
Publicacions Matemàtiques, Vol 41 (1997), 375–382.

CONTINUUM-WISE
EXPANSIVE DIFFEOMORPHISMS

Kazuhiro Sakai

Abstract
In this paper, we show that the C1 interior of the set of all
continuum-wise expansive diffeomorphisms of a closed manifold
coincides with the C1 interior of the set of all expansive diffeo-
morphisms. And the C1 interior of the set of all continuum-wise
fully expansive diffeomorphisms on a surface is investigated. Fur-
thermore, we have necessary and sufficient conditions for a diffeo-
morphism belonging to these open sets to be Anosov.

In the investigation of the structural stability of differentiable dynam-
ical systems and its relationship to the hyperbolic structure, a number
of fundamental topological properties were discovered. One of the most
important notion of the stability theory of dynamical system is an ex-
pansiveness and which is still studied by several resarchers in the context
of general topology.

Let X be a compact metric space with metric d and let f : X → X be
a homeomorphism. We say that f is expansive if there is a number e ≥ 0
such that for every x, y ∈ X (x �= y), there is n = n(x, y) ∈ Z satisfying
d(fn(x), fn(y)) ≥ e, and this notion was generalized by Kato [5]. He in-
troduced a notion of continuum-wise expansive homeomorphisms there
and many theorems concerning expansive homeomorphisms were gener-
alized to the case of continuum-wise expansive homeomorphisms. We say
that f is continuum-wise expansive if there is a number e ≥ 0 such that
for every nondegenerate subcontinuum of A ⊂ X, there is n = n(A) ∈ Z
satisfying diam fn(A) ≥ e. Here diamS = sup{d(x, y) : x, y ∈ S}.
Clearly every expansive homeomorphism is continuum-wise expansive
but its converse is not true (see [5, Example 3.5]). In this paper, we
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investigate the dynamics of continuum-wise expansive diffeomorphisms
from the differentiable viewpoint.

Let M be a C∞ closed manifold and let Diff(M) be the space of C1

diffeomorphisms of M endowed with C1 topology. Let E(M) and CE(M)
be the set of all expansive diffeomorphisms and the set of all continuum-
wise expansive diffeomorphisms in Diff(M) respectively.

Theorem 1. The C1 interior of CE(M), int CE(M), coincides with
the C1 interior of E(M), int E(M).

The notion of quasi-Anosov diffeomorphisms on M was introduced
by Mañé [9] and it was proved in [8] that f ∈ int E(M) if and only
if f is a quasi-Anosov diffeomorphism. Clearly if f is quasi-Anosov,
then f ∈ int CE(M). Our theorem will be obtained by showing that if
f ∈ int CE(M), then f is quasi-Anosov.

Let (X, d) be as before and assume that X is a continuum. A home-
omorphism f : X → X is called continuum-wise fully expansive ([6])
provided that for every ε > 0 and δ > 0, there is a natural number
N = N(ε, δ) > 0 such that if A is a subcontinuum of X with diamA ≥ δ,
then either dH(fn(A), X) < ε for all n ≥ N , or dH(f−n(A), X) < ε for
all n ≥ N . Here dH denotes the Hausdorff metric. It is clear that every
continuume-wise fully expansive homeomorphism is continuume-wise ex-
pansive but its converse is not true (see [6, Example 4.9]). Remark that
there is an example [6, Example 2.2] of continuum-wise fully expansive
homeomorphisms that is not expansive. The notion of continuum-wise
fully expansive is closely related to that of topologically mixing. Indeed,
it is proved in [6] that if f : X → X is continuum-wise fully expansive,
then f is topologically mixing.

Let we denote the set of all continuum-wise fully expansive diffeomor-
phisms of M by CFE(M) and denote by int CFE(M) its C1 interior.
Then we have the following

Corollary. When dimM = 2, int CE(M) is equal to int CFE(M).

This corollary is an easy consequence of Theorem 1. Indeed, clearly
int CFE(M) ⊂ int CE(M). By Theorem 1 int CE(M) is equal to the set
of all quasi-Anosov diffeomorphisms. Since every quasi-Anosov diffeo-
morphism f is Anosov when dimM = 2 (see [9]) and since every Anosov
diffeomorphism is topologically conjugate to a hyperbolic toral automor-
phism when dimM = 2, f is continuum-wise fully expansive (see [6,
Proposition 2.4]).

