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'is paper presents a literature survey documenting the evolution of continuum robots over the past two decades (1999–present).
Attention is paid to bioinspired soft robots with respect to the following three design parameters: structure, materials, and
actuation. Using this three-faced prism, we identify the uniqueness and novelty of robots that have hitherto not been publicly
disclosed. 'e motivation for this study comes from the fact that continuum soft robots can make inroads in industrial
manufacturing, and their adoption will be accelerated if their key advantages over counterparts with rigid links are clear. Four
different taxonomies of continuum robots are included in this study, enabling researchers to quickly identify robots of relevance to
their studies. 'e kinematics and dynamics of these robots are not covered, nor is their application in surgical manipulation.

1. Introduction

1.1. Why Continuum Robots? In the manufacturing industry,
robots have steadily gained importance in assembly-line op-
erations due to their compelling value proposition: reduced
cycle-time and increased accuracy, along with a skillset [1]. A
typical industrial robot is floor-mounted for safety and consists
of discrete rigid links that are actuated for gross movement of
the end effector and of a task-appropriate end effector with fine
motor control. Sophisticated control software operates indi-
vidual robots or coordinates multiple robots in order to
maximize their value in a specific industrial operation [2].

Against this backdrop, continuum robots are emerging as a
novel concept, at least in research, with the potential to be used
across a wide range of industrial applications [3]. Continuum
robots are hyperflexible electromechanical structures with
infinite degrees of freedom which provide them with the ability
to maneuver complex curvilinear pathways (a survey on
continuum manipulators [4]). A key advantage of continuum
robots over those with rigid links is that, due to their con-
siderably lower weight for the same maximum output force,
they can be ceiling-mounted as opposed to floor-mounted.'is
advantage significantly increases their safety when they are
used in joint operations with humans on the factory floor [5].
On the flip side, continuum robots are inherently more
nonlinear and thereby harder to control than their discrete

rigid-link counterparts, thereby presenting a barrier to adop-
tion in the industry [6].

Continuum robots have increased flexibility, and
thereby dexterity, compared to their rigid-link counterparts
(the importance of continuum robots [7]). Figure 1 from
[8] illustrates the essential difference between a discrete, a
serpentine, and a continuous-link structure. It is clear from
this figure that continuum structures have more degrees of
freedom to move, and thereby, they are able to move more
precisely along the shape of an object. In addition, their
ends can position themselves in many more 3D facing
directions compared to rigid-link structures. Researchers
are developing continuum robots for a variety of navigation
[9] and exploration [10], manufacturing and assembly [11],
and medical and surgical applications [12].

1.2. Bioinspired Robots. When it comes to continuous ac-
tuated structures, biological systems from nature (Figure 1)
have some compelling characteristics worth mimicking:
symmetric and optimized design, evolution-enabled
uniqueness for the task at hand, and, finally, energy-effi-
cient kinematics and dynamics for survival (survey of
bioinspiration [13]). Researchers have been inspired by the
animal and plant kingdoms when it comes to designing
their continuum robots, and Table 1 presents our first
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Discrete Serpentine Continuum

Figure 1: Differentiation—linked and continuum [8].

Table 1: 'e robots surveyed herein mapped per their bioinspiration.

Bioinspiration Reference Model Continuum robot (example)

Elephant trunk [14–31]

Spine of a mammal [32–55]

Snake [56–71]

Octopus arm [72–83]

Tentacle [84–103], [104–113], [114–131]

Human arm and finger [132–159]

Actuation system

Fabric-based SRA
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taxonomy, namely, the bioinspiration behind various ro-
bots surveyed herein: our survey includes multiple refer-
ences to Walker’s research group publications—they are
not only one of the earliest to investigate biological
structures for continuum robots, starting with the ele-
phant’s trunk [27], but they have also had the largest
footprint of any research group, the left column of Table 1
[14–31].

