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Continuum Regression: Cross-validated Sequentially Constructed 

Prediction Embracing Ordinary Least Squares, Partial Least 


Squares and Principal Components Regression 


By M. STONE? and R. J. BROOKS 

University College London, UK 

[Read before The Royal Statistical Society at a meeting organized by the Research Section 
on Wednesday, October 25th, 1989, Professor D. V. Hinkley in the Chair] 

SUMMARY 
The paper addresses the evergreen problem of construction of regressors for use in least 
squares multiple regression. In the context of a general sequential procedure for doing this, 
it is shown that, with a particular objective criterion for the construction, the procedures 
of ordinary least squares and principal components regression occupy the opposite ends 
of a continuous spectrum, with partial least squares lying in between. There are two adjustable 
'parameters' controlling the procedure: 'alpha', in the continuum [0, 11, and 'omega', 
the number of regressors finally accepted. These control parameters are chosen by cross- 
validation. The method is illustrated by a range of examples of its application. 

Keywords: CROSS-VALIDATION; LEAST SQUARES PREDICTION; PARTIAL LEAST SQUARES; 
PRINCIPAL COMPONENTS REGRESSION; SEQUENTIAL 

1. INTRODUCTION 

Least squares multiple regression with a single dependent variable finds application 
in a variety of scientific contexts. In what has been called 'hard science'-but that 
might, with a sense of history, be better described as hardened science-a given linear 
model is known to be an adequate representation of the truth: the number of unknown 
parameters in the model is usually quite small and all of them have to be estimated. 
A good example is provided by the pioneering work of Gauss (1826) on the 
triangulation of Hannover. For this, with 18 observations and seven parameters: 

(a) there were no doubts about the model; 
(b) the linear parameters (true angles minus good initial approximations) were large 

compared with their estimated standard errors and could not be arbitrarily taken 
to be zero; 

(c) the least squares method served notoriously well. 

At the other end of the hardness scale are the soft science applications, in which 
a number, sometimes a very large number, of explanatory variables is available. With 
little knowledge to go on and with the emphasis on prediction, the scientist would 
be willing to use any or all these variables in constructing ad hoc regressors for a 
predictor. Such was the problem faced by Fisher (1924) when he was asked to explain, 
if he could, the variation among a limited number of crop yields by means of a much 
larger number of meteorological variables. Fisher concluded that 'in order to arrive 
at unprejudiced results, 
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(i) The meteorological variates to be employed must be chosen without reference 
to the actual crop record. 

(ii) If multiple variates are to be used, allowance must be made for the positive 
bias of R2. 

(iii) Relationships of a complicated character should be sought only when long 
series of crop data are available.' 

A contemporary illustration of a soft, but vitally useful, science is the calibration 
of a near infra-red reflectance spectrometer for the speedy measurement of the 
percentage of protein in samples of flour, which typically might have 25 observations 
and up to 700 explanatory variables (Fearn, 1983). 

The terrain between the peaks of hardened science and the quicksands of soft science 
is occupied by elastic science. One variety of this is a mixture of the hard and the 
soft, which may be envisaged as a sort of bog with tussocks corresponding to given 
regressor variables that the scientist is determined to include, embedded in the soft 
matrix of additional ad hoc regressors. Examples of given, as opposed to constructed, 
regressors are experimental design variables known to have a major influence on the 
observations. 

Questions of choice arise in all except the hardened science area. How do we actually 
construct the regressors that have to be constructed? How many should be made, 
if the straddling pitfalls of underfitting and overfitting are to be avoided? Some 
progress has been made in the last two or three decades, going well beyond Fisher's 
idea of an adjustment to R2.The techniques of Mallows's C,,Akaike's criterion and 
the like, as well as the more general approach of cross-validation, now provide some 
control of the excesses of prejudice and self-deception. However, in practice, these 
techniques do not often go the whole way in addressing the problem of high 
dimensionality of choice (Hjorth, 1989; Dijkstra, 1988). 

Concentrating here entirely on prediction, we formulate a general method that brings 
the three separate techniques of ordinary least squares (OLS), partial least squares 
(PLS) and principal components regression (PCR) under the same mathematical 
umbrella. This formulation inspires a specific integrated procedure with a low 
dimensionality, 2, of adjustable control parameters chosen by cross-validation: 

(a) a ,  a real number in the interval [0, 11, with the values 0, $ and 1 
corresponding to OLS, PLS and PCR respectively; 

(b) w ,  the total number of regressors accepted ('given' plus 'constructed'). 

The role of a suggests the obvious title for this procedure-'continuum regression' 
(CR)

A feasible computational method is developed, and the paper concludes with 
illustrations of how the new procedure performs on some real data sets and (implicitly) 
how it compares with OLS, PLS and PCR. 

2. SOME NOTATIONS AND SUPPOSITIONS 

The generic unit of data is (i(l), . . ., i ( p ) ,  3) or (x, 3) for short. The data are 
a sample of n such units: (xi,ji),i= 1, . . .,n. The dots here denote basic datd: their 
removal signifies the subtraction of sample averages, thus 



19901 CONTINUUM REGRESSION 

We write 

It will be supposed that the p x p  matrix S =X 'X has m =min{n- 1,pj unequal non- 
zero eigenvalues. The 'given' regressors are denoted by 

and additional constructed regressors by 

It will be supposed that cl ,  . . ., c, are such that no linear combination of the 
corresponding given regressors has zero sample variance. However, it will not be 
assumed that the latter are 'uncorrelated', i.e. that they have mutually zero sample 
correlation. 

3 .  GENERAL METHOD 

We consider a general method with three phases. Firstly, some construction rule 
uses the basic data to determine the sequence (1) of potential additional regressors. 
Here c,, 1, c , ,~ ,  . . . are required to be vectors of unit length such that t (g+ I), 
t(g +2), . . . have positive sample variances and are uncorrelated both with each other 
and with each of the given regressors t(l), . . ., t(g). (These requirements mean that 
sequence (1) is necessarily terminating.) 

Then, some stopping rule uses the basic data to determine the total number w of 
regressors actually accepted for use in the regression predictor. Finally, with t(l), 
. . ., t(w) now fixed, the value of 9 at a general value would be predicted from the 
(usually reduced) data 

by fitting the OLS prediction formula 

By the zero sample correlation conditions imposed on t (g+ 1), . . ., t(w), we have, 
for j =g + 1, . . . , w, the simplifying formula 
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The possibility w = g  corresponds to no additional regressors being accepted. 
In the next three sections, we formulate OLS, PCR and PLS as special cases of 

this general method with g =0. 

4. ORDINARY LEAST SQUARES 

Suppose that we take 

where S =X X, s =X 'y and S - is either S - 1 or some generalized inverse of S if S 
is singular. Suppose also that we stop with w = 1. 

Writing B for S - s = ( X I X ) - X ' y ,  we have t(l)=cix=B1x/IIBII and 

Hence, by equations (2) and (3), 

When S is non-singular, is the least squares estimate of $ in the ordinary linear 
model y =po l+XB +e. Whether or not S is singular, equation (5) is just an OLS 
predictor of 9 at x using all p variables as regressors. The value of (5) is independent 
of the choice of generalized inverse of S only for prediction at x whose corresponding 
x lies in (x l ,  . . ., x,), the subspace of R P  spanned by x l ,  . . ., x,. Ignoring this 
deficiency, we merely note that OLS is a special case of the general method of 
Section 3, whatever the values of n and p. 

In preparation for Section 7, we also note that the choice of expression (4) for c l ,  
along with w = 1, can be presented as a special case of the general method when that 
is driven by the criterion 
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the square of the sample correlation coefficient of 9 and 
deft [ c ]  = c lk .  

For it may be shown, purely algebraically, that cl ,  given by equation (4), maximizes 
r; .  Alternatively, observe that the vector ( x ~ c ,  . . ., xAc)' can be interpreted as 
a scalar multiple of a generic fitted vector for y, with r: as the square of the cosine 
of the angle between fitted and observed y; the geometry of least squares then informs 
us that the OLS choice c =cl , given by equation (4), maximizes rz among vectors 
c ofuni t  length for which t [ c ] ' t ( l ) = O ,  where t i [ c ] = c l x i .  But then 

which implies r; =0, so that the sequential construction terminates with just t(1). 

5. PRINCIPAL COMPONENTS REGRESSION 

In marked contrast with the least squares method, cl ,c2, . . . are now constructed 
without any reference to y,  by use of the criterion 

the 'sum of squares' of the orthogonal projections of x l ,  . . ., x, on (c). Thus c l ,  
maximizing S,, is the normalized eigenvector of S with largest eigenvalue. To follow 
the general method of Section 3 ,  we have to choose c2 from c with t [ c ]  ' t ( l )=  
crScl= O .  With cl as it is, this is the same as having to choose c2 from c subject to 
the orthogonality condition c ' cl =0 conventionally imposed in principal components 
analysis. So c2 is the normalized eigenvector of S with the next smaller eigenvalue- 
and so on, until the number of cjs constructed reaches m ythe rank of S, beyond 
which point S, would be zero. As for a stopping rule, we could use cross-validation 
(Wold, 1978). 

6 .  PARTIAL LEAST SQUARES 

Suppose that cl is constructed to maximize the squared sample covariance, 
proportional to 

This immediately gives what we may call the first 'canonical covariance' variable with 

The second canonical covariance variable, CZ, then has to maximize expression (8) 
for unit length c such that crScl =0, i.e. c is S orthogonal to cl .  It turns out, provided 
that s is not an eigenvector of S, that 
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This is because 

(a) the right-hand side of equation (10) is indeed S orthogonal to s, and therefore 
to c l ,  and 

(b) for c satisfying clScl =O, i.e. c'Ss=O, 

Continuing thus, we could derive the remaining canonical covariance variables c3, 
cq, . . ., and then specify a stopping rule to give cl , . . .,c,. Since their explicit form 
is not needed for the present purposes, we shall simply show that use of these c l ,  
. . .,c, for predictor (2) is equivalent to PLS prediction. Using an extension of the 
argument in (a) and (b), Appendix A proves inductively, provided that s, Ss, . . ., 
SW- ls are linearly independent and 1 <w <m, that 

Looking for the precise connection between identity (1 1) and PLS, we are faced with 
a rich variety of formulations of the PLS method (Wold, 1984). The formulation 
that here serves best is the non-algorithmic version of Helland (1988), whose 
proposition 3.1 immediately combines with identity (1 1) to establish the claim of 
equivalence. 

