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Abstract. We propose a distributed scheme called Adaptive-Group-

Merge for sensor networks that, given a parameter k, approximates a
geometric shape by a k-vertex polygon. The algorithm is well suited to
the distributed computing architecture of sensor networks, and we prove
that its approximation quality is within a constant factor of the optimal.
We also show through simulation that our scheme outperforms several
other alternatives in preserving important shape features, and achieves
approximation quality almost as good as the optimal, centralized scheme.
Because many applications of sensor networks involve observations and
monitoring of physical phenomena, the ability to represent complex geo-
metric shapes faithfully but using small memory is vital in many settings.

1 Introduction

We consider the problem of approximating polygonal paths and cycles in the
context of a sensor network. The problem of representing complex geometric
shapes using small memory is fundamental in many sensor net applications:
sensor networks observe, measure, and track physical phenomena, which often
involves representing and communicating a geometric shape. The problem arises,
for example, in the application of computing contour lines on a field of sensor
measurements [8]. Suppose that a geographically distributed set of sensors mea-
sures some physical parameter, say temperature, that varies smoothly over the
sensor region. An analyst is interested in the rough shape of the temperature dis-
tribution, but does not care about the exact values measured by all the sensors.
A collection of isocontours—cycles along which the measured and interpolated
sensor values are constant—can be a useful summary of the distribution.

Contour lines reduce the data to be reported from two dimensions (the full set
of sensors) to one dimension (dependent on only those sensors near the contour).
However, even this reduction may not be enough. Communication is arguably
the most important resource in a sensor net, and a one-dimensional contour
whose feature size depends on the spacing of the sensors may contain too much
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data to send through the network back to the analyst. Therefore, it is important
to consider methods for simplifying a one-dimensional contour that approximate
the original data well and can be computed by a distributed network.

We use “contour approximation” as a guiding application, but our treatment
of the problem is at an abstract level: distributed algorithms to compute a
bounded-memory approximation of a polygonal curve embedded in a sensor field.
Because sensor networks are envisioned as distributed “spatial instruments” that
take measurements in a physical space but have limited resources (bandwidth,
power, etc.), the ability to represent complex geometric shapes faithfully but us-
ing small memory is vital to sensor networks. In particular, significant improve-
ment in system lifetime is possible if the network performs local computation to
build compact approximations instead of sending the entire raw data to a cen-
tralized location. Indeed, a number of techniques have been proposed recently
for “in-network aggregation” of sensor data [8, 12, 16]. The focus of these papers
is on numerical summaries, such as min, max, average, or median, while the
main focus of our paper is a fundamental form of spatial summary. Imagine, for
instance, a physical phenomenon, such as a structural fault, that is evolving with
time, and an analyst who wants to receive a periodic snapshot of the general
shape of the phenomenon. Another possible application is building a compact
representation of the boundary of the entire sensor field, which can be broadcast
efficiently throughout the network so that each node knows the overall geograph-
ical coverage of the system. Awareness of the sensor field’s shape can be useful in
data storage schemes like Geographical Hash Tables (GHT) that associate data
with geometric locations.

The problem of contour approximation was considered by Hellerstein et al. [8]
in a sensor net setting. They proposed an algorithm in which a contour is initially
approximated by its axis-aligned bounding box, and then the approximation is
successively refined. At each step the approximate polygon encloses the origi-
nal contour. Each refinement step deletes from the current approximation the
maximum-area rectangular notch that lies outside the original contour. The re-
finement stops when the approximating polygon reaches some target complexity
(number of vertices). This approach, while a useful heuristic, has several liabili-
ties: (1) the restriction to rectangular approximation imposes an axis-dependence
where none is required by the data; (2) the greedy maximization of area removed
at each step does not ensure that the approximating polygon is near the origi-
nal; and (3) the algorithm is a heuristic, with no proof of approximation quality.
In [17], Singh, Bakshi, and Prasanna consider the problem of producing topo-
graphic maps over a sensor field using a quadtree-based approach, but they do
not focus on constructing a compact representation of the map.

