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Abstract

We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring
data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four
months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined
with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically
thin accretion-disk models that predict a lag-wavelength relation of τ∝λ4/3. However, the observed lags are
larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for
NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical
luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the
SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the
UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.

Key words: accretion, accretion disks – galaxies: individual (MCG+08-11-011, NGC 2617) – galaxies: Seyfert

Supporting material: machine-readable tables

1. Introduction

Energy generation in active galactic nuclei (AGNs) is
believed to be due to an accretion disk around a supermassive
black hole (SMBH). Viscous torques in the disk caused by
magnetic fields move matter closer to the SMBH and convert
gravitational potential energy into heat and radiation (e.g., Page
& Thorne 1974; Rees 1984; Balbus & Hawley 1998). The disk
reaches 105–106K at its inner edge, with a gradient to cooler
temperatures at larger radii, leading to a continuum emission
spectrum spanning the extreme ultraviolet (UV) to the infrared
(IR). This model is sufficient to explain the large luminosities
and UV peaks of typical AGN spectral energy distributions
(Burbidge 1967; Weedman 1977; Shields 1978; Elvis
et al. 1994; Telfer et al. 2002). The UV/optical continuum
from the disk also provides the seed photons that are
reprocessed into the IR by hot dust (e.g., Suganuma
et al. 2006; Nenkova et al. 2008; Vazquez et al. 2015) and
X-rays by a putative hot “corona” (e.g., Haardt & Maraschi
1991; Reynolds & Nowak 2003; Turner et al. 2006). The
hottest parts of the disk supply the ionizing photons that power
Doppler-broadened emission lines in the broad- and narrow-
line regions (BLRs and NLRs, Davidson & Netzer 1979;
Veilleux & Osterbrock 1987).

Many important aspects of the accretion disk and the
continuum emission remain unknown. On the theoretical side,
there are several viable accretion-disk models, ranging from
geometrically thin disks that radiate thermally (Shakura &
Sunyaev 1973) to thick toroids that radiate through plasma
processes (Abramowicz et al. 1988), as well as radiatively
inefficient accretion flows that advect most of their energy
across the event horizon (Narayan & Yi 1995). It is also
challenging to account for the X-ray-emitting corona from first
principles (Schnittman et al. 2013), and there are a wide variety
of hypothesized geometries and energetic connections between
the corona and the accretion disk. Simulations have recently
made progress by incorporating radiation transport (e.g.,
Schnittman & Krolik 2013; Saḑowski et al. 2014; Saḑowski &
Narayan 2015), but it has not been possible to simulate the
full magneto-radiation-hydrodynamics of the disk that are
fundamental for determining its observational appearance (Blaes
2014). It is also observationally difficult to isolate the intrinsic
disk continuum due to line emission, host-galaxy starlight,
and internal reddening, and the emission peak is generally
unobservable due to absorption by intervening hydrogen.
After accounting for these effects, it is sometimes possible to
fit the observed spectrum with disk models (e.g., Capellupo

et al. 2015), but this is not always the case (e.g., Shankar et al.
2016). Alternative attempts to isolate the continuum emission
have made use of polarimetry (Kishimoto et al. 2004, 2008) and
difference spectra/color variability (Wilhite et al. 2005; Pereyra
et al. 2006; Schmidt et al. 2012), but the interpretation of these
data is not straightforward (e.g., Kokubo 2015, 2016).
Reverberation mapping (RM, Blandford & McKee 1982;

Peterson 1993, 2014) is a powerful tool for the investigation of
AGN accretion disks. The basic principle of RM is to search for
temporal correlations between the time-variable emission at
different wavelengths, which encode information about
unresolved structures in the AGN. The formalism for RM is
a convolution operation

f t f t d , 1R Sò t t t= - Y( ) ( ) ( ) ( )

where fS is the driving signal light curve, fR is the reverberating

light curve, τ is the time delay (or “lag”), and Ψ(τ) is the

transfer function. The transfer function is determined by the

matter distribution surrounding the source of fS, and the main

goal of RM is to infer Ψ(τ) from observations of fS and fR.

Recovering the transfer function is an ill-posed inverse problem

that requires regularization (Horne 1994; Skielboe et al. 2015)

or forward modeling (Pancoast et al. 2014; Starkey et al. 2016)

to solve. However, one can still infer a great deal of

information from the cross-correlation of fS and fR to determine

the mean lag tá ñ between the light curves, which is related to

the first moment of Ψ(τ). Combined with the speed of light, the

lag determines the characteristic size of the reverberating

structure.
In the context of the accretion disk, reverberation signals are

expected because of reprocessing arguments: shorter-wave-
length emission originates near the black hole where the disk is
hottest, while longer-wavelength emission originates in the
cooler parts of the disk at larger radii. Self-irradiation by short-
wavelength emission deposits energy in the outer part of the
disk, contributing an extra heating term (Shakura &
Sunyaev 1973). As the short-wavelength emission varies, it
drives variations at longer wavelengths delayed by the light
travel time across the disk. This model predicts that short-
wavelength variations will lead long-wavelength variations
after a time delay that scales with the size of the disk (e.g.,
Krolik et al. 1991).
Measuring these interband continuum lags is extremely

difficult because the predicted size of the accretion disk is only
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about one light day (about 170 gravitational radii for a M108 
black hole), and monitoring campaigns require comparable or

better cadence to resolve such a short lag. The first suggestive

(2–3σ) report was by Collier et al. (1998), who found that the

UV variations led the optical variations in NGC 7469. Since

then, there have been many hints of longer lags at longer

wavelengths in other AGN, but most of these measurements are

not statistically significant (�2σ) and represent upper limits

(Sergeev et al. 2005; Arévalo et al. 2008; Breedt et al. 2010;

Lira et al. 2015; Troyer et al. 2016; Buisson et al. 2017; Gliozzi

et al. 2017; Jiang et al. 2017). The relationship between the

X-ray and optical emission also appears to be complex and

does not necessarily fit into a simple reprocessing model. In

some cases, there is not enough energy in the X-ray variations

to drive the long term trends in the optical light curves (Uttley

et al. 2003; Arévalo et al. 2009; Breedt et al. 2009). There are

also reports of optical emission leading the X-rays (Marshall

et al. 2008), as well as uncorrelated X-ray/optical emission

(Maoz et al. 2002).
The first secure detection (>3σ) of interband continuum lags

was in NGC 2617 by Shappee et al. (2014), who found longer

lags at longer wavelengths that were consistent with predictions

for reprocessing in a standard geometrically thin accretion disk.

The only other AGN with significant continuum lag detections

is NGC 5548. McHardy et al. (2014) resolved continuum lags

in this object using two years of Swift data, while the Space

Telescope and Optical Reverberation Mapping project (AGN

STORM, De Rosa et al. 2015) obtained the most complete RM

measurement of the accretion disk to date. The STORM project

detected interband lags between the X-ray, UV, optical, and

near-IR wavelengths using four space-based observatories and

25 ground-based telescopes (Edelson et al. 2015; Fausnaugh

et al. 2016; Starkey et al. 2017), and the measured lag-

wavelength relation is again consistent with predictions for

reprocessing in a geometrically thin disk. However, the size of

the disk indicated by the STORM measurements is larger by a

factor of three than the predictions from standard models.
This finding is consistent with results from gravitational

microlensing of strongly lensed quasars. Microlensing is one of

the only other ways of investigating physical scales close to the

SMBH, and studies using this method also find disk sizes larger

than thin-disk theory by a factor of a few (Morgan et al. 2010;

Blackburne et al. 2011; Mosquera et al. 2013; Jiménez-Vicente

et al. 2014). However, microlensing can only probe the disks in

distant, high-luminosity quasars, while RM provides a means

of probing accretion disks in local, low-luminosity AGN. It is

therefore imperative to expand the sample of objects with

secure interband continuum lags, and several such programs

have been completed, with others still in progress (e.g.,

NGC 4151, Edelson et al. 2017; NGC 4593, McHardy
et al. 2016).
In this study, we present detections of near-UV and optical

interband continuum lags in two Seyfert 1 galaxies, MCG+08-
11-011 and NGC 2617. These objects were observed as part of
a monitoring campaign in 2014, the original goal being to
measure SMBH masses using continuum-Hβ reverberations.
Fausnaugh et al. (2017) presented the spectroscopic monitoring
component and the initial results for the broad line lags and
SMBH masses. Here, we analyze four months of densely
sampled (0.6–1.5 day cadence) broadband photometric mon-
itoring data for these objects and measure the interband
continuum lags. MCG+08-11-011 is a new addition to the
sample of objects with secure accretion disk RM measure-
ments. NGC 2617 is in a lower luminosity state than when
observed by Shappee et al. (2014), and provides an interesting
reference point for investigating the dependence of accretion
disk structure on luminosity.
In Section 2, we discuss our observations, data reduction,

and light curves. In Section 3, we describe our time series
analysis and present interband continuum lags. In Section 4, we
report results from a physical model of our data using the
Continuum REprocessed AGN Markov Chain Monte Carlo
code (CREAM, Starkey et al. 2016). In Section 5, we discuss our
results in the context of an accretion-disk reprocessing model,
and we summarize our findings in Section 6. We assume a
consensus cosmology with H0=70 km s−1 Mpc−1, Ωm=0.3,
and ΩΛ=0.7.

