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Abstract

We present a novel categorical object detection scheme

that uses only local contour-based features. A two-stage,

partially supervised learning architecture is proposed: a

rudimentary detector is learned from a very small set of

segmented images and applied to a larger training set of un-

segmented images; the second stage bootstraps these detec-

tions to learn an improved classifier while explicitly training

against clutter. The detectors are learned with a boosting

algorithm which creates a location-sensitive classifier us-

ing a discriminative set of features from a randomly chosen

dictionary of contour fragments. We present results that are

very competitive with other state-of-the-art object detection

schemes and show robustness to object articulations, clut-

ter, and occlusion. Our major contributions are the appli-

cation of boosted local contour-based features for object

detection in a partially supervised learning framework, and

an efficient new boosting procedure for simultaneously se-

lecting features and estimating per-feature parameters.

1. Introduction

We address the problem of general visual object recog-

nition. The aim is to learn from a small set of training im-

ages a class-specific model for automatic object detection

in novel images, where the term detection includes both im-

age classification and object localisation. In this paper we

present a new approach to detection, and demonstrate excel-

lent results for both rigid and articulated classes of objects

(see figure 6).

We follow many recent recognition papers (e.g. [6, 1, 5])

in using a collection of parts to model the object class,

accounting for within-class variations in appearance and

shape somewhat independently, and increasing model flex-

ibility while decreasing training data requirements. In con-

trast to many existing systems, however, our model copes

efficiently with a large number of parts enabling the use

of an over-complete model: the in-built redundancy en-

sures tolerance to within-class variations (different individ-

uals, body configurations, facial expressions), imaging con-

ditions (different lighting, occlusion, clutter, slight varia-

tions in pose), and failures of local feature detectors.

Much recent work has concentrated on texture-based

features localised with generic interest-point detectors, and

while results indicate the discriminative power of texture,

these features can only be detected repeatably on the ob-

ject interior, and so cannot effectively exploit the extremely

powerful recognition cue of contour.

As humans we are more than capable of recognising a

wide variety of objects based on 2-D outline sketches alone.

It is with this intuition that we choose to explore an object

recognition system that exploits only contour-based infor-

mation. Clearly the eventual goal of any recognition system

should be to combine sensibly many different useful types

of feature (contour, texture, colour, etc.), but for the pur-

poses of this paper we deliberately ignore these to show just

how powerful the contour cue is. Contour has many advan-

tages over texture: for example, it can be matched largely

invariant to lighting conditions and object colour, and can

efficiently represent image structures with large spatial ex-

tents.

The paper is structured as follows. Immediately below,

we discuss related work. In section 2 we detail the form

of our object detector, which is learned as described in sec-

tion 3. The technique is evaluated in section 4, and final

conclusions are given in section 5.

1.1. Related Work

We first discuss methods that employ texture-based fea-

tures. The constellation model of Perona et al [3, 27, 6] rep-

resents variation in appearance, relative position and scale

probabilistically, but requires expensive learning algorithms

which do not scale well with the number of parts. This

forces the use of a very sparse model that will lack tolerance

to slight mismatches, occlusions and missed feature detec-

tions. Their test data are largely rigid objects, and while

they evaluate on spotted cats the technique could not be

expected to cope well with other articulated objects with

much weaker texture cues despite very distinctive shape



(e.g. horses).

Torralba et al [21] convincingly demonstrate object de-

tection sharing features between classes. Their evalua-

tion is limited to fairly compact classes without signifi-

cant articulation. Mikolajczyk et al [15] presented good re-

sults on human body detection, but required hand-chosen

(and labelled) body parts for training. Agarwal & Roth

[1] present a car detection scheme that required manually

cropped training images. The method of [20] classifies im-

ages based on histograms of order types, though suffers

with background clutter.

Borenstein & Ullman [2] present good class-specific seg-

mentation results but do not evaluate their technique in clas-

sification or detection performance, or indeed show results

on images not containing objects of the trained class. Leibe

et al [14] present a scheme for interleaved segmentation

and classification, though this requires all training images

to have been manually segmented. Felzenszwalb & Hutten-

locher [5] present the Pictorial Structures model, another

sparse model requiring hand-chosen object parts.

Many recognition systems using contour match the im-

age against whole object templates, either for particular

rigid objects (e.g. [16]), or for articulated objects (e.g. peo-

ple in [10, 22], and hands in [19]). The former techniques

often require a full 3-D model of the object, while the latter

can require a prohibitively large set of templates to represent

all joint object configurations. Alternative approaches (e.g.