Approximating polygons is a fundamental problem that has been considered
in many fields, including geographic information systems (GIS), computer vision,
and computational geometry. In these settings the computational model favors
centralized computation, in which all the input data are available to a single
computational engine. Performance is measured in terms of approximation qual-
ity (in any of a variety of metrics) and running time/memory usage as a function
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of the input size n and the output size k. Typical algorithms include dynamic
programming (which can optimize most metrics in roughly O(n2k) time [10,
Chapter 3]) and the Douglas–Peucker algorithm (which provides good practical
approximation quality in O(n log n) time [4, 9]). Because of the centralized com-
putation requirement, however, these algorithms are ill-suited for use in a sensor
net setting without significant adaptation.

Our Contribution

We make the following contributions in this paper: (1) We propose a new dis-
tributed algorithm, called Adaptive-Group-Merge (AGM), for polygon ap-
proximation with a worst-case constant factor approximation guarantee. (2) We
develop a distributed wavelet-based scheme as a natural, simple alternative to
AGM. (3) We show through simulation that AGM significantly outperforms
the wavelet scheme in approximation quality. (4) Our experiments show that, in
fact, AGM performs almost as well as the centralized, dynamic-programming-
based optimal scheme. Thus, our new scheme is able to combine the virtues of
the two extreme alternatives: it delivers the approximation quality of the cen-
tralized optimal scheme, but it incurs a computational and communication cost
comparable to the wavelet scheme.

One of the most attractive features of our algorithm is its locality, which
makes it highly suitable for heterogeneous multi-tiered sensor architectures,
such as Tenet [7, 19]. These networks include a small number of high-powered
(tier 1) nodes that act as clusterheads for many low-powered, mote-caliber
(tier 2) devices. The motes simply collect and send their data to a neighbor-
ing clusterhead—the application software runs only on the tier 1 nodes. Us-
ing AGM, each tier 1 node can approximate its own portion of the contour
without jeopardizing the global approximation quality. These partial contour ap-
proximations then can be exchanged among the tier 1 nodes to compute the
final approximation. By contrast, centralized schemes such as dynamic pro-
gramming or Douglas-Peucker require global knowledge of the data to decide
which portions of the contour to keep, and thus are not amenable to distributed
computation.

2 Preliminaries

We make the following assumptions about the sensors in the network: each sen-
sor has a fixed radio range r, it knows its geographical location by using some
localization technique [1, 14] and every sensor knows its neighbors’ positions
(other sensors within a circle of radius r). These assumptions, though some-
what idealized—radio ranges are not disks in practice [11, 20], and localization
is nontrivial—are fairly standard in sensornet research, and allow us to focus on
the approximation problem of interest. At the same time, we make no assump-
tions about the distribution of sensors in the field, or the shape of the field, so
our results apply to an arbitrary collection of sensors.
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Many different metrics have been used to measure the quality of a polyg-
onal approximation. Two common choices are the Lp metrics and the Haus-
dorff metric. Given a polygonal curve S (a polyline) whose vertex sequence is
(p1, p2, . . . , pn), let A = (a1, a2, . . . , ak) be a k-point approximation of S. To
measure the approximation using the Lp metric, let S′ = (p′1, p

′
2, . . . , p

′
n) be the

points on the polyline A closest to the corresponding vertices of S. Define the
point coordinates to be pi = (xi, yi) and p′i = (x′

i, y
′
i). Then the Lp approxima-

tion error of A is

εp ≡ ||S − S′||p ≡

(

∑

i

(|xi − x′
i|

p + |yi − y′
i|

p)

)1/p

.

In particular ε2 is the Euclidean mean squared error and ε∞ is the maximum
error. To define the Hausdorff approximation error, let d(p, Q) be the minimum
Euclidean distance from a point p to a polyline Q. Then the Hausdorff distance
between S and A is

H(S, A) ≡ max( max
0≤i<n

d(pi, A), max
0≤j<k

d(aj , S)).

Given the above definition of the distance d(p, Q) between a point p and a
polyline Q, we can think of the Haussdorff error as follows. The Hausdorff error
between two polylines is the maximum distance of a point on either of the two
polylines from the other polyline.