1.3. Survey Organization. Continuously articulated struc-
tures in the bio-kingdom are made up of muscles, tendons,
fibers, and joints. One of the three focus areas of this paper
is a survey and taxonomy of continuum robots from the
standpoint of their mechanical structure (Section 2). 'e
influence of the bio-kingdom on continuum robots is so
complete that an overwhelming majority of continuum
robots are made of soft materials that allow these robots to
have the required flexibility. 'e second focus area of this
paper is a survey and taxonomy of continuum (soft) robots
in terms of materials (Section 2). Continuous robotics use
hydraulic, pneumatic, and electrical actuators. Our final
taxonomy of continuum robots is based on a survey of the
types of actuators used to achieve their motion (Section 4).
'e paper concludes with some broad remarks regarding
the robots surveyed and some observations on where the
field is headed (Section 5). More than two hundred ref-
erences are cited herein, and the citation details are at the
end of this paper (References). We reiterate that the ki-
nematics and dynamics of these robots, including sensors
and control, as well as their application in various surgical
applications, are beyond the scope of this paper. For those
topics, we refer to the following excellent surveys:
[12, 184, 185].

2. Structure and Material

'e taxonomy and evolution, along with the materials used,
of continuum robot development inspired by biostructures
are discussed in this section.

2.1. Structure. 'e structure of the continuum robot used for
manipulation is broadly classified into a single or multi-
segment robot in the early phases of research [186]. In order
to enhance the functionality, multiple discs are inputted as a
backbone for these robots in order to mimic a continuum
structure, examples of which are shown in Table 2. Every
continuum robot developed falls into the category of bio-
inspiration mentioned in Table 1, and the description in
Table 2 provides a brief outline of the models developed.

In the early phases of research [14–20], known as first-
generation continuum robots, the elephant trunk models
[187] were constructed with a maximum of three segments
with pneumatic actuation. Jones and Walker, along with
researchers at Clemson University, had developed two robots,
OctArm [14] and Air-Octor [16], with a single segment
mimicking a trunk (Figure 2(a)). 'e soft gripper developed
in the shape of a cone [18] is an example of the single-seg-
mented robot. 'e soft manipulator [17] is bisegmented, and
the granular robots [20] are the additional models with dual
and triple segments (Figure 2(b)). As an advancement, the
research on the second-generation robots consists of trunks
with a backbone and multiple discs, with the increased
complexity of actuation and manipulation. 'ese trunks
consist of multiple segments with dual actuation, i.e., electric
motor and pneumatic [21–28]. In the current research sce-
nario, the third-generation continuum robot, which is known
as the bionic handling assistant (BHA) model developed by
Festo [29–31], has entered the production environment. 'is
is an advanced prototype that is constructed using the con-
cepts of lightweight design and possesses the capability to
operate with increased flexibility. 'is model consists of three
segments with variable curvatures supported by tendons and
with a weight of 1.8 kg. 'e structure and components of the
BHA are shown in Figure 2(c), along with the three-fingered
end effectors to grasp the objects.

Continuum models inspired by the spine of the mammal
[32–55] and snake [56–71] are the most common examples
of the multidisc biomodels with single or multiple segments
that consist of a structured alignment of discs, as shown in
Figure 3(a). Spine structures can possess only bending

Table 1: Continued.

Bioinspiration Reference Model Continuum robot (example)

Biological vine and plant [160–181]

Tongue and tail of a reptile [182, 183]
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movements with limited angular constraints and with a fixed
base, and snakes belong to the class of reptiles that have the
capability to elongate their bodies without limbs to grasp or
manipulate objects with precision in a confined space. 'e
single-segment-multidisc models, spine [32–42] and snake
[56–62], are generally made up of circular metal structures

equidistantly placed along the backbone. 'e discs are
magnetically polarized so that the distance between the discs
remains constant and can take up the shape of constant
curvature to achieve the hemispherical surface of the end
effector. 'ese discs are either made up of steel or hard
polyamide material. 'e multisegmented models of the

Table 2: 'e classification of continuum models.

Robot structure Description Application Advantage
References
(examples)

Single segment
Robot body consists of a single backbone-like structure with

limited constant curvature freedom of motion.
Cleaning Simple structure

Elephant: [15]
Human arm:

[156]
Octopus: [76]
Vine: [179]

Multisegment
Robot body consists of multiple segments, each with the

freedom to move as a single element structure, but independent
of other elements.

