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Abstract. We introduce a shape detection framework called Contour Context Se-

lection for detecting objects in cluttered images using only one exemplar. Shape

based detection is invariant to changes of object appearance, and can reason with

geometrical abstraction of the object. Our approach uses salient contours as inte-

gral tokens for shape matching. We seek a maximal, holistic matching of shapes,

which checks shape features from a large spatial extent, as well as long-range con-

textual relationships among object parts. This amounts to finding the correct fig-

ure/ground contour labeling, and optimal correspondences between control points

on/around contours. This removes accidental alignments and does not hallucinate

objects in background clutter, without negative training examples. We formulate

this task as a set-to-set contour matching problem. Naive methods would require

searching over ’exponentially’ many figure/ground contour labelings. We sim-

plify this task by encoding the shape descriptor algebraically in a linear form of

contour figure/ground variables. This allows us to use the reliable optimization

technique of Linear Programming. We demonstrate our approach on the chal-

lenging task of detecting bottles, swans and other objects in cluttered images.

1 Introduction

We study the problem of object detection in natural images using shape. Visual objects

can be represented at a variety of levels from signal (filter responses) to symbol (object

parts). Our approach focuses on representation of the shape that is closer to the symbol

level, which would allow abstract geometrical reasoning of the object. Shape descrip-

tion is invariant to color, texture, and brightness changes, which could enable significant

reduction in the number of training examples, and increase of accuracy of the detection.

Object detection using shape alone is not an easy task. Most shape matching al-

gorithms are susceptible to accidental alignment: hallucinating objects in background

clutter. To avoid foreground (surface marking) and background clutter, shape descrip-

tors are often computed within a window of limited spatial extent. Local window fea-

tures are discriminative enough for detecting objects such as faces, cars and bicycles.

However, for many simple objects, such as swans, mugs or bottles, local shape features

are insufficient.
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(b) Detection with object contours (c) Model contours

(a) Input image

(d) Control point correspondence

Fig. 1. Using a single line drawing object model shown in (c), we detect object in-

stances in images with background clutter in (a) using only shape. Bottom-up contour

grouping provides tokens of shape matching. Long salient contours in (b) provide dis-

tinctive shape descriptions, allowing both efficient and accurate matching. Image and

model contours, shown by different colors in (b) and (c), do not have one-to-one corre-

spondences. We formulate shape detection as a set-to-set matching task in (d) consisting

of: (1) correspondences between control points, and (2) selection of contours that con-

tribute contextual shape features to those control points, within a circular neighborhood.

To overcome this accidental alignment problem, we propose a shape detection ap-

proach called Contour Context Selection consisting of the following the key ingredients:

1. We detect salient contours using bottom-up segmentation or contour grouping.

Long contours are more distinctive, and maintaining contours as integral tokens

for matching removes many false positives due to accidental alignment.

2. We break the model shape into its informative semantic parts, and explicitly check

which subset of model shape parts is matched. Missing critical model parts can

signal an accidental alignment between the image and model.

3. We seek holistic shape matching. We measure shape features from a large spatial

extent, as well as long-range contextual relationships among object parts. Acciden-

tal alignments of holistic shape descriptors between image and model are unlikely.

Our Contour Context Selection reduces to finding a maximal, holistic matching be-

tween a set of image contours and a set of model parts. It searches over figure/ground

labeling of the image and model contours, and correspondences between them. It is im-

portant to note that, in general, image contours and model contours do not correspond

one-to-one. The holistic matching occurs only by considering a set of ‘figure’ contours

together. To formulate this set-to-set matching task, we define control points sampled

on and around the image and model contours. We compute shape features on the control

points from the ‘figure’ contours within a large neighborhood (see Fig. 1). The task is to

find the correct figure/ground contour labeling, such that there is an optimal one-to-one
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(a) Accidental alignment (b) Missing critical parts

