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Abstract

This paper presents a volumetric approach to reconstructing a smooth surface from a sparse set of paral-

lel binary contours, e.g. those produced via histologic imaging. It creates a volume dataset by interpolating

2D filtered distance fields. The zero isosurface embedded in the computed volume provides the desired result.

MPU implicit functions are fit to the input contours, defined as binary images, to produce smooth curves with

controllable error bounds. Full 2D Euclidean distance fields are then calculated from the implicit curves. A

distance-dependent Gaussian filter is applied to the distance fields to smooth their medial axis discontinuities.

Monotonicity-constraining cubic splines are used to construct smooth, blending slices between the input slices. A

mesh that approximates the zero isosurface is then extracted from the resulting volume. The effectiveness of the

approach is demonstrated on a number of complex, multi-component contour datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Imaging technology, e.g. MRI, CT and histology, is now
widely used in medicine, science and engineering to study
the internal structures of a variety of objects and specimens.
This technology produces 3D sampled data that can be in-
terpreted as a stack of 2D slices cutting through the studied
object/specimen, with each slice normally being represented
by a raster image. Frequently the process of isolating, seg-
menting and identifying specific structures in the slices in-
volves a manual (or semi-automatic at best) process of delin-
eation that produces contours around the structure of inter-
est. While CT and MRI scans can now produce 3D datasets
with isotropic sampling, i.e. the same sampling resolution in
X ,Y, and Z directions, this is generally not the case for his-
tologic imaging, where a sample (e.g. a tumor) is physically
sliced and a digital image is taken of the exposed face. In
this imaging modality it is not uncommon to have sampling
ratios of 10 : 1 or more. This means that the physical dis-
tance between pixels in a slice is 1/10 the distance between
the slices themselves.

It is often important to visualize the 3D structures present
inside a scanned dataset. Attempting to view the stacked 2D

images or contours can be difficult and error-prone. There-
fore techniques are needed that take a set of parallel con-
tours and produce smooth 3D models that interpolate those
contours. The work described here addresses the general
problem of contour-based surface reconstruction, but more
specifically focuses on addressing the challenges that arise in
histologic images of highly complex structures. Those chal-
lenges arise when generating smooth 3D models from highly
anisotropic input contours that inherently contain noise from
the 2D delineation/segmentation process. The final hurdle
to successful reconstruction is the sheer complexity of the
structures to be modeled.

We have developed a computational pipeline that pro-
duces smooth surface reconstructions from a set of parallel
binary contours, which also addresses some of the unique
challenges associated with histologic imaging. Our approach
produces an isosurface embedded in a volume dataset by
first calculating distance fields in the individual 2D slices.
Blending slices are computed between the input contours via
spline interpolation of associated pixels in neighboring input
slices. The zero isosurface embedded in the resulting volume
provides the desired reconstruction.
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Figure 1: Overview of the volumetric reconstruction process. Input is a set of contours represented as binary images. MPU

implicit curves are fit to the contours. A Euclidean distance field is generated from the narrow band around the implicit curve.

The field is filtered to remove medial axis discontinuities. The filtered fields are interpolated to produce a volume dataset. A

mesh of the zero level set is extracted from the volume.

The complete pipeline contains several stages and is pre-
sented in Figure 1. The input to the process is provided
as binary images where white pixels represent the contour
curves. The centers of the contour (white) pixels are inter-
preted as points in 2D and a Multi-level Partition of Unity
(MPU) implicit curve (i.e. a 2D field whose zero level set is
the curve) is approximately fit to these points. The narrow
band around the MPU curve is swept out by a fast marching
method to produce a 2D Euclidean distance field. The medial
axis discontinuities inherent in all Euclidean distance fields
are smoothed with distance-dependent Gaussian filtering. A
volume dataset is produced via monotonicity-constraining
spline interpolation of pixels across neighboring distance
fields. The volume may be visualized either via direct vol-
ume rendering or by generating a mesh that approximates
the resulting isosurface.

1.1. Contributions

Each stage of the pipeline addresses and solves a specific
issue during the reconstruction process. A volumetric ap-
proach allows us to generate a reconstruction from any col-
lection of contours, regardless of the number of contours in
the slices and the complexity of their shape. As with most
volumetric methods, it readily solves the branching problem
as long as adjacent contours overlap. Fitting an MPU curve
to the input contours smooths the noise and aliasing inherent
in the delineation process and the binary images themselves.
The resulting curve has user-controllable resolution and sub-

pixel error bounds [Bra05]. Distance-dependent Gaussian
filtering reduces or removes the medial axis discontinuities
in the calculated Euclidean distance fields, that would oth-
erwise create unwanted artifacts on the resulting surfaces,
while leaving the MPU implicit curve untouched. These dis-
continuities have been ignored by previous volumetric ap-
proaches [Lev86, RU90, JC94]. Pixel-to-pixel spline inter-
polation allows us to always create smooth blendings be-
tween widely spaced input contours. Using monotonicity-
constraining splines removes undesirable artifacts from the
final reconstructions due to overshoot problems.