7. CONTINUUM REGRESSION 

The methods of Sections 4-6 differ in just one respect-the criterion maximized 
at each stage. To emphasize this point, the regressors for OLS, PCR and PLS may 
be referred to as 'canonical correlation', 'canonical variance' and 'canonical 
covariance' variables respectively. A generalized criterion that encompasses all three 
methods is 

T= ( I y  ((2r:~;/(1-a) = (C'S)2(C'~C)a/(1 (12)-a)-- 1 

where a takes some value in the continuum 0 <a< 1. The specializations are a =0 
(OLS), a = (PLS) and a = 1 (PCR). A procedure in the general class of Section 
3 with construction rule driven by Tfor some a ,  0 <a< 1, is a continuum regression- 
only the stopping rule that determines w remains to be specified. 

In the next section, we develop a reasonably efficient algorithm for constructing 
the corresponding cg+ c,+z, . . . for 0 <a  <1. Completeness of definition of the 
criterion requires that, for a<f , T be taken to be zero when c 's  =0 and c 'Sc =0. 
(Since s is in the range of S ,c 'Sc =0 =,c 's =0.) The construction sequence comes to 
a stop if, at any stage, Tis identically zero for every c satisfying the S-orthogonality 
conditions corresponding to the imposed zero sample correlations, Appendix B shows 
that, for a # 0, cg+ cg+2,. . . must lie in the range of S, and that their total number 
is at most m -g where m =min(n - 1 ,p) =rank S (see Section 2). 

Also, for a#O, the constructed regressor variables t(g+ 1), t(g+2), . . . are 
invariant only under orthogonal transformation of x. In particular, results are 
influenced by the choice of scales of the explanatory variables i ( l ) ,  . . ., i (p) .  Our 
current practice is democratically to standardize these variables to unit sample 
standard deviation (with compensating adjustment of cl, . . ., c, to keep the given 
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variables unchanged) unless there are good reasons for using the given scales of 
measurement. 

8. CONSTRUCTION ALGEBRA 

In this and the next section, the algebra is simpler when a / ( l  - a )  in equation (12) 
is replaced by y, equivalent to the substitution a =y/(y + 1). The specializations 
are then y =0 ,  1, oo for OLS, PLS and PCR respectively. Let vl ,  . . ., v, 
be the orthonormalized eigenvectors of S with increasing non-zero eigenvalues 
0 <el  < . . . <em. (For m =n - 1< p , the vi and ei might be computed by eigenanalysis 
of XX' rather than of S.) Suppose that we are at the stage where c,+ 1, . . ., ck, 
with g6k 6  m -2, have been constructed, and we want to determine ck+ 1 maximizing 
T, subject to the side-conditions 1 1  ck, 1 1 1  = 1 and 

By the result of Appendix By ck, 1 will lie in the range of S. So we may write 

whence T at c =ck+ may be expressed as 

(d lz l+ . . .+d,~ , )~(e~z :+  . . . +e,zf)r-l (15) 

where di= s'  vi. The side-conditions are, from 1 1  ck+1 1 1  = 1, 

z:+. . . + & = I  (16) 

and, from equation (13), 

QljZl + . . . +amjZm=0, j= I ,  . , ., k, (17) 

where ao=eic)vi. The maximizing zl ,  . . ., z, will be a solution of the Lagrange 
multiplier equations 

where T =dlz1+ . . .+dmzm=d 'z and p =el zl2 + . . . +e,zf. Multiplying equation 
(18) by zi and adding over i gives ho =y. Writing ai = phi, 

and A =  (aij), equations (17) and (18) for z and a = (a l ,  . . ., ak) then become 

Since cl , . . ., ck are linearly independent and ei # 0, i= 1, . . .,m, the m x k matrix 
A is of full rank k. By condition (16) and the standard formula for inverting a 
partitioned matrix, we obtain 

z = M d /  IIMd 1 1  
where 

M=D-l-D-lA(A'D-lA)-lA'D-l 
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for y and p such that D is invertible. In equation (22), A is determined by 
cl, . . ., ck, which are supposed already computed. For a =0 or a =f (y =0 or 
y = I), z is then determined by equation (21). Otherwise the only unknown is the scalar 
p in D. Writing z =z(p), p will be a solution of 

Since zl ( P ) ~+ . . . +zm(p)2= 1, we have el <p <em as an interval to which any search 
for roots of equation (23) may be confined. Since z(p) satisfies the required side- 
conditions for any value of p, it follows that the optimal p is the solution of equation 
(23) whose associated value of T is a maximum. In practice, we have found that a 
satisfactory approximation to the optimum is obtained by simply using the value of 
p from the finite set (ei+O(ei+l-ei): 0=0 ,  N-I,, 2N-l ,  . . ., 1; i= 1, . . ., m- 1) 
which maximizes T(z(p)), for sufficiently large N. The use of a fixed grid, the same 
for all stages, admits a time-saving recurrence relation for the calculation of M for 
any chosen value of p (see Appendix C). Such a relation arises because the only change 
in equation (22) as we go from stage k to stage k +  1 is that A is augmented by an 
additional column (el zl , . . . , emzm),where z =z (p) is the output of the kth stage. 

The special case a = t  (y = 1) should confirm the analysis of Appendix A. With 
y =  1, D a I and we obtain 

which is the orthogonal projection, in eigenvector co-ordinates, of s on to the subspace 
of the range of S that is orthogonal to (Scl, . . ., Sck)=SSk.  This agrees with 
Fig. 5 of Appendix A. 

We should also be able to derive PCR as a+ 1 ( y-00 ). However, the analysis for 
this is rather technical, and we shall leave this limit to be demonstrated numerically. 

For a =0 (y =O), the construction still holds good provided that we stop after one 
stage. For g =0 and k =0, we have 

Translating from eigenvector co-ordinates, this is just S- ls for m =p(as might have 
been expected in the light of Section 4) and S + s  for m < p ,  where S f  is the 
Moore-Penrose generalized inverse. In other words, in one stage we obtain the OLS 
predictor in which, for the case m c p ,  the choice of generalized inverse is resolved 
in favour of the Moore-Penrose inverse. 

For a =0 and g>0 ,  the predictor obtained for w =g +  1 would be the same as for 
a =0, g =0, w = 1, provided that cl , . . ., c, are in the range of X' (or S) as 
they must be if m = p .  Otherwise, for m = n -  1 <p ,  Appendix D shows that the 
predictor is an OLS predictor whose coefficients depend on the choice of given 
regressors. 

As for the possible stage k =m - 1 (w =m) with a # 0, there is only one z (up to 
multiplication by k 1) that satisfies the side-conditions applicable at that stage: the 
value of a is therefore not involved. This z would complete the spanning of the range 
of S. For m = p ,  the associated predictor would just be the OLS predictor obtained 
at a =0, and we may therefore exclude the case w =m from our computations. For 
m = n  - 1 < p ,  it would be an OLS predictor given by a generalized inversebf S 
dependent on the given regressors. 
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9. CROSS-VALIDATORY ALGEBRA 


To make a cross-validatory choice (Stone, 1974) of a and w means that, for a 
sufficiently large set of values of (a ,  a),  we carry out the following operations: 

(a) for each * = 1, . . . , n in turn, the datum x* ,+* is left out of the calculation 
of predictor (2); 

(b) this 'leave-one-out' predictor is used to calculate );lat x =x* given the prediction 
$\*, say, of );* ; 

(c) calculation of a cross-validatory assessment 

of the performance of the predictor, corresponding to the choice (a,  w), of future 
3 values at the points xl , . . .,in.(We shall use the quadratic loss L(u, v) = (u - v ) ~  
in our applications.) 

Finally, a value of (a,  a )  that gives the smallest, or nearly the smallest, value of 
C,, ,is found: this value is a cross-validatory choice, (at ,  wt), say. For graphical 
exposition, we shall use the cross-validatory index I,, ,, defined by 

The denominator here is the value of C,, ,for the predictor based on the g given 
regressors alone, which is independent of a. The index I cannot exceed unity but may 
take negative values. 

Clearly, equation (24) could be found by applying the computational method of 
Section 8 to each of the n data sets in which one datum is omitted. But this would 
need n eigenanalyses which would be time consuming for large m. The following 
algebra applies only if cx >0 and shows that the single eigenanalysis of S (or XX') 
for the complete data is enough to do the job. When the cross-validatory modification 
of the recurrence relation in Appendix C associated with our grid search is used, there 
is a negligible increase in computation compared with a single run of the method 
described in Section 8. This enhances the value of our single eigenanalysis approach, 
particularly as m increases. 

By the standard missing datum formulae, with (x*, y*) left out, s and S of 
Section 8 change to s-  vy*x* and S* =S - vx*xJ where v =n/(n - 1). The T to be 
maximized is then 

(c 's-  vy*c'x*)2(c'Sc- v(c1x*)2jy-1. (26) 

Noting that the range of S* lies in (x l ,  . . ., x,) (which equals the range of S), it 
follows that the new c vectors, cg+ 1, cg+2, . . ., necessarily in the range of S*, may 
still be written as linear combinations of v l ,  . . .,v,, i.e. for the construction of 
ck+l,  k a g ,  we w r i t e ~ ~ + ~ = z ~ - v ~ + .  S incex*=f lv l+ .  where. .+z,v,. . .+fiv,
Jr" =xJ viy the value of expression (26) at c =ck+1 equals 

The given c l ,  . . ., c, are unaffected by the omission of x*, y * ,  and the zero- 
correlation side-conditions on z are c;S*ck+ =0, j = 1, . . .,k, which in eigenvector 
co-ordinates become 
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where 

The Lagrangian minimization of expression (27) then gives, in place of equation (21), 

z =M*d*/ll M*d* 11, (30) 

where 

d*=d-vy*f* 
M*=Q-1 -Q-lA*(A*l Q-'A*)-lA*'Q-1 

Q=D*-(1- y)vf*f*' 
D* = diagtyp* + (1 -y)el ,  . . ., yp* + (1 -y)ern) 
p * = e l z f +  . . . +ernz2,-v(f*'z)2 
A* = (a;), m x k .  

For the inverse of Q, we have, by a standard formula, 

The rest of the computation of c k ,  1 follows the lines of Section 8. The only change 
relates to the interval in which p* is known to lie. Appendix E shows that, for cases 
with n > p + 1 and rank S* =rank S (=  m = p ) , we have to widen the interval to 

where 

and 

for x* # 0. Appendix E shows that, in all other cases, we may continue to use 
el < p* <ern. Appendix C gives a recurrence relation for the calculation of M*, based 
on that used for M in Section 8. 