[17]) use fragments (parts) of contour. Fergus et al [7] aug-

mented the constellation model with contour fragment fea-

tures, but this only exploits fairly clean, planar curves with

at least two points of inflection, and suffers the same spar-

sity restrictions as their previous work. In [13] contour frag-

ments learned from video sequences are arranged in Picto-

rial Structures and used for detection of articulated objects.

This technique offers a similarly sparse model and requires

either complex tracking of video sequences or manual la-

belling of parts.

2. Detection

In this section we specify the form of the object detector.

It is built on local contour-based features matched with an

oriented chamfer measure, which in boosted combination

form a location-specific classifier that is used for detection.

The features F employed are local fragments of contour

(i.e. local edge templates) T , spatially arranged in a star

configuration: the expected position of each fragment is off-

set from the object centroid (or centre-of-mass) by vector

p. Additionally five parameters (described in detail below)

are learned for each feature: the uncertainty in position of

the fragment, σ, the orientation specificity of the chamfer

matching, λ, the detection threshold θ, and two confidence

weights a and b.

2.1. Oriented chamfer matching

Chamfer matching has proven a capable and efficient

method for matching contour, especially with whole ob-

ject templates (e.g. [19, 11]). It provides a fairly smooth

distance measure between two contours, tolerant to consid-

erable misalignment in position, scale and rotation. This

makes it perfect for our task of matching small rigid tem-

plates somewhat invariantly against a wide variety of im-

ages.

In its simplest form, chamfer matching takes two sets

of edgels, the edge map of an image, E = {e}, and the

template (contour fragment), T = {t}, and evaluates the

chamfer score as a function of relative position x:

d
(T,E)

cham
(x) =

1

NT

∑

t∈T

min
e∈E

‖(t + x) − e‖2 (1)

where NT is the number of edgels in T . This gives the mean

distance of edgels in the template to their closest edgels in

the edge map. It can be efficiently computed by first eval-

uating the distance transform (DT) of the edge map. Each

pixel in the DT is the distance to the closest pixel in the edge

map:
DTE(q) = min

e∈E
‖q − e‖2 (2)

The exact Euclidean DT can be computed in linear time with

the algorithm of [4], and so the min operation in (1) be-

comes a simple look-up such that d
(T,E)

cham
(x) can be com-

puted as a correlation.

The edge map E of image I is given by the Canny edge

detector. To alleviate problems arising from missing edges

in E, the cost function is made more robust by thresholding

the distance:

d
(T,E)

chamτ

(x) =
1

NT

∑

t∈T

min(DTE(t + x), τ) (3)

for some value τ . A constant τ was found in practice to

improve results marginally over no thresholding.

A further improvement can be gained by exploiting edge

orientation information, in the form of edge gradients. This

alleviates problems from clutter edgels in the edge map

which are unlikely to align in orientation as well as po-

sition. One popular technique from [11] is to divide the

edge map and template into discrete orientation channels

and sum the individual chamfer scores. However, it is not

clear how many channels to use, and one has to be careful

to avoid artefacts at the boundaries between channels. An

alternative is to use a distance in a three-dimensional space

including orientation as well as position, but this is expen-

sive and the orientation space must still be quantised.

We propose a slightly different scheme, oriented cham-

fer matching. This incorporates an explicit cost for orienta-

tion mismatch, given by the mean difference in orientation

between template edgels and their nearest edge map edgels:
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Figure 1: Illustration of detection for one contour fragment. Left:

section of an image with fragment (blue) overlaid at hypothesised

position x̂. The extent of Rx̂,σ is illustrated as a dashed red circle.

Right: detected position r aligns the fragment with the image.

d
(T,E)

orient
(x) =

1

NT

∑

t∈T

|o(t) − o(ADTE(t + x))| (4)

where o(·) is the orientation of an edgel, and |o1 − o2| gives

the smallest difference in angle (modulo π)1. The argument

distance transform, ADTE(q) = arg mine∈E ‖q− e‖2, can

be computed simultaneously with the DT.

Our final distance measure is then the weighted sum be-

tween the distance and orientation terms:

d(T,E,λ)(x) = d
(T,E)

chamτ

(x) + λd
(T,E)

orient
(x) (5)

where λ is an orientation specificity parameter. By learning

a separate λ for each feature, one gains a fine-grained con-

trol of orientation sensitivity that could not have be obtained

by dividing the edgels of E and T into discrete orientation

channels.

