CONTINUUM NEIGHBORHOODS AND FILTERBASES

DAVID P. BELLAMY¹ AND HARVEY S. DAVIS²

ABSTRACT. In this paper we prove that if Γ is a filterbase of closed subsets of a compact Hausdorff space then $T(\bigcap \Gamma) = \bigcap \{T(G) | G \in \Gamma\}$, where T(A) denotes the set of those points for which every neighborhood which is a continuum intersects A nonvoidly.

Introduction. In this paper S denotes a compact Hausdorff space. If $p \in S$ and $W \subset S$, then W is a continuum neighborhood of p iff W is a subcontinuum of S and $p \in Int(W)$. If $A \subset S$, T(A) denotes the complement of the set of those points p of S for which there exists a continuum neighborhood which is disjoint from A [1]. S is said to be *T*-additive iff for every collection Λ of closed subsets of S whose union is closed, $T(U\Lambda) = \bigcup \{T(L) | L \in \Lambda\}$ [2]. The following three theorems are established.

THEOREM A. Let Γ be a filterbase of closed subsets of S. Then $T(\cap \Gamma) = \bigcap \{T(G) \mid G \in \Gamma \}$.

THEOREM B. S is T-additive iff for each pair A, B of closed subsets of S, $T(A \cup B) = T(A) \cup T(B)$.

THEOREM C. Let A be a closed subset of S. If K is a component of T(A) then $T(A \cap K) = K \cup T(\emptyset)$.

Theorem A is used in establishing Theorems B and C. Theorem C is used to obtain the known result that if S and W are continua and $W \subset S$ then T(W) is a continuum [1].

PROOF OF THEOREM A. It is immediate from the definition that whenever $A \subset B$, $T(A) \subset T(B)$ and thus $T(\cap \Gamma) \subset \cap \{T(G) \mid G \in \Gamma\}$.

Suppose $p \notin T(\cap \Gamma)$. There exists W, a subcontinuum of S, such that $p \in Int(W)$ and $W \cap (\cap \Gamma) = \emptyset$. Since W is compact, there exists a finite collection G_1, \dots, G_n of elements of Γ whose intersection is disjoint from W. By hypothesis there exists G, an element of Γ , which is contained in $G_1 \cap \dots \cap G_n$. Since G is disjoint from W, $p \notin T(G)$. Hence $p \notin \bigcap \{T(G) | G \in \Gamma\}$ and thus

Received by the editors January 6, 1970.

AMS 1969 subject classifications. Primary 5455; Secondary 5465.

Key words and phrases. Compact Hausdorff space, continuum neighborhood, T(A), T-additive, filterbase, component.

¹ Research supported in part by the University of Delaware Research Foundation.

² Research supported in part by the National Science Foundation NSF 71-1550.

$$T(\bigcap \Gamma) = \bigcap \{ T(G) \mid G \in \Gamma \}.$$

PROOF OF THEOREM B. The necessity of the condition is clear. Let Λ be a collection of closed subsets of S whose union is closed in S. Since $T(U\Lambda) \supset U\{T(L) | L \in \Lambda\}$, it need only be shown that $T(U\Lambda) \subset U\{T(L) | L \in \Lambda\}$ in order to establish the sufficiency of the condition.

Suppose $x \in \bigcup \{T(L) | L \in \Lambda\}$. Then for each $L \in \Lambda$ let F(L) be the collection of closed subsets A of S such that $L \subset \operatorname{Int}(A)$. If $L = \emptyset$, clearly $T(L) = \bigcap \{T(A) | A \in F(L)\}$. If $L \neq \emptyset$, then F(L) is a filterbase of closed subsets of S and, since $\bigcap F(L) = L$, $T(L) = \bigcap \{T(A) | A \in F(L)\}$ by Theorem A.

