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PHYSICS OF PLASMAS VOLUME 11, NUMBER 9 SEPTEMBER 2004

Contour dynamics method for solving the Grad—-Shafranov equation
with applications to high beta equilibria

P.-A. Gourdain® and J.-N. Leboeuf
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

(Received 8 October 2003; accepted 1 June 2004; published 20 August 2004

Numerous methods exist to solve the Grad—Shafranov equation, describing the equilibrium of a
plasma confined by an axisymmetric magnetic field. Nevertheless, they are limited to low beta or
small plasma pressure. Combining a nonconservative variational principle with a contour dynamics
approach, the approach presented in this paper converges for extreme high beta configurations. By
reducing the dimension of the problem from two to one, a compact and efficient numerical
algorithm can be developed, and a wide range of boundary shapes can be utilized. Furthermore, the
iterative nature of this technique greatly facilitates convergence at high beta while minimizing
computation times. @004 American Institute of PhysidgDOI: 10.1063/1.1776174

I. INTRODUCTION modes in tokamaks. By coupling of a nonconservative varia-
tional principle to the contour dynamics method, a simple

Stable high beta plasmas in magnetic confinement desne-dimensional iteration scheme can efficiently converge to

vices such as tokamaks and stellaratean transform mag- an equilibrium solution at high bef8.

netic fusion into a clean and abundant source of energy. To The remainder of this paper is organized as follows: In

reach such a goal, magnetohydrodynaniiégdiD) equilib-  Sec. Il, the GSh equation is computed in flux space and an

rium codes are the most basic and primordial assets. intuitive approach to the contour dynamics principle intro-
Numerous methods exist to solve the so-called Grad-duces the basic idea of the method described in this paper;

ShafranouGSH equatior? describing the ideal MHD equi- then, the algorithm to solve the GSh equation is presented in

librium of an axisymmetric plasma confined by a magneticSec. Ill; numerical results obtained with this technique, in

field. Due to the nonlinearity of this equation, all numerical particular for high beta plasma equilibria, are given in Sec.

methods solving for a given plasma equilibrium arelV; while Sec. V contains conclusions.

iterative® Two different types of numerical codes exist. The

first sort is based on an Eulerian scheme, relying on a twoH. THE CONTOUR DYNAMICS APPLIED

dimensional(2D) mesh without any direct link to plasma TO IDEAL MHD

shape or properti€s> The second one is based on a Lagrang-a_ The Grad—Shafranov equation in flux space

ian scheme using curvilinear flux coordinates to map plasma

geometry, involving adaptive grid, variational® or pertur-

bative approachebor inverse coordinaté®methods. Never-

The equilibrium of a perfectly conductive plasma con-
fined by an axisymmetric magnetic field is usually given by

theless, many of these excellent methods cannot computB€ equation of Grad-ShafrarfoGSh. This equation de-

asymptotic high beta equilibria such as the one presented éi:ribes_the local equilibrium_ between the forC(_a arising from
the end of this paper. the static pressure of the fluid and the magnetic force locally

The technique presented in this publication compute§‘pp”ed' The surfaces of constant pressure are actually nested

high plasma beta equilibria with large outward shifts of thesurfaces. The pressure increases from the interface plasma-

magnetic axis or Shafranov shifts, while maintaining compu-vacuum to the center of the plasma, called magnetic axis,

tational efficiencﬁ.l By changing coordinate systems from where it reaches a maximum. Figure 1 illustrates such a con-

geometric space to flux space, the dimension of the derivaf—iguration’ n the vertical plan€R,Z, 4). In.this plla.ne. of
tive operator in the GSh is effectively reduced by one. Thigdymmety, the ideal magneto hydrodynamics equilibrium of
has an important implication: a set of contours, yielding a? plasma can be reduced to

single gradient coordinate, can now replace an area yielding o [1d¢\ 1y _ dp 1 dF?