2. Targets and Observations

The RM campaign extended between 2014 January and July,
targeting 11 AGN, and was primarily based on observations at
the MDM observatory (see Fausnaugh et al. 2017 for details).
Supplemental data were contributed by telescopes from around
the globe, with the unique addition—in contrast to typical RM
campaigns—of broadband imaging data in multiple filters.
MCG+08-11-011 and NGC 2617 were the two most variable
AGN during this campaign, and yielded robust measurements
of the continuum-Hβ lags used to measure the SMBH masses
(Fausnaugh et al. 2017). Because of the strong variability
signals, we focused on these two objects for our first analysis of
the broadband imaging data.
Table 1 presents some of the important physical parameters

of these AGN. The SMBH mass MBH was determined by
Fausnaugh et al. (2017) using 5100Å continuum-Hβ lags. The
luminosity L was derived from the average values of the
5100Åcontinuum light curves of the same RM campaign,
assuming a bolometric correction of 10 (we discuss alternative
bolometric corrections in Section 4 below). Note that these
estimates are corrected for Galactic extinction and host-galaxy

Table 1

Physical Parameters

Object Redshift Mass Luminosity Eddington Ratio Accretion Rate

z MBH (M
e
) L (erg s−1

) mEdd˙ (M
e
yr−1

)

(1) (2) (3) (4) (5) (6)

MCG+08-11-011 0.0205 2.82 101.86
5.50 7´-
+( ) (1.98 ± 0.20)×1044 0.054 3.5 10 2´ -

NGC 2617 0.0142 3.24 102.14
6.31 7´-
+( ) (4.27 ± 0.43)×1043 0.010 7.5 10 3´ -

Note. Columns 2, 3, and 4 are taken from Fausnaugh et al. (2017). Column 3 was derived from continuum-Hβ lags, and includes all systematic uncertainties. Column

4 is calculated from the observed mean optical luminosity, assuming a bolometric correction of 10 (L L10 5100l= Å). Note that this value has been corrected for

Galactic extinction and host-galaxy starlight. Columns 6 was calculated assuming a radiative efficiency of η=0.1 (see Section 2 and Equation (3)).
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starlight (see Fausnaugh et al. 2017 for details). Defining the
Eddington luminosity and accretion rate as

L
GM c4

2Edd
BHp
k

= ( )

and

M
L

c
, 3Edd

Edd

2h
=˙ ( )

where κ is the Thomson opacity (∼0.4 cm2 g−1
) and η is the

radiative efficiency, we calculate the Eddington ratio

m M M L LEdd Edd Edd= =˙ ˙ ˙ and mass accretion rate Ṁ , setting

η=0.1.
NGC 2617 was observed with Swift during this time as part

of a continuing target-of-opportunity program (Shappee et al.
2014). Daily exposures were taken with all six filters of the
UltraViolet/Optical Telescope (UVOT, Roming et al. 2005)
with simultaneous monitoring from the X-ray Telescope (XRT,
Burrows et al. 2005).

Our ground-based imaging is mostly from the Las Cumbres
Observatory (LCO) 1 m global telescope network (Brown
et al. 2013), acquired as part of the AGN Key project (Valenti
et al. 2015). The network consist of nine identical one-meter
telescopes distributed at four sites around the world. Each
telescope has the same optical design and detectors. At the time
of the RM campaign, the detectors were SBIGSTX-16803
cameras with a field of view of 16′×16′ and a pixel scale of
0 23. Data were obtained between 2014 January and May for
MCG+08-11-011 and NGC 2617 in the ugriz bands on an
approximately daily cadence. These filters have central

wavelengths of 3600Å, 4800Å, 6300Å, 7700Å, and

9100Å, respectively (see Tables 6 and 7 for corrections to
the rest-frame). MCG+08-11-011 has a high declination
(+46°.5) and can only be observed from LCO’s northern-most
site at McDonald Observatory. NGC 2617 was observed from
the sites at McDonald, Siding Spring, Australia, and Suther-
land, South Africa.

Both objects were also observed with the 0.7 m telescope at
the Crimean Astrophysical Observatory (CrAO). Images were
taken in the Johnson BVRI bands with central wavelengths of

4400, 5500, 7000, and 8800Å, as well as a filter approximating
the Cousins I-band, designated R1, which has a central

wavelength of 7900Å, but is much narrower than the Johnson
I-band. The median cadence of these observations is about two
days. The telescope is equipped with a AP7p CCD detector that
has a 15′×15′ field-of-view and pixel scale of 1 76. Finally,
V-band images were obtained with the 0.9 m telescope at West
Mountain Observatory and the 0.5 m telescope at Wise
Observatory (Brosch et al. 2008).

The spectroscopic monitoring observations were obtained at
the MDM observatory using the Boller & Chivens CCD
spectrograph on the 1.3 m McGraw-Hill telescope. We

extracted light curves for the rest-frame 5100Å continuum, a
region of the spectrum relatively free of line emission. The
2.3 m telescope at Wyoming Infrared Observatory (WIRO)

contributed four epochs of optical spectroscopy to help fill
anticipated gaps in the MDM observations. These data and
our intercalibration procedures are described in detail by
Fausnaugh et al. (2017).

2.1. Image Subtraction

We analyzed the ground-based imaging data using the image
subtraction package ISIS (Alard & Lupton 1998). Although a
common reduction procedure was applied to all images, we
analyzed the data sets from each telescope and in each filter
separately, including the individual 1 m telescopes in the LCO
network.
First, the raw images were bias-subtracted and flat-fielded at

the contributing facility using the appropriate software
reduction pipelines. Next, all images were collected in a
central repository and vetted by eye for poor observing
conditions or errors in the initial image processing. For each
telescope, we then registered the images to a common
coordinate system, and we constructed a high-quality reference
image by combining the epochs with the best seeing and lowest
backgrounds. Finally, we subtracted the reference from each
epoch using ISIS. ISIS transforms the point-spread-function
(PSF) and flux scale of one image to match that of a second
image by fitting for a spatially variable convolution kernel. The
subtraction leaves a clean measurement of the variable flux on a
pixel-by-pixel basis.

2.2. Light Curves

The Swift UVOT light curves were extracted using standard
aperture photometry techniques. We used a 5 0 radius circular
aperture centered on the AGN using the UVOT software task
uvotsource. Background counts were estimated using the mode
of pixel values in a surrounding annulus 15 0 in width. The
large annulus was chosen to sample the background sky level,
so this procedure introduces a constant level of contamination
from the host-galaxy starlight within the 5 0 aperture—
however, the contamination does not affect our final results,
which only depend on the differential variations of the light
curves. The XRT data were reduced with the xrtpipeline task
included in the HEASOFT package, using the same apertures,
response files, and modeling techniques described in Shappee
et al. (2014).
For the ground-based data, we extracted differential light

curves from the subtracted images using the photometry
package included with ISIS. First, the software fits a model
to the reference image PSF. Then, for all sources identified
in the reference image, the software smooths the model PSF
by the convolution kernel fit during the image subtraction and
uses the result to perform PSF photometry on the subtracted
image. The result is a light curve in units of differential counts
relative to the flux of the object in the reference image. These
flux variations are free of constant contaminates, such as host-
galaxy starlight, and extrinsic variations due to seeing or
aperture effects.
ISIS accounts for only the local Poisson uncertainty on the

observed counts. To account for any systematic issues
associated with the image subtraction, we rescaled the light
curve uncertainties to match the residuals of comparison stars
in the field-of-view. Our method closely follows that of
Fausnaugh et al. (2016). For each epoch, we compared the
differential flux of each star to ISISʼs estimate of its
uncertainty by calculating the rescaling factor required to
make the flux residuals consistent with zero at 1σ. We then
rescaled the flux uncertainties at that epoch by the median of
the rescaling factors of all comparison stars. We imposed a
minimum rescaling factor of one, because the photon noise sets
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a fundamental floor on the precision, and we removed obvious
variable stars by censoring light curves with long-term trends
or mean rescaling factors greater than 100. On average, this
forces the comparison star light curves to have a reduced χ2 of
1 for a constant model. We generally found rescaling factors
ranging between 1.0 and 6.0, depending on the quality of the
data and the number of comparison stars. One LCO telescope at
Siding Spring had rescaling factors that reached 10 and 12 in
the u-band and g-band, while one LCO telescope at Sutherland
had rescaling factors between 5 and 8 for all bands. These
telescopes had fewer observations overall, limiting our ability
to construct a good reference image, and the image subtraction
quality suffers as a result.