Hence, for each L, $x \notin \bigcap \{T(A) | A \in F(L)\}$ and thus there exists, for each L, $f(L) \in F(L)$, such that $x \notin T(f(L))$. $\{\operatorname{Int}(f(L)) | L \in \Lambda\}$ is an open covering of UA. Since UA is compact there exists a finite subcollection Γ of $\{f(L) | L \in \Lambda\}$ such that $\bigcup \Lambda \subset \bigcup \Gamma$. Since, by hypothesis and induction $T(\bigcup \Gamma) = \bigcup \{T(G) | G \in \Gamma\}$, $T(\bigcup \Lambda)$ $\subset \bigcup \{T(G) | G \in \Gamma\}$. Since for all $G \in \Gamma$, $x \notin T(G)$, it follows that $x \notin T(\bigcup \Lambda)$. Thus $T(\bigcup \Lambda) \subset \bigcup \{T(L) | L \in \Lambda\}$.

PROOF OF THEOREM C. Two technical lemmas are established. Theorem C follows easily from these two lemmas and Theorem A.

LEMMA 1. Let A be a subset of S. $p \in S - T(A)$ iff there is a subcontinuum W and an open subset Q of S such that $p \in Int(W) \cap Q$, $Fr(Q) \cap T(A) = \emptyset$ and $W \cap A \cap Q = \emptyset$.

PROOF. Let $p \in S - T(A)$. There is a subcontinuum W of S such that $p \in Int(W)$ and $W \cap A = \emptyset$. Since S is regular there is an open subset Q of S such that $p \in Q$ and $Cl(Q) \subset Int(W)$. It is clear that $Fr(Q) \cap T(A) = \emptyset$ and $W \cap A \cap Q = \emptyset$.

Now suppose that there is a subcontinuum W and an open subset Q of S such that $p \in Int(W) \cap Q$, $Fr(Q) \cap T(A) = \emptyset$ and $W \cap A \cap Q = \emptyset$. Since Fr(Q) is compact and disjoint from T(A), there exists a finite collection $\{W_i\}$ of subcontinua of S, all disjoint from A, such that $\bigcup \{Int(W_i)\} \supset Fr(Q)$. Since if $W \subset Q$ it is immediate that $p \in S - T(A)$, assume $W \cap S - Q \neq \emptyset$. The closure of each component of $W \cap Q$ must intersect at least one of the W_i 's, since $Fr(Q) \subset \bigcup \{W_i\}$. Hence $(W \cap Q) \cup (\bigcup \{W_i\}) = H$ has only a finite number of components. Since $p \in Int(W) \cap Q$, there is a component K of H such that $p \in Int(K)$ and, of course, $K \cap A \subset H \cap A = \emptyset$. Thus $p \in S - T(A)$.

LEMMA 2. Let A be a subset of S. If $T(A) = M \cup N$ separate then $T(A \cap M) = M \cup T(\emptyset)$.

1971]

PROOF. Suppose $p \in T(A \cap M) - (M \cup T(\emptyset))$. Since $p \notin T(\emptyset)$, there is a subcontinuum W of S such that $p \in Int(W)$. Since S is normal, there is an open subset Q of S containing N whose closure is disjoint from M. It is clear that $p \in Int(W) \cap Q$, $Fr(Q) \cap T(A \cap M)$ $\subset Fr(Q) \cap T(A) = \emptyset$ and $W \cap (A \cap M) \cap Q \subset Q \cap M = \emptyset$. Hence, by Lemma 1, $p \notin T(A \cap M)$, thus contradicting the supposition.

Now suppose that $p \in (M \cup T(\emptyset)) - T(A \cap M)$. Since $p \notin T(A \cap M)$ and $\emptyset \subset A \cap M$, $p \notin T(\emptyset)$. Hence $p \in M$. There is an open subset Qof S containing M whose closure is disjoint from N. Since $p \notin$ $T(A \cap M)$, there is a subcontinuum W of S such that $p \in Int(W)$ and $W \cap (A \cap M) = \emptyset$. It is clear that $p \in Int(W) \cap Q$ and Fr(Q) $\cap T(A) = \emptyset$. Since $Q \cap N = \emptyset$, $W \cap A \cap Q = W \cap (A \cap M) = \emptyset$. Hence, by Lemma 1, $p \notin T(A)$ so $p \notin M$, thus contradicting the supposition.