For the computation of y'\+ in equation (24), first observe that this is the value 
for k =  w of y'@, defined as the prediction of JL ,using predictor (2) with w = k at 
x =x+ when (x*, y*) is omitted from the basic data. Then 
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By a well-known result for an omitted datum, we have 

qg) -Y\* - (Yy'-h*P*)/(l -h*) (40) 

where fig)is the value of formula (2) at x =x* with w =g, i.e. the fitted value of y* 
in least squares regression of j on just the given regressors t(l) ,  . . ., t(g), while h* 
is the corresponding diagonal element of the associated projection, or 'hat', matrix. 
The increment jlk*+'1 -91k3is, by the leave-*-out modification of bk+1 in formula (2), 

i f *  

where x'\* = Cr#,xr/(n - 1). In 'undotted' terms, expression (41) is equal to 

i # *  -- i f *  

C { C ; + ~ X ~ + C ~ + ~ X * / ( ~ - C {fi 'z+f* 'z / (n- 1))2 
(42) 

1))2 
i f *  i #  * 

Formulae (40) and (42) are suitable for computation, using the z in hand after stage k. 
For a, =0 (y  = 0), this cross-validatory algebra breaks down if Q in equation (33) 

is singular for any omitted datum, equivalent to singularity of S*. For n < p + 1, this 
singularity is omnipresent and therefore lo,,+is not calculable using this approach. 
For this case, we might transfer attention from the OLS predictor at a, =0 to the OLS 
predictor given by a, = t ,  o= m - 1 for which the cross-validatory index is 
calculable. (The value 4 for a, is chosen because then y = 1, z in equation (30) is free 
of p* and the calculations are non-iterative.) 

10. PERFORMANCE AND COMPARISONS 

Throughout, we use a grid (Section 8) with N= 5 or N= 10 subintervals between 
adjacent eigenvalues, and I,, ,is defined with quadratic loss. 

10.1. Example I: Cement Heat Evolution Data 
The experimental data were produced and analysed by least squares by Wood et 

al. (1932) and have been extensively reanalysed. For ease of comparison, we shall 
use the data selected by Hald (1952) and reused by Draper and Smith (1981). We 
shall follow these researchers in taking a purely formal approach to this data set and 
ignore the interesting scientific reanalysis of the original data by Daniel and Wood 
(1971). In our notation, n = 13,p =4 , 9  is the heat evolved in calories per gram from 
cement samples in the first 180 days after addition of water and i ( l ) ,  . . ., i(4) are 
rounded estimated percentages by weight of the four compounds that make up most 
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Fig. 1. I plot for the standardized cement heat data 

of the cement (i(1) + . . . + i(4) varies from 95 to 99). The four ivariables are highly 
collinear; the condition number of the matrix S, e,/el, is 1379. 

Using 10 subintervals and standardized explanatory variables, Fig. 1 shows the 
complete I plot, i.e. the value of I,, ,for any value of (a,  w). With p=4, (a,  4) is 
equivalent to (0, 1). The absolute maximum of I is 0.9717 given by w =3 with any 
a>0.41, which includes the optimal PLS and PCR choices. The relative maxima were 
I =  0.9713 at a =0.12, w =2, and I =  0.9708 at a =0.006, w = 1. A notable feature of 
the output (recalling the ridge trace method with an ill-conditioned design matrix) 
is the steep rise in I between a =0 and a =0.006, for w = 1. For any value of (a, w), 
we may calculate the associated predictor (2) in terms of the unstandardized 
i ( l ) ,  . . ., i (p ) .  The comparisons in Table 1 are of interest. 

The predictors for the values of (a,  w) with I at or close to the maximum are seen 
to be very similar, and different from the somewhat less optimal OLS predictor. The 
predictor for the drastically non-optimal (l,I), equivalent to stopping PLS after 
the first stage, is also reassuringly quite different. Some further comparisons are of 
interest, taking us outside the family of CRs. Draper and Smith (1981) used the data 
to illustrate a variety of variable-selection techniques and modifications of OLS. They 
showed that just the two variables $1) and $2) are selected by application of any 
one of the three techniques 'Mallows's C,', 'backward elimination with 10% critical 
region' and 'stepwise regression with 10% critical region'. The associated least squares 
predictor was 

TABLE 1 

a w I Predictor coefficient 
i (1)  4 2 )  4 3 )  x(4) 
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which is closer to OLS with all four variables than to the optimal CR predictor (for 
a>P.41, w =3) given by 

85.4 + 1.31i(1)+0.27i(2) -0.14i(3) -0.38i(4). (44) 

By contrast with the output of the variable-selection methods, ridge regression with 
a trace parameter 0.013 delivered the predictor 

83.4 + 1.30i(1)+0.30i(2) -0.14i(3) -0.35i(4), (45) 

while PCR gave 

Two principal components, the first and the third, were selected for predictor (46) 
by the default method in BMDP4R (Dixon, 1983). Predictor (46) happens to be close 
to that given by use of all the first three components. This accounts for the closeness 
of expressions (46) and (44). Fig. 1 suggests that the conventional two-component 
PCR predictor would be quite different: given by our method with CY = 1 and w =2, it is 

10.2. Example 2: Road Accident Data 
For a thoroughly soft application of CR, we turn to Table 8.1 of Weisberg (1980), 

which gives the accident rates for a variety of stretches of road in Minnesota during 
1973. Selecting for analysis just the data for 'minor arterial highways', and using 
only the first nine potential explanatory variables, gives n = 13 and p =9. 

With standardized variables, the condition number is 433, somewhat less than that 
for example 1, but the predictive value uncovered is much less. Fig. 2 gives a partial 
Iplot for 10 subintervals for 1 <w <3; higher values of w give suboptimal values of I .  

OLS performs so badly, with erratic one-out predictions giving an Ivalue of - 12, 
that it does not even appear on the figure. Moving away from u=O, as far as 
CY = (PLS) with w = 1, is sufficient to ensure reasonable performance. However, 
PCR with one component is the clear winner in this example with I=0.65. 

L K ,  , 
0 0.5 1 


Fig. 2. I plot for the standardized accident data 
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The associated predictor has coefficients that are almost uniformly nondescript; with 
the 3 variable also standardized, the coefficients are, in correlation form, 

It is doubtful whether much meaning may be extracted from such an outcome. 

10.3. Example 3: Near Infra-red Calibration for Protein 
We shall put the first 12 items in Table 1 of Fearn (1983) through our new mill, 

without pursuing all the further questions raised for these data by Farebrother (1984), 
Hoerl et al. (1985) and N a s  et al. (1986). T h e 3  variable is protein percentage and, 
with p= 6, the tabulated explanatory variables L1 ,  . . ., L6 are log(l/reflectance) 
values at six wavelengths. If we were to take i(J) =Lj, j = 1, . . . ,6, unstandardized, 
we would find a t  =0.6, wt =5, with I =  0.947, which compares with I =  0.939 for 
OLS. I fwewere to t ake i (6 )=L=(L1+  . . . + ~ ~ ) / 6 a n d i ( J ) = ~ ~ - I , j = l , .. ., 5, 
we would find a t  =0.3, wt =4, with I =  0.958. However, both i(5) and f (6) then have 
roughly twice the sample standard deviation of i ( l ) ,  . . . ,i(4): with standardization 
of all these variables, CR gives a t  =0.35, wt =2, with I =  0.960. Fig. 3 shows the 
broader picture of associated I values for 10 subintervals. The coefficients of 
L1 ,  . . .,L6 in the predictors generated by OLS and the three choices of variables 
for CR are shown in Table 2. The differences illustrate the effect on the CR technique 
of linear transformation of explanatory variables and of standardization. 

The adopted CR predictor, namely (d) with at=0.35, o t = 2 ,  has a calibration 
(PRESS)" of 0.29, compared with 0.36 for OLS. When these two predictors are 
compared on the remaining 12 items of Table 1 of Fearn (1983) and on the 26 items 
in Fearn's validation sample, we find the results in Table 3. No attempt will be made 

0 0 . 5  ' 1  

-
Fig. 3. I plot for standardized L, L,  -L ,  . . ., L, -L 

TABLE 2 

Predictor coefficients 

L I L2 L3 L4 L5 L6 

(a) OLS 0.31 0.02 0.01 -0.44 0.02 0.14 
., L6 0.23 -0.06 0.15 -0.39 0.01 0.11 

( c ) C R o n L , - L  , . . . ,  L 5 - L , L  0.09 0.08 0.13 -0.27 0.01 -0.01 
(d)  C R  on (c), standardized -0.02 0.09 0.16 -0.21 0.01 -0.01 

.,L , ,C R  on (b) 
8 

http:at=0.35
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TABLE 3 


Validation set Root-mean-square prediction error 
CR (0.35, 2) OLS 

here to adjust our analysis of the n = 12 calibration data in the retrospective light 
of these larger-than-expected values. If we interpret the results obtained by Fearn 
(1983) to mean that, even if there is a true linear calibration formula, random error 
has a standard deviation of about 0.2, then biases with a root-mean-square error of 
0.4 would be needed to explain the 0.45 root-mean-square prediction error for our 
CR(0.35, 2) predictor. By various stratagems, other analysts of both the n = 12 and 
the n =24 calibration sets have evaded bias of this order (Hoerl et al., 1985; N a s  
et al., 1986). We simply note that, apart from the reversal of correlations of Li and 
9 (i= 1, . . ., 6) between the n =24 calibration and the n =26 validation set noted 
by Hoerl et al., there are appreciable differences in L. Even between the two halves 
of the n =24 set, the mean of jumps from 264 to 299 (two-tailed Mann-Whitney, 
P<0.002) so that we are really asking our optimal CR predictor to be a good 
extrapolator, from a data set that perhaps does not cover a sufficiently wide range 
of experimental items. 

10.4. Example 4: Near Infra-red Calibration for Ethanol 
Our first example with p > n  uses data associated with Table 3 of Bjarsvik and 

Martens (1989). For this subset, n = 11, p = 101 and 9 is the percentage of ethanol 
in a mixture of ethanol, methanol and n-propanol, while i(1), . . .,i(101) constitute 
the 'spectrum' of log(l/reflectance) values at intervals of 5 nm between the wavelengths 
1100 nm and 1600 nm. Some I values, calculated for 10 subintervals and without 
standardization of i(1), . . ., i(101), are exhibited in Table 4. 