Fig. 2. Typical false positives can be traced to two causes: (1) Accidental alignment

shown in (a). Our algorithm prunes it by exploiting contour integrity, i.e. requiring con-

tours to be whole-in/whole-out. Contours violating this constraint is marked in white on

the image. (2) Missing critical object parts indicates that the matching is a false posi-

tive. In (b), after removing the accidental alignment to the apple logo outline (marked in

white), only the body can find possible matches and the neck of the swan is completely

missing shown at the top-right corner of (b). Our approach rejects this type of detection

by checking missing critical model contours after joint contour selection.

matching of the control points. This set-to-set matching potentially requires searching

over exponentially many choices of figure/ground labeling. We simplify this task by en-

coding the shape descriptor algebraically in a linear form of contour selection variables,

allowing to use the reliable optimization technique of Linear Programming.

This paper is organized as follows. Section 2 introduces the basic concept and for-

mulation of Contour Context Selection. We present the computational solution for this

framework using Linear Programming (LP) in Section 3. Section 4 describes related

works and comparisons. Section 5 demonstrates our approach on the challenging task

of detecting non-rectangular and wiry objects, followed by the conclusion in Section 6.

2 Shape Detection as a Set-to-Set Contour Matching Problem

Our goal is to detect objects in images using a single model and identify correspon-

dences between the image and the model.

We use salient contours, extracted from bottom-up contour grouping, as tokens for

image-model shape matching. Shape matching with contours instead of isolated edges

has several advantages. Long salient contours are more distinctive, which leads to ef-

ficiency of the search as well as the accuracy of shape matching. Furthermore, by re-

quiring the entire contour to match objects as a whole, we remove accidental alignment

causing false postive detections (see Fig. 2 (a) for an example).

Using contour grouping as the starting point of shape matching carries risk as well.

Contours could be mis-detected, or accidentally leak to background clutter. A good

contour grouping algorithm is essential for shape matching. We utilize the approach in

[1] which has demonstrated good performance in cluttered images detecting reliable

contours. Furthermore, these contours groups are not disjoint, providing multiple hy-

potheses at places where contours can potentially leak to other objects (e.g. junctions).

To evaluate shape matching, one needs to measure the accuracy of alignment, and

more importantly, determine which parts are aligned. For simple shapes, missing a small



4

but critical object part can indicate a complete mismatch, see Fig. 2 (b). In this work,

we manually divide the model into contours which corresponds to distinctive parts. Just

as image contours, we require model contours to be matched as a whole.

The computational task of shape matching thus consists of parallel searches over

image contours and model contours to obtain the maximal match of the image and

model shapes. We cast the shape detection as the following problem:

Set-to-set contour matching. Given an image I and a model M represented by two

sets of long salient contours:

– Image: I = {CI
1 , CI

2 , . . . CI
|I|}, CI

k is the kth contour;

– Model: M = {CM
1 , CM

2 , . . . , CM
|M|}, CM

l is the lth contour.

we would like to select the maximal contour subsets Isel ⊆ I and Msel ⊆ M, such

that object shapes composed by Isel and Msel match (see Fig. 1 for an image example).

Once this set-to-set matching is solved, to quantify shape matching we measure

– which set of model contours are matched;

– how well the matched contours are aligned.

The final classification cost function combines the following two terms:

Cclassification = Cconfig · Calign (1)

where Cconfig evaluates the configuration of the matched model contours, and Calign

measures quality of their alignment defined later in the following sections.

The main technical difficulty is that the image and model contours do not have one-

to-one correspondence. Contours detected from bottom-up grouping and segmentation

are different from the semantically meaningful contours in the model. However, as a

whole they will have matches (see Fig. 1). Set-to-set contour matching bridges this

semantic gap between the bottom-up grouping and the top-down model.