two gradient coordinates for each quantity involved in the  ;r\RsR/ T R9ZZ "‘R@J’ 2R dys r
equation. This technique is known in fluid dynamics as the 1)
contour dynamics methdd.This is a generalized case of the dp 1 dR

water-bag method introduced by Berk and Rob&Rotter* A y=- (,uR— + ——)

used such a method to solve the GSh equation along with a dy 2R dy

flux conserving variational principle, restricting it to a lim- i stands for the flux of the poloidal inductidg, in the

ited set of low beta equilibria. Rosenbluh al.™ applied an  planez=0. p is the pressure inside the fluid, the toroidal

equivalent scheme to study the nonlinear evolution of kinkfunction?’ represents the net poloidal current crossing the
planeZ=0. Furthermorep and F are functions ofis only.2

dElectronic mail: gourdain@ucla.edu The presence ofy on both left-hand and right-hand sides
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Magnetic axis

FIG. 1. Cylindrical coordinate systertR, Z, ¢) and
flux coordinate systenfw, x, ¢).

makes this elliptic partial differential equation nonlinear. After defining the coordinate system, we can now derive
Only iterative methods can solve this kind of problem. Sev-the revised form of the GSh equation in flux spéagey, ¢).
eral efficient schemé¥*®exist to find a solution for a given The magnetic induction is always derived from the flux and
pressure and toroidal function distribution. the toroidal function,

Another difficulty in this equation arises from the com- 1
plex form of the operatoA™. The (R,Z) coordinate system p= |§¢+ ép with ép =2V ¢ xé,and |§¢:
does not take advantage of the topology of the solution. One R
can try to experiment with other coordinate systems in asing the formula of the? operator given in the Appendix,
attempt to simplify this equation. A simple choice is to map, o have
the nested isobar surfaces. Becapsea function of the flux
¢ only, the surfaces of constant pressure are also surfaces of B = MQ (g withB.=—[ )& 4
constant fluxy. It is possible to build a new coordinate sys- TR € Rh G W PT \RH € )
tem, based on flux surfaces, by using three new vectagg, as
e,, &, defined as follows:

F) -
?eqs. (3)

Maxwell’s equations give the current density from the curl of

* the ¢ direction, given bye,, is orthogonal to the flux sur-
faces in each point, ﬁﬂ
* €, is the vector defining the ignorable toroidal direction, > 1 dR(y) . 1 RNH.
,lLJ =—— ed,. (5)

* the x direction is given bye,=e,xe,. Rh dy &~ h*hY 9y

These vectors define an orthogonal coordinate systenmihen, by using the classical static equilibrium equaiién
(¢, x, ), called “flux space,14 shown in Fig. 1. This space between pressure gradient and current flow,
is not metric, and by using the distance invariance principle, L
we obtain Eq.(2) in the geometric spacR, Z, ¢) and the Vp=JXB, (6)
flux space(#,x,¢). Figure 2 illustrates the similarity be-

tween the distancdr andh? along they direction we obtain
hX
[?_
di? = (h?dy)? + (h¥dy)? + (Rdg)?, 1 RKW _( dp . id_Fz) o
W gy \"Tdy 2R dy
di? = (dR)2 + (d2)? + (Rdgh)2. ) )

jl

FIG. 2. Detail of the continuous and

i discrete flux spacéy, x).

i = hY 5\]/

¢
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dp 1 dF? tsg
= ’uRd_ * ﬁd_ Plasma boundary Magnetic axis
W ‘ﬁ o g M, \l

Discrete g(y)
gy) —

Equation (7) is the GSh equation in flux space. By
changing coordinate systems, we effectively reduced the di-
mension of the derivative operator from two to one. This has
an important implication: a set of contours, yielding a single-
coordinate gradient, can now replace an area, yielding a two-
coordinate gradient, for each quantity involved in the equa-
tion. This technique is known in fluid dynamics as the
contour dynamics methdd.Despite the nonlinearity of Eq.
(7), a simple one-dimensional iteration scheme can converge
to a solution. Using this coordinate system, the following

W
Vi Y2 Wn-1 Yn o

b ___
\

S

FIG. 3. Discretization of a continuous functigon the discrete flux space.