In this example, there is a case for not standardizing the (i(j)] before use of CR: 
all the variables are on the same physical scale and the variables with large sample 
standard deviations may be expected to include those expressing informative differences 

TABLE 4 

I values for the following values of cut: 
0.2 0.3 0.4 0.5 0.6 0.75 1 

?The maximum value in each column is in italics. 

http:CR(0.35
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Wavelength (nrn) Wavelength (nrn) 

Fig. 4. Predictor coefficients for protein calibration: (a) a = 4,w =5; (b) a = 1, w =2 

between the mixtures. (This expectation is borne out by the finding that, with 
standardization, the maximum value of I drops dramatically to 0.951 .) 

Selecting cu =0.5, w =5 as sufficiently near optimal, the corresponding predictor 
coefficients are shown in Fig. 4(a) (multiplied by the sample standard deviations of 
the variables for more meaningful comparison). For comparison, Fig. 4(b) shows 
the predictor coefficients for a, = 1, w =2. 

10.5. Example 5: Near Infra-red Calibration for Fat in Biscuit Dough 
Our final example involves a very large set of data with n =39 pieces of dough 

and p =601 wavelengths, a part of those analysed by Osborne et al. (1984). The 
variables (ii.O')J are log(l/reflectance) values at intervals of 2 nm between 1200 nm 
and 2400nm, jointly scaled to reduce the influence of variations in background 
reflectance from dough piece to dough piece. The j variable is the percentage of fat, 
which varies around 30%. 

The sample standard deviations of ( imJare not very unequal but we have, following 
example 4, used CR without standardization and with five subintervals per grid interval. 
Our findings were as follows. For a, =0.5 and a, = 1, the optimal values of w were 
both 18, with I values of 0.965 and 0.956 respectively. Small values of cu with w = 1 
(approximating the Moore-Penrose limit) give 1=0.962. For w values of 2, 3 and 
4, the optimal values of cu were 0.05, 0.1 1 and 0.17 respectively with I values 0.963, 
0.964 and 0.963 respectively. The root-mean-square, one-out prediction error for the 
PLS choice a, =0.5, w = 18 is 0.37% which may be compared with the value 0.43% 
of the residual standard deviation for the best fitting of the 0.5 x 601 x 600 = 180 300 
pairs of wavelengths analysed by Osborne et al. (1984). 



19901 CONTINUUM REGRESSION 253 

1 1. DISCUSSION 

In the absence of any appreciable and presentable theory for CR prediction, it may 
be unwise to try to extract general conclusions from just five examples. None-the- 
less, some of the following observations are supported by other trials that we have 
made. They suggest theoretical problems, answers to which may have to rest on Monte 
Carlo simulation. 

(a) Predictors associated with quite different values of (a ,  w), but having nearly 
optimal values of I ,  are themselves effectively identical. This was remarked 
on in example 1 but is also to be found in example 3, where the coefficients 
o f L 1 , . . . ,L6 fo ra=0 .99 ,  w=3  andI=0.957are -0.02,0.10,0.17, -0.21, 
0.00 and -0.01 respectively, which differ by at most 0.01 from the coefficients 
for the optimal a t  =0.35, wt =2 and I =  0.960. The same phenomenon persists 
even more markedly for the data set of example 4 with largep. This robustness 
seems reasonable when expressed as 'near uniqueness of the near best' and is 
particularly useful in that it is not necessary to be numerically neurotic in the 
determination of the optimum. Our Iplots can be, and have been, drawn with 
a thick pen. 

(b) For any given value of a ,  the index I,,,tends to be unimodal in w and often 
shows the by now well-known cross-validatory hump-'not too little, not too 
much, but just right'. That we easily achieve only approximate unimodality 
is shown by the case of a=0 .35  in example 3. 

(c) In example 1, the value of a maximizing I,, ,is an increasing function of w. 
In example 3, it increases up to w =4 but then effectively drops to zero at w =5. 
This further manifestation of a possible unimodality may be interpretable as 
the complex outcome of a battle between biases and variance in the estimation 
of the final predictor. As we consider larger values of w for a given value of 
a ,  we lose on variance but gain on biases. To reduce the variance, we need 
to move away from the correlational adaptability of least squares, i.e. to increase 
a. But, for the largest value of w, it is possible that, with the bulk of the variance 
penalty paid for all but the smaller values of a ,  it pays to return to least squares 
to pick up the reduced bias benefits. 

(d) The effects of standardization of explanatory variables in example 3 were not 
as great as those of a preceding linear transformation, while non-standardization 
was necessary for example 4. More studies are clearly needed, especially if we 
want to devise rules for non-standardization to be used as a device for prior 
weighting of the variables. 

(e) The calculations are faster the smaller the value of N (Section S), at the expense 
of a poorer approximation to the procedure as defined. However, we have found 
that even N =  1 usually gives a reasonable approximation. Moreover the N =  1 
procedure may be regarded as defined in its own right, so that concern about 
the closeness of the approximation to a procedure that is itself somewhat 
arbitrary would not be justifiable. 

(f) In examples 4 and 5, the Moore-Penrose OLS predictors were hardly less optimal 
than the predictors that we selected. To see why this particular choice of OLS 
predictor should do so well, we simply note that it corresponds to 
cl =Sfs/llS+sll, and that this is the standardization to unit length of the 
particular fi in fi'x that satisfies the OLS 'normal equations' which, in the 
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singular, perfect fit case, are simply fi 'xi=yi, i= 1, . . ., n, and minimizes 
IIfiII=(Of+ . . . +O:)1/2. NOW in examples 4 and 5, it seems that the 
informative i(Jare associated with large sample standard deviation. The 
required minimization then ensures that the choice of fi is resolved in favour 
of just those informative hence the near optimal performance. Indeed, i(J: 
in example 5, it is likely that it is the residual adaptability of B within the set 
of informative i(J> that has given the ~oore-penrose  predictor an edge over 
PCR. 

The CR prediction method is not at all directed towards selection of variables, as 
opposed to their construction. For that purpose, CR cannot therefore be expected 
to be uniformly superior to sensibly deployed selection methods such as stepwise 
regression, especially in problems where there really are only a small number of 
informative explanatory variables. 

The procedure proposed in this paper is similar in some respects to the independent 
work of Frank (1987), who called her method 'intermediate least squares' (ILS). This 
may be restated as another special case of the general method of Section 3 with g =0. 
At stage k, calculate the vector, cov, of sample covariances of i ( l ) ,  . . ., i ( p )with 
the j residuals in the regression of j on i(l), . . ., i(k). Then ck+ 1 is taken 
proportional to the vector in which the cu smallest components of cov, in magnitude, 
are set equal to zero. Here cu is a control parameter with an integer value from 
{O, 1, . . .,p - 1). As with CR, the control parameters a, and w are chosen by cross- 
validation. The ILS method generalizes PLS, which corresponds to cu =0. However, 

(a) we do not see it as a generalization of conventional stepwise regression, 
(b) it is necessary to take w = p ,  if that is feasible, to obtain OLS and 
(c) the 'spectrum' of cu values, (0, 1, . . .,p - 1), does not include PCR. 

An alternative generalization of PLS has been proposed by Lorber et al. (1987) giving, 
like CR, a continuum of procedures around PLS with control parameter given by 
the 'power' in the eigenanalysis power method. Along with CR, these alternative 
approaches contrast sharply with the work of Brown (1982), Nzes (1985) and Sundberg 
and Brown (1988), which would model our { i ( j>)  as multivariate normal conditional 
on the value of 9. 

We have not yet found any striking examples of the value of the option g > O .  
Potential users of CR should not be too bothered about the deficiencies of cross- 

validatory assessment, or estimation, documented by Stone (1977), Efron (1983) and 
Bunke and Droge (1984). Success with CR depends on effective choice rather than 
assessment. With quadratic loss for the cross-validatory comparison of two prediction 
rules, we have 

where E(y*)=g* ,* = 1, . . .,n. The difference in braces is an improved comparison 
measure using {g*) rather than {y*) as the 'one-out predictees'. The final sum has 
expectation zero and should have a standard deviation that is small compared with 
either of the sums in the braces and even, in some comparisons, with their differe'nce. 

A Fortran subroutine for CR will be submitted for publication elsewhere. 
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APPENDIX A 

Proof of identity of subspaces 
We know that equation (I 1) holds for w = 1. Proceeding inductively, suppose that it is true 

for w =k. Let Ykdenote (s, Ss, . . ., Sk- S) and h the unit length vector in .Ak+that is 
orthogonal to S 2k=(SS, . . ., Sks), and therefore S orthogonal to ,Yk.Write h =X(s + sk) 
where sk is in S .Yk(which determines X and sk uniquely). Then, for any c that is S orthogonal 
t o  ( c l ,  . . ., ck)  ( =  2kby the inductive assumption), we will have c ' s  = 
C'(S+ sk)=clh/X. Hence, for ck+ to maximize ( c ' s )~ ,we must have ck+ =h and ( c l ,  . . ., 
ck+1)= .Yk@ (h)  = ,Yk+l ,  whence equation (11) would hold for w =k + 1. 

The geometrical relationships are shown in Fig. 5, in which and [Sl denote Euclidean 
and S-orthogonality respectively, following the conventions set out in Stone (1987). 

APPENDIX B 

The constructed regressors, at most m -g, lie in the range of S 
Let 9denote the subspace of S s ,  the range of S, that is spanned by the orthogonal 

projections of cl , . . ., c, on to . g s .  By the suppositions made for cl , . . ., c,, dim 9=g. 
For unit length c in RP, let co denote its orthogonal projection on to . g s  and E =  co/ll co1 1 .  
(We here suppose that c is such that cof 0: otherwise c'Sc =0 and T =  0.) Then clSc= c6Sco, 
and also c 's = c6s since s E A?s. Hence T at c equals 

for CY>0, since 1 1  co1 1  < 1. Moreover E is of unit length and has the same S-orthogonality 
properties as c. So, to maximize T, for CY >0 we would always replace c in RP by E in ds. 
It may therefore be seen that the construction process, starting with that of c,, in 9 s ,  
progressively builds up S-orthogonal cs from the S-orthogonal complement of 3 in 9 s ,  
until the dimensionality of . d s  is exhausted with 3@(c,+ . . ., c,) = A?s. 