We will evaluate the efficiency of our algorithms primarily in terms of total
communication complexity (also known as message complexity). If an algorithm
requires N message transmissions, with each message of size m, then the com-
munication complexity of the algorithm is defined to be O(Nm). We will also
consider total work (the sum over all processors of the running time they use)
and overall running time (the elapsed time between the start and end of an algo-
rithm). Overall running time helps us measure how much of the computational

parallelism present in a sensor network we are able to exploit.
We assume that the isocontour (or the shape) to be approximated is already

available to the network. The problem of determining an isocontour from raw
sensor data is a well-studied problem, and many (distributed) algorithms are
available. An interested reader may consult [3, 15, 17] for various approaches
to constructing the contour boundary. Thus, we assume that a subset of the
sensors, namely, s1, s2, . . . , sn, collectively stores the detailed representation of
the isocontour, and the goal of our algorithm is to build a provable-quality
approximation that fits in a given memory size. There has not been significant
previous work on this data reduction aspect of isocontour construction.

3 Algorithms for Shape Approximation

We assume that the isocontour to be approximated is a polygonal curve embed-
ded in the two-dimensional plane, and a sequence of sensor nodes s1, s2, . . . , sn
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Fig. 1. Boundary estimation from sen-
sor values

Fig. 2. Low approximation quality us-
ing bounding box or convex hull

collectively stores the contour. Specifically, each node si stores a consecutive sub-
sequence of the contour polygon so that the concatenation of the chains stored
at nodes s1, s2, . . . , sn results in the full contour. We allow each sensor node to
contribute arbitrarily complex portions of the isocontour because, in general,
sensors can use complex and collaborative algorithms to compute the contour
boundary. As an example (see Fig. 1), the contour detection algorithm may use
interpolation to decide that the points A, B, C and D lie on the contour. Points
A and B may be stored at node u, while C and D may be stored at node v. In
order to keep the presentation of our algorithm simple, however, we will assume
that each sensor si has only one vertex pi of the contour. (The location of the
contour vertex pi does not necessarily coincide with the sensor si.) However,
it will be clear from the description that our algorithm extends easily to the
general case where each sensor may store a contiguous portion of the contour
boundary.

We assume that adjacent sensor nodes storing the contour boundary are
within the communication range of each other; that is, each node si is within
one hop of si−1 and si+1. Given a user-specified parameter k, where typically
k ≪ n, we wish to compute a k-vertex approximation of S. Of course, a trivial
approach is to communicate all the vertices of S to a central node, and build
the approximation there. This scheme, however, has message complexity Θ(n2),
and we seek more efficient alternatives.

In the following three subsections, we describe contour approximation schemes
with which we will compare our new scheme Adaptive-Group-Merge. In Sec-
tion 3.1, we briefly mention two näıve schemes, which are simple to compute but
are too crude to be useful. In Section 3.2, we design a distributed two-dimensional
wavelet-based scheme that takes advantage of the signal compression abilities of
wavelets. This scheme is easy to implement in the distributed environment of the
sensor network, though it lacks good theoretical bounds on the approximation
quality. In Section 3.3 we describe a dynamic programming based algorithm that
can compute an optimal contour approximation. The dynamic programming al-
gorithm gives optimal approximation, but requires centralized computation, and
so is ill-suited for an efficient implementation in sensor networks. It serves, how-
ever, as the ultimate benchmark for approximation quality.

3.1 Bounding Boxes and Convex Hulls

One of the simplest representations of any polygon is its bounding box, the small-
est axis-aligned rectangle containing the polygon. The bounding box of S can be
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computed with O(n) message complexity and time. Another simple representa-
tion is the convex hull of the polygon vertices, which can be computed exactly
with O(n2) message complexity, or approximated to within any fixed relative
error with O(n) message complexity (using an approximation technique due to
Dudley [2, 5]). These approximations can be very poor, as shown in Fig. 2: they
are too coarse, fail to highlight significant boundary features, and may lose im-
portant topological properties—the approximations of widely separated contours
may intersect (Fig. 2, right side).

3.2 Wavelets

Wavelet transforms [13] have been used extensively in signal processing, image
analysis and database operations. They represent a signal as a linear combi-
nation of normalized wavelet basis functions. A wavelet transform takes a one-
dimensional signal sampled at n points {f1, f2, . . . , fn} and outputs n coefficients
{c1, c2, . . . , cn} for a given set of basis functions. Given a parameter k < n, we
construct a size-k approximation of the signal by retaining just the k coeffi-
cients with largest absolute magnitudes, and truncate the rest to zero. Let c̃

and f̃ , respectively, denote the approximate wavelet coefficient vector and the
reconstructed signal. Then the L2 error of the approximation is given by

∑

i

(fi − f̃i)
2 =

∑

i

(ci − c̃i)
2 =

∑

i∈truncated

c2
i .