To combine light curves from different telescopes, we used
the intercalibration procedure described by Fausnaugh et al.
(2016). Briefly, the calibration solves for maximum likelihood
offsets and rescaling factors, which account for the different
flux levels in the reference images of each telescope and the
different definitions of counts (due to heterogeneous detector
responses, filter throughputs, gains, etc.). To first order, the
linear calibration model also accounts for slight variations in
the effective wavelengths and widths of the different filter pass-
bands. Due to the limited amount of CrAO data, we combined
the B-band with the g-band, the R-band with the r-band, the R1-
band with the i-band, and the I-band with the z-band. The
CrAO V-bandlight curve was incorporated with the spectro-
scopic continuum light curve from MDM.

Because observations at different telescopes are never taken
simultaneously, it is necessary to interpolate the light curves
when solving for the calibration shifts and rescaling factors. We
predicted the light curve values at intermediate times using
JAVELIN (Zu et al. 2011), which models the light curves with
a stochastic process model. Process models with different
covariances/power spectra are available with JAVELIN, but
we have found that the damped-random walk (DRW, or
Ornstein-Uhlenbeck process) is adequate for this purpose. As
discussed in Fausnaugh et al. (2017), our light curves are not
long enough to constrain the damping timescale of the process
model, so we fixed this parameter to 200 days (see also
Kozłowski 2017).

Finally, we flux-calibrated the differential light curves by
performing aperture photometry on the reference image of one
standardized data set. We chose the McDonald LCO data as the
standard, because this light curve has the largest number of
observations. All other light curves are transformed to match
the flux scale and mean value of this light curve using the
JAVELIN intercalibration routine. Flux calibration then
reduces to measuring the reference image’s zero-point
magnitude and the total counts of the AGN. We used a 5 0
radius circular aperture and a sky annulus of 15 0. We did the
same for all comparison stars, and measured AB magnitude
zero points in each image by matching to the SDSS DR7
photometric catalog (Abazajian et al. 2009). The final flux
measurements are again contaminated by the host-galaxy
starlight in the reference image, though this contamination
does not contribute to the variations measured from the image
subtraction. See Fausnaugh et al. (2016) for a more thorough
discussion of this flux-calibration technique.

The light curves are given in Tables 2 through 4, and shown
in the left-hand panels of Figures 1–3. Table 5 summarizes
useful properties of the light curves. For MCG+08-11-011, the
median cadence is about 1 day (1.5 days in the u-band), and for

NGC 2617, the median cadence is about 0.6 days in the ugriz
bands and 1.1–1.2 days for the Swift data. We also self-

consistently estimated the mean flux F̂ and the intrinsic
variability σvar (corrected for measurement noise) by solving
for the values of these parameters that minimize
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for each light curve, where s̄ is the mean measurement

uncertainty among observations and Nobs is the number of

observations. The right-hand side of Equation (5) is derived by

assuming that the variance of s̄ has a reduced χ2 distribution.

3. Time Series Analysis

We searched for lags in the continuum light curves using the
interpolated cross-correlation function (ICCF) and the Bayesian
model of JAVELIN. Full descriptions of the cross-correlation
technique can be found in Gaskell & Peterson (1987), White &
Peterson (1994), and Peterson et al. (2004), while a complete
description of JAVELIN can be found in Zu et al.
(2011, 2013).
In brief, the ICCF method uses piecewise linear interpolation

to estimate the cross-correlation coefficient rcc for two light

Table 2

MCG+08-11-011 Light Curves

Filter HJD—2,400,000 Fλ Telescope ID

(days) (10−15 erg cm−2 s−1 Å−1
)

u 56683.5826 4.9925±0.1199 LCO1

u 56684.5841 4.9352±0.1691 LCO1

u 56687.5629 5.5462±0.1651 LCO1

K K K K

g 56639.5200 6.4602±0.0266 CrAO

g 56649.4759 6.8878±0.1825 CrAO

g 56653.4950 6.6852±0.0309 CrAO

K K K K

r 56682.5935 8.1803±0.0420 LCO1

r 56683.5838 8.4089±0.0454 LCO1

r 56684.5854 8.4846±0.0546 LCO1

K K K K

i 56682.5940 6.4003±0.0316 LCO1

i 56683.5992 6.3211±0.0344 LCO1

i 56684.5858 6.5392±0.0365 LCO1

K K K K

z 56682.5945 5.7181±0.0297 LCO1

z 56683.5997 5.7453±0.0306 LCO1

z 56684.5863 5.7661±0.0318 LCO1

K K K K

(This table is available in its entirety in machine-readable form.)
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curves after shifting one by a given lag τ. We evaluated the

ICCF on a grid of lags spaced by 0.05 days, and we estimated

the lag between the two light curves using the ICCF centroid.

The ICCF centroid τcent is defined as the average τ weighted by

rcc for r r0.8cc max> , where rmax is the maximum of the ICCF.

For completeness, we also report the lag peakt that corresponds

to rmax. Uncertainties on the lag were estimated using the flux

randomization/random subset sampling (FR/RSS) method of

Peterson et al. (2004). Individual points from each light curve

were resampled (with replacement) and adjusted by random

Gaussian deviates scaled to the measurement uncertainties, and

then the centroid τcent was recalculated. After repeating this

procedure 103 times, the central 68% interval of the resulting

centroid distribution was adopted for the uncertainty in centt .

JAVELIN determines the lags between light curves by
modeling the data as a stochastic process (a DRW) and fitting
for the transfer function Ψ(τ) (see Section 1). The formalism
assumes that the transfer function can be approximated by a top
hat, as well as parameterized by a scaling factor, width, and
central time delay. The central time delay is adopted as a
measure of the lag, which we designate JAVt . Skielboe et al.
(2015) have shown that measurements of the lag do not depend
on the choice of stochastic process used to describe light curve
variations. JAVELIN can also fit multiple light curves and their
underlying lags simultaneously, which maximizes the amount
of information used in the fit and accounts for covariances
between the lags of different light curves (note that there is no
prior on the relations between the transfer functions for the
different light curves).

Figure 1. Left panel: light curves of MCG+08-11-011. The ugriz data are from differential broadband photometry (with 1σ uncertainties), while the 5100 Å light
curve combines spectroscopy and V-band imaging. The y-axes are in flux units and scaled so that the minimum value of the light curve is 0 and the maximum value is
1. Vertical dashed lines show the restricted temporal baseline used to calculate the interpolated cross-correlation function (ICCF). The solid black lines and shaded

regions show the JAVELIN interpolation and their 1σ uncertainties. Right panel: lag estimates relative to the 5100 Å continuum. The black lines show the ICCF (or

the autocorrelation function for the 5100 Å continuum). The horizontal dashed lines show the threshold value of correlation coefficient r r0.8cc max= used to calculated
the ICCF centroid. The red histograms show the ICCF centroid distributions from the FR/RSS method (Section 3), and the black histograms show the JAVELIN

posterior lag distributions.
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In each case, we measured the lags relative to the 5100Å
light curve. This choice is unimportant for JAVELIN—but in
the ICCF analysis, it is important to use the best light curve in
terms of sampling and noise properties as the reference light
curve. For the ICCF method, we shifted and interpolated both
light curves, and used the average value of rcc to estimate τcent.
We restricted the light curve baselines to 6675<HJD—
2,450,000<6775 days for MCG+08-11-011, to avoid inter-
polating over large gaps in the g-band. For NGC 2617, we
restricted the baseline to 6675<HJD—2,450,000<6730
days, to avoid the gradual flux variations at the tail of the
light curves. Gradual variations such as these can affect the
ICCFs, due to red-noise leakage (Welsh 1999, see also
Fausnaugh et al. 2017). The Swift light curves begin somewhat
earlier than the ground-based data (6630 days), and we include
these earlier observations in our analysis. We did not otherwise
detrend the data.

For the JAVELIN models of MCG+08-11-011, we fit all of
the ugriz data simultaneously. For NGC 2617, the combination
of Swift and ugriz light curves was too large for JAVELIN to

converge on a solution in a reasonable amount of time, so we fit
the Swift and ground-based data sets separately. JAVELIN

removes any linear trends from the light curves in the fits, and
we did not limit the temporal baselines when fitting with
JAVELIN.

3.1. Results

In Figures 1–3, we show the ICCFs, lag centroid distribu-
tions, and JAVELIN posterior lag distributions for each light
curve. Table 6 gives the lags and their uncertainties for MCG
+08-11-011, and Table 7 gives the same for NGC 2617, both
corrected to the rest-frame. The lags derived from the ICCF and
JAVELIN approaches are consistent, except for the r-band in
MCG+08-11-011: the ICCF centroid distribution gives a rest-
frame lag of 2.56±0.51 days, while JAVELIN finds a lag of
1.19±0.16 days. We found that this difference is related to
interpolation of the r-band light curve over the large gaps in the
second half of the campaign. If we only interpolate the 5100Å
continuum light curve, the ICCF lag is τcent=2.19±0.59

Figure 2. Same as Figure 1, but for the ground-based light curves of NGC 2617.
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days, which reduces the discrepancy from 2.7σ to 1.7σ. The
widths of the JAVELIN posteriors are much smaller than the
ICCF centroid distributions—and for NGC 2617, we must rely
on JAVELIN to claim statistically significant detections. The
JAVELIN distributions are also narrower for the Swift data,
although the UV–optical lags are only detected at the 0.9–1.5σ
level, which may be related to the longer cadence of these light
curves. The uncertainty in the lag from the ICCF method is
intrinsically limited by the width of the autocorrelation of the
continuum light curve (Peterson 1993); given that, and the
better precision using JAVELIN, we adopt τJAV for our final
lag measurements. JAVELIN also accounts for the correlations
between lags from light curves at different wavelengths, and
therefore maximizes the amount of information used in the fit.
Overall, the uncertainties on the lag are unlikely to be any
smaller than the estimates from JAVELIN, while the ICCF
centroid distributions probably place upper limits on the lag
uncertainties.