Fig. 5. Inductive identification of c,, , 
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APPENDIX C 

Recurrence relations for [Mk] and ( M t ]  

(a) Write M and A in equation (22) as Mk and Ak to exhibit their dependence on k. We 
have Ak+ = (Ak: a), where a '  = (elzl, . . . , emzm). Writing Bk =AiD-  'Ak,  We have 

where b '  =AiD- 'a  and c = a l D - l a  (z, a, b and c refer to the kth-stage output only). 
Then 

where d = ( c - b ' B i l b ) .  Writing C k = A k B i l A / ,  we have Mk=D- ' -D- 'CkD- l .  
Also we find d = a l M k a  and Ck+l=Ck+(a-CkD-la)(a-CkD-la)'/d,whence 

This recurrence on k starts with the calculation of Mo=D-I if g=O and of 
M,=D-I -D-lC,D-l if g>O. 

(b) The recurrence 	relation for Mf, equal to the M* of equation (32), has the same 
formulation. All we need to do is to replace D and Ak by Q and A,$ respectively. The 
recurrence starts with the calculation of M,* =Q- if g =  0 and of 

if g>O. For a we have, from equation (29), 

where z* =M,$d*/Il Mgd* 1 1 .  

APPENDIX D 

Construction at a =0 with g >  0 
For a >0, g >  0 and k= g, the translation of Md in equation (21) from eigenvector co- 

ordinates gives c,+ proportional to S - ls (or S +s) minus a vector alclo + . . . +agcgo in & 
(see Appendix B) where clo, . . . , ego are the orthogonal projections of cl , . . . , c, 
respectively on to (vl , . . . , v,) = (The columns of D - 'A translate into clo, . . ., ego .)9,. 
Moreover, by the argument used at the end of Section 4, any c , + ~  satisfying the required 
S-orthogonality conditions with c , ,  . . ., c,, c,+, would have rZf, and hence T, zero. For 
w =g +  1, the predictor is then given by 'with-a-constant' least squares regression of y on the 
g +  1 (ern- 1) regressors t(l), . . ., t(g), B'x -alcj&-.  . . -a,chx, whose data vectors are 
linearly independent. Since ti(j) =c;x,= cjoxi, i =  1, . . ., n, j =  1, . . ., g, it follows that the 
resulting predictor is 
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APPENDIX E 

Interval for p* 
For n > p  + 1 and rank S* =rank S =m = p  (i.e. both full) the largest eigenvalues of S*-

and S- are eT- ' ,  say, and e;  ' respectively. Since S -S* is non-negative definite, 
eT <(minimum eigenvalue of S) =el  . Also 

Hence, by the perturbation result (41.8) of Wilkinson (1965), 

which, with the fact that p* >eT, gives the lower bound in equation (38) after conversion 
to eigenvector co-ordinates. The upper bound follows from 

p* <e&'!Sf maximum eigenvalue of S* 

< maximum eigenvalue of S =em.  

For the remgining cases, rank S* =m - 1 and we shall prove geometrically that eT >e l .  
In Fig. 6, x +  9 s  is the m-dimensional flat in RP that contains thejoints x l ,  . . ., x,; g* 

is an arbitrary (m - 1)-dimensional subspace contaiang x* =i*-x;  x + V*  and x,+ c/* are 
the translates of ,cJ through x and x, respectively; x\* is the average of x,: i f  *; x\* + As* 
is the translate through $\* of the (m- 1)-dimensional subspace Y?~*;the symbol 
denotes orthogonal projection. Then, by principal components theory applied first to S* then 
to S, 

(For the first equality, we use the fact that the intersection of n,+ Y *  and + .dS*is an 
arbitrary subflat of x\*+ d S *  through the average of x,: if *. The first inequality is by 
Pythagoras. The second equality holds because P*P*=O. The second inequality is a 
consequence of the restriction on -/*.) 

Fig. 6. Construction for the case when rank S* =m - 1 
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DISCUSSION OF THE PAPER BY STONE AND BROOKS 


Pnofessor P .  J. Brown (Liverpool University): It is always a pleasure to receive an elegant and 
stimulating paper by Professor Stone and this paper, joint with Dr Brooks, is no disappointment. The 
idea behind the paper is simple; it seeks to combine three methods for prediction of a response y from 
a vector of explanatory variables x ,  when the predictor is linear in the explanatory variables. Indeed 
it elegantly ties together two established methods, ordinary least squares (OLS) and principal component 
regression (PCR), and brings in the newly emerging method of partial least squares (PLS), shedding 
some new light on this in the process. A continuum of intervening possibilities is also instated. 

I particularly liked the insight provided by the different optimality criteria of OLS, PCR and PLS 
and especially the canonical covariance depiction of PLS. My own struggle to understand PLS was 
enlightened earlier by the work of Helland (1988). He stripped away its algorithmic cover and came 
nearest to  specifying a model. For me an understanding of PLS lies at the root of the appreciation 
of the paper. Let me first pause to restate the salient features of PLS. The model matrix X of n 
observations on p explanatory variables can be described in bilinear factor form: 

where the scores tiare n-vectors. They are the latent variables and the p-vectors pj are the loadings. 
The residual matrix Ek is small in some sense. The crucial idea of PLS is that the relationship between 
X and y is conveyed through the latent variables. Thus we also have the decomposition 

for scalar qj and the same scores or latent factors. Incidentally PLS can quite naturally include vector 
y leading to multivariate regression. Various conditions need to be imposed for uniqueness. We could 
force the scores to be mutually orthogonal in Rnor the loadings to be mutually orthogonal in RP. 
We have to shy away from imposing both simultaneously since then the tiwould be eigenvectors of 
X X '  and pj eigenvectors of X ' X  and the latent factors would be entirely determined by the X data 
without reference t o y ,  as in the PCR method. There are thus two main algorithms for PLS depending 
on whether the scores or the loadings are determined as orthogonal. The algorithms are sequential, 
starting with no factors adding a factor at each stage. For one algorithm, latent variables are formed 
as weighted averages of the X-residuals from the previous step, with weights proportional to covariances 
with the y-residuals from the previous step. Only the simplest least squares algorithms are required. 
Although the construction algebra of the paper removes the arbitrariness in the specification of weights 
in PLS, for general continuum regression it does have the quite substantial overhead of the iterative 
numerical solution of equation (23). 

What emerges in PLS is that the regression coefficients are formed as 

B k =  H0, X ' y  

where H(, ,  is a rank k approximation to the inverse of X ' X  and the usual algorithm is indeed just the 
conjugate gradient method of forming an inverse; see Westlake (1968). In PLS the conjugate directions 
are formed with respect to  y,  whereas in PCR the approximating inverses are formed on the basis of 
X ' X  alone. We see also that PLS and PCR can be viewed as shrinkage methods, although the shrinkage 
of PLS is decidedly more obscure than that of say ridge regression, with its implicit Bayesian assumption 
of exchangeability of regression coefficients. 

PLS has this motivational notion of latent factors and I wonder whether much is gained by adding 
to PLS a continuum of other possibilities. After all PLS with min(p, n - 1) factors gives OLS, or minimum 
length OLS when n -  l c p. Also PCR with min(p, n -  1) factors gives the same Moore-Penrose 
minimum length solution. Augmenting PLS with PCR having fewer than the saturated number of factors 
would cover all three techniques. With continuum regression the (a,w )  two-dimensional parameter space 
is peculiar. Points in this two-dimensional space far apart can be coincident in a model difference sense. 
It is unclear how in this space points relate to the regression coefficients. The authors refer to  this in 
Section 11, point (a). However, I wonder whether it is satisfactory to ascribe virtue to the similarity 
of coefficients for seemingly very different 'models'. How much is due to the particular data and how 
much to the overlaying nature of the methodology? I note that the only attempt at cross-validatory 
assessment as opposed to cross-validatory choice was made in example 3, and the validation set there 
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did not behave quite as anticipated. When we add in the choice of scaling and metric we are left with 
a bewildering range of possibilities. Perhaps it is more than enough to try to  contend with PLS. 

If I am permitted some criticism it is that overriding all these methods I feel unease at the 'black 
box' approach and lack of attention to prior knowledge encompassed in the substantive application. 
They are biased non-linear shrinkage methods and alternatives like ridge regression are more explicit 
in their implicit prior assumptions, guiding users on when and how to use it. The method is prescriptive 
and is not embedded in an inferential framework to judge the relative merits of the prescriptions. 
Modelling as such is eschewed. I wonder whether we are being treated to synthetic rather than soft science? 
The chemometrician or statistician user is left with the comfortable notion that he can collect a batch 
of data; he does not have to worry too much about how he collects it, or what past knowledge there 
is. He can apply continuum regression with the assurance that after a little fine tuning he will have 
a good predictor for all future unspecified purposes! 

I am grateful to  the authors for mentioning, in Section 11, papers in which I had a hand. I am sorry 
that our intended message did not get through. Modelling is paramount. Whether to regress x on y 
or y on x would depend on the way that the training data have been collected, whether x or y had been 
controlled. But when n - 1 < p then regressing either way leads to the same least squares estimates with 
a ( p  -n + 1)-dimensional degree of undeterminedness. I believe that prior information is then crucial 
in forming a unique estimator. There is much about the infra-red data of examples 3-5 which needs 
modelling. For finely ground solids, particle size has a substantial influence on relectance, shifting bodily 
the reflectance curve. Also looking at one of these reflectance curves as a function of wavelength one 
is immediately struck by a beautiful continuity. Try jumbling up the p wavelengths, destroying this 
continuity, and apply continuum regression. Out comes the same answer as before. Continuity is not 
utilized. A start in accounting for continuity, through spline fitting and autoregressive error, is given 
in Brown and Denham (1989) and is the subject of a Science and Engineering Research Council Complex 
Stochastic Systems project. 

Finally I wonder whether criterion (12) of the paper can be justified as a utility in a wider decision 
theory framework. This is pertinent because of the emphasis on estimation and prediction rather than 
modelling and inference. 

This paper offers many insights and impressively ties together three different prescriptions in what 
the authors have referred to as soft science. Although I may have reservations concerning the downgraded 
role of modelling, I have no hesitation in proposing the vote of thanks. 