We now describe a natural way to use wavelets for approximating a polygon
embedded in the two-dimensional plane, and a distributed scheme to imple-
ment it. Suppose the coordinates of a point pi are given by (xi, yi). We de-
compose S into two vectors Sx and Sy such that Sx = (x1, x2, . . . , xn), Sy =
(y1, y2, . . . , yn). We carry out independent wavelet transforms on Sx and Sy,
and achieve a compact representation of the curve by keeping only the k most
important wavelet coefficients. We can implement this computation in a dis-
tributed fashion, with every sensor forwarding a single message to its neighbor
in the sequence. The message from si to si+1, which has size O(k + log i) for
the specific case of Haar wavelets [6], contains the top k wavelet coefficients
of the sequence p1, p2, . . . , pi. Sensor si+1 integrates its own coordinates into
the wavelet transform and forwards the new message to si+2 and so on. Sen-
sor s1 initiates the computation and when the message reaches sn the algo-
rithm terminates. Summing up the message sizes

∑

i(k + log i), we see that
the total communication complexity of the Distributed-Wavelet algorithm
is O(n(k + log n)).

Unfortunately, this algorithm does not exploit the parallelism available in the
sensor network. In the full version of this paper, we describe a pipelined version
of the distributed wavelets algorithm that completes the computation in optimal
O(n) time. We state this as a theorem.

Theorem 1. There is a distributed implementation of the two-dimensional

Haar wavelet approximation that takes O(n) time, with total communication

complexity O(nk + n logn).
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Two key disadvantages of the wavelet representation of a polygon are that it
tries to minimize L2 error, rather than the more important Hausdorff error, and
it uses a fixed, nonadaptive set of basis functions. In Section 5, we will show
some examples where these disadvantages lead to very poor approximations.
This motivates us to consider approximation schemes that attempt to minimize
the Hausdorff error.

3.3 Optimal Approximation Using Dynamic Programming

Our goal is to partition the polygonal curve S = {p1, p2, . . . , pn} into k fragments
S1, S2, . . . , Sk, with associated approximating line segments A1, A2, . . . , Ak. Each
fragment consists of a subsequence {pi, pi+1, . . . , pj} of S, with consecutive frag-
ments sharing a common vertex. Each fragment and its approximating segment
have an associated error value, and the error of a partition is the maximum er-
ror over all fragments in the partition. An optimal partition OPT k(S) is defined
as a partition Q(S) such that the error is minimum over all possible partitions
of S. If the optimum approximating segment for a fragment depends only on
the points of the fragment, then an optimal partition OPT k(S) can be com-
puted using dynamic programming as follows. Let T be a k × n table, where
T (α, j) contains the optimal (minimum) error for approximating the polygo-
nal curve {p1, p2, . . . , pj} using α segments, where α ≤ k. We wish to com-
pute T (k, n). The key insight is that the optimal α-segment approximation of
{p1, . . . , pj} consists of two pieces: the optimal (α − 1)-segment approximation
of a prefix curve {p1, . . . , pi} for some i < j, and a single approximating seg-
ment for the fragment {pi, pi+1, . . . , pj}. This leads to the following recurrence:

T (α, j) = min
1≤i<j

max (T (α − 1, i), e(i, j)), (1)

where e(i, j) is the error of the optimum single-segment approximation for {pi,
pi+1, . . . , pj}.

We fill in the entries of T in increasing order of α, and for each α in order
of increasing j. Since the table has nk entries and computing each entry using
Eqn. 1 takes O(n) time, the dynamic program runs in O(n2k) time once the
e(i, j) values are known. The general recurrence of Eqn. 1 can be used to com-
pute optimal approximations under several different error metrics. We use the
following two in this paper:

1. Fixed-Segment Error : A fragment Sα = {pi, . . . , pj} is approximated by the
line segment pi, pj. The error e(i, j) is defined to be the maximum distance of
any point in the fragment from pi, pj, which is nothing but the Hausdorff error.

