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CONTINUUM-WISE
EXPANSIVE DIFFEOMORPHISMS

KAZUHIRO SAKAI

Abstract

In this paper, we show that the C! interior of the set of all
continuum-wise expansive diffecomorphisms of a closed manifold
coincides with the C interior of the set of all expansive diffeo-
morphisms. And the C! interior of the set of all continuum-wise
fully expansive diffeomorphisms on a surface is investigated. Fur-
thermore, we have necessary and sufficient conditions for a diffeo-
morphism belonging to these open sets to be Anosov.

In the investigation of the structural stability of differentiable dynam-
ical systems and its relationship to the hyperbolic structure, a number
of fundamental topological properties were discovered. One of the most
important notion of the stability theory of dynamical system is an ex-
pansiveness and which is still studied by several resarchers in the context
of general topology.

Let X be a compact metric space with metric d and let f : X — X be
a homeomorphism. We say that f is expansive if there is a number e > 0
such that for every z, y € X (z # y), there is n = n(z,y) € Z satisfying
d(f™(z), f*(y)) > e, and this notion was generalized by Kato [5]. He in-
troduced a notion of continuum-wise expansive homeomorphisms there
and many theorems concerning expansive homeomorphisms were gener-
alized to the case of continuum-wise expansive homeomorphisms. We say
that f is continuum-wise expansive if there is a number e > 0 such that
for every nondegenerate subcontinuum of A C X, there isn =n(A) € Z
satisfying diam f™(A) > e. Here diam S = sup{d(z,y) : =,y € S}.
Clearly every expansive homeomorphism is continuum-wise expansive
but its converse is not true (see [5, Example 3.5]). In this paper, we
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investigate the dynamics of continuum-wise expansive diffeomorphisms
from the differentiable viewpoint.

Let M be a C* closed manifold and let Diff(M) be the space of C*
diffeomorphisms of M endowed with C* topology. Let £(M) and CE(M)
be the set of all expansive diffeomorphisms and the set of all continuum-
wise expansive diffeomorphisms in Diff (M) respectively.

Theorem 1. The C! interior of CE(M), int CE(M), coincides with
the C interior of E(M), int E(M).

The notion of quasi-Anosov diffeomorphisms on M was introduced
by Mané [9] and it was proved in [8] that f € intE(M) if and only
if f is a quasi-Anosov diffeomorphism. Clearly if f is quasi-Anosov,
then f € int CE(M). Our theorem will be obtained by showing that if
f eintCE(M), then f is quasi-Anosov.

Let (X, d) be as before and assume that X is a continuum. A home-
omorphism f : X — X is called continuum-wise fully expansive ([6])
provided that for every € > 0 and § > 0, there is a natural number
N = N(e,6) > 0 such that if A is a subcontinuum of X with diam A > §,
then either dy (f™"(A),X) < e for all n > N, or dy(f~"(A),X) < e for
all n > N. Here dy denotes the Hausdorff metric. It is clear that every
continuume-wise fully expansive homeomorphism is continuume-wise ex-
pansive but its converse is not true (see [6, Example 4.9]). Remark that
there is an example [6, Example 2.2] of continuum-wise fully expansive
homeomorphisms that is not expansive. The notion of continuum-wise
fully expansive is closely related to that of topologically mixing. Indeed,
it is proved in [6] that if f: X — X is continuum-wise fully expansive,
then f is topologically mixing.

Let we denote the set of all continuum-wise fully expansive diffeomor-
phisms of M by CFE(M) and denote by int CFE(M) its C! interior.
Then we have the following

Corollary. When dim M = 2, int CE(M) is equal to int CFE(M).

This corollary is an easy consequence of Theorem 1. Indeed, clearly
int CFE(M) C int CE(M). By Theorem 1 int CE(M) is equal to the set
of all quasi-Anosov diffeomorphisms. Since every quasi-Anosov diffeo-
morphism f is Anosov when dim M = 2 (see [9]) and since every Anosov
diffeomorphism is topologically conjugate to a hyperbolic toral automor-
phism when dim M = 2, f is continuum-wise fully expansive (see [6,
Proposition 2.4]).

Let M be as before and let d be a metric on M induced from a Rie-
mannian metric || || on TM. A sequence {z)}}_, (—00 < a < b < 00) of
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points is called a d-pseudo-orbit of f € Diff (M) if d(f(xg), xp4+1) < J for
a<k<b-—1. Givene > 0, {xk}Z:a is said to be e-shadowed by x € M
if d(f*(x), ) < € for a < k < b. We say that f has the shadowing
property if for € > 0 there is § > 0 such that every §-pseudo-orbit of f
can be e-shadowed by some point.

Let us denote by H(M) the set of all homeomorphisms of M endowed
with C° topology. We say that f is structurally stable if there is a C*
neighborhood U(f) C Diff(M) such that for every g € U(f), there is
h € H(M) satisfying goh = ho f. We say that f is topologically
stable if for every e > 0, there is a C° neighborhood U.(f) C H(M)
such that for every g € U.(f), there is a continuous map h : M — M
satisfying f o h = ho g and d(h,id) < €. We remark that since M is a
manifold, d(h,id) < e implies h(M) = M for a sufficently small €. It is
well known that every structurally stable diffeomorphism is topologically
stable ([12]) but its converse is not true, and that every topologically
stable diffeomorphism has the shadowing property ([11]). The author
do not know that whether every diffeomorphism having the shadowing
property is topologically stable (cf. [14]).

