nearest-neighbor in-layer coupling. (a)
Undeformed lattice with an exponential Koster-Slater inter-layer coupling; (b) LKC deformed lattice with the Koster-Slater
coupling; (c) AILP deformed lattice with the Koster-Slater coupling; (d) Undeformed lattice with our screened-1 inter-layer
coupling; (e) LKC deformed lattice with the screened-1 coupling; (f) AILP deformed lattice with the screened-1 coupling; (g)
LKC deformed lattice without vertical corrugation with the screened-1 coupling; (h) AILP deformed lattice without vertical
corrugation with the screened-1 coupling; (i) Undeformed lattice with our screened-2 inter-layer coupling; (j) LKC deformed
lattice with the screened-2 coupling; (k) AILP deformed lattice with the screened-2 coupling; (l) LKC deformed lattice without
vertical corrugation with the screened-2 coupling; (m) AILP deformed lattice without vertical corrugation with the screened-2
coupling.
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(a) (b)

(c) (d)E
 (

m
e
V

)

FIG. 12. Bands in an undeformed graphene bilayer for a
Koster-Slater coupling. a) Is for our choice of hopping pa-
rameters; b) shows the effect of reducing the Fermi velocity
by 10%; c) shows the effect of reducing the interlayer hopping
by 10% and d) shows the effect of both changes simultane-
ously.

K2

K1

K
av

FIG. 13. The K points of the two layers, with the expansion
point in the middle. These fold onto the K̄, K̄′ and M̄ points.

IV. CONTINUUM PROJECTION

Most of the work on studying bilayer graphene has
been done using the continuum model, using a k·p model
expanded around the a point halfway between the near-
est layer, i.e., graphene, Dirac points [17]. In most cases
a simple symmetric model is used; the main exception is
the work of Koshino et al [39], where the effect of the
rippling of the graphene layers is used to modify the cou-
pling strength in the k · p model, but with a simple two-
body Koster-Slater interlayer hopping only. As explained
in the previous section, we probably under-estimate the
rippling, but our results also include the effects of lattice
deformation and the many-body screening in the hop-
ping, which have a much stronger effect.
In order to avoid confusion, we shall denote the bi-

layer’s first Brillouin zone points by a bar in the follow-
ing; unbarred quantities refer to the single layer graphene
points. The technique is straightforward, if a little con-
fusing at first. We refer to Fig. 13 for a graphical rep-
resentation of the edge of the Brillouin zones of the
graphene lattice. Since these are slightly twisted, the
reciprocal space is also not perfectly aligned, and the K
points in the two layers, K1 and K2, no longer coincide.
For small angles these points are relatively close together,

and develop a continuum Hamiltonian around the point
Kav halfway between the twoK points. On folding to the
bi-layer graphene Brillouin zone these K points map to
inequivalent points K̄ and K̄ ′ in the bilayer-superlattice
Brillouin zone. The point Kav maps to M̄ . Since the
Fermi velocity of graphene is rather large, we expect that
only momenta near these two Dirac points play a role.
To make that more precise, we expand the bilayer wave
functions in products of the states of the graphene lay-
ers. The fact that the Moiré pattern is periodic means
that only states that differ in momentum by the super-
lattice reciprocal lattice vectors mix. More precisely, we
write for a single electron state of momentum k in the
pth band:

∣

∣k̄p
〉

=
∑

n,s1

c(p)1n,s1(k) |k +Gn, s1〉1 ⊗ |0〉2

+
∑

m,s2

c(p)2m,s2(k) |0〉1 ⊗ |k +Gm, s2〉2 . (13)

Here we choose for convenience k as the “unfolded” mo-
mentum corresponding to the momentum k̄ in the FBZ,
i.e., the equivalent momentum nearest the two Dirac
points, and sl is a sublattice index for each layer. The
states |k, sl〉l are the standard plane wave solutions (since
we have not modified the in-plane hopping parameters,
the positions used here are the undeformed lattice posi-
tions)

〈r|k, sl〉l =
1√
N

∑

rsl

eik·rδ(r − rsl), (14)

where rsl are the positions in sublattice s in layer l. The
expression (13) is exact, and only becomes approximate
on restriction of the superlattice sums. Before we do that,
we first look at at the representation of the tight-binding
Hamiltonian in this basis.
Clearly we can write a block diagonal form

H =

(

H11 H12

H21 H22

)