2.Floating-SegmentError :A fragmentSα = {pi, . . . , pj} is approximatedbythe
bisector of the minimum bounding rectangle (MBR) of the points in the fragment.
The error e(i, j), the maximum distance between any point of S and the approxi-
mating segment, is half the width of the MBR, which is also the width of Sα.

The floating segment model allows the approximating polygon to use arbitrary
points in the plane as vertices, which can potentially improve the approximation
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quality. However, the approximating segments for neighboring fragments do not
necessarily meet at a common point, and so additional segments may be needed
to patch them into a connected polyline.

A third approximation model, which we may call the Min-Link model, allows
the approximating polygon to use arbitrary vertices (not just vertices of S),
but requires the approximating segments for neighboring fragments to share a
common vertex. The optimum approximation for the Min-Link model cannot

be computed by dynamic programming, because the optimum approximating
segment for a fragment depends on points outside the fragment. Nevertheless,
the optimum k-segment approximation under the floating-segment model has
error no larger than the optimum k-segment Min-Link approximation (which
has half as many vertices).

4 Adaptive-Group-Merge (AGM): Provable-Quality
Contour Approximation

We now describe the main result of this paper: a new, efficient, distributed con-
tour approximation algorithm that delivers a worst-case guarantee on the ap-
proximation quality. In particular, we show that whatever approximation quality
the optimal (centralized) scheme achieves with k segments, our algorithm is able
to achieve that with at most 2k segments.

We prove this guarantee using the Floating-Segment model of error, described
in the previous section. That is, given an input polyline S, we consider an ap-
proximation A consisting of k possibly-disconnected segments. The polyline S
is partitioned into k polyline fragments S1, . . . , Sk, each associated with an ap-
proximating segment Ai. The Hausdorff distance between Si and Ai is εi, and
the maximum εi over all i is the error ε of the approximation A. Because the
segments of A are independent of each other, the error εi depends only on Si. By
choosing Ai to be the bisector of the MBR of Si, we achieve error εi equal to half
the width of the fragment Si. (The width of a set is the minimum separation
of two parallel lines that sandwich the set between them. The approximating
segment Ai lies parallel to and halfway between these lines.)

Let us define the width of a partition of S into fragments to be the maximum
width of a fragment Si. Let us denote a partition of S by Q(S), and its width
by width(Q(S)). We call a partition optimal if it has the minimum width among
all partitions of size k and denote it by OPTk(S).

In order to reason about the approximation quality of a partition, we define
the min-merge property. A partition Q(S) has the min-merge property if merging
any two adjacent fragments results in a fragment with width at least as large as
width(Q(S)).

One algorithm that produces a partition with the min-merge property is
Greedy-Merge: starting with the trivial partition of S into n segments (all
fragments with zero width), repeatedly merge the adjacent pair of fragments
whose merge product has minimum width, until the partition consists of k frag-
ments. It is easy to prove by induction that this algorithm produces a partition
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with the min-merge property. Likewise, applying Greedy-Merge to a partition
with the min-merge property preserves the property. However, Greedy-Merge

is not the only way to produce a partition with the min-merge property, as we
will see.

We now argue that any partition into 2k fragments with the min-merge prop-
erty has width no greater than that of OPT k(S).

Lemma 1. Let Q(S) be a partition of the path S into 2k fragments that has the

min-merge property. Then width(OPT k(S)) ≥ width(Q(S)).

Proof. Any partition of S into k fragments splits at most k − 1 fragments of
a 2k fragment partition. Therefore Q(S) will have at least k + 1 of its frag-
ments unsplit. By the pigeonhole principle, there exists some fragment Si of
OPTk(S) that contains at least two unsplit fragments of Q(S). By definition,
width(OPT k(S)) ≥ width(Si), which is in turn at least as large as the the width
of the union of the two unsplit fragments. By the min-merge property, this is at
least width(Q(S)).

The preceding lemma assumes that S is a path, with distinct endpoints p1 and
pn. If S is in fact a cycle, as in an isocontour application, then the proof can
be modified to show that width(OPTk−1(S)) ≥ width(Q(S)). This difference in
approximation quality between paths and cycles is minor, and we will ignore it
in the remainder of this paper.

The Greedy-Merge algorithm maintains the min-merge property, as noted
above. However, implementing Greedy-Merge in a distributed setting would
require global minimization at each step, and thus would suffer from a serializa-
tion bottleneck. We propose an alternative hierarchical merging algorithm, and
prove that it also preserves the min-merge property.