We say that f € Diff(M) is persistent ([7]) if for each € > 0, there is
d > 0 such that for every z € M and g € H(M) with d(f,g) < J, there
is y € M satistying d(f™(z), 9" (y)) < e (Vn € Z). Tt is easy to see that
every topologically stable diffeomorphism f on M is persistent. Notice
that every pseudo-Anosov diffeomorphism f on a surface is persistent
(see [7, Corollary 3.1]) but f does not have the shadowing property so
that f is not topologically stable. These notions are independent of
metrics for M and are conjugacy invariant.

Clearly every Anosov diffeomorphism is contained in int CE (M), how-
ever, there exists f € int CE(M) that is not Anosov when dim M = 3
(see [3]). In this paper, under the above notations, we have the following

Theorem 2. Let f € intCE(M). Then the following conditions are
mutually equivalent.

(1) f is Anosov
(2)
(3)
(4) f is topologically stable
(5)

f is structurally stable
f has the shadowing property

f is persistent.

Proofs of Theorems

It was also proved in [9, Theorem A] that f € Diff (M) is quasi-Anosov
if and only if f satisfies Axiom A and for every x € M we have
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T.W* (z) NTW*(z) = {0.},

where W#(z) and W"(z) are the stable manifold and the unstable man-
ifold of © € M respectively. Hereafter, let QA(M) C Diff (M) be the set
of all quasi-Anosov diffeomorphisms. As we stated before Mané proved
that QA(M) = int E(M), and thus, to prove Theorem 1 it is enough to
show that int CE(M) C QA(M).

Our proof of this theorem rely largely on the result which was proved
by Aoki [1] and Hayashi [4] independently. Let P(f) denote the set
of all periodic points of f € Diff (M), and let F(M) be the set of all
f € Diff (M) having a C''-neighborhood U(f) C Diff(M) such that every
p € P(g) (Vg € U(f)) is hyperbolic. Then such a set was characterized
as the set of all diffeomorphisms satisfying Axiom A with no-cycles.

Theorem 1 will be proved by using the following proposition. This
result is already stated in [8, Lemma 3] for int £(M), and its proof is
almost the same as that of [2, Proof of Theorem 1]. Here we shall give
a rather simple proof for the completeness.

Proposition. The C! interior of CE(M), int CE(M), is a subset of
F(M).

Proof: Let f € int CE(M). To get the conclusion, it is enough to show
that every p € P(f) is hyperbolic.

Fix a neighborhood U(f) C intCE(M) of f, and by assuming that
there is a non-hyperbolic periodic point p = f™(p), we shall derive a
contradiction. Here n > 0 is the prime period of p. The tangent space
T, M splits into the direct sum T, M = E ® E; & Ej where E, £} and
Eg are Dy, f"-invariant subspaces corresponding to the absolute values of
the eigenvalues of D, f™ with greater than one, less than one and equal
to one, and suppose EJ # 0. Then, for every € > 0 there exists a linear
automorphism O : T,M — T, M such that

10— 1] <e,

O(Ey) = Ey for o =s,uand c,

all eigenvalues of O o D,, f\%c are of a root of unity,
p

where I : T,M — T, M is an identity map. By making use of Franks’s
Lemma (see [2, Lemma 1.1]), we can find §y > 0 and g € U(f) such that

(i) Bas,(f'(p)) N Bus,(f7(p)) = for 0 <i#j<n—1,

(it) g(z)=f(x)for z&{p, f(p),... . [ () U{M\UZy Bus, (f*(p))},
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(iii) g(]é:r) = expg)ﬂ(p) oDygipyf © exp;}(p)(x) for x € Bs,(f'(p))
<i<n-—2),

(v) 9(x) = exp, 00 0 Dyuryy f 0 expyl s, (@) for z € By, (f*~(p)),
where B.(z) = {y € M|d(z,y) < ¢} for ¢ > 0. Notice that g is
continuum-wise expansive.

Define G = O o D, f". Then there exists m > 0 and v € Ej \ {0,}
such that [jv]] = 1 and G™(tv) = tv (¢ > 0). For a sufficently small
0 < 01 < &g, we have

gfﬁ;’pp T,M(6;) = €XPp © G™Mo exp;1
where T, M (61) = {v € T,M||v|| < d1}. Put vs, = d1-v € E;NT,M(d1).
Then it is clear that

mn .
g\ exp, vs; Zd\ exp, Vs, *

This is a contradiction since exp,, vs, is a continuum. B

To prove Theorem 1 we shall prepair some notations. Let f € Diff(M)
satisfy Axiom A. Thus the non-wandering set of f, Q(f), is hyperbolic.
For any € > 0 and for x € Q(f), the local stable manifold and the local
unstable manifold are denoted by W2(x) and WX (z) respectively. We
may assume that there are £9 > 0 and 0 < A < 1 such that for z € Q(f)

d(f"(y), f*(2)) < A"d(y,z) fory,z € W (x),
d(f™" (), f7"(2)) < A"d(y, 2) fory,z € Wi (z).
It is well known that M = U,copW7(x) (0 = s,u), where

W2 () = Unzof "W (f" (),
WH(z) = Unzo f" W (f 7" (2))-

Proof of Theorem 1: Let f € int CE(M). Then f satisfy Axiom A by
the proposition. We shall show that for every z € M

T.W(x)NT,W*"(x) = {0,}.