, (15)

where each block itself is a block of 2 × 2
matrices in sublattice space, with the dimension
determined by the number of vectors GM in-
cluded. Thus (H11)ms1,m′s′

1
= ǫk+Gm,s1δmm′δs′

1
s̄1 and

(H22)ns2,n′s′
2
= ǫk+Gn,s2δnn′δs′

2
s̄2 . For small n and m

this is a slightly modified Dirac Hamiltonian (see below).
The off-diagonal terms do allow coupling between differ-
ent momenta due to the periodic Moiré, and the allowed
couplings are of the form

H12 = 1〈k +Gm|H(k) |k +Gn〉2 . (16)

The momentum dependence of the tight-binding Hamil-
tonian originates from the imposition of periodic bound-
ary conditions, and also from the fact that, even though
short-ranged, the interlayer potential, V12(r1, r2), where
r1 and r2 reside in different layers, is non local.
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The standard continuum approximation makes the as-
sumption that the interlayer potential is only signifi-
cantly different from zero if |r1 − r2| ≪ LM , where LM

is the Moiré lattice unit. Then, the position dependence
of the interlayer potential should be well approximated
by

V12(r1, r2) ≈ V12 ((r1 − r2)/2) . (17)

When expressed in momentum space, this approximation
neglects the dependence on the average momentum, k+
(Gm+Gn)/2. Even though in most cases considered here
this is a small effect, the gaps we observe are also very
small, and we would like to take a more careful approach
We will make the approximationH(k) = H(k+(Gm+

Gn)/2). This is rigorously true only if (Gm + Gn)/2
is a superlattice vector. Nevertheless, we write K =
k + (Gm +Gn)/2 and κ = (Gm −Gn)/2 and

H12 = 1〈K − κ/2|H(K) |K + κ/2〉2
= Us′s(K,κ) . (18)

The basic idea of the continuum model [14, 17], see
also [39], is that for low energy states, and thus momenta
near the Dirac points, we can make the approximation
that the dependence on the average momentum can be
replaced by the momentum at the point Kav halfway
between the two K points. This would mean that for
momenta near Kav we only consider the following quan-
tity

Us′s(K,κ) ≈ Us′s(κ) = Us′s(Kav,κ), (19)

which is slightly more satisfying approach to the local-
potential approximation. Since the interlayer coupling
usually falls of quickly with momentum, U is thus domi-
nated by a few points on the triangular Gm lattice [17].
Actually, for reasons not perfectly clear to us, it seems
better to use Kav = K1 for a low-order truncation to U–
this preserves the three-fold symmetry normally imposed
on the model. We find that even that is not the optimal
approximation, as is shown below.

Let us first look at what these matrix elements (18)
are for the problems studied previously; we study all of
the cases shown in Fig. 11 in Fig. 14. We indeed find
that for a Koster-Slater potential and a flat lattice the
couplings are dominated by 3 wave vectors (which is the
model underlying Refs. [17, 39]). We clearly see that in
all cases the three nearest-neighbor vectors dominate but
that the decay is slower both due to lattice deformation
and the change of the interlayer hopping parameters. For
the AA coupling we always find a small asymmetry be-
tween the G = 0 coupling and the other two strong cou-
plings (by a few percent), removing some of the symme-
tries of the model, which can be restored, see below. For
an undeformed graphene lattice and the Koster-Slater
hopping parameters (a), the parameters are essentially
those quoted in Ref. [17], after a small rescaling of the
strength. The γ3–γ4 asymmetry in the remaining results

clearly has a big impact. For an undeformed lattice (b/c),
we see larger AB than AA couplings, but there is an in-
dication that the coupling decays slightly more slowly,
and some additional couplings may be thus be required
in the continuum model. For the relaxed and deformed
lattices, we find a more substantial difference between the
AA and AB couplings, where the AA coupling is smaller
(by 15 − 30%) than the AB one. It should come as no
surprise that the AILP results, which have the smallest
AA regions, show the largest difference.

What we have not shown is the imaginary parts: nor-
mally one assumes that the coefficients in U are real after
removing a trivial phase-dependence. In our case they
seem to develop small but significant imaginary parts.