2
paragraphs introduce the contour dynamics idea. L(s(i) + MR@ + i@ =0 orZ= 0. (12
h?sy "\ RW Sy 2R Sy
Equation(12) represents the GSh equilibrium configuration
B. Physical interpretation of the contour in the discrete case, which is an approximation of the con-
dynamics scheme tinuous case of Eq(7). So the contour dynamics scheme

S‘describes the static equilibrium of a set of contours in an
appropriate local coordinate system, i.e., on the flux surface
itself, thus reducing the dimension of the GSh equation. A
more rigorous mathematical demonstration follows this in-
tuitive introduction where Eq(11) will appear again.

The following sections present the algorithm based on
dﬁtotalz - 27RdI([p + Prmagnetdi — [P + pmagnem]i_l)éw, (8) the contour dynamics method and its practical application for

o ) high beta solutions. Due to the axisymmetric nature of the
wheredl| represents an infinitesimal portion of the flux sur- problem, we will refer to “flux surfaces” as “flux lines” in

face algng they direction. The _inde>t. refers to the pressure many occasions.

on the inside area of the surfacandi-1 to the pressure on

the outside area of the same surfacBetween surfaces, the

pressure is assumed to be constant. In this framework, \A)é' CONVERGENCE ALGORITHM

To understand the method depicted in this paper, it i
best to look at a discrete set of nested surfépgs.. . ,p,), or
(¢, -- ., in). If we take an isobar surfadeat random in the
distribution from Fig. 1 and we look at the group of forces
that exists on both sides of this surface we have

can develop Eq(8) by replacing the value of the magnetic In this section, we construct an original algorithm that
pressure by the toroidal and poloidal inductions from@g,.  solves Eq(7) using a nonconservative variational principle,
. 1/ 1\2 1/E\2]i which cannot be compared to an energy minimization prin-

dF =~ {p+ 7(@) + 2—(5) } 27Rdlg,. 9) ciple usually found in many variational methosafter the
K K i-1 definition of an error between the LHS and the RHS of the

We can introduce the linear operatdmwhich expresses GSh equation, an error reduction scheme, a numerical vis-
the difference of any functiofi on both sides of a flux sur- cosity that controls convergence and a flux correction are
face. § has two remarkable properties: presented.

(1) if fis continuous across a flux surface th#=0 across
this surface;

(2) ofg=(f)sg+(g)sf, where(:) represents the average of a  we define an errot(i, x,R) between the RHS and LHS
function across the surface. of Eq. (7) for all points of our domain of definitio) so we
can monitor the progress of the algorithm in solving for the

sought solution,

A. Error definition

After some rearrangements, E4O) replaces Eq(9),

dlztota|:—5—¢/2wdlf with L

i (R = e (R LEE) g
- (1/1 1 1 8F? "o oy T\ ey Ry )
(= (5/, hv 6(@) +”ng+ 2R S )e(,,. At the equilibrium (i, ¥, R) is null everywhere inside

_ _ ) _ the plasma. For all practical purposes, the problem must be
If we wish to approximate-) by its value on one side of the ggjved on a grid. A discrete set of coordinatés, ¢, .. .4,

surface then we have is used to number our series of nested flux surfaces, as illus-
- ( 1 5( 1 ) o 1 5(,:2)) trated in Fig. 1p andF will be considered constant between
=\ ——68 = | tuR— + — 2] 11 = i '
h7sy*\ RHV M sy 2R o " (11 each contoury=1;, as prescribed by the contour dynamics

discretization principle, presented in Fig. 3. At this point,
At the equilibrium, the total force densityF,, is null and  areas between lines can be ignored as we adopt a one-
we obtain dimensional point of view. In the rest of the paper we will
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FIG. 4. () Detail view of the equilibrium configuratiorib) infinitesimal displacemendr giving M; ; by moving M,e?

use the index to number the/ contours and to number the I = hil/lj(wi - q). (16)
x lines. At each pointlvli‘”?((wi,xj) of the flux space corre- o " ] ]
sponds a unique poimflﬁj R..Z) of the geometric space. By replacingh? in Eq. (15) we obtain Eq(17) for all points