Our results are largely consistent with a disk reprocessing
model, with larger lags at longer wavelengths. In fact, the

trends are nearly monotonic, with the main exceptions being
the u-band lags in NGC 2617 and the g-band lag in MCG+08-
11-011. The Swift UVW1, b, and v band lags in NGC 2617are
also contrary to this trend, but are consistent with 0 days at less
than 1σ.
The u-band lags in NGC 2617 are detected at 1.5σ and

2.0σ, respectively. These filters are contaminated by Balmer
continuum emission from the BLR, which is expected to
reverberate on longer timescales than the continuum emission
and may bias the observed lags to larger values. This bias has
been seen in NGC 5548 (Edelson et al. 2015; Fausnaugh
et al. 2016) and the Swift monitoring data of NGC 2617 from
2013 analyzed by Shappee et al. (2014).
The g-band lag relative to 5100Å in MCG+08-11-011 of

0.50±0.08 days is detected at high significance (6.25σ). It is
less clear what might be affecting this band, so we investigated
the cause of the lag in more detail. One possibility is that the
uncertainties on the data are underestimated. To check this, we
re-ran the FR/RSS procedure and the JAVELIN fits with the
g-band uncertainties inflated by factors of 1.5 and 3.0, because

Figure 3. Same as Figure 1, but for the Swift light curves of NGC 2617.
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the 5100Å light curve uncertainties are unlikely to be
underestimated (see the detailed explanation in Fausnaugh
2017). For the ICCF centroid distributions, the median lag did
not change, although the width of the distributions increased.
For the JAVELIN models, the posterior lag distributions
shifted closer to zero lag—for the ×1.5 rescaling, the lag is
0.36±0.20 days (1.8σ), whereas for the ×3.0 rescaling, the
lag is 0.22±0.25 days (0.9σ).

This seems to indicate that the g-band lag is an artifact.
However, it is peculiar that the ICCF centroid, which relies on
different assumptions than JAVELIN and is less dependent on
the measurement uncertainties, should consistently be skewed
away from zero. Further investigation showed that the positive

g-band–5100Ålag signal is weakly present in both the LCO
and CrAO light curves independently, with a lag of
0.33±0.35 days for LCO and 0.31±0.15 days for CrAO
(rest frame). We also tried fitting the V-band data (which tends
to have smaller uncertainties) separately from the MDM

spectroscopic 5100Å light curve. This still yielded a positive
g-band lag, with values of 0.71±0.12 days (5.9σ) relative to

the V-band and 0.42±0.15 days (2.8σ) relative to the 5100Å
continuum.

Inspection of Table 6 and Figure 1 show that the lag-
wavelength relation through the ugriz bands is monotonic.

Thus, another possibility is that the 5100Å light curve is an
outlier and these results are related to using this light curve as
the driver. To test this, we re-ran the FR/RSS procedure and
the JAVELIN models using the g-bandas the driving light
curve. However, this made no change except to shift all of the

observed lags by precisely the g-band–5100Å lag.
Thus, there is some evidence that the lag is a real signal in

the data. A possible explanation is bias by BLR emission,

similar to the u-band and Swift u-band in NGC 2617. The

g-band is contaminated by both the Hβ and Hγ broad lines in

MCG+08-11-011, while the spectroscopic data and V-band are

virtually free of line emission (there may be a small amount of

BLR contamination by Fe II emission at these wavelengths).

Using the synphot package in IRAF to estimate broadband

fluxes from the mean MDM spectrum, we find that the Balmer

lines contribute only 7% of the total g-band continuum flux, so

it would be surprising if line emission had a large effect on the

observed lag. However, Fausnaugh et al. (2016) found that

the bias from BLR emission depends more strongly on the

variability amplitude of the line emission, which is quite large

in this object (the Balmer lines display fractional variability

amplitudes Fvar> 7%–9%, Fausnaugh et al. 2017). Thus, it is

not out of the question that the 0.2–0.5 day lag is biased by

BLR emission. If a similar bias exists in the other broadband

filters, this may explain why the 5100Å light curve appears as

an outlier from the lag-wavelength relation. The u- and r-bands

are contaminated by Balmer continuum emission and Hα,

respectively, while the Paschen continuum may be significant

in the i- and z-bands (Korista & Goad 2001).

Table 3

NGC2617 Light Curves

Filter HJD—2,400,000 Fλ Telescope ID

(days) (10−15 erg cm−2 s−1 Å−1
)

u 56689.3963 6.9971±0.0770 LCO5

u 56690.2849 6.8172±0.0719 LCO5

u 56690.2916 6.8395±0.0701 LCO4

K K K K

g 56639.6731 6.3221±0.2172 CrAO

g 56643.6272 7.6720±0.2321 CrAO

g 56644.5132 8.2198±0.1750 CrAO

K K K K

r 56682.6001 9.9075±0.0397 LCO5

r 56683.3380 9.8560±0.0415 LCO4

r 56684.3056 10.1500±0.0392 LCO6

K K K K

i 56639.6672 6.9188±0.0114 CrAO

i 56644.5162 7.0678±0.0096 CrAO

i 56646.5303 7.0834±0.0067 CrAO

K K K K

z 56639.6682 6.1075±0.0665 CrAO

z 56643.6256 6.4154±0.0692 CrAO

z 56644.5170 6.3643±0.0238 CrAO

K K K K

(This table is available in its entirety in machine-readable form.)

Table 4

NGC2617 Swift Light Curves

Filter HJD—2,400,000 Fλ

(days) (10−15 erg cm−2 s−1 Å−1
)

X-raysa 56413.9240 2.8400±0.1200

X-rays 56415.2573 2.2900±0.1200

X-rays 56415.6885 2.3400±0.1200

K K K

UVW2 56413.9240 12.1448±0.5593

UVW2 56415.2573 12.3706±0.6836
UVW2 56415.6885 11.9232±0.6589

K K K

UVM2 56413.9240 11.9514±0.6605

UVM2 56415.2573 12.2862±0.6790

UVM2 56415.6885 12.0620±0.6666

K K K

UVW1 56413.9240 10.6184±0.5868

UVW1 56415.2573 10.9159±0.6032
UVW1 56415.6885 10.5211±0.5814

K K K

u 56413.9240 8.8754±0.4087

u 56415.2573 8.6335±0.3976

u 56415.6885 8.4759±0.3903
K K K

b 56413.9240 6.9168±0.3185
b 56415.2573 6.6667±0.3070

b 56415.6885 6.7283±0.3099

K K K

v 56413.9240 6.5059±0.2397

v 56415.2573 6.6268±0.2441
v 56415.6885 6.5059±0.2397

K K K

Note.
a
0.3–10 keV absorption-corrected flux (10−11 erg cm−2 s−1

).

(This table is available in its entirety in machine-readable form.)
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4. CREAM Modeling

We also analyzed the light curves using the Continuum
REprocessed AGN Markov Chain Monte Carlo code (CREAM,
Starkey et al. 2016). CREAM fits an accretion disk reprocessing
model directly to the observed light curves, so as to estimate
the temperature profile of the disk and its inclination to the
observer’s line of sight. The adopted geometry is a “lamp
post,” which attributes the primary emission to a point source at
a small distance above the central black hole. As the lamp post
varies, it irradiates the disk, which thermally reprocesses the
incident flux into variations at longer wavelengths. Physically,
the point source may correspond to the X-ray emitting corona,
if the corona is small compared to the size of the disk.
However, a physical interpretation of the lamp post is not
required—this geometry should reasonably approximate most
models that place the origin of driving emission near the
SMBH at a small height above the disk midplane. This includes
models like those of Luo & Liang (1998) and Nealon et al.
(2015), which modify the structure of the disk on scales
of R10 g~ .

CREAM fits the model by inferring the transfer functions and
driving lamp-post light curve that best reproduces the observed
data. The transfer functions are calculated from a thin accretion
disk with three parameters: the temperature T0 at the inner-
edge, the index β of a power-law temperature profile, and the
inclination i of the disk to the observer’s line of sight. CREAM
takes a Bayesian approach, sampling the posterior probability
distributions of the driving light curve and disk parameters.