Now in order to establish Theorem C, let A be a closed subset of S and K be a component of T(A). Let $\{K_{\alpha}\}$ be the collection of all subsets of T(A) such that $K \subset K_{\alpha}$ and K_{α} is both open and closed in T(A). Note that the collection $\{A \cap K_{\alpha}\}$ can only fail to be a filterbase if for some K_{α} , $A \cap K_{\alpha} = \emptyset$. In this case the conclusion of Theorem A is trivial. Lemma 2, of course, remains true even if $A \cap M = \emptyset$ so, for each K_{α} , $T(A \cap K_{\alpha}) = K_{\alpha} \cup T(\emptyset)$. That this can occur is seen by letting S be the Cantor set, A be the void set and K_{α} be S.

The following sequence of equalities establish the theorem:

$$T(A \cap K) = T(\bigcap \{A \cap K_{\alpha}\}) = \bigcap \{T(A \cap K_{\alpha})\}$$
$$= \bigcap \{K_{\alpha} \cup T(\emptyset)\} = \bigcap \{K_{\alpha}\} \cup T(\emptyset)$$
$$= K \cup T(\emptyset).$$

Theorem C is not true if the requirement that A be closed is dropped. Let S be the unit interval and let A be the sequence $\{1/n\}$. Then $T(A) = \{0\} \cup A$. Let $K = \{0\}$. Then $T(A \cap K) = T(\emptyset)$ which is void since S is a continuum. But $K \cup T(\emptyset)$ is not void.

COROLLARY 1. Let S be a continuum and W be a subcontinuum of S. T(W) is a subcontinuum of S.

PROOF. Suppose $T(W) = A \cup B$ separate. By Theorem C, $T(W \cap A) = A$ and $T(W \cap B) = B$ since $T(\emptyset) = \emptyset$ when S is a continuum. $W \cap A \neq \emptyset$ since $T(W \cap A) \neq \emptyset$ and, likewise $W \cap B \neq \emptyset$. Hence $W = (W \cap A) \cup (W \cap B)$ separate, contradicting the hypothesis and thus establishing the proposition.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COROLLARY 2. Let S be a continuum and let W_1 and W_2 be subcontinua of S. If $T(W_1 \cup W_2) \neq T(W_1) \cup T(W_2)$ then $T(W_1 \cup W_2)$ is a continuum.

PROOF. Suppose $T(W_1 \cup W_2) = A \cup B$ separate. By Lemma 2, $T((W_1 \cup W_2) \cap A) = A$ and $T((W_1 \cup W_2) \cap B) = B$. Suppose $W_1 \subset A$. If $W_2 \subset A$ then $A = T((W_1 \cup W_2) \cap A) = T(W_1 \cup W_2)$, thus contradicting the supposition. Hence $W_2 \subset B$. But then $T(W_1) = A$ and $T(W_2)$ = B. Thus $T(W_1 \cup W_2) = T(W_1) \cup T(W_2)$. Corollaries 1 and 2 are special cases of Theorem 8 of [1].

COROLLARY 3. Let S be a continuum and let A and B be closed subsets of S. If K is a component of $T(A \cup B)$ which lies in neither T(A)nor T(B), then, $K \cap A \neq \emptyset \neq K \cap B$.

PROOF. Since S is a continuum, $T(\emptyset) = \emptyset$ and, by Theorem C, $T((A \cup B) \cap K) = K$. Since K lies in neither T(A) nor T(B), $(A \cup B) \cap K$ meets both A and B. Thus K meets both A and B.

COROLLARY 4. Let S be a continuum and let A and B be closed subsets of S. If $T(A \cup B) \neq T(A) \cup T(B)$ then there exists a subcontinuum $K \subset T(A \cup B)$ such that $K \cap A \neq \emptyset \neq K \cap B$.

PROOF. Let K be the component of some point in $T(A \cup B) - (T(A) \cup T(B))$ and apply Corollary 3.

Bibliography

1. H. S. Davis, D. P. Stadtlander and P. M. Swingle, Properties of the set functions T^n , Portugal. Math. 21 (1962), 113-133. MR 25 #5501.

2. H. S. Davis, A note on connectedness in kleinen, Proc. Amer. Math. Soc. 19 (1968), 1237-1241.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

UNIVERSITY OF DELAWARE, NEWARK, DELAWARE 19711