Let M be as before and let d be a metric on M induced from a Rie-
mannian metric ‖ · ‖ on TM . A sequence {xk}b

k=a(−∞ ≤ a < b ≤ ∞) of
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points is called a δ-pseudo-orbit of f ∈ Diff(M) if d(f(xk), xk+1) < δ for
a ≤ k ≤ b− 1. Given ε > 0, {xk}b

k=a is said to be ε-shadowed by x ∈ M
if d(fk(x), xk) < ε for a ≤ k ≤ b. We say that f has the shadowing
property if for ε > 0 there is δ > 0 such that every δ-pseudo-orbit of f
can be ε-shadowed by some point.

Let us denote by H(M) the set of all homeomorphisms of M endowed
with C0 topology. We say that f is structurally stable if there is a C1

neighborhood U(f) ⊂ Diff(M) such that for every g ∈ U(f), there is
h ∈ H(M) satisfying g ◦ h = h ◦ f . We say that f is topologically
stable if for every ε > 0, there is a C0 neighborhood Uε(f) ⊂ H(M)
such that for every g ∈ Uε(f), there is a continuous map h : M → M
satisfying f ◦ h = h ◦ g and d(h, id) < ε. We remark that since M is a
manifold, d(h, id) < ε implies h(M) = M for a sufficently small ε. It is
well known that every structurally stable diffeomorphism is topologically
stable ([12]) but its converse is not true, and that every topologically
stable diffeomorphism has the shadowing property ([11]). The author
do not know that whether every diffeomorphism having the shadowing
property is topologically stable (cf. [14]).

We say that f ∈ Diff(M) is persistent ([7]) if for each ε > 0, there is
δ > 0 such that for every x ∈ M and g ∈ H(M) with d(f, g) < δ, there
is y ∈ M satisfying d(fn(x), gn(y)) < ε (∀n ∈ Z). It is easy to see that
every topologically stable diffeomorphism f on M is persistent. Notice
that every pseudo-Anosov diffeomorphism f on a surface is persistent
(see [7, Corollary 3.1]) but f does not have the shadowing property so
that f is not topologically stable. These notions are independent of
metrics for M and are conjugacy invariant.

Clearly every Anosov diffeomorphism is contained in int CE(M), how-
ever, there exists f ∈ int CE(M) that is not Anosov when dimM = 3
(see [3]). In this paper, under the above notations, we have the following

Theorem 2. Let f ∈ int CE(M). Then the following conditions are
mutually equivalent.

(1) f is Anosov
(2) f is structurally stable
(3) f has the shadowing property
(4) f is topologically stable
(5) f is persistent.

Proofs of Theorems

It was also proved in [9, Theorem A] that f ∈ Diff(M) is quasi-Anosov
if and only if f satisfies Axiom A and for every x ∈ M we have
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TxW
s(x) ∩ TxW

u(x) = {0x},
where W s(x) and Wu(x) are the stable manifold and the unstable man-
ifold of x ∈ M respectively. Hereafter, let QA(M) ⊂ Diff(M) be the set
of all quasi-Anosov diffeomorphisms. As we stated before Mañé proved
that QA(M) = int E(M), and thus, to prove Theorem 1 it is enough to
show that int CE(M) ⊂ QA(M).

Our proof of this theorem rely largely on the result which was proved
by Aoki [1] and Hayashi [4] independently. Let P (f) denote the set
of all periodic points of f ∈ Diff(M), and let F(M) be the set of all
f ∈ Diff(M) having a C1-neighborhood U(f) ⊂ Diff(M) such that every
p ∈ P (g) (∀g ∈ U(f)) is hyperbolic. Then such a set was characterized
as the set of all diffeomorphisms satisfying Axiom A with no-cycles.

Theorem 1 will be proved by using the following proposition. This
result is already stated in [8, Lemma 3] for int E(M), and its proof is
almost the same as that of [2, Proof of Theorem 1]. Here we shall give
a rather simple proof for the completeness.

Proposition. The C1 interior of CE(M), int CE(M), is a subset of
F(M).

Proof: Let f ∈ int CE(M). To get the conclusion, it is enough to show
that every p ∈ P (f) is hyperbolic.