With an estimate of T0, it is then possible to calculate the
product M MBH

˙ , where MBH is the mass of the black hole and
Ṁ is the mass accretion rate through the disk (see Cackett
et al. 2007 and Starkey et al. 2016 for a derivation).
For our first model, we fixed the power-law index β to −3/4

and held the inclination i of the disk constant at 0°. In Figure 4,
we show the posterior distributions of M MBH

˙ for the two
AGNs (we show fits to the transfer functions of individual
light curves and the inferred driving light curves in the

Appendix). CREAM finds M Mlog 6.63 0.24BH = ˙ M yr2 1-
[ ]

in MCG+08-11-011, and M Mlog 5.58 0.21BH = ˙ M yr2 1-
[ ]

in NGC 2617. We then ran models that allowed the inclination
to vary (owing to the short wavelength baseline spanned by
our light curves, we were unable to place meaningful
constraints on β). For MCG+08-11-011, we were unable to
constrain the inclination, but we found i=43°±20° with

M Mlog 5.24 0.23BH = ˙ M yr2 1-
[ ] for NGC 2617.

We compare the CREAM results to our time-series analysis
from Section 3 by giving the mean lags of the transfer functions

in Tables 6 and 7. Because we use the 5100Å light curve as a
reference in Section 3, we subtract this lag from the other
CREAM values in these tables. For NGC 2617, there is excellent
agreement between the CREAM results and the lags estimated
from τcent and JAVt . For MCG+08-11-011, the CREAM lags are
shifted by about 0.5–1.0 days relative to the values of τJAV. As
noted in Section 3.1, the g-band–5100Å lag from our time
series analysis may be an outlier, while the temperature
gradient in CREAMʼs physical model forces τ∝λ4/3 and an

anomalous g-band–5100Å lag cannot be produced. Using the
g-band as the reference wavelength (subtracting the g-band lag
from the other lags in Columns 3–6 of Table 6), we find much
better agreement. This calculation is explicitly shown for τJAV
in Table 6. The reduced χ2 values of the CREAM fits are larger
than would be expected for Gaussian statistics (1.96–2.37),
which may indicate that the light curve uncertainties are
underestimated, or that the model is not a perfect description of
the data.
Fausnaugh et al. (2017) estimated black hole masses for

these objects, which allows us to calculate Ṁ from the CREAM
fits (Table 1). For MCG+08-11-011, M M2.82 10BH

7~ ´ ,

implying M M0.151 yr 1= -
˙ and an Eddington ratio mEdd =˙

M M 0.234Edd =˙ ˙ with 0.1h = . For NGC 2617, MBH∼
3.24×107M

e
, and we calculate M M0.012 yr 1= -

˙ and
m 0.016Edd =˙ .

These Eddington ratios can be compared to independent
estimates using the observed luminosities during the monitor-
ing campaign (Table 1, again, we assume that M MEdd =˙ ˙

L LEdd, L=10λ L5100 Å).50 The estimates of the Eddington
ratios from the CREAM models are a factor of 4.3 larger
for MCG+08-11-011 and a factor 1.6 larger for NGC 2617.
However, there are large uncertainties associated with
these estimates. Runnoe et al. (2012) empirically find a
bolometric correction of 8.1±0.4, but recommend estimating
the bolometric luminosity with the relation L 104.9»
L5100

0.9l( )Å , with an intrinsic scatter of 0.17 dex around this

Table 5

Light-curve Properties

Object

Light

Curve Nobs Δtmed F̂ S Ná ñ Fvar S N var( )
(days)

(1) (2) (3) (4) (5) (6) (7) (8)

MCG+08-

11-011

u 41 1.54 6.30 44.3 0.10 19.0

g 85 0.99 7.47 202.2 0.07 83.3

r 42 1.07 9.17 194.4 0.05 41.0

i 41 1.07 7.01 231.7 0.04 41.1

z 41 1.07 6.23 225.5 0.03 33.5

NGC 2617 X-rays 136 1.20 4.00 20.8 0.57 91.2

UVW2 126 1.12 13.50 18.9 0.40 59.2

UVM2 126 1.27 12.50 17.6 0.36 50.3

UVW1 131 1.09 11.00 18.8 0.29 42.9

Swift u 130 1.10 8.89 21.5 0.29 49.2

Swift b 129 1.11 6.94 21.6 0.16 26.9

Swift v 119 1.14 6.43 22.2 0.09 15.3

u 113 0.66 7.11 77.5 0.10 56.6

g 166 0.56 8.38 275.1 0.04 83.8

r 127 0.62 10.60 319.2 0.04 82.4

i 154 0.60 8.28 287.7 0.02 46.9

z 153 0.59 8.42 230.7 0.02 41.6

Note. Column 3 gives the number of observations in each light curve. Column

4 gives the median cadence. Column 5 gives the mean flux level of each light

curve in units of 10−15 erg cm−2 s−1 Å−1
(the X-rays are units of

10−11 erg cm−2 s−1
). Column 6 gives the mean signal-to-noise ratio S Ná ñ.

Column 7 gives the rms fractional variability, defined in Section 2.2. Column 8

gives the approximate S/N at which we detect variability (Section 2.2).

50
With the multi-wavelength coverage for NGC2617, we also estimated the

bolometric correction by integrating the observed mean fluxes corrected for
Galactic extinction and then dividing by the mean of L5100. This yields a
bolometric correction of 9.3. Alternatively, we fit the composite QSO template
of Vanden Berk et al. (2001) to the UV data, and integrated the X-rays and
template through 1 μm. This yields a slightly smaller bolometric correction of
8.9, because this method is not affected by host-galaxy light.
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relation. The first option would decrease the value of mEdd˙ (as
estimated from the optical luminosity) by about 20%, while
the second estimate would increase mEdd˙ by 20% and 38% in
MCG+08-11-011 and NGC 2617, respectively. Thus, there is
at least a factor of 1.2–1.3 systematic uncertainty on mEdd˙ as
estimated from the optical luminosity, with an additional
factor of 1.5 statistical uncertainty due to the intrinsic scatter.
The widths of the 68% confidence intervals of the posterior
distributions of MṀ also imply a factor of ∼1.7 uncertainty
on the estimate of mEdd˙ from CREAM. Furthermore, the
estimate of mEdd˙ from CREAM depends on the adopted SMBH
mass, which is intrinsically uncertain by a factor of 2.5 to 3.0.
Finally, the estimate of mEdd˙ from CREAM depends on the
choice of η. Although η can vary between about 0.06 and
0.50, depending on the spin of the black hole, it is most likely
that the black hole is co-rotating with the disk. This suggests
that η�0.1, which decreases MEdd

˙ and increases the
discrepancy in mEdd˙ . We therefore ignore uncertainty in η
when calculating the significance of the discrepancies, noting
that uncertainty in this parameter will tend to strengthen our
results.

Combining the uncertainties on the bolometric correction in
quadrature, MṀ from CREAM, and MBH, there is a total
uncertainty of about 0.56 dex. The factor of 4.3 disagreement in
MCG+08-11-011 can then be written as 0.64±0.56 dex,
while the factor of 1.6 disagreement in NGC 2617 is
0.19±0.56 dex. The estimate of mEdd˙ from CREAM for
NGC 2617 therefore appears to be consistent with the observed
optical luminosity, and there is only a small difference for
MCG+08-11-011.

5. Discussion

5.1. Comparison with Previous Studies

MCG+08-11-011 is one of the two objects with statistically
significant continuum lags based on data from CrAO taken
between 2001 and 2003, with an approximately three-day
cadence excepting seasonal gaps (Sergeev et al. 2005). Based
on the centroid of the cross-correlation functions (using
the same ICCF and FR/RSS methods employed in this
study), Sergeev et al. (2005) found lags for the V-, R-, and
I-bands(relative to the B-band) of 0.91±0.53 days,
4.64±0.81, and 5.75±1.18 days (rest-frame), respectively.
This result accords with the expected trend of larger lags at
longer wavelengths. However, the magnitude of the lags is

several days larger than those measured here, which range
between about 1 and 1.5 days from the g-band to the i- and z-
bands. While it is possible that the structure of the disk has
changed over the past decade, it is more likely that the lower
cadence and large gaps in the Sergeev et al. (2005) light curves
result in larger uncertainties than estimated in that study. The
light curves presented here have no seasonal gaps and daily
cadence, which should yield more reliable lags.
Interband continuum lags were detected in NGC 2617 by

Shappee et al. (2014). After the All Sky Automated Survey for
Supernovae (ASAS-SN51

