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Abstract

This paper presents a new segmentation algorithm by fitting active
contour models (or snakes) to objects using adaptive splines. The
adaptive spline model describes the contour of an object by a set of
piecewisely interpolating C

2 polynomial spline patches which are lo-
cally controlled. Thus the resulting description of the object contour
is continuous and smooth. Polynomial splines provide a fast and effi-
cient way for interpolating the object contour and allow us to compute
its internal energy due to bending and elasticity deformations ana-
lytically. The adaptive spline model can be represented by its spline
control points. The accuracy of the model is gradually increased during
the segmentation process by inserting new control points. For estimat-
ing the optimal position of the control points, two different relaxation
techniques based on Markov-Random-Fields (MRFs) have been com-
bined and evaluated: Simulated Annealing (SA), which is a stochastic
relaxation technique, and Iterated Conditional Modes (ICM), which is
a probabilistic relaxation technique. We have studied convergence be-
havior and performance on artificial and medical images. The results
show that the combination of both relaxation techniques provides very
robust and initialization independent segmentation results.

1 Introduction

Active contour models or snakes were first introduced by Kass et al. [10] to model
and segment the contour of objects in 2-D images. Snakes are a class of deformable
models which try to minimize their associated energy function. A snake in 2-D can
be represented as a function of arc length s by v(s) = (x(s), y(s)) with s 6 [0..1].
The energy of a snake can be written in the following form:

E= [ E(v(s))ds = f Eint(v(s)) + Eimage(v(s))ds (1)
Jo Jo

Eint represents the internal energy of the spline due to bending or discontinuities
and is given by

Eint(y(s)) = a(s)\v,(s)\
2
 + /?(«)|v,,(s)|2. (2)
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The first derivative term |vs(s)|2 controls the elasticity of the spline while the
second term |vJS(s)|2 controls the bending of the spline. Setting a(s) to zero
would allow the curve to develop gaps; setting f3(s) to zero would allow the curve
to develop corners.

The image energy introduces a coupling of the snake to image features. For exam-
ple, to drive the snake towards strong edges in the image, the image energy can
be expressed by the gradient magnitude, e.g.

Eimage(v(s)) = -\VI(x,y)\
2
. (3)

Kass et al. used a gradient descent technique to solve the minimization problem
via the Euler-Lagrange method. Other optimization techniques include dynamic
programming [1], greedy optimization [17] as well as genetic algorithms (GA) [9]
and finite element methods (FEM) [4].

However, the successful application of snakes to image segmentation is limited by
the sensitivity of the algorithm towards noise and different initializations. This
is especially true for medical image segmentation where robustness and repro-
ducibility is crucial. The sensitivity of the classical snake model is mainly caused
by two fundamental problems: First, local optimization techniques will not find the
global energy minimum. This makes the approach very sensitive to local minima
which can be caused by noise or operator-dependent initialization. Optimization
techniques like genetic algorithms (GA) provide an alternative to purely local op-
timization techniques, however their convergence properties raise some practical
problems. Second, discrete polygonal approximations assuming a fixed number
of polygon points are usually used to describe the object contour. Such poly-
gonal approximations have several disadvantages: On the one hand, the number
of polygon points needed to describe the object contour accurately is not known.
On the other hand, the estimation of the curvature due to bending and elastic
deformations using finite differences can be problematic [17].

2 Contour fitting by adaptive splines

We propose a new adaptive spline model similar to Geometrically Zteformable
Models (GDM) [12] to overcome these problems. The adaptive spline model rep-
resents the object contour by a set of C2 spline patches which are locally controlled
by their defining control points. Its accuracy is gradually increased by resampling
the model and adding new control points. Using this notation the model is de-
fined within the framework of Markov-Random-Fields (MRFs). Two different
relaxation techniques are used during the contour fitting process: In the initial
stage Simulated Annealing (SA) is used to escape local minima and to find a
global minimum. In later stages Iterated Conditional Modes (ICM) is used to
achieve a fast and efficient convergence. Both techniques have been successfully
used for the model based segmentation of ventricular contours [7], [6].