In the Adaptive-Group-Merge algorithm we divide the original curve S
into n/k groups, each with k fragments of size 1 each. The total number of
fragments is n. The algorithm proceeds in rounds that reduce the number of
groups, maintaining the invariant that each group contains k fragments. In each
round we split the current sequence of g groups into ⌊g/2⌋ disjoint pairs of
adjacent groups (possibly with one group left over unpaired). For each pair we
combine the two groups into one group of 2k fragments, then run Greedy-

Merge on the combined group until the total number of fragments is k. We
repeat this for log(n/k) rounds until the total number of fragments is k.

For this algorithm to work we need to argue that each of the groups it produces
has the min-merge property. This is true for the initial groups of segments; the
following lemma establishes the fact inductively.

Lemma 2. Let Q and Q′ be two adjacent groups of fragments of S, each con-

taining k fragments and each with the min-merge property. If we apply Greedy-

Merge to the union of Q and Q′ until k fragments remain, the resulting group

has the min-merge property.

Proof. Without loss of generality assume width(Q) ≥ width(Q′). It follows that
width(Q ∪ Q′) = width(Q). As long as the min-merge property does not hold,
Greedy-Merge produces fragments with width less than width(Q).
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Thus the min-merge property starts to hold just before Greedy-Merge first
produces a fragment with width at least width(Q). In particular, if Greedy-

Merge produces a fragment that includes two original fragments of Q, the
min-merge property must have held prior to that round of Greedy-Merge.
After k + 1 rounds of Greedy-Merge, at least k + 2 fragments of Q ∪ Q′ are
contained inside Greedy-Merge products, including at least two fragments
from Q. Thus the min-merge property holds after k rounds of Greedy-Merge,
if not before.

If n is not a multiple of k, at least one of the original fragment groups does not
have k members, violating the precondition of Lemma 2. However, this is easy
to overcome: to take up the slack we create one group of segments with size s
in the range k ≤ s < 2k, and greedily merge it to size k before the main AGM

algorithm begins.
To implement this algorithm in a distributed fashion, we need to keep track of

the widths of the new fragments after every merge operation. The simplest way
to achieve this is to maintain the convex hull of the points in each fragment [18].
When two neighboring fragments are merged, the convex hull of the resulting
fragment is the convex hull of the union of the convex hulls of the old fragments.
Thus when a merge operation occurs, the merging fragments need to exchange
information about their individual convex hulls.

In the worst case the convex hull of n points can have Θ(n) vertices. This
would give a message complexity of Θ(n2 log(n/k)) for AGM, which is more
than we would like. Fortunately, we can approximate each convex hull H using
only a constant number of points [2, 5], such that the width of the approximation
satisfies

(1 − δ)width(H) ≤ width(approx (H)) ≤ width(H)

for any desired 0 < δ < 1. This degrades the approximation quality of the result
by a small relative error, but allows the algorithm to run much faster. (The proof
of correctness appears in the full paper.)

Using this convex hull approximation, we can implement the Greedy-Merge

algorithm on each group of 2k fragments by sending all the fragment data (of
total size O(k)) to a coordinator node within the group, and let it run Greedy-

Merge locally. If the group encompasses N segments of S, this takes O(kN)
message complexity and O(N) time. Summing over all groups in all rounds of
the algorithm, we get total message complexity O(kn log(n/k)) and total time
O(n). Putting it all together, we have the following theorem:

Theorem 2. Given an n-vertex polyline stored in a neighbor-connected sequence

of sensors, the algorithm Adaptive-Group-Merge computes an approxima-

tion by k segments whose approximation error is at most (1 + δ) times the error

of the optimum approximation by k/2 segments, for any 0 < δ < 1. The algo-

rithm has total message complexity O(kn log(n/k)) and total running time O(n),
with the constant factor dependent on δ.