) observed a sudden X-ray/optical
outburst of this AGN in 2013, intensive multi-wavelength
monitoring of the target ensued for ∼50 days. This target-of-
opportunity campaign was led by X-ray and near-UV
observations from the Swift satellite, while ground-based
monitoring extended the wavelength coverage through optical
and near-IR wavelengths. The observed lags, relative to the
V-band, ranged from −1.11±0.32 days in the UVW2 filter to
1.97±1.32 days in the I-band and 7.42±1.25 days in the
K-band (rest-frame). There was also a 3.36±0.42 X-ray lag
(or a ∼2.2 day lag between the X-rays and UVW2). These lags
were measured with JAVELIN in the same way as in this study,
but using the Swift X-ray and UVW2 light curves as drivers.
The UVW2–5100Å lag measured here is almost a factor of 3

smaller than that measured by Shappee et al. (2014), although
this is only a 2.3σ difference. We find that the i- and z-band
lags from the 2014 data are also smaller than in 2013 by a
factor of about 2 (1.0σ). The X-ray lag is 0.78 days (1.9σ)

shorter than that reported by Shappee et al. (2014).
Thus, the lags measured here are broadly consistent with

those reported by Shappee et al. (2014), but systematically
smaller. Under the standard RM formalism, the observed lag
between two light curves is not independent of the driving light
curve autocorrelation function (Blandford & McKee 1982;
Peterson 1993). The variability amplitude of NGC 2617 in
2013 was much stronger than in 2014, and the timescale of
variations is smaller in 2014 than in 2013. Both of these factors
will generally lead to smaller lags, which may account for these
results. This is similar to the results of Goad & Korista (2014),
who find that lags in the BLR will be observed to be smaller for
weak and rapid variations simply due to geometric dilution.
Another possibility is that the physical configuration of the disk
has changed—because NGC 2617 is a “changing look” AGN,

Table 6

MCG+08-11-011 Rest-frame Continuum Lags

Filter λ τcent τpeak τJAV τCREAM–τ5100 Å τJAV–τg
(Å) (days) (days) (days) (days)

(1) (2) (3) (4) (5) (6) (7)

u 3449 0.66 0.60
0.68

-
+ 0.05 1.30

0.86- -
+ 0.04 0.32

0.30- -
+

−0.52±0.16 0.54 0.32
0.30- -
+

g 4703 0.78 0.36
0.30

-
+ 0.38 0.53

0.43
-
+ 0.50 0.07

0.08
-
+

−0.18±0.24 0.00 0.07
0.08

-
+

5100 Å 5100 0.01 0.31
0.30- -
+ 0.00 0.14

0.14
-
+

K 0.00±0.27 −0.50

r 6124 2.49 0.51
0.49

-
+ 2.16 0.48

0.72
-
+ 1.19 0.15

0.16
-
+ 0.24±0.33 0.69 0.15

0.16
-
+

i 7535 2.02 0.55
0.49

-
+ 1.92 0.58

0.91
-
+ 1.52 0.18

0.20
-
+ 0.70±0.43 1.02 0.18

0.20
-
+

z 8927 1.94 0.57
0.48

-
+ 1.97 0.58

0.82
-
+ 1.94 0.20

0.19
-
+ 1.20±0.55 1.44 0.20

0.19
-
+

Note. Column 2 gives the rest-frame effective wavelength of the filter. Column 3 gives the ICCF centroids and the 68% confidence intervals from the FR/RSS
procedure (see Section 3). Column 4 gives the same, but for the ICCF peaks. Column 5 gives the lags fit by JAVELIN and the central 68% confidence interval of the

posterior distributions. Column 6 gives the lag estimates from the transfer functions fit by CREAM (see Section 4). Column 7 is the same as Column 5, but with the g-

band lag subtracted. All lag values have been corrected to the rest-frame.

51
http://www.astronomy.ohio-state.edu/~assassin

11

The Astrophysical Journal, 854:107 (20pp), 2018 February 20 Fausnaugh et al.

http://www.astronomy.ohio-state.edu/~assassin


the accretion flow may be far from equilibrium (LaMassa
et al. 2015; MacLeod et al. 2016; Runnoe et al. 2016). The two
monitoring programs are separated by one year, and the
dynamical time at a distance of one light day from the black
hole is about one month. A bulk readjustment of the accretion
flow is therefore possible in the time between the two
campaigns. The luminosity was also a factor of 1.8 smaller
in 2014 compared to 2013, and the size of the disk is expected
to scale with luminosity (see Section 5.3 below). However, this
adjustment should happen on a viscous timescale, which is on
the order of decades to centuries for a typical Seyfert1 (e.g.,
LaMassa et al. 2015).

5.2. Challenges to the Disk Reprocessing Model

The disk reprocessing model posits that short-wavelength
radiation drives long-wavelength emission by heating the
accretion disk and perturbing the local temperature. Two
important predictions of this model are that the X-ray, UV, and

optical light curves will be well-correlated, and that longer
wavelength light curves should lag behind shorter wavelength
light curves. We qualitatively find results consistent with disk
reprocessing—the UV and optical light curves in both objects
are well correlated, and the lag-wavelength relation is nearly
monotonic.
However, it is clear from visual inspection of the NGC 2617

light curves that there is much more structure in the X-rays than
in the UV and optical emission, especially on short timescales.
Although the X-ray light curve would be expected to be
smoothed if reprocessed at UV wavelengths, comparison of
Figures 3 and the Appendix shows that the inferred driving
light curve does not correlate very well with the observed X-ray
variations (this is confirmed by the ICCF analysis from
Section 3). This poor correlation was also seen in 2013 by
Shappee et al. (2014), and has been observed in other objects,
including NGC 5548 (Uttley et al. 2003; Edelson et al. 2015),
MR 2251-178 (Arévalo et al. 2008), Mrk 79 (Breedt
et al. 2009), NGC 3783 (Arévalo et al. 2009), and NGC
4151 (Edelson et al. 2017). Several of these studies have been
unable to represent the UV/optical light curves as a
reprocessed (smoothed and shifted) version of the X-ray light
curve (Arévalo et al. 2008; Breedt et al. 2009; Starkey
et al. 2017), which is problematic for a generic disk reprocessing
model. A notable exception is Shappee et al. (2014), who were
able to produce a good, but not perfect, match between the X-ray
and optical light curves from 2013 using a simple reprocessing
model for NGC 2617. However, they found X-ray to UV/optical
lags (2–3 days) that are much larger than any plausible light-
travel time across the accretion disk. Shappee et al. (2014) were
unable to provide a physical interpretation for the X-ray–optical
lag, and we find a similar X-ray–optical lag here (∼2.6 days),
reaffirming this problem for the disk reprocessing model.
Although the X-ray light curve in NGC 2617 is problematic

for disk reprocessing, this paradigm may still be important—
the UV/optical light curves display strong correlations and
follow the prediction of larger lags at longer wavelengths. A
possible explanation is that the driving light curve is in the
extreme UV (Shakura & Sunyaev 1973; Gardner &
Done 2017). On the other hand, although the X-ray light
curve has additional structure compared to the UV/optical light

Table 7

NGC 2617 Rest-frame Continuum Lags

Filter λ τcent τpeak τJAV τCREAM–τ5100 Å
(Å) (days) (days) (days) (days)

(1) (2) (3) (4) (5) (6)

X-rays 9 2.47 0.81
0.88- -
+ 2.48 1.17

1.22- -
+ 2.58 0.08

0.09- -
+

K

UVW2 1900 0.63 0.48
0.51- -
+ 0.58 0.63

0.78- -
+ 0.39 0.25

0.25- -
+

−0.38±0.03

UVM2 2214 0.66 0.55
0.52- -
+ 0.92 0.97

0.49- -
+ 0.25 0.28

0.28- -
+

−0.35±0.03

UVW1 2563 0.29 0.64
0.62- -
+ 0.24 0.68

0.83- -
+ 0.24 0.25

0.27
-
+

−0.33±0.04

Swift u 3451 0.27 0.51
0.56

-
+ 0.19 0.92

0.68
-
+ 0.49 0.25

0.26
-
+

−0.24±0.06

u 3470 0.40 0.86
0.89

-
+ 0.24 1.17

0.83
-
+ 0.31 0.19

0.20
-
+

−0.24±0.06

Swift b 4268 0.12 0.74
0.78- -
+ 0.24 1.02

0.87- -
+ 0.23 0.40

0.47
-
+

−0.01±0.08

g 4732 0.03 0.58
0.58

-
+ 0.10 0.63

0.92
-
+ 0.16 0.18

0.18- -
+

−0.08±0.09

5100 Å 5100 0.02 0.47
0.47

-
+ 0.00 0.19

0.19
-
+

K 0.00±0.11

Swift v 5326 0.46 1.02
0.96- -
+ 0.29 1.12

1.22- -
+ 0.38 0.52

0.64- -
+ 0.01±0.11

r 6162 0.98 1.01
0.91

-
+ 0.92 0.87

1.51
-
+ 0.37 0.18

0.17
-
+ 0.11±0.13

i 7582 0.68 0.58
0.82

-
+ 0.63 0.78

0.92
-
+ 0.60 0.18

0.20
-
+ 0.32±0.17

z 8982 0.86 0.61
0.64

-
+ 0.78 0.68

0.63
-
+ 0.62 0.18

0.20
-
+ 0.54±0.21

Note. Columns 2 through 6 are the same as in Table 6. All values have been corrected to the rest-frame.