Given the capabilities of our approach, it provides the fol-
lowing contributions over previous work:

• easily copes with complex contour geometry and arbitrary
numbers of components in each slice,

• approximates noisy, binary input contours with a smooth
curve with controllable error bounds,

• removes artifacts caused by medial axis discontinuities,
• and produces smooth models from highly anisotropic in-

put data.

1.2. Previous Work

The previous work on contour reconstruction mostly falls
into one of two categories: contour stitching that is based on
explicit surface representations and volumetric methods that
employ implicit representations.
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1.2.1. Contour Stitching

The contour stitching approach to surface reconstruction at-
tempts to generate a surface by connecting the vertices of
adjacent contours in order to produce a mesh that passes
through all contours. These approaches generally need to ad-
dress the correspondence (how to connect vertices between
contours), tiling (how to create meshes from these edges)
and branching (how to cope with slices with different num-
bers of contours) problems.

Keppel [Kep75] and Fuchs et al. [FKU77] described the
first algorithms for creating polygonal meshes from a series
of contours. The Fuchs work defines the best reconstructed
surface as the one with minimal surface area. Many papers
have offered incremental improvements to these seminal ef-
forts. Several solutions to the correspondence problem have
been proposed, e.g. those based on parameterization of the
contours [GD78], contour decomposition [EPO91], Mini-
mum Spanning Trees [MSS92], Angular Bisector Networks
[OPC96], medial axes [KSS00] and partial curve match-
ing algorithms [BST00]. Boissonnat [Boi88] utilizes Delau-
nay triangulation to cope with branching surfaces. Geiger
[Gei93] proposed a geometric closeness measure to improve
on this approach. Bajaj et al. [BCL96] provide a unified ap-
proach to solving the correspondence, tiling and branching
problems by imposing three constraints on the surface when
deriving the reconstruction rules. Johnstone et al. [JS95] de-
scribe a method for creating Bezier surfaces from contours
with cylindrical topology. Fujimura and Kuo [FK99] use iso-
topic deformations to create non-self-intersecting surfaces
from nested contours. Hormann et al. [HSS03] smoothly
stitch together nested contours using Hermite interpolation.

1.2.2. Volumetric Methods

Levin [Lev86] presents the seminal volumetric approach to
surface reconstruction from a series of parallel contours.
Given a distance field for each contour, the 2D fields are
stacked and interpolated in the z-direction with cubic B-
splines. The reconstructed surface is extracted from the re-
sulting volume as the zero isosurface, and in general will
only be as smooth as the distance field, i.e. C0. Raya and
Udupa [RU90] extend Levin’s approach to time-varying
datasets. Jones and Chen [JC94] suggest that Voronoi dia-
grams be used to minimize the computation needed for cal-
culating the 2D distance fields. Barrett et al. [BMT94] re-
cursively apply morphological operators (dilation and ero-
sion) to contour images in order to interpolate intermediate
gray level values. Cohen-Or et al. [COL96, COLS96] intro-
duce the concept, without supporting results, of creating a
3D object from contours by morphing one contour into the
next using warp-guided distance field interpolation. Chai et
al. [CMN98] present a gradient-controlled partial differen-
tial equation method for producing C1 continuous surfaces
from nested contours. Nilsson et al. [NBM05] utilize 2D
level set morphing with cross-contour velocity continuity to
sweep out smooth surfaces from contour images.

f(x)=0Q1(x)=0

Q2(x)=0

Figure 2: Two local approximations (dashed) are blended to

form the global MPU function (solid).

2. Volumetric Surface Reconstruction

Our volumetric surface reconstruction approach consists of
several stages. They include contour smoothing, distance
calculations, distance field filtering, field interpolation, and
mesh extraction.

2.1. Contour Smoothing

The first step in our contour reconstruction approach is the
generation of smooth 2D curves that closely approximate the
binary input contours. A 2D distance field is then generated
from the curve. A 2D distance field consists of a 2D array of
distance values where each entry contains the signed shortest
distance to the closed contour from that location. Traditional
distance field generation methods have calculated distances
between pixel centers in input images. These methods limit
the number of distance values that can exist in the immedi-
ate proximity of the contour, producing aliased results. We
utilize an implicit model to approximate the contours and to
generate high-resolution distance fields. An implicit model
provides two important benefits. First, distances are calcu-
lated to the implicit function that represents the contour, in-
stead of to the centers of the pixels. Second, implicit func-
tions allow us to approximate the contour to a desired level
of accuracy and smoothness [Bra05].