Dr T. Fearn (University College London): It is a pity, given the elegance of the appendixes, to  resort 
to the use of co-ordinates in discussing this paper. However, it is interesting to  look at  continuum 
regression (CR) using the canonical form of the linear model in which ridge regression is often explored 
(see for example Goldstein and Smith (1974)): 

In this form S is just diag(e,, . . ., e,), where the non-standard ordering el <. . . < ep corresponds to 
that in Section 8, and 6, is the regression coefficient associated with the ith eigenvector of S. The least 
squares estimates are just Bi=yi/de,, and the simple form of the ridge regression estimator 

where K >0 is the ridge constant, shows how ridge regression shrinks preferentially in directions associated 
with small eigenvalues of S. The corresponding estimator for CR with g =0, w = 1, is 

Here y varies from zero (OLS) via unity (PLS) to  infinity (PCR) and p,  which varies with y and depends 
on both y and e, lies in the interval el < p  < e,. The behaviour of equation (47) as y+ a~ is not 
obvious at first glance; what appears to happen is that p +ep so that pF+Bpand PFR+O for i # ~ .  
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Comparison of equation (47) with firR shows that CR may behave like ridge regression for small y ,  
with y p  playing the role of x. In example 1 the ei are 0.002, 0.187, 1.576 and 2.236; when 
a = +=0.006, p is about 1.9, y p  about 0.01 1 and the shrinkage factors for CR are very close to those 
for ridge regression with x =0.011. For these choices of y and x both CR and ridge regression effectively 
delete the direction corresponding to the smallest eigenvalue, giving results almost identical with a = 1, 
w = 3, as noted in Section 10.1. The similarity to ridge regression here depends on the spread of the 
eiand the fact that p is large for small y .  This need not always hold, and the general question of when 
the two methods are similar would bear further investigation. 

Although CR is a 'shrinker' in the sense that 11 PCR11 < 11 11 it does not, unlike ridge regression, shrink 
each individual Bi,as can be seen from equation (47) and the fact that e,<p < e,,. In fact the regression 
coefficients associated with large eigenvalues are inflated by CR. At first sight this seems a little disturbing 
after so many years of being told that shrinkage is a Good Thing, although the authors might well retort 
that the componentwise behaviour is irrelevant. 

As may be deduced from my attempts to introduce one, I find the lack of any model, in the 
usual sense, something of a problem with CR. When a procedure is defined by an algorithm (as PLS 
usually is) or as the result of maximizing some arbitrary criterion it is easier to  implement it than to 
understand when its use might be appropriate, or more importantly not appropriate. Clearly CR is more 
appropriate if you believe in some sort of latent structure model for the x than if you do  not. Even 
then, however, it is not at all obvious why maximizing the particular criterion chosen is a good way 
to proceed. The authors offer little help in this direction, making no attempt to justify their procedure. 

As the authors point out in their discussion, CR makes no attempt to select variables and cannot 
be expected to be uniformly superior to  'sensibly deployed . . . stepwise regression'. This point is 
particularly important in interpreting, for example, Fig. 1, where OLS on the left-hand side is not allowed 
to select variables even whenp approaches or even exceeds n, and PCR at the other end is not allowed 
to select components according to their correlation with y. This type of contest-take the standard 
methods, restrict them severely and then compare them against a novel method-is much favoured in 
the 'soft modelling' literature. Given the framework in which the comparison is made we would expect 
to  see values of a in the middle of the interval doing better than the extremes. This does not necessarily 
mean that PLS is better than sensibly used OLS or PCR. 

These criticisms apply to the whole soft modelling area, and it is perhaps unfair to level them at a paper 
which is atypical in that it illuminates rather than obscures the issues involved. As one who has struggled 
with the literature of PLS for some time I am particularly grateful for that illumination. 

It gives me great pleasure to second the vote of thanks. 

The vote of thanks was passed by acclamation. 

Mike Denham (University of Liverpool): In this paper the authors have illustrated their continuum 
regression approach with five examples. In the three near infra-red calibration examples there is a clear 
continuity among the x variables. I should like to discuss some work on accounting for this continuity 
ailuded to by Professor Brown. 

Brown and Denham (1989) consider modelling the variables (k(j))conditional on the value of variable 
j which is now generalized to be multivariate, i.e. ( j ( k ) )  where k =  1, . . .,q. We do this through a 
standard linear model of the form 

where B=(Bjk) is a q x p  matrix of unknown regression coefficients and 

Prediction is then performed by using generalized least squares methods conditional on the estimates 
obtained from model (48). 

To  introduce continuity between the x variables, we impose a cubic spline structure on the matrix 
B so that model (48) becomes 

where D, depends only on the knot sequence T of the underlying spline function. The choice of knot 
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sequence could be made to reflect the prior beliefs about the smoothness of B or alternatively could 
be estimated from the data in some way (see for example Smith (1979)). 

In addition we also consider structuring the variance-covariance matrix I? by assuming that the error 
vectors E~ are independent realizations of an autoregressive process of order m and derive an 
approximate generalized least squares predictor for autoregressive processes of reasonably low order. 

In random calibration where we model the y variables conditional on the x variables by 

we consider estimation of B, by Moore-Penrose ordinary least squares as a limiting case of the 
multivariate ridge approach of Brown and Zidek (1980) where a ridge estimator of B, is given by 

with K a q x q positive definite ridge matrix and B, ,B, (K) vectorized versions of B, and B, ( K )obtained 
by stringing out the matrices row by row as column vectors. A generalization of this which would take 
account of the continuity of B, would be to  replace I, by a second ridge matrix L to give 

Professor A. C. Atkinson (London School of Economics and Political Science): The methods that 
we have heard so elegantly described are based on aggregate statistics, i.e. on quantities summed over 
all data or cases. However, one or a few cases may unduly influence the conclusions of an analysis 
of data. For least squares regression, methods based on the deletion of single cases are widely used 
for diagnosing unsuspected influence and other model failures (Cook and Weisberg, 1982; Atkinson, 
1985). The algebra for these calculations is similar to  some of that given by the authors in Section 9, 
especially, as they imply, around equation (40). It seems that diagnostic information may therefore be 
available as a by-product of the authors' algorithm. Is this so? Have the authors any experience in the 
use of diagnostic methods for detecting the effect of individual data or cases on their inferences? 

Docent Urban Hjorth (Linkoping University): Cross-validation was first a technique for evaluation 
of a single estimated model. Stone (1974) extended this into a method for the estimation of parameters. 
The potential of the method lies in its generality. The computational approach allows almost any kind 
of parameter to be estimated with optimal predictions as a goal. I have found this approach very useful 
for model selection as a stopping rule in stepwise regression, for selecting time series models and for 
some other estimation and selection problems (Hjorth, 1989; Hjorth and Holmqvist, 1981). Stone and 
Brooks use it here for the complex parameters a and a,which is also a kind of model selection. 

In many estimation problems, cross-validation has tough competition with bootstrap analysis, and 
the latter should be preferred in some problems, but I cannot see how a bootstrap analysis can handle, 
for example, model choice in regression without introducing a large amount of irrelevant noise due 
to variability of the design matrix. Can Professor Stone comment on whether the bootstrap can in principle 
be applied to  his kind of analysis? Stone and Brooks work with linear models in such a way that all 
available predictors are involved. Their method for noise reduction is to  compromise between regression 
on XI, . . . , Xk and regression on principal components PI, . . . , Pk. The parameter a ,  0 <a ,< 1, is 
natural as a description of where to  take this compromise. However, their second parameter w works 
for principal components regression but not a t  all for ordinary least squares. This difference between 
the two ends will favour large a-values. A corresponding parameter a t  a = 0 would require a natural 
order of the predictors or perhaps use of Y to determine such an order by stepwise regression. 

The situation is illustrated in Fig. 7 where the empty upper left-hand side indicates lack of alternatives. 
Do the authors see any useful extension of w for a close to  zero? 

Partial least squares is usually regarded as suboptimal and perhaps slightly heuristic. One of the most 
interesting conclusions here is that with a proper balance between noise and signal (quite a lot of noise), 
partial least squares can be the optimal compromise between ordinary least squares and principal 
components. 

Statisticians working on multivariate applications with linear models, principal components etc. will 
have a valuable new tool here. With its built-in cross-validation some decisions will be very exp~dient  
even if, at the regression end of the spectrum, some alternatives are worth studying as indicated by 
the author's discussion. 
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Fig. 7 

Dr R. W. Farebrother (University of Manchester): The authors are to be congratulated for establishing 
that ordinary least squares, partial least squares and principal components regression predictions may 
be obtained from special cases (A = ss', B = S; A = ss', B = I; and A = S, B = I) of the constrained 
maximization problem 

maximize c1Ac/c'Bc subject to c l S D =  0, c 'e  = I 

where D = [ c, , c,, . . ., c,-, 1.  However, it should be pointed out 

(a) that the authors' choice of a one-parameter family based on T= ( c ' ~ ) ~ ( c ' S c ) ? - ~is not the only 
possible choice and 

(b) that it may not be appropriate to include principal components regression in such a family. My 
experience of 'soft science' suggests that low order principal components are often more important 
explanatory variables than high order components. Perhaps a variant based on latent root regression 
as a limiting case would be more appropriate; see Mason (1986). 

Tormod N s s  (MATFORSK, As): Although I am in general quite pessimistic with respect to the 
potential for significant improvements over principal components regression (PCR) when prediction 
is a sensible thing to do, the introduction of partial least squares and later continuum regression is very 
important for the understanding of linear prediction. I very much like the philosophy of extracting 
components and using these in regression. First it is good for the understanding of prediction as a 
balancing of X and Y information. Secondly, components, e.g. principal components, are useful for 
interpretation and understanding of the data. Thirdly, results are more easily communicated to 
practitioners in terms of such methods. 

The reason for my scepticism with respect to the potential for improvement over PCR (which is also 
supported by the examples in the paper) is described in Martens and N a s  (1989). That discussion shows 
that eigenvector directions in X space with moderate to large eigenvalue and moderate to large correlation 
with y should always be used for prediction. In contrast, directions with small eigenvalue and small 
correlation should always be deleted. The directions with moderate to large eigenvalue and small 
correlation could also in general be deleted, but this will usually have little impact since the variability 
is properly spanned along these axes. This is also supported by example 1 in the paper. The really 
complicated directions in X space are those with small eigenvalue and moderate to large correlation 
with y. If the correlation is real, these directions should be used. However, we should be aware that 
the prediction ability will usually be poor in such cases, owing to the lack of variability in X space along 
the actual axes. In other words, prediction will give poor results and should usually be avoided in such 
situations. If the correlation is accidental (as it will be in most reasonably well-designed experiments), 
the comparison of the mean-squared errors shows that it is very important to  delete the eigenvectors 
from prediction. For me, all this shows that a PCR with inclusion of components starting with the 
component with largest eigenvalue and which stops according to a criterion related to increase in cross- 
validated prediction error is a strategy that in most situations handles all these cases reasonably well. 