2.2. Geometric modeling

The simple star-shaped constellation employed is, for

the single pose detection problem addressed here, flexible

enough to cope with large variation in shape and appear-

ance of both rigid and articulated objects, and requires far

fewer parameters than many other techniques. Thus we can

build over-complete models with hundreds of parts to ex-

ploit overlap and redundancy for tolerance to occlusion and

missed or incorrect part detections.

For a given centroid c, feature F = (T,p, σ, λ, θ, a, b) is

hypothesised to appear at position x̂ = c + p. This defines

the centre of a search window W in the oriented chamfer

distance d(T,E,λ). The weighted minimum in W then gives

the best alignment of the fragment to the image:

r(F,E|c) = arg min
x∈R

x̂,σ

(

d(T,E,λ)(x) + W (x|x̂, σ)
)

(6)

from which the feature response is trivially calculated:

v(F,E|c) = d(T,E,λ)(r(F,E|c)) (7)

This is illustrated in figure 1.

In (6), d(T,E,λ) acts as the negative log likelihood for

centroid position, as motivated by [22]. The isotropic win-

dowing function acts as the prior, and is W (x|x̂, σ) =

1For exterior contour it is sensible to take edge directions modulo π,

since the sign of the edgel gradient is unimportant. Situations where inte-

rior contour might have a repeatable sign, such as repeatable object shad-

ing are not explored here.

− log N(x|x̂, σ), a negative log Gaussian centred at x̂ with

variance σ2. The set Rx̂,σ = {x s.t. N(x|x̂, σ) ≥ ǫ} for a

small constant ǫ.

The use of the original, unweighted cost for v was seen

to improve results slightly over the weighted cost. This can

be attributed to the need to compare values for features re-

gardless of where in the window they were detected. Note

that σ is a parameter learned for each feature individually

to model the differing spatial distributions that different fea-

tures have.

2.3. Detection as classification

The object detector K takes the form of a location-

specific classifier, returning a confidence value K(c) for

object centroid c. Evaluating the classifier for c spanning

a grid over the image gives a classification map (similar to

the Classifier Activation Map of [1]). For efficiency, we use

a grid of resolution 2∆1 pixels, i.e. classification responses

are evaluated at c = (2∆1i, 2∆1j) for integers i and j. The

classification map is smoothed slightly to reduce noise, and

local maxima then give possible object detections. These

are filtered to remove the weaker maxima in pairs of nearby

detections, before a global threshold produces the detection

result. By varying the threshold (representing the ratio of

class priors) one trades between missed and incorrect de-

tections, as visualised in the recall-precision curves given

in the evaluation.

The classifier uses the learned set of features F =
{Fm}M

m=1 where each feature Fm = (Tm,pm, σm, λm,

θm, am, bm). It takes the form of an additive model:

K(c) =
M
∑

m=1

amδ(v(Fm, E|c) > θm) + bm (8)

Each term in this sum is a decision stump, using a zero-one

indicator function δ. The hard detection threshold is anal-

ogous to the threshold used in interest point detectors but

is learned individually for each feature so can be more dis-

criminative. The values am and bm weight the classification

confidence of feature Fm.

The classification map can be evaluated efficiently as

follows. First the Canny edges of image I are extracted,

giving E. For each feature Fm, the oriented chamfer dis-

tance d(Tm,E,λm) is calculated for all points in the image.

Then for each hypothesised centroid c in the classification

map, the responses v(Fm, E|c) are calculated, and com-

bined with (8) to give K(c) as required. An efficient, linear-

time search strategy such as [4] can be employed to find

v(Fm, E|c) for all c simultaneously, since W is convex.

3. Learning

The object detector is learned in a two stage, partially

supervised manner2, bootstrapping to induce labels on un-

2We choose the term partially supervised to distinguish from the precise

definitions for supervised, semi-supervised, and unsupervised that are used



labelled data.

In STAGE 1, a fragment dictionary C, and a rudimen-

tary detector K1 are learned from a small set DS of images

paired with binary segmentation masks, which delineate ex-

ternal contour and localise object centroids. The segmen-

tations can be generated automatically using e.g. a stereo-

based system [12], semi-automatically using e.g. [18], or

manually; since the number NS of images in DS is very

small (only 10 in our evaluation) this is not a heavy require-

ment. A background set DB of non-class images is also

used to ensure the detector is class-specific and to regularise

the parameters learned for each fragment.