We shall now apply the expansion of U in two different
approaches: Since, due to the large energy cost associated
with moving up the Dirac cones, only momenta K near
Kav will contribute, it is usually considered sufficient to
replace the average momentum dependence by the cen-
tral value, and expand the graphene dispersion to linear
order about this same point. The second idea is based
on the fact that we can do better at little cost: for the
momenta that are relevant, a linear approximation of de-
pendence of U on K (expanded near Kav), can easily be
combines with the full in-layer dispersion. We truncate
the matrix diagonalization to the nth hexagon, and we
find that a projection with n = 3− 5 (depending on the
range of U) is sufficient to reproduce the energy of the
flat bands, which is similar to the truncation proposed
in the literature; we usually use a few more hexagons
to ensure convergence. Slightly more concerning is the
effect of an expansion of the Dirac Hamiltonian about
the K(1,2) points. In the most complete calculation we
use the exact dispersion, described by the off diagonal
element of the in-plane Hamiltonian

t̃ND(k) = t

∣

∣

∣

∣

2e
iaky

2 cos

(

1

2

√
3akx

)

+ e−iaky

∣

∣

∣

∣

. (20)

In Figs. 15 and 16 we give two examples of calculations
for two extreme cases; a complete set is shown in the
supplementary material.

Let us look at the “standard case”, Fig. 15 first. we see
a rapid convergence of the results with the range of U ;
the three dominant matrix elements are almost sufficient.
We see a small symmetry breaking along the Γ–M lines
for the Bistritzer-McDonald calculation. This could have
been avoided by replacing Kav by K1, and we would get
the correct degenerate spectrum, but not the particle-
hole asymmetry–i.e., the Fermi energy is incorrect. In-
terestingly enough, by using the linear K-dependence of
U and the full dispersion (and both are required) we get
a perfect reproduction of the tight-binding spectrum.

The situation gets much more interesting for Fig. 16,
which corresponds to Fig. 11j. Clearly even for this com-
plicated case the full calculation converges to something
close to the tight-binding results (we could have added
probably one more hexagon of couplings, which would
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j) (k)

(l) (m)

FIG. 14. The magnitude of the matrix elements (18) as a function of the momentum transfer k. Each hexagon–or rather its
midpoint–denotes a single superlattice vector G, and the color shows the absolute value of the relevant matrix element. The
green circles are the points K(1) and K

(2). The plots correspond to the spectra shown in Fig. 11, and are labeled accordingly.
In each case the entries on the left are AA couplings, and the ones on the right the AB ones. Note that the color-scale used is
non-linear to better show differences between small matrix elements.

have converged). The standard approximation, based on
just three harmonics, gives a rater poor approximation.
We now present some results for the continuum pro-

jection (a complete set can be found in the supplemen-
tary material). We selected two cases of most interest:
the SWM model without deformation and the AILP+KC
deformation, as probably the most reasonable cases to in-
vestigate.
As we can see in Fig. 15, the inclusion of a full dis-

persion and the the dependence of the intralayer matrix
elements is required to get the degeneracy of the energies
in the two valleys along the line Γ-K.

This changes in spectrum will clearly also have impor-
tant consequences for the wave function–which in turn
can be used to construct the Wannier functions. These
are shown in the supplementary material.

V. CONCLUSIONS.

We have presented a comprehensive analysis of the
lattice relaxation in twisted graphene bilayers, and its
effect on the electronic properties, due to the modula-
tion of the interlayer hopping. Calculations have been
carried out for a Moiré superlattice with lattice vector
LM = 32a1+31a2, where a1 and a2 are the unit vectors

of the graphene lattice. The twist angle is θ ≈ 1.05◦.
Note that our approach is complementary to other stud-
ies, where one selects the angle which gives the nar-
rowest bands near the neutrality point, and keeps the
parametrization used fixed[26, 40, 51].

The relaxation is calculated using classical interatomic
force models, and the electronic states are determined
using tight-binding models. We have compared different
force models, and different dependencies of the interlayer
electronic hopping parameters on atomic positions, and
find rather similar results. The relaxed positions of the
atoms are used as input for the calculation of the elec-
tronic structure, calculated using tight-binding models.
Different parametrizations of the couplings are used: i)
hoppings between orbitals in different layers which com-
bine a form factor which reflects the symmetry of p or-
bitals, and a simple exponential dependence on distance,
and ii) hoppings that depend on the distance and the
local environment of the two orbitals involved in the pro-
cess. Models of type ii) reproduce the difference be-
tween the SWM parameters γ3 and γ4 needed to de-
scribe aligned bilayers and graphite. For a fixed twist
angle, θ ≈ 1.05◦, the low energy bands show a signif-
icant dependence on both the range of the interaction
and whether the hopping parameters depend solely on
interatomic distances, or they also include other features
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FIG. 15. Spectrum for various form of the continuum model for the case of the SWM model without lattice deformation. (a) is
the “standard” Bistritzer-MacDonald truncation, with only three interlayer matrix elements and Dirac in-layer dispersion; (b)
is the same model now with the in-layer tight-binding dispersion, and the full k dependence of the interlayer matrix elements.
(c) and (d) are similar figures, but now including the next group of intralayer matrix elements as well; (e) and (f) finally
includes all the matrix elements that give non-perturbative effects. The red and blue curves are the two valleys of the model;
the gray lines are the exact diagonalization.