Dr Lars Stihle (Karolinska Institute, Stockholm): The paper is a most interesting approach to the 
evergreen linear predictor problem. In view of recent experiences with partial least squares (PLS) I would 
like to comment on some aspects of continuum regression (CR). Firstly, there are many apparently 
competitive ways of regarding regression methods as special cases of one another. The method used 
in the paper is different from that of, for example, Hoskuldsson (1988) who noted that PLS and principal 
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components regression (PCR) are just two special choices of subspaces in the measurement space. 
Any subspace with a smaller dimensionality than the recorded data might be chosen by means of 
some criterion. What is important is a clear statement of the criterion. The authors have chosen the 
cross-validation quadratic loss function L of the outcome variable (their equation (24)). We have recently 
developed a variant of PLS in which the subspace is determined by sequential calculation of 
weights ( w )  such that L is minimized (prediction-optimized PLS). This is done by introducing a p x p  
diagonal matrix A the elements of  which are chosen by cross-validation. In the PLS algorithm an extra 
step is added: w -+ Aw. For many data sets with a small number of observations (n < 20) the solution 
becomes seriously pathological with only a minute proportion of the variance in X explaining almost 
100% of the variance in Y. A reformulation of the criterion was therefore necessary using cross-validation 
of both X and Y. This suggests that much of the success of PLS as a predictive method lies in that 
the covariance between X and Y is maximized (Hoskuldsson, 1988). We shall come back to this in the 
near future. 

The purpose of this comment is thus to point out that restriction of cross-validation to Y with models 
that are not clear in their intention (obviously the intention of PLS is different from that of ordinary 
least squares or PCR) is associated with a risk of systematically finding spurious correlations. I d o  not 
know whether this will occur in CR but, if so, it would be unfortunate considering that the intention 
of the authors is precisely the opposite. Nevertheless, it will be most interesting t o  see t o  what extent 
CR PLS, intermediate least squares and other methods (prediction-optimized PLS?) can be shown to 
reduce the prediction error on real data in truly prospective studies. 

The following contributions were received in writing after the meeting. 

F. Y. Chan (University of Winnipeg) and T. K. Mak (Concordia University, Montreal): The idea 
of 'continuum regression', which unifies the classical ordinary least squares, partial least squares and 
principal components regression, is elegant. Its implementation requires first the computation of  the 
c, and Professor Stone and Dr Brooks have outlined a viable approach in Section 8. We would like 
to discuss here an alternative approach for computing the c,. The method is conceptually simple and 
involves at each stage the solution of an explicit equation in a scalar variable. Furthermore, the 
computations of eigenvalues and eigenvectors are avoided, which may save some computational effort 
when a large number of explanatory variables is involved. 

Following the notation of Stone and Brooks, suppme that c,, ,, . . ., ckhave been constructed and 
we want to find the c,,, which maximizes T = ( C ' s ) ~  11<c1Sc)?-'subject to the constraints c)I2=1 and 
c' Sc, =0, j = 1, . . ., k. Using Lagrange multipliers, we have to differentiate with respect to  c. 

where J.- [ c, , c2,  . . ., ck], X and d = ( A , ,  . . ., A,)' are Lagrange multipliers. We have 

It can be shown, using c'c = 1 and c' SJ. =0, that 

and 

Substituting these expressions in af/ac and simplifying, we obtain the matrix equation 
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Writing A for I-SJ.(J.'SJ.)-'J.' and p for c lSc,  the equation can be rewritten as 

(cls)- '  As- ((1- y ) p - I S +  yA)c=O.  

It then becomes 

where R=S-l-J.(J. 'SJ.)-lJ. '  does not involve y, c and p .  It can be seen that for a given p 

where H ( p )  = ( y I+ (1 -y ) p - l R - ) - ' .  Thus, to  find c,, ,, we only have to find a root of 

and substitute it into the expression of c. 
Since H ( p )  is an explicit function of p and y ,  c,, , may be expressed as an explicit function of y 

when the solution of the last equation can be expressed as an explicit function g(y) .  One may explore 
the existence of the g (y)  using a symbolic computing package such as MATHEMATICA. 

We plan to compare our method with that of Stone and Brooks. We are also interested in investigating 
whether our method may simplify the cross-validatory algebra in Section 9. 

Ildiko E. Frank (JerI1, Inc., Stanford) and Jerome H.  Friedman (Stanford University): Combining 
ordinary least squares (OLS), partial least squares (PLS) and principal components regression (PCR) 
into a single framework is helpful in understanding their relationships. The statistical motivation is less 
apparent. The assumption that if a method contains others as special cases it is necessarily superior 
to those others, while often plausible, is not always true and must be demonstrated. This premise is 
especially suspect here because the two parameters (a ,  w) essentially regulate the same thing in only 
slightly different ways. Both control the strength of the penalty imposed on solutions c for smaller cTSc. 
Increasing a does this directly. Decreasing w does this indirectly by restricting c to lower dimensional 
subspaces chosen so that any c within them cannot achieve a value of cTSc that is too small. The 
subspaces are nested and (for a given value of a )  ordered on their cTSc bound. Varying a would seem 
to be more natural since it is a continuous variable allowing finer tuning. This a - w  equivalence is clearly 
reflected in the examples where low a ,  low w solutions are seen to be equivalent to high a ,  high w solutions, 
certainly within the accuracy of the cross-validated estimate of prediction error. The only exception 
is example 2 where the signal-to-noise ratio is sufficiently small that maximal penalty is required. The 
discreteness of w requires its next higher value to be w =2,  which is already too large. 

If we assume the correctness of an underlying linear model c* with no prior information on c*/ I/ c* //, 
then the optimal method (in terms of expected squared error loss) chooses c to maximize 

and then takes as the estimate for the coefficient vector 

(ridge regression). The parameter X plays a dual role of regulating the cTSc penalty and the shrinkage 
of the final solution vector. In its former capacity it is quite similar to the role played by a. We could 
generalize ridge regression by the paradigm outlined in the paper to construct additional variables. This 
generalized procedure includes ridge regression as a special case (w = 1) but the theory tells us that it 
would not perform as well. 

PCR and PLS basically do well to the extent that they emulate ridge regression. This will tend to 
be the case in highly collinear settings where the effect of the cTSc penalty dominates the shrinkage 
of the solution norm. A large simulation study (Frank, 1989) shows that ridge regression, PLS and 
PCR behave quite similarly, all with vastly superior performance to OLS, and with ridge regression 
dominating PLS and PCR (sometimes only slightly) in all situations considered. 
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Professor Inge S. Helland (Agricultural University of Norway, Aas): As Professor Stone and Dr Brooks 
mention in their discussion, predictors that are close to being optimal are themselves effectively equal. 
For principal components regression (PCR) and partial least squares (PLS), this can be related to the 
following results from Helland (1989): for each m =  1, 2, . . .,p a hypothesis Hm can be formulated 
in terms of var(x) = C and cov(x, y) =a, saying that m components in x are relevant for the prediction 
of y. (One formulation is that m eigenvectors of C have components along a; another, equivalent, is 
that dim(u, Ca, C2a . . .) =m.) Under this hypothesis the population versions of PCR (with the correct 
ordering) and PLS will both stop after m steps, and they will both give the best linear prediction of 
y. Since sample versions of the two predictors are continuously dependent on the (co)variances, they 
must be close after m steps when Hm is true, and then they are also close to the optimal solution. For 
other values of m, PCR and PLS can be very different. 

The prediction resulting from maximum likelihood estimation of the covariance structure under Hm 
and multinormality is now under investigation. Numerically it is easiest to handle a stepwise version 
of this, which in the notation of the present paper corresponds to minimizing 

Using this procedure on the Hald data set (example 1) gives very promising results: a likelihood ratio 
test rejects m = 1 (P=0.06), and a two-component predictor leads directly to the optimal solution of 
this paper (1=0.97177 and the same predictor coefficients) without use of cross-validation. 

For Fearn's data ( exa~p le  3), the r_esult depends on the pretreatment of the data. Suppose that the 
variables used are L, -L, . . .,L, -L in the notation of this paper. (This is permissible: the mean is 
non-significant in the full regression model, and the methods work also when C is singular.) Then 
maximum likelihood gives its best solution for m = 1. The I-value for this solution is low, but the root- 
mean-square prediction errors are lower than those of the continuum regression solution for both 
validation sets. 

Unfortunately, the maximum likelihood approach does not give the best solution in all cases. In some 
simulated examples it performs definitely worse with respect to prediction than PCR and PLS. In general 
the maximum likelihood solution is close to the alternative PCR version which includes the components 
with large values of Student's t .  As in the area as a whole, further studies are definitely needed. 

Dr I. T. Jolliffe (University of Kent, Canterbury): I have two comments, each leading to a question. 
First, the way in which principal component regression is presented is a somewhat restricted version, 
with the strategy for selecting components based only on the size of their eigenvalues. It is well known 
(Jolliffe, 1982) that small variance components are quite frequently included among those which have 
the largest correlations with the dependent variable. For this reason, various more sophisticated strategies 
have been developed for deciding which principal components to include in the regression equation- 
see, for example, Hill et al. (1977). Is there any sense in which moving away from a = 1 has a similar 
effect to these more sophisticated strategies? 

My second point concerns data, such as those in the later examples, where the large number of variables 
represents a discrete set of points along a continuous curve. The proposed family of techniques does 
not appear to take any account of the underlying continuity. Would it not be preferable to incorporate 
the knowledge of continuity in some way, such as that proposed by Ramsay (1982)? 

Professor Bruce R. Kowaiski and Mary Beth Seasholtz (University of Washington, Seattle): The authors 
propose a new multivariate regression method based on the cross-validated selection of two parameters, 
the number of latent variables or regressors and a , a real number in the interval [0, 11. The selection 
of the former parameter is in common with most biased regression methods. The parameter a , however, 
leads to the name of the proposed method, continuum regression, and the theory behind the method 
presented by the authors places three popular methods, ordinary least squares (OLS), principal 
components regression (PCR) and partial least squares (PLS) on the same continuum making them special 
cases of the authors' method. 