The Adaptive-Group-Merge algorithm’s approximation of S consists of k
disconnected segments: adjacent segments do not necessarily meet. Thus the
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output is neither a polygon, nor directly comparable with other schemes like
wavelets or Douglas–Peucker, because k disjoint segments require 2k vertices to
describe the output. Of course, we could simply join each pair of adjacent seg-
ments, but that näıve scheme always produces a (2k−1)-segment approximation.
In practice this may be improved: whenever joining two consecutive segments at
the intersection of their supporting lines would not degrade the local approxima-
tion quality beyond the worst-case bound for the whole partition, we can omit a
connecting segment. Our simulation results (cf. Section 5) show that indeed the
size of the resulting polyline approximation remains close to k.

Note that the best polyline approximation by k segments has error at least
as large as the error of the best approximation by k disconnected segments.
This allows us to convert the Floating-Segment approximation guarantees of
this section to bounds in the Fixed-Segment or Min-Link models, with the loss
of another worst-case factor of two.

5 Experiments and Results

In this section we experimentally demonstrate the quality of approximations
obtained by Distributed-Wavelet and Adaptive-Group-Merge. We use
dynamic programming as the optimal reference approximation.

The implementation of Adaptive-Group-Merge computes an approxima-
tion by k disconnected segments, then heuristically reduces the number of ver-
tices in the final approximation by linking consecutive segments at the intersec-
tion of their supporting lines whenever that does not increase the error of the
overall approximation. In our experiments we found that this heuristic reduced
the size of the final approximation from 2k vertices to around 1.2k.

Our implementation does not use the Dudley approximation [2, 5] as described
in Section 4, because we did not want to introduce another parameter into the
experimental setup. We computed the width based on the full convex hulls of
the fragments. Using the Dudley approximation might degrade our approxi-
mation quality slightly. Interestingly enough, the full hulls were very small in
practice—none contained more than eight vertices. This suggests that a practi-
cal implementation should be coded with a threshold, so that it uses the Dudley
approximation only when the true convex hull has too many points.

We believe that the key measure of approximation quality in practice is the
error associated with a given output size. Thus when we compare AGM against
other algorithms whose output size is fixed, we choose an input parameter k
for AGM that produces the same output size. In a practical setting, the user
would specify an input parameter k, with the knowledge that the output will
contain slightly more than k vertices. Because the algorithms produce polylines
as output, we use dynamic programming with the Fixed-Segment error as our
benchmark of quality.

In the following subsections we first compare the approximation performance
of the three algorithms, then give a few brief vignettes focused on the approxi-
mation behavior of individual algorithms.
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Wavelets Adaptive-Group-Merge Dyn Program

Fig. 3. Approximations for the Lake Superior dataset. The top row shows outputs for
k = 8, the bottom row for k = 16.

5.1 Overall Approximation Quality

We compare the approximation performance of the algorithms on a GIS data set
that digitizes the boundary of Lake Superior into 1024 points. Fig. 3 shows the
approximations obtained with k = 8 and 16. Because wavelets aim to minimize
L2 error, the wavelet approximations cut off the extreme points and round them
out. Adaptive-Group-Merge does better, and the dynamic programming ref-
erence algorithm gives the best results, as expected. The trend was similar for
other data sets (Lake Huron boundary and Death Valley), and values of k rang-
ing from 8 to 64.

Next we show the approximations obtained by Adaptive-Group-Merge on
GIS datasets digitizing the boundaries of India and England into 1383 and 1213
points respectively. Fig. 4 shows the approximations obtained with k = 32, 48
and 64 points for both these boundaries. Adaptive-Group-Merge captures
these complex boundaries faithfully using a relatively small amount of memory;
approximation quality improves as k increases.

Next we evaluate quantitatively the approximations that are obtained by the
three schemes. We measure the algorithms using the Hausdorff error and the
relative area error εA we define as follows: if Adiff is the area of the symmetric
difference between the regions enclosed by the original and approximate curves,
and AS is the area enclosed by the original curve, then εA = Adiff /AS . We again
work with the Lake Superior dataset to analyze the approximation performance
of the three algorithms. In Figs. 5 and 6 we show the Hausdorff and εA errors
respectively. Adaptive-Group-Merge consistently and significantly outper-
forms wavelets, and is typically very close to the optimal dynamic programming
solution. Results for the L1 and L2 metrics were intermediate between those for
the Hausdorff and εA errors.
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k=32 k=48 k=64

Fig. 4. AGM approximates complex shapes faithfully. The first row shows approxi-
mations for the boundary of India, and the second row shows approximations for the
boundary of England.
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5.2 Wavelets and the Effects of Sparse Sampling