Inspection
Connected

control

Elephant: [14]
Human arm: [51]

Vine: [173]
Tongue and tail:

[183]
Snake: [70]

Single segment-
multidisc

'e robot body is composed of multiple discs of the same or
varying radii arranged equidistant from each other, along with

a backbone structure that is a single segment.

Medical
surgery

Maneuverability

Elephant: [28]
Mammalian
spine: [35]
Snake: [32]

Tentacle: [87]
Tongue and tail:

[182]
Vine: [166]

Multi segment-
multidisc

'e robot body is composed of multiple discs of the same or
varying radii arranged equidistant from each other, along with

a backbone structure that is of multiple segments.
Mobility Multipurpose

Elephant: [24]
Mammalian
spine: [42]
Snake: [63]

Tentacle: [91]
Human arm:

[157]
Vine: [180]

Continuous
structure

Robot body consists of multiple fibers braided together. 'e
fiber ends are connected to cables that can be individually

wound up/down from a pulley.
Manipulation Flexibility

Snake: [68]
Octopus: [72]
Tentacle: [90]

Biological vine:
[161]

Human arm:
[149]

Plant: [181]

(a) (b) (c)

Figure 2: Single-segmented [14, 16] (a), multisegmented [19, 28] (b), and continuum robots [29] (c)—elephant trunk inspired.
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spine [43–55] are aligned with metal intervertebral discs
aligned at a constant distance that provide nonlinear
damping characteristics, and snake [63–67] is constructed
with cylindrical tubes connected with joints with rotational
and translational degrees of freedom and mostly used for
inspection through holes, as shown in Figure 3(b). To reach
the model of a continuum structure, snake models [68–71]
are developed that are made up of braided or shape memory
alloy materials and consist of dual actuation, i.e., are cable or
pneumatic driven.

Octopus- and tentacle-inspired [84–131] models are
mostly single-segmented examples. Octopus is a class of
cephalopods whose structure is symmetric along the axis
bisecting its two eyes, whereas tentacle is a long-elongated
organ (example of tentacle inspired robot [121]) present in
many invertebrates that usually occurs in pairs. 'e legs of the
octopus have the unique capability to perform locomotion
and manipulation [188], and tentacles are tiny thread-like
structures that are used for grasping and feeding along with
sensory reception, which proves the easy choice for robotics
enthusiasts to develop continuum structures that are single-
segmented (Figure 4(a)). Laschi et al. [72–76] are one of the
early researchers who developed continuum robot models
built with longitudinal and transverse actuators using silicone
and braided fiber as materials (Figure 3(b)). To develop a
realistic case scenario, Guglielmino et al. [78] had obtained
consent with respect to EU regulations to perform
morphometric analysis on several anaesthetized octopuses
with the support of a marine biologist. 'is experiment
provided detailed information regarding the structure of
octopus limbs, which assisted in developing prototypes
[79–83] using shape memory alloys (current sensitive) and
fluid actuators mimicking the animal behavior.

'e human arm is the most complex biomodel, and
researchers have developed models that augment safety in
manipulation applications with respect to physical human
interaction. All such robot structures can be categorized into
two models, i.e., multifingered hand robots (Figure 5) and
multijoint extendable arms (Table 3). All the multifingered
hand robots [132–146] were developed to have a similar
structure, with a metal or plastic base and fingers made up of
hardened polyamide material. 'e human arm robots
[147–159, 189] are designed with multijoints and a unique

end effector and are categorized based on the application
perspective, as shown in Table 3.

All the biomodels discussed in the previous sections are
animal-inspired robots. In this section, the continuum ro-
bots that are vine and plant inspired are explored. 'e
hyperflexible manipulator (HFM) developed by Suzuki et al.
[160] is one of the best examples of vine inspired, consisting
of multiple underactuated links and nonelastic passive
joints resembling a rope used for better casting and
winding along the object. 'e primary application of vine-
inspired robots is in the field of space and planetary
exploration. Scientists at NASA, Mehling et al. [161] and
Tonapi et al. [163], developed a tendril robot (Figure 6(a))
and a robotic manipulator for minimally invasive in-
spection along with manipulation for space operations
[160–170]. 'e tendril robot consists of three subsystems
with nine motors of actuation, body mechanism, and
avionics, as shown in Figure 6(a) [161]. In order to utilize
the capability of extending their segments longitudinally,
the class of continuum robots [175–181] inspired by bi-
ological plants was developed. 'eir structure is pneu-
matically actuated [181], which controls the longitudinal
height and is made up of a polyamide structure that is
widely used in deploying antennas [177–179] or in op-
erations that require a periscope [175, 180]. To enhance
the application areas of vine robots, researchers found
advantages of using these structures [171–174] in further
applications, including autonomous refueling, explora-
tion [174], water spraying [171], aircraft fueling [173],
body inspection [170, 176], and engine repair [172], as
shown in Figure 6(b).