E
 (

m
e
V

)

(e) (f)

(c) (d)

(a) (b)

FIG. 16. Spectrum for various form of the continuummodel for the case of the second SWMmodel with LKC lattice deformation.
See Fig. 15 for details of the results presented.
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of the environment. To some extent, the results can be
interpreted as a parameter dependent shift of the “magic
angle”, where the low energy bands are narrowest. When
the choice of parameters is such that the magic angle is
greater than 1.05◦, we find new band crossings and Dirac
points[79].

The low-energy electronic bands show a significant de-
pendence on the amount of lattice relaxation and on the
dependence of the interlayer hopping parameters on dis-
tance and local environment. The bandwidth of the low-
est bands at neutrality is probably a bit larger than for
the non-relaxed case, but still has a large density of states
within a few meVs. However, a number of features, such
as the number and location of additional band crossings
(Dirac points) and saddle points (van Hove singularities)
varies considerably as function of the model being used.
The overlap, or lack thereof, of the lowest bands and
neighboring bands is also quite sensitive the choice of
parameters, within a range of physically sensible ones.

Finally, we have studied the connection between tight-
binding and continuum k · p models. We find that the
number of harmonics required in a continuum approx-
imation is dependent on the strength of the lattice re-
laxation and details of the interlayer hopping, but that
effective continuum models can be defined in all cases.

We have analyzed the minimal continuum models re-
quired to approximate the electronic bands obtained from
tight-binding calculations defined at the atomic scale.
The complexity of the continuum models depends signifi-
cantly on the range of the hoppings, and on whether they
depend significantly on the local environment. Isotropic
couplings which do not decay too abruptly with dis-
tance are reasonably described with the standard model
based on an expansion with three harmonics of the inter-
layer hoppings. A continuum description is possible for
all tight-binding models considered, although more than
three harmonics are required in some cases, especially
when the hopping parameters depend on the local envi-
ronment. Even with a large number of harmonics, such a
continuum model can be an effective way to study a tight-
binding model, especially when also adding residual in-
teractions. This is of course dependent on the method for
extracting the coupling parameters from a tight binding
model. This calculation can be done quite simply, and
only relies on the construction of a tight-binding Hamil-
tonian, not its diagonalization.

We have compared results from various models, both
for the interatomic forces and for the electronic hopping
parameters, using the same twist angle, θ = 1.05◦. This
choice is motivated by the fact that the value of the twist
angle is the magnitude most accessible experimentally. It
is yet unclear how precisely the experimentally studied
twist angles correspond to the theoretical definition of
magic angles. The dependence found here of the elec-
tronic properties on the choice of parameters suggests
that the observed tendency towards broken symmetry
phases must be quite robust. The appearance of super-
conductivity and insulating behavior in twisted graphene

bilayers is likely to arise from rather general properties
of the models.
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Appendix A: Analytical model for lattice

deformation

Here we derive an analytic expression for the elastic
deformation of bilayer graphene, based on the work by
Nam and Koshino [50].
We assume that the lattice vectors of the two unper-

turbed graphene lattices, which are rotated by a relative
angle θ, for each layer are given by (from now we use the

graphene lattice spacing, 1.42
√
3 Å, as a length unit)

a1 = R−θ/2(1, 0),a2 = R−θ/2(1/2,
√
3/2). (A1)

and for the second layer we have

ãi = Rθai. (A2)

The lattice vectors of the super cell are

b1 = ma1 + na2, b2 = (n+m)a1 −ma2, (A3)

and the angle between the two layers can be expressed as

θ = cos−1

(

m2 + n2 + 4mn

2m2 + 2n2 + 2mn

)

. (A4)

We can also express this in terms of ãi, where m and n
change roles:

b1 = nã1 +mã2, b2 = (m+ n)ã1 − nã2, (A5)

In the remainder we shall always implicitly assume that
the angle θ is small (normally we will only consider

the case m = n + 1 where θ = sin−1
( √

3(2m−1)
6m2−6m+2

)

≈
1/(

√
3m)). We will denote Rθ/2 as R.