The detector K1 performs fairly well as demonstrated in

figure 5(a), but performance is improved in STAGE 2. A

second, larger set DU of unsegmented class images is used

for training with object centroids estimated by bootstrap-

ping with detector K1. Additionally, K1 is evaluated on the

background dataset DB to find false detections, allowing

explicit training against clutter. Finally, datasets DS, DU,

and DB are combined with knowledge of object and clutter

locations to form labelled dataset DL, from which detector

K2 is learned using the same algorithm as for K1.

Note that we will refer to the number of unsegmented

images as NU, the combined number of segmented and un-

segmented images as NSU = NS + NU, and the number

of background images as NB. Also note that while most

training and test images are provided in colour, no colour

information is used anywhere in our system; in fact the only

image information used is given by the Canny edge detec-

tor.

3.1. Building a fragment dictionary

The first step of STAGE 1 is to randomly generate a class-

specific dictionary C = {(T,p)} of spatially positioned

contour fragments, as illustrated in Figure 2. Note that

T = {t} is a set of edgels (edge-elements) where t = (x, y)
is relative to the fragment centre (not the object centroid).

The learning algorithm will later select a subset of this dic-

tionary and estimate per-feature parameters (σ, λ, θ, a, b),
forming the set of features F used for detection.

The dictionary is derived from DS, the small training set

of images paired with binary segmentation masks. From

this is extracted at random a large number NC of rectan-

gular regions of mask, constrained to contain at least 5% of

each of foreground and background to ensure some external

contour. The position p of the centre of each region relative

to the centroid is trivially calculated; we assume this is a

good, repeatable estimate of fragment location.

somewhat loosely in the Computer Vision literature. In terms of classifi-

cation, an unsupervised algorithm is not given any class labels for training

data items, a semi-supervised algorithm is given only some of the class

labels, whereas a supervised algorithm is given class labels for all data

items.

Figure 2: Building a class dictionary of spatially localised contour

fragments from segmentation masks. Left: Random rectangular

regions of mask are paired with their positions (green arrows) rela-

tive to the object centroid (red circle). Middle: These are randomly

perturbed. Right: Edges are calculated to form contour fragments.

(In practice many more than four fragments are taken from each

training mask).

Each region is slightly perturbed by applying a ran-

dom transformation about its centre, composed of a scaling

(within a factor α, both in x and y), a rotation (±β), and

a translation of p (±γ, both in x and y). The perturbation

ensures that even for a very small set DS a representative

dictionary can be created, and improves results markedly in

figure 5(a).

The final stage is to generate T , the set of edgels. Exte-

rior contour is calculated as edges in the transformed region

of mask. Interior contour is also included, derived from the

Canny edge map of the corresponding transformed region

of image. This allows repeatable internal contour (from e.g.

car wheels or facial features) to be used.

3.2. Learning a Classifier

Boosting has developed (e.g. [8, 9]) as a simple yet pow-

erful technique for building an accurate classifier from a set

of ‘weak learners,’ classifiers that need only perform at a

level just above random guessing. Boosting has been used

very successfully in Computer Vision, primarily as a feature

selection mechanism: Viola & Jones [26] used Adaboost to

create a very efficient cascade of classifiers for face detec-

tion from very simple image features; Torralba et al [21]

showed how to share features between multiple classes in a

boosting framework.

We employ a boosting algorithm for three purposes: fea-

ture selection, parameter estimation, and learning a clas-

sifier. The authors believe that the explicit estimation of

model parameters (i.e. excluding those directly connected

with the weak learners) through boosting has not been sug-

gested before. We present a new, efficient parameter refine-

ment technique for this purpose that should be applicable to

any standard boosting algorithm.

Training examples

Each training image can generate multiple training exam-

ples. Each example is a vector of feature responses taken

at a particular centroid and is given a binary target value,

positive, meaning object present in this image at this cen-

troid, or negative, meaning object not present. This en-
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Figure 3: For each training image, NE example centroids are used.

The positions of positive examples are shown with pluses, and

negative examples are shown with minuses. In (a) a class image

generates examples relative to the known centroid, to encourage

localisation in the classification map. In (b) a background image

generates negative examples at false detections of K1, so clutter

can be explicitly trained against.

ables two things: to encourage good localisation of detec-

tion responses in the classification map, and to explicitly

train against clutter in the background images.