Fix a neighborhood U(f) ⊂ int CE(M) of f , and by assuming that
there is a non-hyperbolic periodic point p = fn(p), we shall derive a
contradiction. Here n > 0 is the prime period of p. The tangent space
TpM splits into the direct sum TpM = Eu

p ⊕Es
p ⊕Ec

p where Eu
p , Es

p and
Ec

p are Dpf
n-invariant subspaces corresponding to the absolute values of

the eigenvalues of Dpf
n with greater than one, less than one and equal

to one, and suppose Ec
p �= 0. Then, for every ε > 0 there exists a linear

automorphism O : TpM → TpM such that



‖O − I‖ ≤ ε,

O(Eσ
p ) = Eσ

p for σ = s, u and c,

all eigenvalues of O ◦Dpf
n
|Ec

p
are of a root of unity,

where I : TpM → TpM is an identity map. By making use of Franks’s
Lemma (see [2, Lemma 1.1]), we can find δ0 > 0 and g ∈ U(f) such that

(i) B4δ0(f
i(p)) ∩B4δ0(f

j(p)) = φ for 0 ≤ i �= j ≤ n− 1,

(ii) g(x)=f(x) for x∈{p, f(p), . . . , fn−1(p)}∪{M \∪n−1
i=0 B4δ0(f

i(p))},
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(iii) g(x) = expfi+1(p) ◦Dfi(p)f ◦ exp−1
fi(p)(x) for x ∈ Bδ0(f

i(p))
(0 ≤ i ≤ n− 2),

(iv) g(x) = expp ◦O ◦Dfn−1(p)f ◦ exp−1
fn−1(p)(x) for x ∈ Bδ0(f

n−1(p)),

where Bε(x) = {y ∈ M |d(x, y) ≤ ε} for ε > 0. Notice that g is
continuum-wise expansive.

Define G = O ◦ Dpf
n. Then there exists m > 0 and v ∈ Ec

p \ {0p}
such that ‖v‖ = 1 and Gm(tv) = tv (t ≥ 0). For a sufficently small
0 < δ1 < δ0, we have

gmn
| expp TpM(δ1)

= expp ◦ Gm ◦ exp−1
p

where TpM(δ1) = {v ∈ TpM |‖v‖ ≤ δ1}. Put vδ1 = δ1 ·v ∈ Ec
p∩TpM(δ1).

Then it is clear that

gmn
| expp vδ1

= id| expp vδ1
.

This is a contradiction since expp vδ1 is a continuum.

To prove Theorem 1 we shall prepair some notations. Let f ∈ Diff(M)
satisfy Axiom A. Thus the non-wandering set of f , Ω(f), is hyperbolic.
For any ε > 0 and for x ∈ Ω(f), the local stable manifold and the local
unstable manifold are denoted by W s

ε (x) and Wu
ε (x) respectively. We

may assume that there are ε0 > 0 and 0 < λ < 1 such that for x ∈ Ω(f)

d(fn(y), fn(z)) ≤ λnd(y, z) for y, z ∈ W s
ε0

(x),

d(f−n(y), f−n(z)) ≤ λnd(y, z) for y, z ∈ Wu
ε0

(x).

It is well known that M = ∪x∈Ω(f)W
σ(x) (σ = s, u), where

W s(x) = ∪n≥0f
−nW s

ε0
(fn(x)),

Wu(x) = ∪n≥0f
nWu

ε0
(f−n(x)).

Proof of Theorem 1: Let f ∈ int CE(M). Then f satisfy Axiom A by
the proposition. We shall show that for every x ∈ M

TxW
s(x) ∩ TxW

u(x) = {0x}.

This equality will be proved by using a standard perturbation procedure.
For f ∈ int CE(M), by assuming that there is x ∈ M \Ω(f) such that

E(x) = TxW
s(x) ∩ TxW

u(x) �= {0x}, we shall derive a contradiction.
For δ > 0, we denote the connected component of 0x in TxM(δ) ∩ E(x)
by Eδ(x). Fix any neighborhood U(f) ⊂ int CE(M) of f . Then, since
Tx expx Eδ(x) = E(x), we can construct two diffeomorhisms ϕ1, ϕ2 :
M → M such that
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


ϕi(x) = x (i = 1, 2)

ϕi|M\Bδ0 (x) = id (i = 1, 2)

ϕ1(expx Eδ0/4(x)) ⊂ W s(x), ϕ2(expx Eδ0/4(x)) ⊂ Wu(x)

f ◦ ϕ−1
1 , ϕ2 ◦ f ∈ U(f),

where 0 < δ0 < ε0 is sufficiently small. Put

g(y) =




f(y) if y /∈ Bδ0(x) ∪Bδ0(f
−1(x))

f ◦ ϕ−1
1 (y) if y ∈ Bδ0(x)

ϕ2 ◦ f(y) if y ∈ Bδ0(f
−1(x)).