We use a Multi-level Partition of Unity (MPU) implicit
model [OBA∗03] to define the implicit curve because of its
robustness, controllability and flexibility. When using MPU
implicits, contour pixel coordinates are interpreted as points
in R

2, i.e. a point set. The MPU function operates on the
point set and reconstructs a curve that approximately fits
to the input data. The function is composed of overlapping
local functions that are blended together, summing to one
(partition of unity). A partition of unity is a set of non-
negative compactly supported functions ωi where ∑i ωi ≡
1, on a bounded Euclidean domain Φ. The global function is
then

f (x) = ∑
i

ωi(x)Qi(x), (1)

where Qi(x) is a local approximation function, see Figure 2.
Each ωi is generated by

ωi(x) = wi(x)/
n

∑
j=1

w j(x), (2)
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Figure 3: (left) Input contour represented as a binary image.

(right) Resulting MPU implicit curve.

where {wi} is a set of nonnegative compactly supported
weight functions such that Φ ⊂ ∪isupp(wi). In the current
MPU implicits implementation, each weight function wi(x)
is a quadratic B-spline.

MPU implicits use an adaptive quadtree-based subdivi-
sion scheme in order to selectively refine areas of higher
detail. Two parameters control the subdivision process. The
support radius R for the weight functions is adjusted until
it contains Nmin data points. Increasing the Nmin parameter
results in fewer local approximations and increased smooth-
ing. The subdivision process is controlled by a tolerance
value (tol). Lowering the tolerance value increases the level
of subdivision and forces a tighter fit to the input data.

The MPU fitting process requires both a point set and a
normal associated with each point. Normals are produced by
creating a binary mask from the contour, with boundary and
interior pixels colored white and the remaining pixels set to
black. Gaussian filtering is applied to the mask. The gradient
of the filtered image is calculated at each contour pixel, nor-
malized, and negated to point outwards to approximate the
normal at that point [YCK92]. Figure 3 presents a portion
of a contour represented as a binary image and the smooth
implicit curve produced by the MPU-based fitting process.

2.2. 2D Distance Calculations

The MPU function produces a signed field value that pro-
vides inside/outside information. The values inside are posi-
tive, and the values outside are negative. Unfortunately these
field values only approximate Euclidean distance near the
contour. See Figure 4 (left). Therefore, we use MPU implic-
its to generate distance values only in a narrow band around
the original data points. The narrow band of signed distances
is then extended out to produce a complete 2D Euclidean dis-
tance field using a fast marching method with a correctness
criterion [Mau03, Set96]. See Figure 4 (right). Future work
will replace this method with a more efficient fast sweeping
method [Zha04] in order to shorten computation times.

2.3. 2D Distance Field Filtering

Euclidean distance fields are C0 continuous, because they
contain medial axis discontinuities. A gradient discontinuity
occurs at locations in the field that are equidistant to more

Figure 4: (left) MPU implicit function fit to contour data.

(right) Euclidean distance field extended out from the nar-

row band of the MPU field surrounding the implicit curve.

than one point on the field’s zero level set. The disconti-
nuities in the fields lead to undesirable artifacts, e.g. folds
and creases, on the isosurfaces extracted from generated vol-
ume datasets. While the discontinuities exist in the interior
of the 2D distance fields, they produce discontinuities in the
full interpolated 3D field that cross the zero isosurface; thus
becoming evident during mesh extraction. In order to re-
move these artifacts from the distance fields and subsequent
surface reconstructions, we filter (i.e. smooth) the individ-
ual 2D distance fields generated from the contours before
performing the spline interpolation that creates the volume
dataset. Applying a Gaussian filter over the whole 2D field
would modify the MPU implicit curve. We therefore have
developed a distance-dependent Gaussian filter that keeps
the MPU implicit curve intact, while smoothing the medial
axis discontinuities found a distance away from the curve.

In the continuous domain, a Gaussian filter is controlled
by changing σ , the standard deviation of the Gaussian dis-
tribution [GW02]. Larger values of σ produce increasingly
“blurred” results. In the discrete domain, a stencil radius
must be introduced within which the Gaussian function is
evaluated. In general, pixels beyond 3σ from the currently
processed pixel contribute so little to the result that they can
effectively be ignored; hence the smoothing is controlled by
varying sigma, and defining the stencil radius as 3∗σ .