'e final categorization of the continuum robots is the
structure inspired by the tail and chameleon tongue of an
animal. 'e chameleon tongue-inspired robot (Figure 7(b))
[183] consists of a mechanism that can accommodate the
principle of elastic energy storage and release, which can
elongate to 1.5 times its body length and can exert a force of
500 m/s2. 'e tail (Figure 7(a)) [182] on the structures has
very few engineering applications, which are envisioned for
use on board a mobile robot to provide a means separate
from the locomotion mechanism (e.g., legs or wheels) to
generate external forces and moments to stabilize and/or
maneuver the robot.

(a) (b)

Figure 3: Single-segmented and multidisc continuum robots: (a) spine [40, 53] and (b) snake inspired [65, 69].
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(a) (b)

Figure 4: Continuum robots: octopus leg [77] (a) and tentacle inspired [90, 101] (b).

(a) (b) (c)

Figure 5: Continuum robots: human arm inspired [135, 151].

Table 3: Human hand-inspired continuum model applications.

Inflatable arm/safe human
interaction [147]

Exoskeleton/support for heavy lifting [148]
Extendable arm/inspection and penetration

[149]
NASA—planetary arm/space exploration

[155]

0

Hand-held arm/cleaning and
drilling [151]

1

Anthropomorphic bot/games and

recreation [152]

2

Inflatable joint robot/ brittle material
manipulation [154]

3

Reconfigurable robot/rehabilitation

assistance [156]

4

Collaborative robot/coordination
[158]

Arm robot/grasping and holding [157] Fabric-based arm/lightweight model [153]

Robo-glove/ grasping and manipulation
[189]

6 Journal of Robotics



2.2. Material. 'e material of choice for bioinspired con-
tinuum robots is polyamide—a polymerized molecular
chain made of nylon braided blend or carbon amalgamation

(e.g., borax and vinyl alcohol) whose strength, elasticity, and
flexibility can be customized per the application. Other
materials used in construction of continuum robots are

(a) (b)

Figure 7: Continuum robots: (a) tail [182] and (b) tongue [183] inspired.

(a) (b)

Figure 6: Continuum robots: (a) vine [163, 178] and (b) plant inspired [171, 181].

Table 4: Polyamide material applications—continuum robot models.

Polyamide material Advantages Robots (examples)

Polycarbonate Durability, high impact, and low scratch resistance Exploration robot [174]
Polyamide-rubber
amalgamation

Contraction and elongation Artificial muscles [190]

Polyurethane Lightweight design, temperature resistance Engine repair robot [172]

Polyethene Elasticity and bending, low cost
Periscope and antenna robot

[178]
Polyamide-carbon
amalgamation

Highly flexible, oxidation and corrosion resistance, electrical conductivity,
resistance, and elasticity

Bionic trunk [29–31]

Table 5: Other material applications—continuum robot models.

Other materials Advantages Robots (examples)

Silicone
Abundantly available with lost cost and provides extraneous flexibility; resistant

to abrasion, acidic, and basic ambience
Octopus arm [72, 73]

Nitinol
Inert material with maximum nickel composition, very dexterous, and

manipulative
Vine-inspired robot [163], spine

robot [34]
Aluminum Low cost and lightweight Hybrid robots—multidisc [191]

Braided surface High strength and lightweight
Dual-segmented [34] elephant trunk

[17]
Shape memory
alloy

Strong and corrosion resistance
Octopus limbs [79–83], elephant

trunk [21, 23]
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Table 6: Braided and fiber material for the pneumatic actuator.