Figure 4. Posterior distributions for M MBH
˙ for MCG+08-11-011 (red) and

NGC 2617 (blue), as derived by CREAM. The solid lines give the medians of
the distributions, and the dashed lines give the 68% confidence intervals. For
these fits, the temperature profile was fixed to R−3/4 and the inclination
to i=0.
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curves, there is still clearly some connection. Considering the
temporal lead of the high-energy emission, this suggests a very
complicated relationship between the X-rays and UV/optical
emission. We stress that there are many possibilities for the
geometry and energetics of the X-ray-emitting corona based on
both analytic results and simulations, and it is not clear what
lag-wavelength relations or variable X-ray emission these
models would produce (see, e.g., Schnittman et al. 2013; Jiang
et al. 2014 for coronal emission extended across the disk, and
Begelman et al. 2015; Saḑowski 2016; Begelman & Silk 2017
for the possible effects of toroidal magnetic fields). However,
observational evidence strongly favors a compact corona
(Mosquera et al. 2013; Reis & Miller 2013), which makes
some aspects of the reprocessing model very likely, and
continuing multi-wavelength monitoring of this and other
Seyfert 1s is therefore an important avenue for further
investigations. For example, see Giustini et al. (2017) for an
analysis of the X-ray emission in NGC 2617 during 2013, and
Oknyansky et al. (2017) for an analysis of the X-ray through IR
emission in 2016.

5.3. Disk Radii and Temperature Profiles

Figure 5 shows the lags as a function of wavelength for each
object. For a disk reprocessing model, the lag-wavelength
relation contains information about the absolute size of the disk
and the temperature profile. To quantify this, we fit a model of
the form

1 , 60
0

t t
l
l

= -
b⎡

⎣
⎢
⎢

⎛

⎝
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⎞

⎠
⎟

⎤

⎦
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( )

where λ is the effective wavelength transformed to the rest-

frame, λ0 is some reference wavelength, and τ0 and β are free

parameters. The normalization τ0 measures the radius of the

disk emitting at a reference wavelength λ0, and the index β

measures the temperature profile of the disk, T R 1µ b- .

Standard thin-disk theory predicts that β=4/3, and assuming

that the lags trace the flux-weighted mean radius for emission at

λ, τ0 scales as
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(Fausnaugh et al. 2016). This calculation assumes both a

radiative efficiency L Mc 0.10Bol
2h = =˙ and that the X-ray/

far-UV radiation does not appreciably heat the disk compared

to viscous dissipation. There can be deviations from this thin-

disk model on small scales ( R10 g~ or a few light hours, e.g.,

Luo & Liang 1998; Noble et al. 2011; Schnittman et al. 2016),

which would only result in a small modification to the lag-

wavelength relation on the scales observed here (several

light days).
We fit models with both τ0 and β free to vary, as well as with

β fixed to 4/3. We set the reference wavelength to

λ0=4800/(1+ z) Å, the rest-frame g-band effective wave-
length. To match the model so that the g-band lag equals 0, we
subtracted the g-band–5100Å lag from all measurements of

JAVt (as discussed in Section 3.1, this is equivalent to fitting the
lags using the g-band as the driver). We also tested fits where
we excluded suspect lag measurements. In particular, we tried
omitting the u-band lag for both targets because this lag is

probably contaminated by Balmer continuum emission from
the BLR. For MCG+08-11-011, we also tried omitting the

anomalous g-band–5100Å lag, which is likely an outlier. For
NGC 2617, we tested models that jointly fit the Swift and
ground-based data, as well as separate fits to each respective
data set. We also excluded the large X-ray lag for this object,
because the lag is much larger than any plausible light-
travel time.
The results of these fits are given in Table 8. Because of the

large uncertainties and limited amount of data, the fits
sometimes prefer a flat relation (β= 0) that does not provide
any constraint on τ0. For the fits that do converge, the
uncertainties on τ0 and β are still very large and do not put
interesting physical constraints on the disk. We include the
results of these fits for completeness, but the rest of our
discussion focuses on the fits for τ0 assuming β=4/3.
Fits to the ICCF and JAVELIN lags give consistent values

of τ0, although the ICCF fits are poorly constrained. Excluding

the anomalous g-band–5100Å lag in MCG+08-11-011 results
in reasonable values of χ2/dof (where dof is the number of
degrees of freedom in the fit) between 0.75 and 1.01, with dof
between 3 and 4. For NGC 2617, including the u-band and
Swift u-band lags gives χ2/dof of 1.67–2.66 with dof between
5 and 11, somewhat larger than would be expected for
Gaussian statistics. Censoring these lags results in a χ2/dof
between 0.79 and 1.16. Excluding all of the Swift data increases
τ0 from 0.38 days to 0.51 days, while excluding the ground-
based data decreases τ0 to below 0.19 light days. This can be
understood by considering the very small UV lags that are only
detected at ∼1σ. Including these data moves the model to
smaller τ0, consistent with the unresolved lags, while the well-
resolved ground-based lags pull τ0 to larger values.
The fits with χ2/dof∼1 indicate that a disk reprocessing

model with β=4/3 can reproduce our data very well. This is
consistent with the prediction for a geometrically thin disk with
a temperature profile T∝R−3/4. This signature power law is
difficult to reproduce if the disk is not geometrically thin, and it
is not immediately clear what other configurations could mimic
the τ∝λ4/3 relation. For MCG+08-11-011, an acceptable
χ2/dof requires the removal of the g-band–5100Å lag, while
we must exclude both the ground-based and Swift u-bands for
NGC 2617. As discussed above, we already suspect that these
lags are unreliable, so we adopt final measurements for the disk
sizes of τ0=1.15±0.11 days in MCG+08-11-011 and
τ0=0.50±0.12 days in NGC 2617. These uncertainties
represent only the formal errors in the fit.
Using the black hole masses and accretion rates in Table 1,

we can predict τ0 using Equation (7). These values are given in
Table 8 alongside our fits, and the predicted lag-wavelength
relations are shown by the dotted–dashed blue lines in Figure 5.
We find that our fits for τ0 are much larger than these
predictions. For MCG+08-11-011, the disk is a factor of 3.3
larger (a 7.2σ result), while for NGC 2617 the disk is a factor of
2.3 larger (a 2.3σ result).
It is unclear if uncertainties in MBH and mEdd˙ can explain

these discrepancies. A factor of 3.3 increase in τ0 for MCG
+08-11-011 requires a factor of 36 increase in the product

M mBH
2

Edd˙ , and a factor of 12 increase for a factor of 2.3 in 0t in
the case of NGC 2617. Even if the values of MBH from
Fausnaugh et al. (2017) are underestimated by a factor of 3
(approximately equivalent to the intrinsic scatter in the mean
virial factor fá ñ, Onken et al. 2004), the optical luminosity
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Figure 5. Lag-wavelength relations for each object relative to the g-band. The lags from the ICCF are shown in black and those from JAVELIN are shown in cyan.
The best fits of τ0 with 4 3b = are shown by the black and cyan lines (see Section 5.3). The predictions from standard thin-disk theory (Equation (7)) are shown by
the dotted–dashed blue lines, while the accretion disk in NGC 5548 (Fausnaugh et al. 2016), rescaled to the mass and mass accretion rate of these objects, is shown
by the dashed red lines.
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would also have to underestimated mEdd˙ by a factor of 1.4–4.0.
As discussed in Section 4, the choice of bolometric correction
may be responsible for part of this difference. Internal
extinction, kinematic luminosity (i.e., energy loss in outflows),
and advection may also be important, because these effects will
cause the observed luminosity to underestimate the true energy
generation rate and the inferred value of mEdd˙ . Finally, the
normalization of Equation (7) depends on the radiative
efficiency η and relative heating by irradiation from X-rays/
far-UV emission. The radiative efficiency must be less than 0.1
to increase the predicted size of τ0, which implies a counter-
rotating black hole relative to the disk and is a priori unlikely,
while setting the heating term from irradiation to match that of
viscous dissipation only increases τ0 by ∼10% (Fausnaugh
et al. 2016). Given these uncertainties, there seems to be no
problem accounting for the discrepancy in NGC 2617 (∼40%).
The factor of 4 discrepancy in MCG+08-11-011 is more
difficult to account for, although a combination of effects may
be able to explain the difference.