When smoothing the individual distance fields, each pixel
is filtered according to its distance value. No filtering is
done within a few pixels of the implicit curve (zero level
set). At a prescribed distance filtering begins with a small σ

value. σ is then ramped up to a constant value as distance
increases. Distance-dependent Gaussian smoothing is con-
trolled by four parameters:

• dmin: No filtering is performed below this distance.
• dmax: The distance value at which to apply maximum fil-

tering.
• σmin → σmax: Minimum and maximum sigma values.

The following uses a shifted and scaled cosine function to
smoothly increase σmin at dmin to σmax at dmax,
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Figure 5: (left) Filtered Euclidean distance map that re-

moves the medial-axis discontinuity. (right) A difference im-

age calculated from Figure 4 (right) and Figure 5 (left) that

highlights the pixels that have been modified by filtering.

Figure 6: Surface artifacts removed by filtering the medial-

axis discontinuities in the 2D distance fields. (left) Before

(right) After.
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The values of dmin and σmin must be chosen with care.
From our experience σmin values below 0.5 introduce sam-
pling noise into the distance fields. Additionally the values of
dmin and σmin must be set to ensure that the filtering stencil
does not include distance values with differing signs. With
σmin = 0.5, the stencil will have a radius of 2. Therefore
choosing a dmin of 3 ensures that the stencil does not in-
clude distance values on both sides of the zero level set.
Given these constraints, the following parameters were used
in all examples shown in this paper: dmin = 4, dmax = 15,
σmin = 0.5, σmax = 3. We found a σmax of 3 provided suffi-
cient smoothing of the medial axis. Setting dmax to 15 pre-
vents the stencil radius (9) from crossing the zero level set.

Figure 5 presents a distance-dependent smoothed field.
The before-and-after difference between the fields as shown
in Figure 4 (right) and Figure 5 (left) is difficult to see, so
a difference image, which is produced by subtracting one
image from the other, is included to highlight the disconti-

Figure 7: A column of pixel values are interpolated with a

spline that is evaluated to produce the pixel values for inter-

mediate, blending slices.

nuities that have been removed by filtering. Figure 6 (left)
contains the unwanted creases produced on a reconstructed
surface by the medial axis discontinuities present in the 2D
distance fields. Figure 6 (right) demonstrates that the creases
can be minimized by 2D distance field filtering. Note that the
outlines of the 3D shapes do not change after filtering.

2.4. Field Interpolation

Once the filtered distance fields have been computed a 3D
(volumetric) representation of the desired reconstructed ge-
ometry can be produced via 1D, pixel-by-pixel interpolation
of the 2D images. See Figure 7. For each column in the vol-
ume, a 1D cubic spline is constructed to interpolate distance
values as a function of their vertical (z) location in the vol-
ume. Once a spline is constructed for a column of input pix-
els, it is evaluated at different z locations to generate the val-
ues for that pixel in the intermediate slices of the volume.
Doing this for all pixels creates new slices between the input
data that blend the contour curves.

We have experimented with three types of interpolating
cubic splines: Catmull-Rom, natural cubic, and Hermite cu-
bic with monotonicity constraints. Catmull-Rom splines uti-
lize Hermite basis functions, interpolate their control points
and provide local control over their shape [Far02]. While
they are fast to compute, they are only C1 continuous. The
C2 discontinuity was evident in some of the reconstruc-
tions made with these splines. Additionally, they suffer from
an overshoot problem near control points that have rapid
changes in their data values (See Figure 8.), resulting in arti-
facts such as the lip shown in Figure 9. Natural cubic splines
provide C2 continuity by sacrificing local control, a feature
not necessarily needed for our application. They unfortu-
nately also create unwanted artifacts due to overshoot, and
are more expensive to compute than Catmull-Rom splines.

Hyman [Hym83] incorporates monotonicity constraints
into Hermite cubic splines by enforcing slope constraints at
the spline’s data values. This guarantees that the spline will
be locally monotone, but sacrifices a guarantee of C2 conti-
nuity, as seen in Figure 8. Ultimately, it was deemed more
important to remove the overshoot artifacts, as seen in Fig-
ure 9, than the more subtle artifacts that may be produced by
C2 discontinuities.
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Figure 8: Fitting a cubic spline without (red) and with (blue)

monotonicity constraints to five data points.

Figure 9: (left) Undesirable surface artifact produced by

the overshoot of interpolating splines. (right) Using a mono-

tonicity constrained spline removes the artifact.