Because of their trivial correspondence, we will never distin-nSide the plasma,

guish between them and always uUdeg;. Across each con- ; 1 ( Y=t - l//i—l) { Rbb 1 5(,;2)}
inM: i = - tuR—+—=—-1 .
tour in M;;, Eqg. (13) may be transformed into i F \ a1 Rien Ry s 2R 8y |
1w » . 18F) 17
Gij= h/hX sy \ RH " '“R(;,ﬂ "R sy ) (14) This represents the discrete form of the error defined by

Eq. (13). The variabley actually disappeared from the equa-

Across each)s contour,h” is discontinuous whilé™ is  tjon. The following paragraphs detail the utilization of this
continuous. On the other enidk is discontinuous whilé@?is  aorror in the construction of the algorithm, where theoor-

continuous across thg lines. As discussed earlier, the  ginate will be ignored altogether.
operator acts only on discontinuous variables acips®n-

tours, soh disappears from Eq14) when discretized and

we have B. Error reduction

) The core of the method focuses on minimizing the error
_ 1 5<i> +< R@+iﬁ(F )) (15) |¢i;| for each point of the plasmM;;. Before working on
h?sy \ RK H Sy 2R &y ) such a complicated task, it is natural to look at a simple case
first. We suppose the solution to the GSh equation has been
If we recall Eq.(10), dF, and(;; are actually propor- PP d

ional. So thi b | d h ¢ found. A detail view of the equilibrium configuration is

tional. So this error can be interpreted as the net force apgy .y in Fig. 4a). All points M of the plasma verify

plied to each poinM; ; of the flux lines, within a factoR;;. J

When the error is null, the force on the surface is null and the i( b= Y- lﬁj—l) __ [ % . its(Fz)]eq
r

static equilibrium has been found. We can also give a physi- — rZi\rf} R rfiRYY H gp 2R oy

i

it i
cal interpretation toh? which corresponds to the distance Y (19)
between two neighboring contours in flux space. Equation
(2) givesdr=h"dys along they direction of the continuous We now introduce a small perturbatiafr by slightly

domain, illustrated in Fig. 2 and in the discrete case, we havenoving a :single—poinMﬁJq from its original equilibrium po-

Downloaded 24 Feb 2005 to 128.97.15.245. Redistribution subject to AIP license or copyright, see http:/pop.aip.org/pop/copyright.jsp
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sition. It is reasonable to assume that a displacement along 1] 1 l//|+1 IM cos(é éR)

the y direction will not affect the error, because it is inde- = r?q re R req eq

pendent of this variable. Therefore, only displacements along R +1J b i

the ¢ direction will be considered in this exploratory dem- Ui — g

onstration. Such a displacement, orthogonal to ghéux X oomeq r.e? " '“‘Jd’u = 0. (24

contour, takes the form of

F=or.6, (19

This infinitesimal displacement transforrlsfﬁeq into M j,
as shown in Fig. é). By inserting Eq(18) into Eq (17) we
obtain

4:g<wﬂ—%_w—wﬂ>
Do\ R Ry
Yor= Y=Y )
W) (20)
( I+1JRI+1J rl? ]q

The values of; , 1,1, andR; ; come from Eq(21) in vec-
torial or algebraic forms,

2 — (03 v — €
r,,je,l,-rij‘ew&r, ri,j-rif+&,

- eq = . e
li+1j€4= rifl,jel,//‘ o, Tiygj= rifl,j - or,

Ri,jéR:Rie,JqéR"- 6}?, Ri,j:Rﬁjq-l- &Coiéd/,éR) (21)
Becausey is infinitesimal, it is possible to approximate
1/rij, 1Iris;, and 1R, j by using Taylor's expansions given

or
l__
IJ

1 1 1 1[ 0(&2)}

T RSY sy
Ri R 1+—c05(e¢,,eR)
R}
1 { &
=— 1——cos(e¢,,eR)+O(bT2)]
Rl Ry
1 1 1 1 ( &
= = 1+ +0(5r2)). (22)
Fi+1 r?ﬂl,jl_ or r?ﬁl,j rﬁrql,j
réd .
i+1,