There is a symmetry between the layers, as can be
seen in Fig. 17. We label the layers by + (top) and
− (bottom). It is easy to show that with the lattice

positions given by r
(0)+
kl = ka1 + la2 and r

(0)−
kl = kã1 +

lã2 we have an additional symmetry under reflection Tx

in the x-axis,

Tr
(0)+
kl = r

(0)−
k,−l , (A6)

We have a similar symmetry for reflections in the line con-
necting b1 to b2, Without writing down the detailed form
of the transformation matrices, we see that this maps

r
(0)+
kl → r

(0)−
−k+3(m+n)/2,l+3(m−n)/2. (A7)
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FIG. 17. An example of a supercell in an (m,n) = (5, 4)
grid. Red points show the + lattice and blue points the −
one. The circles are the average positions. Note the reflection
symmetries in the two green lines, which are broken for the
average positions.

We now assume that the two lattices will deform in
a similar way, respecting the reflection symmetry. If we
define an average lattice by the vectors

āi = (ai + ãi)/2 = (R−1 +R)/ãi/2 = cos(θ/2)R1/2ai,
(A8)

We can write for the lattice vectors in the two lattices,
labeled as ±,

r±kl = r
(0)±
kl + u±(r(0)±kl ) = r

(0)
kl ± 1

2
δr

(0)
kl + u±(r(0)±kl ),

(A9)

with r0 = kā1 + lā2. If we assume δr
(0)
kl is small[80],

then we can make the approximation that u±(r(0)±kl ) =

±u(r
(0)
kl ), and we can simplify this expression. We use

kl as labels to show that their range is either (m,n)
or (n,m), depending on the layer. As we can see from
Fig. 17, this makes most sense in half the Brillouin zone;
we can, however, work with the hexagonal Brillouin zone
where this approach works well everywhere.
We define the three reciprocal lattice vectors gi to aj ,

and similar for ãj . We then define the superlattice recip-
rocals,

Gi =
1

m− n
(1−R(θ))gi (A10)

It is straightforward to see that Gi · (gi + g̃i) = 0. [Note
the slightly awkward labeling: G1 and G3 are the dual
vectors to b1 and b2.]
We now minimize the combination of the misalignment

of the lattices and the elastic energy as done by Nam
and Koshino, with a minor change in the vectors used in
the misalignment energy, assuming that we can write the
continuum approximation (notice that here there is an
important difference with Koshino, who have no reference
to the mean displacements, but work in one of the two
sub-lattices, so the meaning of r is very different, and
their final results lacks the layer symmetry found below)

δ(r) = δ0(r) + (u+ − u−)(r), (A11)

where δ(r) is a field in the average lattice, with δ(r) ·r =
0. Since the δ is the vector from the top to the bottom

lattice, we would like to align this displacement with the
favourable positions for the top lattice, but then we would
like to align −δ with the bottom lattice. Thus we see we
need to minimise the potential

V [δ] = V0

3
∑

j=1

(cos
(

gj · δ
)

+ cos
(

g̃j · δ
)

)

= V0

3
∑

j=1

2 cos
(

(gj + g̃j)/2 · δ
)

cos
(

(gj − g̃j)/2 · δ
)

≈ 2V0

3
∑

j=1

cos
(

(gj + g̃j)/2 · δ
)

(A12)

We find that, using the average ḡj = (gj + g̃j)/2,

ḡj · δ0(r) = −1

2
((I +R)gj) · ((I −R)(ka1 + la2),(A13)

= ((I −R)gj) · ((I +R)(ka1 + la2)/2

= Gj · r . (A14)

Thus,

V [δ] = 2V0

3
∑

j=1

cos
(

Gj · r + ḡj · u(r)
)

, (A15)

We can now follow Nam and Koshino, and the standard
continuum elastic energy to the energy derived here. This
lead to the requirement to solve the coupled equations,
where q⊥ = (qy,−qx):

sin
(

Gj · r + ḡj · u(r)
)

=
∑

q

f j
qe

iq·r, (A16)

u(r) =
∑

q

uqe
iq·r, (A17)

uq = 4V0

3
∑

j=1

f j
q

1

q4

[

1

λ+ 2µ
qqT ḡj +

1

µ
q⊥q

T
⊥ḡj

]

.