Then g ∈ U(f) so that g is continuum-wise expansive with constant
e > 0. However, by the hyperbolicity, it is easy to see that there is
0 < δ < δ0/4 such that diam gn(expx Eδ(x)) < e for n ∈ Z. This is a
contradiction and so we have f ∈ QA(M).

To prove Theorem 2 we shall use the following two lemmas.

Lemma 1. Let f ∈ QA(M). Then there is a constant c > 0 and
a C1 neighborhood U(f) ⊂ Diff(M) such that for every g ∈ U(f), if
d(gn(x), gn(y)) ≤ c (n ∈ Z), then x = y.

Proof: See [13, proof of theorem].

Lemma 2. Let g : M → M be an expansive homeomorphism
with constant c > 0. Then for every α > 0, there is an integer
N = N(g, α) > 0 such that d(gn(x), gn(y)) ≤ c for all −N ≤ n ≤ N
implies d(x, y) < α.

Proof: See [10, p. 318, Lemma II].

Proof of Theorem 2: The equivalence of (1), (2) and (3) follows from
[9, Corollary 1] and [13, Theorem]. To get the conclusion it is enough to
show an implication (5) → (2) because (2) → (4) → (5) is well known.
Hereafter let f ∈ QA(M) has a persistency, and let c > 0 and U(f) be
as in Lemma 1. Fix 0 < ε < c/2 and let Uε(f) be a C0 neighborhood of
f as in the definition of a persistency.

For any g ∈ Uε(f) ∩ U(f) and x ∈ M , there is a unique point y ∈ M
such that d(fn(x), gn(y)) < ε (n ∈ Z). For, if there exists y′(�= y) ∈ M
such that d(fn(x), gn(y′)) < ε (n ∈ Z), then

d(gn(x), gn(y′)) ≤ d(gn(y), fn(x)) + d(fn(x), gn(y′)) < 2ε < c (n ∈ Z).
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Thus y = y′ by Lemma 1 and which is a contradiction.
We denote such y by hg(x) for x ∈ M . Then hg : M → M is a map

such that h ◦ f = g ◦ h. Indeed, since d(fn(x), gn(hg(x))) < ε (n ∈ Z),
we have

d(fn(f(x)), gn(hg(f(x)))) < ε for n ∈ Z

and
d(fn(f(x)), gn(g(hg(x)))) < ε for n ∈ Z.

Thus, for n ∈ Z

d(gn(hg ◦ f(x)), gn(g ◦ hg(x))) ≤ d(gn(hg ◦ f(x)), fn+1(x))

+ d(fn+1(x), gn(g ◦ hg(x))) ≤ 2ε < c.

From this h ◦ f = g ◦ h is concluded. Clearly we have d(hg(x), x) < ε for
x ∈ M .

To prove the continuity of hg, for every α > 0, let N = N(g, α) > 0 be
as in Lemma 2. Since f is uniformly continuous, there is β > 0 such that
d(x, y) < β (x, y ∈ M) implies d(fn(x), fn(y)) ≤ c−2ε for −N ≤ n ≤ N .
Thus

d(gn ◦ hg(x), gn ◦ hg(y)) ≤ d(gn ◦ hg(x), fn(x)) + d(fn(x), fn(y))
+ d(fn(y), gn ◦ hg(y)) < 2ε + d(fn(x), fn(y)) ≤ c

for −N ≤ n ≤ N . Hence we have d(hg(x), hg(y)) < α.
Since

d(fn(x), fn(y)) ≤ d(fn(x), gn ◦ hg(x)) + d(gn ◦ hg(x), gn ◦ hg(y))
+ d(gn ◦ hg(y), fn(y)) < 2ε + d(gn ◦ hg(x), gn ◦ hg(y)),

if we assume that hg(x) = hg(y), then d(fn(x), fn(y)) < c for all n ∈ Z.
Thus x = y and so f is structurally stable. The proof of Theorem 2 is
completed.
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