2.1 Solution for set-to-set contour matching

Our solution to the set-to-set matching problem includes three essential components:

Control point correspondence. While contour themselves do not correspond in one-to-

one, their shape information can be evaluated at nearby control points, and those control

points could have one-to-one correspondences. Suppose control points {p1, p2, . . . , pm}
are sampled from the image and {q1, q2, . . . , qn} are sampled from the model. We de-

fine the correspondence matrix (U cor)m×n from the image to the model as:

U cor
ij =

{

1, if pi matches qj

0, otherwise.
(2)

Note that these control points can be located anywhere in the image, not limited to con-

tours. Computing dense point correspondences is unnecessary. Instead, rough matching

of some control points is sufficient to select and match contour sets Isel and Msel.

Feature representation: holistic shape features. The important question is, what will

be the appropriate shape feature for matching these control points, and how to compute
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Fig. 3. Illustration of our computational solution for set-to-set contour matching on

shape detection example from Fig. 1. The top and the bottom row shows the image

and model contour candidate sets marked in gray. Each contour contributes its shape

information to nearby control points in the form of Shape Context histogram, shown on

the right. By selecting different contours (xsel, ysel), each control point can take on a set

of possible Shape Context descriptions (scI , scM ). With the correct contour selection

in the image and model (marked by colors), there is a one-to-one correspondence U cor
ij

between (a subset of) image and model control points (marked by symbols). This is a

computationally difficult search problem. The efficient algorithm we developed is based

on an encoding of Shape Context description (which could take on exponentially many

possible values) using linear algebraic formulation on the contour selection indicator:

scI = V I · xsel. This leads to the Linear Programming optimization solution.

shape dissimilarity Dij . Comparing Dij requires the feature to be common in the image

and the model. Since there do not exist one-to-one correspondences between contours,

the feature description is more appropriate on the contour set or global shape level rather

than on the individual contour level. We propose a holistic shape representation at the

control points covering not only nearby contours but also faraway contours (see Fig. 3).
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The holistic shape representation immediately poses the problem of figure/ground

selection since figure/ground segmentation is unknown and the shape feature is likely to

include both foreground and background contours. Unknown segmentation introduces

great difficulties to any shape features with a fixed context. A fixed context feature can-

not adapt to the combinatorial possibilities of figure/ground labeling, each generating

different contexts. Without the correct segmentation, background clutter and contours

from other objects can corrupt the shape feature. Our strategy is to adjust the context

of the holistic shape features during matching depending on the figure/ground selec-

tion. Therefore, we are able to select the right features and determine the figure/ground

segmentation simultaneously.

Matching constraint: contour integrity. Contour selection implies that we restrict

each contour to be an integral unit in matching. For each contour CI
k = {p

(k)
1 , p

(k)
2 , ..., p

(k)
c }

where p
(k)
i ’s are edge pixels, there are only two choices: either all the edge pixels p

(k)
i

participate in the matching, or none of them are included. Partially matched contours

are not allowed. The same constraint is applied to model contours CM
l as well. We

introduce contour selection indicators xsel ∈ {0, 1}|I|×1 in the entire test image and

ysel ∈ {0, 1}|M|×1 in the model defined as

(Image contour selection) xsel
ℓ =

{

1 Contour CI
ℓ is selected

0 otherwise
, (3)

(Model contour selection) ysel
ℓ =

{

1 Contour CM
ℓ is selected

0 otherwise,
(4)

The constraint of contour integrity makes matching robust to accidental alignment.

2.2 Context Sensitive Shape Features

Now we are ready to introduce the holistic shape representation called Context Sensi-

tive Shape Features determined by the figure/ground selection of the contours induced

by xsel and ysel. We choose Shape Context (SC) [2] as our basic shape feature descrip-

tor. Measuring global shape requires the scope of SC to be large enough to cover the

entire object. Define scI
i to be the vector of SC histogram centered at control point pi,

i.e. scI
i (k) = # of points in bin k. We introduce a contribution matrix V I

i with size

(#bin)×(#contour) to encode the contribution of each contour to each bin of scI
i :

V I
i (k, l) = # of points in bin k from contour Cl (5)

Similar notations scM
j and V M

j are defined for SC at control point qj in the model.