An even larger fluctuation (greater than a factor of 3) of MBH

beyond the estimate from Fausnaugh et al. (2017) might cause
the discrepancies in disk size and mEdd˙ to vanish. Conversely,
fluctuations of MBH below these estimates would cause severe
energy budget problems, by about an order of magnitude,
compared to the optical luminosity. Uncertainty in the

individual estimates of MBH therefore limits our ability to
assess the significance of any discrepancies with the thin disk
model, and improving these uncertainties is a critical path
forward.
These results are consistent with our findings in Section 4,

where we showed that the accretion rates inferred from CREAM

are formally larger than those estimated from the optical
luminosity. As a reminder, CREAM finds discrepancies in mEdd˙
of a factor of 4.3 and 1.3 in MCG+08-11-011 and NGC2617,
respectively, although these estimates are statistically consis-
tent with 1, given the large uncertainties. CREAM employs a
physical model of the disk, which probably results in more
accurate estimates of the accretion rate than using the flux-
weighted mean radius in Equation (7). This seems to suggest
that any discrepancy in disk size or mEdd˙ is less severe than
indicated above. However, the values of χ2/dof for the CREAM
fits were somewhat larger than unity, which may indicate that
the CREAM model does not adequately describe the data.
Furthermore, the CREAM uncertainties are large because they
again depend on the black hole mass.
If the disks are larger than expected from thin-disk theory,

these results are similar to those from RM for the accretion disk
in NGC 5548. Fausnaugh et al. (2016) find a disk in this object
three times larger than the prediction of standard thin-disk
theory. However, they assumed that the accretion rate was 10%

Table 8

Disk Parameter Fits

Object αCCF βCCF dof
CCF
2c ρCCF αJAV βJAV dof2

JAV
c ρJAV Thin Disk

NGC 5548

Rescaled

(light days) (light days)

(light

days) (light days)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MCG+08-

11-011

1.13±0.31 4/3 3.16 K 1.00±0.11 4/3 16.8 K 0.35 1.52

no 5100 Å 1.24±0.32 4/3 1.72 K 1.15±0.11 4/3 0.75 K

no u 1.15±0.32 4/3 3.91 K 0.99±0.11 4/3 22.26 K

no u/5100 Å 1.26±0.32 4/3 2.23 K 1.15±0.11 4/3 1.01 K

NGC 2617 0.65±0.32 4/3 0.27 K 0.38±0.11 4/3 2.31 K 0.22 0.96

no Swift 0.71±0.47 4/3 0.27 K 0.51±0.13 4/3 2.66 K

no u/Swift 0.79±0.48 4/3 0.17 K 0.61±0.14 4/3 0.79 K

no ugriz 0.60±0.44 4/3 0.26 K 0.05±0.21 4/3 1.67 K

no ugriz/Swift u 0.75±0.46 4/3 0.08 K 0.19±0.22 4/3 0.97 K

no u/Swift u 0.77±0.34 4/3 0.12 K 0.50±0.12 4/3 1.16 K

MCG+08-

11-011

1.86±6.34 0.92±2.47 3.94 −1.0 0.20±0.18 3.38±1.33 21.07 −1.0

no 5100 Å ¥ 0.00±99.9 2.05 0.0 ¥ 0.14±0.90 0.32 −1.0

no u ¥ 0.00±3.81 5.10 −1.0 0.16±0.16 3.70±1.44 30.69 −1.0

no u/5100 Å ¥ 0.00±99.9 2.56 −1.0 ¥ 0.00±99.9 0.40 0.0

NGC 2617 0.62±0.64 1.55±1.44 0.29 −0.9 0.09±0.12 3.84±2.07 2.01 −1.0

no Swift 0.23±1.25 2.90±8.02 0.31 −1.0 0.15±0.26 3.12±2.60 2.99 −1.0

no u/Swift ¥ 0.00±99.9 0.19 0.0 ¥ 0.00±99.9 0.61 0.0

no ugriz ¥ 0.00±99.9 0.25 0.0 ¥ 0.00±7.16 2.02 −1.0

no ugriz/Swift u ¥ 0.00±99.9 0.09 0.0 ¥ 0.00±99.9 1.20 −1.0

no u/Swift u 0.87±0.84 1.30±1.23 0.14 −0.9 0.28±0.21 2.28±1.07 1.13 −1.0

Note. Column 1 shows the excluded lags for each fit (where the AGN designations are given, all lags were used). Columns 2 and 3 give the parameters fit to the ICCF

lags, Column 4 gives the reduced χ2, and Column 5 gives the correlation coefficient between α and β. Columns 6–9 are the same as Columns 2–5, but for the

JAVELIN lags. In some cases, the data prefer a flat relation β=0, which does not provide a constraint on the disk size α (marked as¥ here). Column 10 gives the

prediction from thin-disk theory (Equation (7)), and Column 11 gives the fit to NGC 5548 from Fausnaugh et al. (2016), rescaled to the mass and mass-accretion rate

of these objects (see Section 5.3).
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of Eddington and that irradiation by high-energy emission
contributed significant heating to the disk. Based on optical
spectroscopy taken during the AGN STORM campaign (Pei
et al. 2017), we measure the Eddington ratio of NGC 5548 in
2014 to be 5% (again taking m L L10Edd 5100 Eddl=˙ Å ).
Assuming that the X-rays/far-UV contribute negligible heating
(as we did in Equation (7)), the disk in this object is a factor of
4.4 larger than thin-disk theory. As a comparison, we rescaled
the large disk from NGC 5548 to the mass and mass-accretion
rate of our targets using the same dependencies as in
Equation (7). These comparisons are given in Table 8 and
shown in Figure 5 by the dashed red lines. Our fits lie between
the NGC 5548 result and the prediction from thin-disk theory.
Unlike the case of NGC 5548, we are forced to extrapolate the
lag-wavelength relation to far-UV wavelengths. Therefore,
there are considerably larger uncertainties associated with our
estimate of the disk’s absolute size. However, the qualitative
agreement (an accretion disk larger than predictions, by a factor
of a few) is striking.

6. Summary

We have detected interband continuum lags in two Seyfert 1
galaxies, MCG+08-11-011 and NCG 2617. This adds one new
object to the previous sample of two AGNs with secure
measurements of accretion disk reverberation signals. We also
compared the lags for NGC 2617 in 2014 to lags measured one
year prior in 2013 by Shappee et al. (2014).

(i) We generally find longer lags at longer wavelengths,
consistent with disk reprocessing models. The exceptions
are the u-band data for in NGC 2617 and the g-band for
MCG+08-11-011. For NGC 2617, these longer lags are
probably due to contamination by the Balmer continuum.
The origin of the anomalous lag in MCG+08-11-011 is
less clear, but it may be caused by a similar bias in the
broadband filters that is not present in the spectroscopic
continuum light curve.

(ii) The X-ray to UV/optical lag in NGC 2617 is ∼2.6 days,
and there is substantially more structure in the X-ray light
curve than the UV/optical light curves. This is incon-
sistent with standard reprocessing models where the
X-ray emitting corona directly irradiates the surrounding
accretion disk. However, there is still some correlation
between these light curves, suggesting a complicated
relationship between the X-ray and UV/optical emission.

(iii) The lag-wavelength relations (for the UV/optical light
curves) are consistent with the predictions for reproces-
sing in a standard geometrically thin disk. However, the
inferred disk sizes are larger than these predictions by a
factor of 3.3 in MCG+08-11-011 and 2.3 in NGC 2617.

(iv) These results may indicate that the observed optical
luminosities underestimate the total energy generation
(mass accretion) rates. Using the CREAM physical
reprocessing model to fit the light curves, we find
Eddington ratios larger than would be estimated from the
optical luminosity, by a factor of 4.3 in MCG+08-11-011
and a factor of 1.6 in NGC 2617. However, these
differences are not statistically significant, considering
uncertainty in the SMBH masses.

These results add to the growing body of evidence for
additional structure and possibly physical processes in AGN

accretion disks: the X-ray phenomenology indicates a more
complicated situation than simple disk reprocessing, and there
is tension between the sizes of the disks and standard models.
However, the significance of this statement is limited by
uncertainties in the SMBH masses. A direct means of
expanding our work would be to improve the SMBH mass
uncertainties, for example, by using the dynamical models of
Pancoast et al. (2014) to estimate the individual virial factor f of
each object. We will pursue such an analysis for MCG+08-11-
011 and NGC 2617 in future work using our spectroscopic RM
data (see Fausnaugh et al. 2017 for details). An alternative
tactic, which has been adopted by the LCO AGN Key project,
is to expand the sample size of RM-measured AGN disk sizes.
This will improve the uncertainty on the mean AGN disk size,
and potentially pin down departures from standard models.
Finally, microlensing of strongly lensed quasars is the only
other practical means of probing the accretion disks around
SMBHs. Both microlensing and RM find similar disk sizes
(e.g., Mosquera et al. 2013), and a thorough and systematic
comparison of the microlensing and RM results is therefore
warranted.
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Appendix

Here we show the detailed results of the CREAM fits,
including interpolated light curves, transfer functions, and
the inferred driving light curves. Figure 6 shows the results
for MCG+08-11-011. Figure 7 shows the fits to the Swift data
(X-ray, near-UV, and optical light curves) for NGC 2617, and
Figure 8 shows the fits to the ground-based data for NGC 2617.
Note that all data for NGC 2617 were fit simultaneously.

Figure 6. CREAM fits to the u- through z-band light curves for MCG+08-11-011. Panel (a) shows the inferred driving light curve for the disk continuum variations.
Panels (b–g) show the inferred transfer functions where the middle, lower, and upper curves correspond to the mean and 1σ uncertainties. The vertical lines denote the
mean lags. Panels (h–m) show the light curves and uncertainty envelopes.
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Figure 7. Same as Figure 6, but for Swift data of NGC 2617.

Figure 8. Same as Figure 6, but for ground-based data of NGC 2617.
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