This equality will be proved by using a standard perturbation procedure.

For f € int CE(M), by assuming that there is x € M \ Q(f) such that
E(z) = T,W?3(x) N T,W¥(x) # {0}, we shall derive a contradiction.
For § > 0, we denote the connected component of 0, in T, M(§) N E(x)
by Ej(z). Fix any neighborhood U(f) C intCE(M) of f. Then, since
T, exp, Fs(x) = E(z), we can construct two diffeomorhisms @1, @9 :
M — M such that
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pi(z) =z (i=12)
Pi|M\Bsy (x) = id (i =1,2)
p1(exp, Es,a(x)) C Wo(x), @2(exp, Es,a(x)) C W*(x)
foerl paofeU(f),
where 0 < §p < g¢ is sufficiently small. Put
f) if y ¢ Bs,(x) U Bs, (f~(2))
g(y) = fowr'(y) ify€ Bsl(a)
w20 fly) ify e By (f~H(2)).

Then g € U(f) so that g is continuum-wise expansive with constant
e > 0. However, by the hyperbolicity, it is easy to see that there is
0 < § < 6o9/4 such that diam g"(exp, Fs(z)) < e for n € Z. This is a
contradiction and so we have f € QA(M). &

To prove Theorem 2 we shall use the following two lemmas.

Lemma 1. Let f € QA(M). Then there is a constant ¢ > 0 and
a C* neighborhood U(f) C Diff (M) such that for every g € U(f), if
d(g™(z),g"(y)) <c (n € Z), thenz =y.

Proof: See [13, proof of theorem|. W

Lemma 2. Let g : M — M be an expansive homeomorphism
with constant ¢ > 0. Then for every a > 0, there is an integer
N = N(g,a) > 0 such that d(g"(x),g"(y)) < ¢ for all =N < n < N
implies d(z,y) < a.

Proof: See [10, p. 318, Lemma II]. ®

Proof of Theorem 2: The equivalence of (1), (2) and (3) follows from
[9, Corollary 1] and [13, Theorem]. To get the conclusion it is enough to
show an implication (5) — (2) because (2) — (4) — (5) is well known.
Hereafter let f € QA(M) has a persistency, and let ¢ > 0 and U(f) be
as in Lemma 1. Fix 0 < € < ¢/2 and let U.(f) be a C° neighborhood of
f as in the definition of a persistency.

For any g € U(f) NU(f) and € M, there is a unique point y € M
such that d(f™(z),¢"(y)) < e (n € Z). For, if there exists y'(# y) € M
such that d(f"(x),9"(y")) < e (n € Z), then
<

(
(g™ (), 9" (") < d(g" (y), ["(x)) + d(f"(2), 9" (¥)) < 2e <c (n € Z).
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Thus y = 3/ by Lemma 1 and which is a contradiction.

We denote such y by hy(x) for x € M. Then hy : M — M is a map
such that h o f = g o h. Indeed, since d(f"(x), 9" (hg(x))) < e (n € Z),

we have

d(f"(f(x)), 9" (he(f(2)))) < e forn € Z

and
d(f"(f()),g"(g(hy(x)))) < e for n € Z.

Thus, forn € Z

d(g" (hg o f(2)), 9" (g0 hy())) < d(g" (hg o f(x)), f"(x))
+d(f" (), 9" (g0 he(2))) < 26 <c.

From this ho f = go h is concluded. Clearly we have d(h,(z),z) < ¢ for
ze M.

To prove the continuity of hg, for every a > 0, let N = N(g,a) > 0 be
as in Lemma 2. Since f is uniformly continuous, there is § > 0 such that
d(z,y) < 8 (x,y € M) implies d(f"(x), f"(y)) < ¢—2ecfor —N <n < N.
Thus

d(g" o hg(x),g" o hy(y)) < d(g" o hy(x), f(x)) +d(f"(x), " (v))
+d(f"(y), 9" 0 hg(y)) <2e+d(f"(z), " (y)) < ¢

for =N <n < N. Hence we have d(hy(x),hy(y)) < c.

Since

d(f"(z), f"(y)) < d(f"(z),9" o hy(x)) + d(g" o hy(x), g™ o hy(y))
+d(g" o hg(y), " (y)) < 26 +d(g" o hy(z), 9" o hy(y)),

if we assume that hg(x) = hy(y), then d(f™(x), f*(y)) < c for all n € Z.
Thus x = y and so f is structurally stable. The proof of Theorem 2 is
completed. W
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