(A18)

If we make the simplest approximation for the sine, ne-
glecting completely the contribution from u, we find that

f j
q = δq,±Gj

±1

2i
, (A19)

and thus, since Gj and ḡj are orthogonal, we find that
((1) for first order)

u(1)
q =

4V0

µ
δq,±Gj

±1

2i

1

G4
(Gj

y,−Gj
x)(G

j
y,−Gj

x) · ḡj

(A20)
Since the two vectors (Gj

y,−Gj
x) and ḡj are parallel, this

can be written as

u(1)
q =

4V0

µ
δq,±Gj

±1

2i

1

G4ḡ2
[

(Gj
y,−Gj

x) · ḡj

]2
ḡj

=
4V0g

µG2
δq,±Gj

±1

2i
ˆ̄gj . (A21)
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FIG. 18. points q used in Table IV

Thus we find that the dimensionless quantity

gu(1)(r) =
4V0g

2

µG2

3
∑

j

ˆ̄gj sin(Gj · r). (A22)

The expansion parameter α = 4V0g
2

µG2 grows with the size

of the unit cell, showing that for very small angles a per-
turbative approach must fail.

With the help of a simple mathematica code it is now
straightforward to find the higher order terms, which in-
volves expanding Eq. (A17) to higher order in V0/µ. Re-
sults following the notation by Nam and Koshino are
given in Table. IV. Our results are a universal (lattice-
size independent) expression when we scale uq as g

i uq,
and express the values in terms of the parameters

α = 4
V0

µ
g2/G2 =

V0

µ
cot2(θ/2), (A23)

β = µ/(λ+ 2µ). (A24)

Here we use g2 = 8π2

3a2 (1 + cos θ) and G2 = 64π2

3a2 sin2 θ/2.

When using this for finite discrete lattices, we shall use
r(0)± as the argument of u, which restores the broken
reflection symmetry.
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bond order in an extended hubbard model on the honey-
comb lattice with possible applications to twisted bilayer
graphene, Phys. Rev. B 98, 121406 (2018).

[63] A. Thomson, S. Chatterjee, S. Sachdev, and M. S.
Scheurer, Triangular antiferromagnetism on the honey-
comb lattice of twisted bilayer graphene, Phys. Rev. B
98, 075109 (2018).

[64] F. Guinea and N. R. Walet, Electrostatic effects, band

distortions, and superconductivity in twisted graphene
bilayers, Proceedings of the National Academy of Sci-
ences , 201810947 (2018).

[65] S. Plimpton, Fast Parallel Algorithms for Short-Range
Molecular Dynamics, Journal of Computational Physics
117, 1 (1995).

[66] T. C. O’Connor, J. Andzelm, and M. O. Robbins,
AIREBO-M: A reactive model for hydrocarbons at ex-
treme pressures, The Journal of Chemical Physics 142,
024903 (2015).

[67] S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reac-
tive potential for hydrocarbons with intermolecular in-
teractions, The Journal of Chemical Physics 112, 6472
(2000).

[68] J. H. Los, L. M. Ghiringhelli, E. J. Meijer, and A. Fa-
solino, Improved long-range reactive bond-order poten-
tial for carbon. I. Construction, Phys. Rev. B 72, 214102
(2005).

[69] A. N. Kolmogorov and V. H. Crespi, Registry-dependent
interlayer potential for graphitic systems, Phys. Rev. B
71, 235415 (2005).

[70] I. Leven, T. Maaravi, I. Azuri, L. Kronik, and O. Hod, In-
terlayer Potential for Graphene/h-BN Heterostructures,
J. Chem. Theory Comput. 12, 2896 (2016).

[71] T. Maaravi, I. Leven, I. Azuri, L. Kronik, and O. Hod,
Interlayer Potential for Homogeneous Graphene and
Hexagonal Boron Nitride Systems: Reparametrization
for Many-Body Dispersion Effects, J. Phys. Chem. C
121, 22826 (2017).

[72] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J.
Stuart, B. Ni, and S. B. Sinnott, A second-generation
reactive empirical bond order (REBO) potential energy
expression for hydrocarbons, J. Phys.: Condens. Matter
14, 783 (2002).
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