2.5. Mesh Extraction

In the final stage of the reconstruction process a polygo-
nal mesh representing the reconstructed surface is extracted
from the volume produced in the field interpolation stage.
We currently use the Marching Cubes algorithm [LC87] fol-
lowed by mesh simplification [GH97, SZL92] to produce
the final reconstructed surface. Future plans include utilizing
techniques capable of extracting an adaptive mesh directly
from the volume [GCBB01].

3. Results

Our volumetric reconstruction approach was applied to a
number of datasets including contours extracted from scans
of a human pelvis and jawbone, as well as segmentations
of breast cancer tumors. The pelvis and jawbone datasets
were provided in a polyline format and were rasterized to
produce binary images. The pelvis contours were converted
into 2,000 × 2,000 resolution images so that the MPU curve
fitting process could properly capture important features in
the data. The resulting MPU implicit field was down-scaled
to 500 × 500 before the fast marching stage that calculates
the full Euclidean distance field. The jawbone dataset was
converted into 500 × 500 binary images and was processed

# of Input xy:z Output

slices resolution resolution

P 34 2,000×2,000 14:1 500×500×458
J 48 500×500 8:1 500×500×393
T0 9 489×483 10:1 489×483×101
T1 4 870×616 63:1 435×308×191

Table 1: Dataset Information. P - pelvis (Figure 11), J - jaw-

bone (Figure 10), T0 - tumor (Figure 12), T1 - tumor (Figure

13)

Nmin tol

P 100 15
J 250 10
T0 300 10
T1 300 10

Table 2: MPU parameters used during implicit curve fitting.

MPU Dist Fltr Intrp Mesh Total

P 2012 272 98 71 170 2623
J 199 144 132 73 137 685
T0 811 228 165 104 288 1596
T1 76 12 18 38 119 263

Table 3: Computation times (in secs) on an Apple 2.0

GHz G5 with 3 GB of RAM. The reconstruction stages are

MPU implicit curve fitting, Euclidean distance calculation,

distance field filtering, inter-slice spline interpolation, and

mesh extraction and decimation.

at this resolution for the remainder of the computational
pipeline. The tumor datasets were provided as segmented
images (See Figures 12 and 13), and the boundary pixels
of each region were extracted to produce the input contours.
Additional information about the input datasets and result-
ing volume datasets is listed in Table 1. The parameters used
during the implicit curve fitting stage are listed in Table 2.

The results from the reconstruction process are presented
in Figures 10, 11, 12 and 13. The computation times for
each stage of the reconstructions are given in Table 3. The
resulting surfaces demonstrate that our approach faithfully
reconstructs the objects defined by the contours, producing
smooth, high-resolution models. The tumor datasets are po-
tentially challenging, given the number and complexity of
their structures, as well as the small number of slices. The
computation times for our approach (pelvis - 43.7 minutes,
jawbone - 11.4 minutes, tumor0 - 26.6 minutes, tumor1 - 4.5
minutes), as listed in Table 3, are somewhat long, but not ex-
cessive, given the complexity of the input and the quality of
the output.

Currently the main limitation of our approach is that con-
tours must overlap in order to be connected between succes-
sive slices. This shortcoming may be addressed by utilizing
warping transformations based on user-defined correspon-
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Figure 10: 48 jawbone contours. Reconstruction with and without contours displayed.

dences [COL96, COLS96] when calculating the inter-slice
interpolations.

4. Conclusion

We have presented a volumetric approach to reconstructing a
smooth surface from a sparse set of parallel contours. It cre-
ates a volume dataset by interpolating 2D filtered distance
fields. The zero isosurface embedded in the computed vol-
ume provides the desired result. MPU implicit functions are
approximately fit to the input contours, defined as binary
images, to produce smooth curves with controllable error
bounds. Full 2D Euclidean distance fields are then calcu-
lated from the implicit curves. A distance-dependent Gaus-
sian filter is applied to the distance fields to smooth their
medial axis discontinuities. Monotonicity-constraining cu-
bic splines are used to construct smooth, blending slices be-
tween the input slices. A mesh that approximates the zero
isosurface is then extracted from the resulting volume. We
have demonstrated its effectiveness on a number of complex,
multi-component contour datasets.
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Figure 11: 34 pelvis contours. Reconstruction with and without contours displayed.

Figure 12: A breast cancer tumor model (right) constructed from four histology-based segmentations (left). The model only

includes regions with necrotic (dead) (purple) and invasive cancer (blue) cells, and the outer tumor membrane.

Figure 13: (left) Single slice from a breast cancer tumor segmentation. Each color represents a particular kind of cell/structure,

e.g. the blue region contains invasive cancer cells. (right) The full tumor model reconstructed from 9 segmentation slices.
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