The key observation is that shape features scI
i will be different depending on con-

text xsel, i.e. they are not fixed. Since each contour can have 2 choices, either selected

or not selected, there exists 2n possible contexts – exponential in the number of con-

tours n. One advantage of histogram type of features such as Shape Context is that the

exponentially many combinations of contexts can be written in a simple linear form:

scI
i (k) =

∑

l

V I
i (k, l) · xsel

l = (V I · xsel)k (6)
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This allows us to cast the complex search as an optimization problem later.

Our goal is to find xsel and ysel such that they produce similar shape features:

V I
i · xsel ≈ V M

j · ysel. We evaluate and compare these two features by the context

sensitive dissimilarity:

(Context sensitivity) Dij(sc
I
i , sc

M
j ) = Dij(V

I
i · xsel, V M

j · ysel) (7)

The shape dissimilarity Dij not only depends on the local attributes of pi and qj , but

more importantly, on the context given by xsel and ysel. Matching object shapes boils

down to minimizing Dij , which is a combinatorial search problem on xsel and ysel.

2.3 Contour Context Selection Cost

Finding set-to-set contour matching finally becomes a joint search over correspon-

dences U cor and contour selection xsel, ysel by minimizing the following cost:

min
Ucor ,xsel,ysel

Calign(U cor, xsel, ysel) =
1

c

∑

i,j

U cor
ij Dij(V

Ixsel, V Mysel) (8)

s.t. U cor ∈ GeoSet (9)

where c =
∑

i,j U cor
ij is the number of control point correspondences. Correspondences

U cor from different object parts should have geometric consistency. We use a star model

for checking global geometric consistency. Each correspondence (pi, qj) can predict an

object center cij . For the correct set of correspondences, all the predicted centers should

form a cluster, i.e. close to their average center(U cor) =
∑

cijU
cor
ij wij/

∑

U cor
ij wij ,

where wij ’s are the weights on correspondences. Thus correspondences U cor satisfying

the geometric consistency constraint can be expressed as:

GeoSet = {‖center(U cor) − cijU
cor
ij ‖ ≤ dmax if U cor

ij 6= 0} (10)

where dmax is the maximum distance allowed for deviation from the center.

What is the right matching cost Dij(V
I
i · xsel, V M

j · ysel)? Recall that our problem

is to search for the maximal ‘common’ subsets from the image and model contours

such that their shapes are similar. This maximal condition on the contour subsets places

additional requirement on the shape dissimilarity Dij . A straightforward cost function,

such as the L1-norm: Dij(V
I
i ·xsel, V M

j · ysel) = ‖V I
i ·xsel −V M

j · ysel‖, will simply

result in the trivial solution which chooses empty sets from both sides (i.e. xsel = 0,

ysel = 0). In fact all the norms as well as χ2 distance suffer from the same problem.

We introduces the joint selection cost for Dij which balances the maximal require-

ment on the match of contour sets and the quality of the match. We seek to match as

many model contours as possible while the difference between image and model con-

tours is small. Before describing the details, we first introduce a few variables. Set

– scMF
j = V M

j yfull to be the shape context centered at model point qj selecting the

full model, where yfull = 1|M|×1 means selecting all model contours;
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– scI
i = V I

i xsel to be the shape context with selection xsel on image at pi;

– scM
j = V M

j ysel to be the shape context with selection ysel on model at qj .

We use scMF
j (k), scI

i (k), scM
j (k) to denote the kth bin in the shape context.

Our joint selection cost consists of two terms: miss and mismatch (see Fig. 3). To

match as many model contours as possible, the following difference between the num-

ber of matched points and that of full model points should be minimized:

miss
(ij)
k = scMF

j (k) − min(scI
i (k), scM

j (k)) (11)

Here min(scI
i (k), scM

j (k)) counts the number of matched contour points between the

image and model in shape context bin k.