For convenience, the authors switch from a to y [ 0, oo ] which puts OLS at y =0, PLS at y = 1 and 
PCR at y =  a.It is not surprising that their algorithm has problems at the two extreme values. 
Nevertheless, they do manage to find optimal values on some examples that are quite convincing. 

We wish to amplify the similarity of the authors' continuum regression to our unnamed nhethod 
described in Lorber et a[.(1987). Our method is also based on a continuum, where the power multiplying 
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the matrix in the power method varies in [O, m ] .  Like the author's y OLS is at zero, PLS at  unity 
and PCR at infinity. The authors' method maximizes T in  equation (12) while ours minimizes the standard 
error'of prediction. 

The authors' formulation is based on the original data for all regressors as is ours for the first latent 
variable. Thereafter the similarity ends as we orthogonalize after each regressor is calculated and then 
select the next using the residual matrix. It will be interesting to see whether the two methods are the 
same for all values of y. 

Harald Martens (Unscrambler AS, Aas): I congratulate Professor Stone and Dr Brooks on their 
continuum regression (CR) paper. The CR method is a more controllable extension between ordinary 
least squares (OLS) and principal components regression (PCR) than partial least squares regression 
(PLSR), where the balance is purely data driven (Martens and N a s ,  1989). 

PLSR has the property that, when X'X lacks dominant eigenvalues, then PLSR will come close to 
OLS, and each PLS factor uses up some degrees of freedom in y. The same is probably true for CR 
with CY < 1. Hopefully the number of degrees of freedom is more easy to estimate in CR than in PLSR. 

I should like to point out, as a chemometrician, a way in which CR and the other bilinear regression 
methods may be made more useful in practice. When experts in a domain analyse their empirical data, 
it is important for them to find an adequate balance between data-driven and knowledge-driven modelling. 
Today's bilinear regression methods do not accommodate a priori knowledge sufficiently well. 

The most important aspect of the bilinear regression methods is how the directions c, in X space 
are determined. We can use several different criteria of 'interestingness' (Hastie and Tibshirani, 1986) 
such as X-Y covariances, X-X eigenvectors and combinations such as that of CR, as well as various 
robust, non-linear or entropy-oriented criteria. For each factor g, these various candidate vectors for 
X direction c, can be joined with various candidate vectors expected apriori to be reliable and relevant 
t o y  (e.g, a previous bilinear model) into a matrix of interestingness M, spanning the 'signal covariance'. 
Likewise, various X directions that the final c, should avoid can form a matrix of 'uninterestingness' 
N, spanning the 'noise covariance' for each factor. These directions could, for example, be estimated 
as eigenvectors of between-replicates covariances, or from a priori knowledge about undesired X 
interferences. The vectors in M, and N, can further be orthogonalized to previous factors, smoothed 
etc., and then scaled according to their apriori expected importance. When analysed together, e.g. as 
the first component in a generalized least squares principal component analysis, matrices M, and N, 
can yield a more flexible and informative determination of X direction c, than any of the above criteria 
alone. 

In practical data analysis, the mental model developing in the scientist's mind is more important than 
any mathematical model. Multivariate data analytic methods require a balance between predictive ability 
and interpretability. Cross-validated CR provides such a desired balance. 

The authors replied later, in writing, as follows. 

The discussants have done far more than fill in some of the gaps in our account of continuum regression 
(CR) and its relationships. They have reinforced and deepened our own tentative understanding of the 
technique, for which we are grateful. 

It might have disarmed some of Professor Brown's and Dr Fearn's cbgent criticisms, if the paqer 
had truthfully labelled CR as a superficial, non-scientific, empirical predictio? method that should always 
give way to any hardening of the scientific context in which it may be used. That is what we meant 
by 'soft'. Naturally our censorious inner statisticians d o  not warm to such an uninspiring technique, 
craving rather the excitements of assumptive modelling. But is there not a need for interim procedures 
that d o  not grossly mislead the ordinary user? Especially when based on a 'representative' sample, CR 
should help to  meet this need, based as it is on cross-validatory choice of only two control parameters. 

Professor Brown could be right to  suggest that partial least squares (PLS), principal components 
regression (PCR) and their variants together d o  all that is necessary-for the world as we find it, it 
might be added. If so, then CR may have served some purpose in drawing the attention of more 
statisticians to the widely neglected technique of PLS, as well as in reiterating the value of the Moore- 
Penrose generalized inverse in some contexts. 

We are sorry that Professor Brown could not accept our gross summary of the shape of his original, 
elegant contribution (Brown, 1982) to  the problem, namely that, for multivariate calibration, linear 
modelling starts with x on y (our notation) but may with advantage under extra assumptions lead to 
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y on x. Provoked to a second reading of Sundberg and Brown (1988), we have to question the second 
author's present interpretation of what was there proved for the n - 1 <p case: the equivalence referred 
to is, we think, to be found only after canonical transformation which, in the singular case, is not the 
innocuous mathematical device that it is for n 2p + 1. 

Our only quibble with Dr Fearn's canonical transformation, which greatly simplifies and illuminates 
the comparison of CR with ridge regression, is that it disrupts the CR format to conjoin a transformation 
of (y, ,  . . ., y,): only the transformation to the principal component variables v,!x, j= 1, . . .,p, is 
needed for the comparison. 

Let us hope that the interesting work described by Mr Denham is published. Will the world as we 
find it conform to the prior beliefs that have to be built into the spline method and its conceptually 
awkward knots? Only detailed case studies will answer that question. 

The 'estimation' posited by Dr Hjorth is presumably of the values of cu and o that minimize MSEP(cu, 
o)=E(Y-9(X;  cu, u ) ) ~  where (X, Y) is a random (x, y) and j(x; a ,  o) is the CR prediction of y at 
x for choice (a,w). Boundless bootstrappers would presumably use simulation to estimate MSEP(cu, 
o) after giving (X, Y) the empirical distribution of (xi, yi), i- 1, . . ., n. No problem!-but the message 
of our penultimate paragraph in Section 11 is some defence against the bootstrappers' bolder claims. 
(We are genuinely puzzled by Dr Hjorth's figure, since there is a free choice of o at every value of cu.) 

In reply to Professor Atkinson, a necessarily modest form of 'undue influence' analysis would be 
to exclude the item with the largest one-out residual (or some multiple of it that allows for 'due influence'), 
and then to see whether there is any serious change in the CR predictor for the previously optimal values 
of cu and o. If so, the optimum would be recalculated on the remaining n - 1 items, and the outlier 
procedure repeated. 

Dr Farebrother's legitimate concern for 'low order' principal components should be alleviated by 
the fact that higher order components pay a relatively small cross-validatory price to be included. Hence 
valuable low order components do have a good chance of being brought into play. 

We guess that Dr Naes might agree on that, since he goes so far as to suggest that cross-validated 
PCR should be enough-outbidding Professor Brown. We should mention here that the user of the 
CR program has the option of a print-out of the constructed 'component' vectors c, , . . ., c, for any 
w, 0 < w < o ,  to await interpretation. But would anyone not addicted to difficult or impossible 
interpretations want to use PCR just because, in the CR framework, it usually generates more components 
than the OLS end of the spectrum? All those components may be just trying to simulate a single 
meaningful component that would have emerged intact near OLS. This is just one reason why we would 
like CR to have its day in court. 

It would be nice if Dr Stihle's 'prediction-optimized PLS' became popular, but we fear that his cross- 
validatory choice of as many as p control parameters may be misguided. As Professor Brown noted, 
choice is not the same as assessment. For n < 20, the control parameters should be few in number, unless 
statistical noise is very low. 

The 'p' of Professor Chan and Professor Mak is the same as ours, so their equation for it is probably 
some rearrangement of our equation (23). But their version involves a p x p  matrix S which, for large 
p as in example 5, generates much more calculation and storage than our method, in which c is calculated 
from the m ( =n - 1 & p) n;dimensional eigenvectors of the n x n matrix XX' and the m x m matrix 
M (or M*). Furthermore our use of expression (27) for T means that we do not have to calculate c 
itself during cross-validatory choice. Our own search for optimal p was initially based on solution of 
equation (23), but existence of multiple roots meant that subdivision of the interval for p was needed 
in the use of the library numerical routine to ensure that no roots were missed. Moreover, at each stage, 
the matrix M (or M*) had to be computed from its definition (22) (or (32)) for each value of p called 
by the routine. The fixed grid method avoids this by use of the recurrence relation for M (or M*) between 
successive stages. Because the relations for M and M* have the same form, the computational work 
in finding an optimal p on the grid is similar in main and cross-validatory runs. For all these reasons, 
we think that the simplification and saving envisaged by Professor Chan and Professor Mak will not 
be attainable. 

We hope that we will be able to see the details of the alternative ideas of Dr Frank and Professor 
Friedman. Were the simulations referred to chosen on empirical grounds? It is empirical evidence, possibly 
translated into coarse models, that must underpin final judgments of competing techniques. 

Professor Helland drops us a novel morsel from what is probably a well-stocked table. Does his femark 
that 'further studies are definitely needed' mean that we may look forward to a plateful? 

Broadly speaking, the answer to Dr Jolliffe's first question is yes. All the sophisticated variants of 
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PCR, including the latent root regression mentioned by Dr Farebrother, aim to involve the y-values 
in the choice of components. This is what taking a < 1 does. We do not yet know of any more specific 
similarity, however. As for Dr Jolliffe's second question, the 'continuity' that Ramsay (1982) deals with 
is the denseness of the indexing set for the explanatory variables, e.g. x(t), 0 < t < 1. Ramsay is not 
primarily concerned with the continuity of x(t) as a function of t, ideas about which do have implications 
(see Brown and Denham (1989)) for the way that we might handle the discretization o f t  that is necessary 
unless we use analogue computers. Ramsay would like statisticians to learn functional analysis as an 
aid to thinking about the continuous limit. 

We hope that there is no monotone transformation from y to the 'power' of the PLS variant of 
Professor Kowalski and his colleagues that would make the two methods the same. For then we would 
have to try to prove mathematically what would be a most remarkable equivalence. Similarity rather 
than sameness is a possibility. Professor Kowalski and Dr Martens are leading experts in the new 
multivariate analysis, and we are particularly intrigued by Dr Martens's proposals for incorporating 
prior knowledge into the CR mechanism. 
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