PMA Description Usage Advantage

Braided
material
[192–207]

Produced using weaving and knitting
methodology.

Mostly used in the
manufacturing industry and

lightweight machine operations.

'is structure possesses the useful
property of elongation and

compression with respect to the input
air pressure.

Fiber material
[208–211]

Two kinds of fibers are currently used in the
industry, depending on the application,

produced by plants, animals, and geological
processes.

Used in every technical
engineering application. Suitable

for heavyweight operation.

Possesses excellent twisting and
longitudinal strength.

Figure 8: Pneumatic artificial muscle—fiber material and braided structure [206–209].

Table 7: Electric motors as force actuators.

Electrical motors Application robots (examples)

Direct current motors Tendril robot, hyperflexible/dexterous manipulator [161, 165, 169]
Servo electric motors Braided octopus arm, silicone arm robot, multidisc robot [72]
Stepper electric motors Multidisc tentacle arm [87, 222]

(a) (b) (c)

Figure 9: Drive mechanism: (a) tendon alignment [87], (b) electric motor [162]—tendon, and (c) pneumatic [16]—nontendon.

Table 8: Drive mechanisms.

Drive mechanism Force actuation Advantages Disadvantages Material

Tendon driven
[32–71]

Electric or
pneumatic

Simple calculation and low error in
estimating the end-effector position

Complex body structure
Polyamide
structure

Nontendon driven
[192–211]

Pneumatic
(PMA)

Simple body structure to contract and
elongate

Complex calculation and high error in
estimating the end-effector position

Braided and
fiber

8 Journal of Robotics



silicone, nitinol, aluminum, braided fabrics, and shape
memory alloys. Tables 4 and 5 provide a taxonomy of various
materials used in the construction of continuum robots.

3. Force Actuator

Force actuator refers to the component of a continuum
robot that drives its physical movement. 'e most common
actuators used within continuum robots are either pneu-
matic or electrical motors. Although not as common, other
actuators such as hydraulic, twisted polymer, thermal, or
magnetic are also used in fewer applications.

3.1. PneumaticActuator. Pneumatic actuators [46, 190–220]
are the most commonly used kind in continuum robots
because they are less complex and are low cost. 'e drive is
produced by forced air injected or withdrawn from the body
of the continuum structure (Table 6). 'ese were first de-
veloped under the name of McKibben actuators arranged
symmetrically along the central axis of the robot’s body with
flexible pairs on opposite sides pressurized by one solenoid
valve, which controls the volume and direction of the airflow
using a pressure sensor. 'e dissection of the artificial

pneumatic muscle actuator (PMA), along with the body
modeled using fiber [209] or braided [206] material, is
shown in Figure 8. PMA provides a good balance of actu-
ation performance and power-to-weight ratio, the de-
scription of which is significantly explained in the survey
[221]. Further examples of continuum robotic structures
developed using the PMA are shown in
[46, 190, 191, 212–220].

3.2. Electrical Motors. 'e tendon-driven continuum ma-
nipulators are the first structures developed with bending
segments of adjustable length. 'ese structures assist the
body to generate curves with variable curvature radii, which
augments the efficiency of grasping. Researchers examined
the properties of tentacle-like continuum robots and
arranged tendons in pairs that are actuated by motors.
Almost every structure with a built-in tendon is actuated by
electric motors (direct current, servo, or stepper motors)
(Table 7).

3.3. DriveMechanisms. In general, the articles referenced in
this paper do not discuss the underlying drive mechanism in

Table 9: Types of sensors and their applications.

Application Sensor type Description

Force actuation
Pressure sensor

'e pressure sensor provides the feedback of the air pressure applied by the pneumatic
actuator [226].

Torque sensor 'e torque output by the electrical motor is measured by the torque sensor [222].

Robot body shape
estimation

Potentiometer
Potentiometers consist of sliding or rotating contacts, which are installed to know the
length of each segment of the continuum robot based on the change in the voltage [224].

Image camera

An image camera consists of a high-resolution lens with a maximum frame rate to
estimate the shape in real time using image processing and machine vision techniques.
Common examples include Dalsa camera, Kinect camera, XCD X710 digital camera, AK

4, and AK7 [229, 230, 232–234].