Because wavelet approximations try to minimize mean squared error instead of
maximum error, they can miss some important features, as illustrated in Fig. 7.
The figure shows a hand-crafted point set of size 64 and the 8 point approxima-
tions obtained by Distributed-Wavelet (Fig. 7(a)) and Adaptive-Group-

Merge (Fig. 7(b)). The wavelet approximation tends to weigh all 64 points in
the original curve equally, and so large errors for a few extreme points are offset
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Fig. 7. Bad approximation by wavelets in low density regions

by small errors for the rest of the points. On the other hand the Adaptive-

Group-Merge algorithm seeks to minimize maximum error and thus produces
a much more acceptable approximation. This shortcoming of wavelet approxi-
mations is seen in more realistic data sets as well.

5.3 Approximation Quality in Theory and Practice

Although our primary concern is approximation quality as a function of the
number of vertices in a polyline approximation, our provable quality bounds in
Section 4 use the Floating-Segment error. We compared the Hausdorff errors of
Adaptive-Group-Merge and dynamic programming in the Floating-Segment
model to see how tight our bounds are. See the table below for the numerical
results on the Lake Superior data set. As predicted, Adaptive-Group-Merge

results for k segments are somewhat worse than the optimum k-segment approx-
imation, but better than the optimum (k/2)-segment approximation.

# segments Adaptive-Group-Merge Optimum
8 15.8 13.3
16 7.43 5.14
32 3.27 2.39
64 1.33 1.01

6 Discussion

Reflecting on our simulation results, it seems clear that approximation quality
improves markedly as an algorithm pays closer attention to the geometry of the
shape. The wavelet algorithm uses a “generic” form of compression to reduce
the representation size, which tends to treat all vertices the same. This has the
virtue of simplicity, but often leads to poor approximation.

We also considered the Douglas–Peucker polygon simplification algorithm [4],
which is popular in geographical information systems (GIS), computational ge-
ometry, and computer graphics. This is a greedy scheme that starts with a
coarse representation (say, the four extreme vertices) then successively refines it
by adding a new line segment at each step. At each step, the algorithm adds seg-
ments to the vertex that is farthest from the current approximation. In typical
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GIS applications, the refinement continues until the maximum distance between
the approximation and the input polyline drops below a specified threshold. In
our setting, the termination occurs when the approximation reaches k vertices.

By design, the Douglas-Peucker scheme has a centralized flavor: at each step,
it requires global computation to determine the vertex of the contour that is far-

thest from the current approximation. We have developed distributed variants of
Douglas-Peucker, but decided to emphasize Adaptive-Group-Merge (AGM)
for several reasons. First, much of the simplicity and computational efficiency
of Douglas-Peucker is lost in adapting it to a distributed environment. Second,
while it generally yields good approximations in practice, Douglas-Peucker does
not have a good worst-case theoretical guarantee, while AGM does. And, fi-
nally, our experiments showed that distributed AGM produces approximations
at least as good as the centralized versions of Douglas-Peucker, and hence we
expect AGM to be the algorithm of choice in distributed settings.

By design, AGM is well-tailored for distributed environments. The localized
nature of AGM allows the algorithm to carry out contour data reduction in-

dependently at nodes. In particular, if consecutive portions of the contour are
available at m different nodes, then each node can reduce the contour size to O(k)
through entirely local processing, without risking global approximation quality.
Thus, AGM may be especially well-suited for heterogeneous multi-tiered archi-
tectures like Tenet [7] where clusterhead nodes will aggregate data from nearby
motes, and the application software will run only on clusterheads.

AGM guides its approximation by discarding those vertices whose removal
leads to least increase in the error, and thus pays close attention to local fea-
tures of the input—a long sequence of nearly collinear points may get replaced
by just the endpoints, while peaks are preserved. We find it encouraging that
(1) such a locally adaptive scheme yields a worst-case approximation guarantee,
which others including wavelets and Douglas–Peucker do not; (2) even though
AGM is limited by being tailored to the distributed architecture of sensor net-
works, it outperforms both wavelets and Douglas–Peucker in the quality of its
approximation; and (3) in most cases, AGM performs almost as well as the
optimal dynamic programming scheme (which is both centralized and slow).
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