For class training images such as in figure 3(a), the true

centroid c is known. To encourage the classification map

to have a flat peak of width 2∆1 around c, allowing slight

translation invariance and hence efficient evaluation, posi-

tive training examples are taken at c and four offset cen-

troids close by: c + (±∆1,±∆1), for small ∆1. To en-

courage the classification map to then drop off rapidly away

from c, negative examples are taken surrounding the ob-

ject at c + (±∆2, 0), c + (0,±∆2), and c + (±∆2,±∆2),
for larger ∆2, effectively regularising the spatial uncertainty

parameters σ.

For background training images such as in figure 3(b),

all training examples must clearly be negative, but it is not

obvious which centroids to use since no object is present.

In STAGE 1, c is set to the image centre, and the same set

of offset examples as before is taken (though all marked

negative) to learn detector K1. In STAGE 2 however, K1 is

evaluated on set DB to find regions of background images

at which the detector is incorrectly firing, usually in areas of

clutter. Hence, negative examples are taken at the NE worst

detections in each background image to ensure the boosting

algorithm trains against these problems when learning K2.

A demonstration of the power of this technique is shown in

figure 5(a).

To summarise, in STAGE 1 there are a total of NE(NS +
NB) training examples, and in STAGE 2 there are a total

of NE(NSU + NB) training samples. Note that NE = 13
is simply the number of example centroids used (see fig-

ure 3(a)); this number was seen to give a good trade-off

between accuracy and efficiency.

Boosting algorithm

Due to space constraints we limit our explanation of the

boosting algorithm to an overview. The particular variant

used is called ‘gentle-boost’ and interested readers are re-

ferred to [9] and [21] for details. The algorithm takes a

set of training examples, each with a feature vector and tar-

get value, and greedily builds a classifier K over a number

of rounds, or iterations: at each round, the weak learner

that most reduces a cost function J is found and added to

the current classifier. After each round, all training exam-

ples are re-weighted so that those poorly classified are given

more influence at the next round.

Before boosting begins, and for each example, a feature

vector v is calculated giving the feature response v(F,E|c)
for all F ∈ F

∗, a set of candidate features. The weak

learners used are decision stumps h = aδ(vf > θ) + b,

where a and b weight the confidence of the particular weak

learner, vf indexes dimension f in v, and θ gives an ac-

tivation threshold (cf. terms in sum (8)). Each round of

boosting searches for a minimum cost J , over all f and a

discrete set for θ, and then can fit a and b analytically (see

[21]).

Parameter estimation and refinement

The novel aspect of our algorithm is the choice of set F
∗. If

the fragment dictionary were used, F∗ = C, boosting would

give the standard feature selection algorithm. However, we

push the concept one stage further, by letting candidate fea-

tures represent combinations of contour fragments and their

parameters σ and λ, and so expand set F
∗ to the Cartesian

product between dictionary C, a discrete set of σ parame-

ters, and a discrete set of λ parameters. Hence each round of

boosting will pull out a feature dimension f corresponding

to a particular combination of (T,p), σ and λ, in addition

to the weak learner parameters θ, a and b. After M rounds

of boosting a feature set F ⊂ F
∗ is generated, containing

M features.

One must therefore discretise the parameter spaces for

σ, λ and θ. Care is needed to ensure this can be done effi-

ciently; naı̈vely discretising the parameter spaces at an ad-

equate resolution will be very costly. We propose a coarse-

to-fine approach for each round of boosting. First, the pa-

rameter space is sampled coarsely with σa ∈ Σa, λa ∈ Λa

and θa ∈ Θa. This gives a relatively small set of candidate

features F
∗ and allows standard optimisation of cost J .

Then, at each round, after J has been optimised but be-

fore the re-weighting of training examples, a parameter

refinement step is performed: fixing the chosen fragment

(T,p), the parameter spaces are more finely sampled about

the coarse values σa, λa and θa, and a new weak learner that

most decreases J is chosen. The finer samplings are written

σb ∈ Σb(σa), λb ∈ Λb(λa) and θb ∈ Θb(λa). This step re-

quires feature responses to be calculated on-the-fly for the

new combinations of parameters, but in total a much smaller

number of feature response evaluations are needed than had

the parameter space been sampled initially at the fine res-

olution. The resulting parameters (σb, λb, θb) are guaran-

teed not to increase J . The refinement idea fits well with

the greedy strategy that boosting already employs, and im-

proves results (see figure 5(a)).