The above term miss
(ij)
k alone does not measure how well the selected image con-

tours match to the selected model contours. To ensure the matching quality, the amount

of difference between the number of image and model contour points in all shape con-

text bins needs to be minimized:

mismatch
(ij)
k = |scI

i (k) − scM
j (k)| (12)

By combining Eq. (11) and Eq. (12), we have the following dissimilarity:

Dij =

∑

k[miss
(ij)
k + β · mismatch

(ij)
k ]

∑

k scMF
j (k)

(13)

where β > 1 is a factor balancing the two types of costs. We use
∑

k scMF
j (k) to

normalize the cost Dij such that it is invariant to the number of contour points.

3 Computational Solution via Linear Programming

Direct optimization of contour context selection cost function Eq. (8) is a hard combi-

natorial search problem. The shape dissimilarity Dij(V
I · xsel, V M · ysel) can only be

evaluated given correspondences U cor. However, finding the correct correspondences

U cor requires xsel and ysel. Therefore, the inference problem becomes circular. We

approximate this joint optimization by breaking the loop into two steps: single point

figure/ground labeling and joint contour selection. The first step focuses on finding re-

liable correspondences U cor (maybe sparse) by matching image contours to the whole

model. The second step selects contours simultaneously from both image contours la-

belled as figure and all the model contours being matched, based on the correspon-

dences computed in the first step. In both steps, we optimize the cost function by relax-

ing it as an instance of Linear Programming (LP).

3.1 Single Point Figure/Ground Labeling

Our first step discovers all potential control point correspondences Uij and computes

the correspondent figure/ground labeling xsel for them. We fix ysel = 1 to encourage

matching to the full model as much as possible. Partial matches are undesired since the
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(a) Input image

(b) Contours

A B C

A B

C

(c) Single point figure/ground labeling

(d) Correspondence points

(e) Joint contour selection

A B C

A B

C

A B C

A B

C

Fig. 4. Illustration of Contour Context Selection for shape detection. From the input

image (a), we detect long salient contours shown in (b). For possible control point cor-

respondences in (c), we select foreground contours whose global shape configuration

most resembles to the model, with selection xsel shown in gray scale (the brighter,

the larger value of xsel). Voting map for pruning geometrically inconsistent correspon-

dences is shown at the right bottom corner of (c). (d) shows the consistent correspon-

dences marked by different colors using the hypothesized correspondences. The optimal

joint image-model contour selection is shown in (e). Note in the last example, model

selection allow us to detect false match between the mug and the face.
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correspondences they produce are much less reliable. Therefore, only the mismatch
term in Eq. (13) is applied and hence the dissimilarity Dij reduces to L1-norm:

min
xsel

‖V I
i · xsel − V M

j · 1‖1 (14)

This cost will not collapse to zero because model contour selection is fixed (ysel = 1).

Brute force approach of the above problem is formidable even for mid-size problems

(20-30 contours). We compute an approximate solution by continuous relaxation on

binary variable xsel and add the constraint 0 ≤ xsel ≤ 1 thereafter. Since the norm in

the cost function is L1
1, this leads to an instance of Linear Programming (LP) which

can be computed very efficiently.

Correspondences found from single point figure/ground labeling might not satisfy

geometric consistency Eq. (10). Therefore, we enforce geometric consistency by prun-

ing hypotheses of control point correspondences via a voting procedure [3]. Each image

control point can predict an object center using the best match to model control points

computed by Eq. (14). These predictions generate votes weighted by the shape dis-

similarity, which accumulate to a voting map. We extract object centers from the local

maxima and further backtrace the voting centers to identify consistent correspondences.