If we incorporate the results of E(R2) into Eq.(20) we
have
with

5j=Kijor +0(ar?) (23

Kw:éi(i Jwﬂ—w
ri,j ri+1,j rlj I+1JR1+1]
. [3 . cos{éw,ep)] - l/’i+1]
g R Lawe )

Furthermore, Eq(18) leads to a new analytic expression
of K; ; where the current density appears,

Becausa) increases with, all factors ofK; ; are positive and
any infinitesimal displacemenfr changing the position of
M;; can be defined by the errgy; as

1 - -
o = E(,J + O(&Z)é¢, Whereg’j = {i’jé,/,.
The preceding equation reveals that any random infini-

tesimal displacementr is proportional to the vectorial error

g it generated, and they both have the same orientation

along theys direction. The major implication arises wheén

is actually unknown. In this casé;; cannot be computed.

NeverthelessK; ; is not a function ofér and can be consid-

ered constant. Because Eg7) gives the value ofj; for any

position of M, ;, it is always possible to compute and mini-
mize the error|§,J| by successively moving/lIJ between

M, and M7, ; along they direction. This gives back the

equ|I|br|um posmonMeq and totally definessr. Figure 5 il-

lustrates the concept where at each iteratiorwe use an

intermediary displacemerd™ given by

(25

oM=- ngj with (26)
(L wﬂ—w_w—¢ﬂ]
&t (r.”] { MREL TR

+{,u,Rép+ L 3F)
Sy 2R Sy

i

The positive multiplicative 1‘actOV7i“fj is a numerical vis-
cosity that controls the speed of the convergence. The orien-
tation of or™ is the opposite of the unknown displacement’s
orientation given by EQq(25). This guarantees that/lf}

FIG. 5. Successive displacementsof the pointM;; which minimize|4’,’i,j|
and give backvif
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moves closer t(Mﬁq when it is displaced byr™. Finally we The saturation component ensures the integrity of the
demonstrated that, for any unknown infinitesimal disturbancenesh from one step to the next by preventing a vertex from
introduced in the equilibrium, this iterative method can re-one line to crossover another line,
cover the original configuration by only knowing the posi-
tion of the disturbed poirni; ; relatively toM{} ; andM} . min My = My

After studying the simple case where a single point is _ lieivgj-r ‘
disturbed, we can extend the method to a whole flux line. We ~ %1~ 2 max{, |
can apply a set of unknown infinitesimal displaceméats) i

to all the pointsM, ; of a single flux contour. By applying As the convergence approachés, becomes negligible
the preceding principle to this set of points, it is easy t04nq this condition is no longer necessary. Thus we can define
extrapolate that the equilibrium position of the flux contour 5 aximal positive facto, which limits the upper values of
can be readily obtained. o

Finally, in the more realistic case where the whole mesh
distribution is far from the equilibrium, the previous idea can

(29)

i,

be generalized so the series of infinitesimal displacements _ 1k:m1'?_1”Mivi = Myl
(&v0,ort, ...,&™,..) from Eq.(27) will solve the GSh equa- @ j=min| = va . (30)
- - 2 max{; j|
tion for a givenp andF, i
pr Keeping the integrity of the mesh is a necessary require-

b n"lg'n'] ment, but reducing numerical oscillations is also important.

At the iteration stepn, the directional component takes into
im= A -t i~ ¥ account the motion of the poirl;; at the previous steps
LRy R m-1 andm-2 to damp oscillations, arising as the motion

reverses
1 8(F?) ™. ’
+[MR@+—Q] )ew. 27)
o 2R &Y i

If o8 2>0 then at stepn,&; =1,
The theory of the calculus of variations demonstrates

that this series converg%?safter a finite numbem of itera- 1 s
tions for a given errog,y, If orf; =& “<0 thenatstepn§; <1. (31

(29) Finally the last component ofy; controls the speed of
the convergence. Ag;; diminishes, it is prudent to slow

h di h defined th . down the convergence to prevent small oscillations around
In the preceding paragraphs, we defined the effpin local minima. This technique is known as simulated