0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

% Object Occluded

R
e

c
a

ll−
P

re
c
is

io
n

 E
E

R

(a)

1 3 5 10 20 50
70

75

80

85

90

95

100

N
S

R
e
c
a
ll−

p
re

c
is

io
n
 E

E
R

 (
%

)

K
2

K
1

(b)

Figure 4: (a) Occlusion performance on the horse dataset. See

examples figure 6 (bottom left). (b) Comparing the performance

of classifiers K1 and K2 on the face dataset as NS is varied (see

text).

4. Evaluation

We evaluated our technique on four classes of objects:

horses, cars, faces and motorbikes. In all cases the method

parameters were kept the same: ∆1 = 6 pixels, ∆2 = 40
pixels, NE = 13, ǫ = 1

1000 , α = 1.2, β = 15◦, γ = 5
pixels, M = 100, τ = 15 pixels, and NC = 1000. These

were manually given sensible values, but were not hand-

optimised. For each class, learning takes between 1-4 hours,

after which detection can be performed in roughly 10 sec-

onds per image (for an unoptimised implementation in C#

on a 3GHz Pentium 4). Most of the time, both for training

and testing, is spent evaluating the oriented chamfer dis-

tance; this could be optimised in hardware, and the algo-

rithm is highly parallelisable.

In each experiment below, unless stated otherwise, a to-

tal of just NSU = 50 images of the class in question and

NB = 50 background images were used for training, but of

the class images, note that only NS = 10 were paired with

segmentations.

Results are quantified in terms of recall-precision

curves.3 These plot recall (correct detection rate) against

precision (the proportion of total detections that are correct)

as the global detection threshold is varied. Ground truth ob-

ject locations are known and a correct detection is marked

when a peak lies within 25 pixels of the correct centroid.

In each experiment, the detector was also evaluated on an

equally sized background dataset. We give quantitative re-

sults below, and detection visualisations for horses, faces

and cars are shown in figure 6.

Weizmann Horse Dataset [24]

We evaluated the performance of our detector on a very

challenging dataset of side-on horse images; this dataset has

been used for evaluating segmentation algorithms [2], but

we do not know of published results for detection. Horses

have very high within-class variation in shape, colour and

texture, and present an extremely challenging class of ob-

jects with which to test a detector. Horses were investigated

briefly in [7] but poor results were obtained.

3Note that ROC curves are not ideal for the task of detection, as op-

posed to classification; see [1] for more motivation.
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Figure 5: Recall-precision results. (a) The contribution of each

aspect of our model on the horse dataset. (b) Comparative results

on the car dataset.

The dataset consists of pairs of horse images and their

segmentations which give ground-truth object locations

(only NS = 10 segmentations are used for training). The

images are approximately scale normalised for this exper-

iment.The test set consists of 277 horse images and 277

background images.

We show recall-precision results in figure 5(a) compar-

ing the influence of various aspects of our model. Detec-

tor K2 (green curve), using our full model, gives a recall-

precision equal error rate (EER) of 92.1%. If the model

is trained with NS = 50 segmented images it performs

only marginally better, showing the power of the partially

supervised learning methodology. Similarly, the rudimen-

tary detector K1 trained on only NSU = 10 positive ex-

amples performs worse than K2. Other curves in the graph

show the results for K2 with various aspects of the model

switched off individually: parameter refinement, oriented

chamfer matching (setting λ = 0), explicit training for clut-

ter in STAGE 2, and perturbation when building the frag-

ment dictionary; in all cases the full model performs better.

Note the especially large degradation when λ = 0, showing

the importance of orientation in the distance measure.

The main point to note is that bootstrapping is very ef-

fective and that weakly labelled data can be combined effec-

tively with more strongly labelled data. In fact the results

suggest the partially supervised technique is almost as ef-



fective as having segmented the whole training set.

We also evaluated this dataset for tolerance to occlusion,

by randomly overwriting square regions of test images such

that a fixed proportion of the object was covered. The re-

sults are shown in figures 4(a) and 6; even when 30% of the

object is occluded, an EER detection rate of almost 80% is

still attainable. This shows the power of redundancy in our

over-complete model.

UIUC Car Dataset [23]

In this experiment we compare our performance on the

UIUC side-on car dataset against other published results.