Resistor shape sensor
'e resistive sensor is sensitive to twisting or elongation and changes its resistance

proportional to the deflection [237, 240].

Fiber Bragg gratings
FBG are similar to optical sensors. 'ese sensors are mostly used to obtain the curvature
of the robot body in the static and dynamic mode by obtaining the strain information at

different locations along the structure [223, 227].

Dielectric elastomer

'is sensor is embedded into the actuators with distributed actuation points that could
cover soft bodies. It is highly flexible and can be adaptable to soft structures to obtain
information regarding surface deflections. 'e examples used in robotics include DEAs,

VHB 4910 [236, 238].

Magnetoresistive
sensor

'e magnetoresistive sensor is mostly used to detect any kind of geometrical deflection
or thermal sensitivity and provides an output based on the desired parameters, e.g.,

contraction of a bundled actuator [225].

End-effector position
estimation

3D electromagnetic
sensor

'ese sensors are generic sensors that are electromagnetic wave emitters and are
installed onto the shape of the robot and emit the signals in regular intervals captured by

receivers [192].

Infrared sensor
An infrared sensor is less accurate when compared to other electromagnetic sensors
because of temperature sensitivity. It emits radiation to estimate the relative coordinate

position, e.g., MicroScribe MX [180].

Optical sensor

'e optical sensor is the most accurate sensor for estimating the coordinate positions of
any robotic component. It is used for modulating the intensity of light from the specific
position to estimate the relative distance, which can also be used to estimate the shape of

the robot, e.g., Micron Tracker SX60 [235].

Laser sensor
'e laser sensor is a type of optical sensor that is capable of projecting electromagnetic

radiation to a specific point on the end effector to obtain the relative position
coordinates, e.g., FARO Edge laser [34].
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detail as they focus on the novelty of their continuum robots
with respect to design elements and mobility. 'e drive
mechanism of the continuum robot is generally categorized
into either tendon or nontendon driven (Figure 9). 'ese
mechanisms have common functionality of manipulation
along with defining the body shape and the end-effector
position of the robot (Table 8).

4. Additional Design Elements

In this section, we briefly outline some additional infor-
mation with respect to dual actuation and sensors. Some of
the primary continuum robotic structures have a built-in
dual actuator (pneumatic and electrical motor), which
provides the additional advantage of increased actuation
capability and reduced errors in movement, i.e., manipu-
lating the end effector to the desired location, obtaining the
desired shape of the robot with increased degrees of
freedom, and so on. 'e bionic arm is the latest example
that utilizes the advantage of the dual actuator mechanism.
One of the main challenges for developing continuum
robots for manipulation is estimating the required amount
of actuation, the shape of the robot, and the position of the
end effector at an instant in real time. 'e information
regarding these parameters can be obtained using various
sensors inbuilt in the system, which can hugely assist in the
robotic control to achieve the defined task. Although the
control techniques are out of the scope of this survey, we
briefly mention different kinds of sensors [222–240] used in
the current research scenario. Sensors in the field of soft
robots are broadly classified into three categories based on
their application, i.e., force actuation, shape, and end-ef-
fector position estimation. Among the various sensors
adopted, the optical sensor proves the best because of its
lower error tolerance and its ability to be utilized for the
dual purpose of shape and end-effector position estimation
(Table 9).

5. Conclusion

Innovation and creativity are two of the essential ingre-
dients in the evolution of robotics and automation, which
started a century ago. Developing continuum robots that
mimic biologically inspired species began more recen-
tly—two decades ago. Here, the natural design elements
present in humans, animals, birds, plants, etc. provide a
template for scientific progress. As a result, continuum
bioinspired robots have been investigated for numerous
applications.

In this literature survey, we covered numerous bio-
inspired continuum robot models that have been developed
and provided a framework for examining them, namely,
bioinspiration, mechanical design, construction material,
and force actuation. 'e progress made in continuum ro-
botics is very compelling and provides a great foundation to
tackle the major challenges required for their use in man-
ufacturing—low cost, reduced cycle-time, and safe human
interaction.
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