3.2 Joint Contour Selection

We have obtained the rough correspondences U cor from the previous step. We optimize

the contour selection cost Eq. (8) w.r.t. xsel, ysel to prune false positives and detect ob-

jects. The outcome includes both the matching cost Calign and model contours actually

matched, indicated by ysel. Both of them can be used to prune false positives. Note that

it is not required to have a complete correspondence set U cor since the cost Eq. (13)

has been normalized by the number of correspondences.

LP can also be used to solve Eq. (8) for contour context selection by relaxing xsel

and ysel to real value vectors. Eq. (13) and Eq. (8) translate to the following problem:

min
xsel,ysel

∑

Ucor
ij

=1

{
1

Ni

∑

k

[scMF
i (k)− min(scI

i (k), scM
j (k))] +

β

Ni

‖scI
i − scM

j ‖1}

s.t. scI
i = V I

i · xsel, scM
j = V M

j · ysel

where Ni =
∑

k scMF
i (k) is a normalization constant and min(x, y) computes the

elementwise min of vectors x and y. The two terms in the summation are miss and

mismatch in Eq. (13) respectively. The above problem can be relaxed to an instance of

LP by adding slack variables sijk ≥ scI
i (k) and sijk ≥ scM

j (k) for min(scI
i (k), scM

j (k)).
The selected model contours from joint contour selection form a shape configura-

tion that are actually matched to image contours. Because the number of object model

contours is typically very limited (usually 6 to 8), we can manually specify a dictionary

of all possible configurations of true positives, i.e. setting Cconfig in Eq. (1) to be 0/1.

1 Besides L1, other distance functions such as L2 and χ2 for shape context can also be used.

However, the relaxations will be computationally much more intensive.
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Detection of model contours with bad configurations, e.g. missing critical parts, are re-

jected. This configuration checking together with the matching cost Calign can prune

most of the false positives while preserving true positives.

4 Related Works and Discussion

Salient contours and their configurations are more distinctive than individual edge points

for shape matching. Ferrari et al. ([4],[5]) represent objects by learning a codebook

of Pairs of Adjacent Segments, which are consecutive roughly straight contour frag-

ments. They achieve detection using a bag-of-words approach. Shotton et al. [6] learn a

boosted contour-based shape features for object detection. These efforts utilize mostly

short contour fragments, and therefore have to rely on many training examples to boost

the discriminative power of shape features. In contrast, our work takes the advantage

of contour grouping such as [1] to detect long salient contours, capturing more global

geometric information of objects. More importantly, we constrain these long contours

to act as a whole unit, i.e. they can either be entirely matched to an object, or entirely

belong to the background. This characteristic makes shape matching more immune to

accidental alignment to background clutter. Similar properties are exploited by group-

ing based verification approaches [7], and the recent work by Felzenswalb et al. [8].

From a broader perspective, our recognition framework is based on shape matching,

which has a long history in vision. A large amount of research has been done on dif-

ferent levels of shape information. Early works [9,10] focused on silhouettes which are

relatively simple for representing shape. Silhouette based approaches are limited to ob-

jects with a single closed contour without any interior edges with occlusions. Objects in

real images are more complex, and may be embedded in heavy clutter. Efforts on dense

matching of the edge points often focus on spatial configurations of key points, such

as geometric hashing [11], decision tree [12] and Active Shape Models [13]. However,

keypoints alone are insufficient to distinguish objects shapes in cluttered images [2].

Feature representation and shape similarity measurement are the key issues for

matching. Shape Context [2] uses spatial distribution of edges points relative to a given

point to describe shape. Inner Distance Shape Context (IDSC) refines it to account for

articulated objects [14]. We build our basic shape feature representation on Shape Con-

text, with contour as the unit. A much larger context window covering the whole object

enables our approach to capture global shape configurations. We introduce a novel con-

tour selection mechanism to extract global shape features against background clutter.

5 Experiments

We demonstrate our detection approach using only one hand-drawn model without neg-

ative training images, To evaluate our performance, we choose the challenging ETHZ

Shape Classes [5] containing five diverse object categories with 255 images in total.