Training used only NSU = 50 images of cars facing left

(with NS = 10) and NB = 100 background images. Test-

ing was performed on 164 images containing 193 cars,and

164 background images. Since the test images had cars

present facing left and right, the detector was run over each

image twice, the second time with the image flipped in

x. The detections (local maxima of the classification map)

were combined as in section 2.3. Figure 5(b) shows our

recall-precision results together with those of [6, 1, 14]. For

the very small set of segmented training images required our

detector gives the best results. The precision-recall EERs

are compared here:

NSU NS R-P EER

[1] ∼ 550 0 ∼ 79%

[6] ∼ 250 0 88.5%

[14] 50 50 91.0%

Ours 50 10 92.8%

[14] + MDL 50 50 97.5%

We are beaten in the last result by [14]. The reason for

this is twofold. Firstly, they train on much higher resolu-

tion examples (not from the UIUC dataset) and use 50 seg-

mented images. Our technique relies on edge features and

higher-resolution training and test images would certainly

improve results. Secondly, they employ a post-processing,

minimum description length (MDL) technique to filter out

false positives due to ‘phantom’ cars being proposed be-

tween cars parked end-to-end. The MDL criterion could be

applied to our results as our detector suffers the same prob-

lem, mainly due to wheels being used as particularly infor-

mative features. However, to keep our technique completely

general (since our goal is an object detector, not a car detec-

tor), we have not applied this. Without the MDL criterion,

[14] only achieve an EER of 91%, which we improve upon

with 92.8%.

Caltech Face Dataset [25]

A detector was learned for the Caltech face dataset. For

speed of learning and testing all images were resized to 15%
of their original size. The detector was tested on 400 novel

face images and 400 background images. The following ta-

ble gives our results (for comparison purposes an ROC EER

is given). Note that we observe almost identical perfor-

mance as [6], having learned from far fewer unsegmented

training images, a benefit in both collecting the dataset and

also training time (they state 24-36 hours training time, ver-

sus about 1-4 hours for our models).

NSU NS ROC EER R-P EER

[6] ∼ 220 0 96.4% -

Ours 50 10 96.5% 94.0%

As an additional experiment to investigate the improve-

ment that classifier K2 (learned in STAGE 2) gives over K1

(learned in STAGE 1), we evaluated the performance of our

algorithm on this dataset as the number of segmented train-

ing images (NS) is varied while keeping the total number

of training images constant (NSU = 50). The results are

given in figure 4(b) and show the consistent and consider-

able improvement gained in STAGE 2. Note that (i) adding

more segmented data improves results, (ii) the performance

difference between K1 and K2 decreases with NS, and (iii)

when NS = 50, a residual improvement remains because

we explicitly train against clutter.

Caltech Motorbike Dataset [25]

Finally, we evaluated our algorithm on the Caltech motor-

bike dataset, with roughly scale normalised images. Testing

was on 380 novel motorbike images and 380 background

images, and results are given in the following table. Note

again very favourable performance compared to the scale-

normalised evaluation on this dataset in [6].

NSU NS ROC EER R-P EER

[6] 400 0 95.0% -

Ours 50 10 97.1% 92.4%

5. Conclusions & Future Work

We have presented a novel technique for object detec-

tion based on fragments of contour, and demonstrated per-

formance at least at the level of texture based systems. No

hand-selection of parts is required, and our over-complete

model is tolerant to within-class variation, different imaging

conditions and occlusion. We have made contributions with

our partially supervised learning methodology and a new

parameter refinement addition to boosting algorithms. Our

evaluation gives both comparative results with related work

and also introduces a new dataset to the challenge of ob-

ject recognition. The system requires a comparatively small

number of training images, a factor that will become impor-

tant as we move toward detecting hundreds or thousands of

object classes.

Our detector is learned at a particular object scale and

we plan further evaluation of it in more challenging multi-

scale environments and over more classes. Incorporating

texture features should be straightforward in the boosting

framework. We also wish to investigate using the method

of [21] for multi-pose detection. Finally, the output of our

detector should give a good initialisation for a bottom-up

segmentation algorithm such as [18].



Figure 6: Example detection results for horses, faces and cars. In each, the left column is the input image, the middle column is the

classification map (green is positive, red negative), and the right column is a visualisation of contour fragments used for detections. For

horses, note excellent performance despite clutter and artificial occlusion (last two images), and especially the silhouetted horse with which

a textured based model would have failed completely. For faces, note tolerance to clutter, expression, lighting conditions, occlusion, and

even detection on a cartoon. For cars, note multiple object detections and tolerance to occlusion.
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