Eq. (17). Then we constructed an error reduction method by, he2iin?1.22 When repetitious oscillations appear, the
Studying the behavior of one point, extending it to a whole, ;¢ of v is reduced, pushing further the convergence. An

ﬂl.JX surface, and_ finally to the whole d_omain. Equatia) . oscillation counter® is set up and we have the following
gives the generic form of the reduction scheme by using. ,ndition at the iteration ste:

infinitesimal displacements. Only the viscosity; was left
aside, and it is discussed in greater details below.

em=max(; ;| at the iteratiorm.
)

If O>T, Y < 1¥m1 €ISe¥m= Y1 (32)

The initial value fory, can be 1. The maximum number

C. Numerical viscosity definition of oscillationsI” depends on the geometry of the problem. In
. enerall’=10 gives good results. I is too small, the flux
The success of the algorithm depends on the control OI?nes will converge to a local minimum; iF is too big, the

oscillations arising \./vhen. the fluxllmes are movgd SI.mmt"’l_convergenc:e may be jeopardized as oscillations are not
neously. The numerical viscosity ; introduced earlier, gives damped

efficient oscillation damping over many plasma configura- The overall viscositys, ; needs to couple the actions of

tions, especially at high beta. This viscosity has three COMfhese three components simultaneously. The simple form re-
ponents which depend on the iteration tained is given by

(1) a saturation component;;, preventing flux lines to

ove_rlap_when moved; _ _ _ M= yai & (33
(2) adirectional componer ;, reducing flux line displace- o o ) )
ments when the direction of the motion reverses: This viscosity gives rapid and accurate solutions for both
(3) a global deceleration component slowing down the 0w beta and high beta cases. It provides a robust control of
flux lines when close to the solution. oscillations without preventing fast convergence. The control

of the numerical oscillations is hereby resolved. Nevertheless

The numerical viscosityy ; is a nonlinear directional another task still remains. The following paragraphs deal

viscosity.11 The following discussion deals with each compo- with the consistency between the flux coordinate system and
nent separately. the magnetic flux.
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D. Flux correction

The ultimate goal of the algorithm is to find the magnetic
flux distribution (g, ... ,i,) that suits the input functions
p andF. Unfortunately, far from the equilibrium, the flux
may not correspond to the actual magnetic flux. Instg¢ad
should be considered as a regular coordinate which is used

P.-A. Gourdain and J.-N. Leboeuf

tive systems whereé can vary monotonically. In this casp,
andF are kept constant during the computation and the flux
Y varies.

Here we have reached the end of the description regard-
ing the different parts of the contour dynamics scheme for
m)lving high beta equilibria. All the tools described in the

péeceding paragraphs can now be integrated in the conver-

the computational process. Standard methods often compu :
gence algorithm presented next.

the flux distribution from the current distribution. Hence the
computational flux¢y and the magnetic flux represent the
same quantity at each iteration. E. Convergence procedure

On the other hand, the contour dynamics scheme obtains For aiveno and E orofiles. the algorithm aoes as fol-
the flux distribution at the iteratiom from the one found at ) 9 P P ' 9 9

) . P . lows:
the iterationm-1 through a set of infinitesimal displace-

ments. Therefore, it is improbable to have a correspondenad) guess an initial computational flux distribution

between the computational flux and the magnetic flux com- (¢, ¢4, ... . ¢n);

puted from the actual current distribution. (2) compute(;; for all the points inside the plasma using
To ensure that the computational flux converges to the Eq.(17);

©)
4

magnetic flux, the poloidal inductioB, found in Eq.(4) has
to verify Ampere’s law, i.e.,

| Ja
plasma boundar

compute; ; for all the points inside the plasma using
Egs.(30—«32);

correct the fluxy using Eq.(36) and compute the new
distribution (¢, ¢, ... ,¢);

m

1

R (5) move all the vertices using ER7).
_ dp 1 dF? m The steps 2 through 5 are repeated until the convergence
- ’U“Ra//-kﬁd_w ds| . (34 is achieved, i.e.£m<emax<l. The computation time for
plasma each vertex is reduced to a minimum, involving only geo-

metrical calculations. This algorithm includes an error calcu-
lation, a nonlinear directional viscosity, a flux correction, and
a displacement of the grid mesh to reduce the error previ-
ously computed. This allows the convergence towards the
solution to the GSh equation for the given functignandF.