Each image has one or more object instances. All categories have significant scale

changes, illumination changes and intra-class variations. Moreover, many objects are

surrounded by extensive background clutter and have interior contours. We have the

same experimental setup as [5], using only a single hand-drawn model for each class
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Apple logos Bottles Giraffes Swans Mugs

Our precision/recall 49.3%/86.4% 65.4%/92.7% 69.3%/70.3% 31.3%/93.9% 25.7%/83.4%

Precision/recall in [5] 32.6%/86.4% 33.3%/92.7% 43.9%/70.3% 23.3%/93.9% 40.9%/83.4%

Table 1. Comparison of precision. We compare the precision of our approach to the

precision in [5] at the same recall (lower recall in [5]). We convert the result of [5]

reported in DR/FPPI into P/R since the number of images in each class is known. Our

performance is significantly better than [5] in four out of five classes. The other class

”Mugs” have some instances that are too small to be detected by contour grouping.

Note that we did not use magnitude information which plays an important role in [5].

and all 255 images as test set. To adapt to large scale variance, we generate multiple

models by resizing the original one to 5 to 8 scales for each class.

We first use contour grouping proposed in [1] to generate long salient contours from

images. Contours can have overlaps due to multiple possible groupings at junctions.

Large window shape context for contour selection has 12 polar angles, 5 radial bins and

4 edge orientations. Moreover, blurring on bins [3] is used to increase the robustness

of shape context to deformation and inner-class variations. This refinement can also

be encoded into contribution matrices V I , V M as well. LPs arising from single point

figure/ground labeling as well as joint contour selection are solved efficiently by using

off-the-shelf toolbox SeDuMi. Single point figure/ground labeling for each hypothe-

sized correspondence is computed within 0.2 sec. After selecting the figure contours,

votes for object center weighted by shape dissimilarity are collected into a voting map.

We extract local maximums in the voting map above certain threshold to generate object

hypotheses. Since the correct object scale is unknown beforehand, voting is performed

in a multiscale fashion, with non-maximum suppression on both position and scale.

Precision vs. recall (P/R) curve is used for quantitative evaluation. To compare with

the results in [5] which is evaluated by detection rate (DR) vs. false positive per image

(FPPI), we translate their results into P/R values. We choose P/R instead of DR/FPPI

because DR/FPPI depends on the ratio of the number of positive and negative test im-

ages and hence is biased. Our final results on this dataset can be seen in Fig. 5. Results

of the two steps of our framework are both evaluated. Single point figure/ground label-

ing only uses matching cost as the final evaluation for detection, while joint contour

selection uses both matching cost and the detected shape configuration. Compared to

the latest result in [5], our performance is considerably better on four classes out of five.

We also compare voting using simple local shape context with our first step of contour

selection. Contour selection greatly improves detection performances (see Fig. 5).

Our shape matching algorithm can reliably extract and select contours of object in-

stances in test images, robust to background clutter and missing contours. Image results

of detection with selected object and model contours are demonstrated in Fig. 6.

6 Conclusion

We introduce a novel shape based recognition framework called Contour Context Se-

lection. We construct context sensitive shape features depending on selected contours
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Fig. 5. Precision vs. recall curves on five classes of ETHZ Shape Classes. Our precisions

on ”Apple logos”, ”Bottles”, ”Giraffes” and ”Swans” are considerably better than re-

sults in [5]: 49.3%/32.6% (Apple logos), 65.4%/33.3% (Bottles), 69.3%/43.9% (Gi-

raffes) and 31.3%/23.3% (Swans). Also notice that we boost the performance by large

amount compared to local shape context voting without contour selection.

and propose a method to search the best match. Joint selection on both image and model

contours ensures detection to be robust to background clutter and accidental alignment.

We are able to detect object in cluttered images using only one training example. Ex-

periments on hard object detection task demonstrate promising results.
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