The following section validates this algorithm by comparing
several solutions to analytic or numerical results of the GSh
equation, obtained by other methods.

While the flux s does not correspond to the actual mag-
netic flux, Eq.(4) fails to give the poloidal induction and Eq.
(34) is not verified. So we have the nontrivial form,

ERMAS dp id_'zz>
J(RW)dI ff('uRdl,b+2R T
(35)

The factorv™ can be used to scale the computational
flux. This correction has to be infinitesimal to prevent nu-1vV. NUMERICAL RESULTS
merical oscillations and the evolution of the fliat the step
m is controlled by

m

VM=

This section focuses on validating the method presented
in this paper. First, we will use an analytic solution of the
GSh equation and compare it with the contour dynamics so-
lution. Then, we will define the functionsandF in a man-
Yhore = | = o ner conveni_ent for code_inputs, gsing polynomigls Jof

Next, we will use numerical solutions to deal with more

The parametet™ prevents oscillations caused by the cor-realistic plasma configurations. Finally, we will present an
rection v™* during the successive iterations. This computa-extreme beta case to demonstrate the versatility of the algo-
tion is compatible with Jourdain’s variational principle for rithm. For practical reasons, we will use the geometry of the
nonconservative systerfisWhile the variation ofy is not  high aspect ratio Electric TokamalET)** at UCLA (B,
guite monotonic in this case, it does not violates Jourdain’s=0.25 T,R=5 m,a=1 m, k=1.5).
principle. When we are close to the solution, E&6) be-
comes quasimonotonic which guarantees theoretical conv
gence. This correction is not possible with d’Alembert prin
ciple, used by Pottéft where hota=|n— | has to stay To demonstrate the accuracy of the method with simple
constant throughout the whole equilibrium computation. Thiscurrent distributions, we can compare the equilibria obtained
scheme implies that the input functiop®r F have to evolve numerically with an analytic solution for high aspect ratio
during the computation so Ampére’s law is satisfied. If onecircular plasmas, first investigated by H&aBecause the
desires to impose input profiles, this flux conserving tech-GSh equation determines the poloidal field, and the toroidal
nigue is not appropriate. Furthermore, flux conservation prefield balances the radial pressure, Haas coupled the pressure
vents the convergence at high b&tahe present algorithm and the toroidal function, and introduced a new functiceo
is based on Jourdain’s variational principle for nonconservaan analytic solution could be found,

Y= (L —tT el with "™t <1 and
(36)

er- . . . i
/5\. Comparison with an analytic solution
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Contour
Dynamics
il
il
&lﬁi
i
il
4
R=4m R=6m
RSTEQ
FIG. 7. Comparison between the contour dynamics schéim@ and
RSTEQ(bottom) equilibria for medium average beta, 200 vertices per lines,
and 22 flux lines(only 11 lines showpn The maximum error stays below
1.5%.
B. Comparison with a numerical solution
When we depart from simple current distributions, the

R=4m R=6mn GSh equation does not have any analytic solution. For the

) ) . ) __numerical applications of this method, we will consider the
FIG. 6. Comparison between analytic and contour dynamics solutions with

10 flux lines and 140 points per lines. The maximum relative error betweer{nput funCt'OnSp andF as p0|ynom'als of the flux, defined as
the two methods is 0.8% with an average of 0.5%. The two solutions are
almost indistinguishable. If more precision is needed, a finer mesh has to be

used. p(q,) — pboundary+ Paxis~ pboundar)E a,-\l’i,
2 a; i>0

i>0

2pop(y) | 2f(y)
F2(y) = R2B2| 1 - + . 37 2is— Fa ;
('//) RO 0 Bcz) BO ( ) FZ(‘I’) — Fgoundary'i' FaX|52Fboundary§: bi‘lfl,
b i>0
If we considerp and f linear in ¢, then the solution to U
the GSh equation is given by
A C - 'p_ll/boundary
Y(r,0) = Z(r2 -a)+ g(r3 - a’r)cos d), v Waxis— Yhoundary (39)

It is very convenient to use such forms fprand F

because this concise decomposition can match a lot of real
— ==, (38)  Pplasma configurations.
dy  RiBy We have calculated several types of equilibria using the

“direct-type solver” resistive stability toroidal equilibrium

whereR; is the position of the magnetic axig,the minor (RSTEQ code® developed at the Oak Ridge National Labo-
radius,r the distance to the magnetic axis, afidhe angle ratory. It can be used rather efficiently to benchmark the
with the horizontal plane with the magnetic axis as origin. present method at average betas, i.e., below 20%. The equi-
andC are now the “free functions” of the GSh equation. In librium profilesp, F, ands were computed using the contour
Fig. 6, we show comparative results between analytic andynamics scheme. They were used as inputs to the RSTEQ
numerical solutions. The error stays below 1% with a rela-code to check the consistency of the results. In Fig. 7, we
tively coarse mesh of 1400 points equally distributed on 1(present a comparison between the two methods. The error
flux lines. We were able to limit the number of vertices to adoes not go above 1.5% with a relatively coarse mesh of
minimum because of the quasicircular shape of the flux lines4400 nodes.

d C df A
P_ and =

dy B 2Ry
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Pei In T.m"2 Axis +5.826400 Q profile Axks +5.B2E+00
Flux lines in Vacuus Vesoe) 32302 +5.098400
| \/
[ Rinwe [ Rina
+4.00E400 +6,00E400 +4,00€+00 +6.00E+00
in Pa Axis +5,82E+00 B toroidel in T Fxly +5.52€+00

P
+1.57E+04 +2.07E-0

[ Rina [ Rinmw
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R -
R=4m R=6wm +4.00E+00 +6.00E+00

FIG. 8. An extreme equilibrium with an average beta of 2780% peak beta, 8.1 poloidal bgfar a circular-shaped plasma of 175 kA and a mesh with
20 flux lines and 200 vertices per line.

C. High beta case such equilibria have eluded RSTEQ when increasing plasma
beta through a flux conserving sequeft&ven though this

For high beta, few codes achieve good performaﬁce& .
As the flux lines get squeezed on the low field side, lineal> beyon_d the scope of this paper, we add that_the_methoo_l can
e readily extended to free boundary equilibria at high

system inversion becomes difficult and successive errorg 1
tend to increase. The method presented does not include suBH“S"“a bets.
mathematlcal techniques and is deS|gned_to diminish succe CKNOWLEDGMENTS
sive errors. So convergence exists for a wide range of bound-
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g>1. Here we do not present stable or unstable configura-
tions but equilibrium solutions that demonstrate code capaAPPENDIX: GRADIENT AND CURL OPERATORS
bilities. Other shaped equilibria can be readily computed us-
ing this method. Here we have presented only the classic?l
circular version of high beta plasmas. G

In an orthogonal systente;,e,,e;) with coordinates
2,03 and metric(hy,h,,h;), we have

19U, 19U, 19U,

VU= ——6& + —— G+ ——6,, (A1)

V. CONCLUSION hiogy © hpady © hgdds

This work has described a method for solving the Grad— _ _ 1 [g(h,A) d(hAy) ). 1 (a(hA)
Shafranov equation. It uses the contour dynamics approach V X A= - et ——\ -

L - - - hohs\ dd, J03 hohs\ das
to simplify the mathematical tools to resolve this nonlinear
problem. By combining a variational principle with an ad- AR PO d(haAp) (A 5
equate coordinate system readjustment, high, hence low, beta aq, hih,\ aq; 90y 3
plasma equilibria can be computed over a wide range of (A2)

fixed boundary shapes. To obtain reliable results, strict con-
vergence control is enforced using a nonlinear directional
viscosity. Convergence is very fast for standard plasma betéF. Chen,Introduction to Plasma Physics and Controlled Fusi@md ed.
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