The adaptive spline model has several advantages: Its representation is compact,
analytical and continuous as well as locally controlled. Using this model, the
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energy due to elastic and bending deformations of the contour can be computed
analytically. Moreover, most objects of interest in medical images have a smooth
shape which does not vary very rapidly. These objects can be usually described
accurately with only a few control points. Thus the size of the resulting MRF
is computationally feasible. Another important feature of this representation is
the fact that the contour shape is locally controlled: Changing a control point of
the adaptive spline model influences only the contour in the local neighborhood
of the control point. Other analytical shape representation models like fourier
descriptors [14] or active shape models [5] do not provide any local control and
can therefore not easily be defined within the framework of MRFs.

2.1 The adaptive spline model

An adaptive spline model can be described by an ordered set of n points, P =
{pi,.. . ,pn}, where pi denotes the ith control point of the interpolating spline. We
generate a smooth curve by using a set of curve segments whose coefficients depend
only on a few points. The contour Q described by the adaptive spline model P
is given by the set of curve segments Q = {Q\,..., Qn} which are defined by the
control points. Each curve segment Qi(r) describes a curve starting at point p,-
and ending at point p,+i with its parameter r ranging between 0 and 1. Since we
want to be able to compute the internal energy of the curve due to elastic and
bending deformations, we require the curve to be twice differentiable, thus being
C

2 continuous.

For example, natural cubic splines are C
2 continuous but do not provide any

local control element which is important to keep the computational complexity
small. Instead we will use a fifth-order polynomial function allowing us to easily
compute an interpolating curve which is C

2 continuous and provides local control.
The derivation of the coefficients for a C1 polynomial spline is given in [3]. In
order to extend the concept for C2 polynomial splines, two new conditions about
the second derivative of the curve segment Q{ at the joint points r = 0 and r = 1
have to be added. Using these six different conditions for the spline it is possible
to find exactly one fifth-order polynomial function K(T) which satisfies all six
conditions.

K{T) = ar
5

+ dr
2
 + er + f 0 < r < 1 (4)

With these six conditions we obtain a system of linear equations which can be
written in matrix form as
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Figure 1: Deformation and resampling process

Inverting the matrix yields:
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Using this matrix it is now possible to compute the coefficients of the polynomials
x(r) and y(r). The curve segment Q,- can be described as a parametric vector of
two functions X(T) and y(r) with Q,-(r) = (x(r),y(r)). The tangent vector t(r)
and the normal vector n(r) of a curve in parametric form are given by

t(r) = and n(r) = -y
(7)

2.2 Contour fitting

The concept of contour fitting is similar to the concept for GDMs in [12], [15]:
The contour fitting starts with an initial model which is placed by the user inside
the object. The contour fitting algorithm then performs alternately a deformation
and resampling process (Figure 1):

• The deformation process: The deformation process can be viewed as mini-
mizing the energy function of the model. The energy during the initial
deformation process is minimized by SA while following minimizations are
carried out by ICM. The deformation process can take place only along the
direction of the normal vector n(r) of the contour at the control points.

• The resampling process: The resampling process allows the spline model to
adapt to the number of control points which are necessary to describe the
object. The length and the curvature of each curve segment is used as criteria
to adapt the number of control points: If the length or the curvature of a
curve segment exceeds a certain threshold, the curve segment is subdivided
by adding a new control point.

The contour fitting process stops if no further subdivision is necessary.
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3 Energy function

The adaptive snake model is composed of n different curve segments Qi(r), where
the parameter T ranges between 0 and 1. Consequently, the energy of the model
becomes

n

(8)

where E(Qi) denotes the energy of curve segment Q{. The internal energy of a
curve segment Q,- due to elastic and bending deformation is given by

Eint = Ei(Qi) + Ei(Qi) = / |Q,-(T)| dr+ / \Qi(r)\ dr. (9)
Jo Jo

Since the curve is represented in analytical form one can directly compute the
energy due to elastic deformations via the definite integral:

i:
9 10

dyCy) + 4(bXCX + byCy) + ~(c£ 4" ^ ) + ^ ( ^ 4 + Qy

^-{bxdX + bydy) + S{Cxdx + Cydy) + - ( ^ + d^) + 2bxex + cxex + dxex + ayey + byey + cyey + dyey) +

4 + 4 , (io)
where the x and y coefficients of the polynomial are denoted with subscripts. The
energy of a curve segment due to bending can be computed similarly by the definite
integral of |Q(r)|2:

aycy) + 36(bxcx + bycy) + ̂ 0(axdx + aydy)

bydy) + 12{CI + C
2
y + CXdX + Cydy) + 4 ( ^ + ̂ ) (11)

The second part of the energy function is designed to detect image features like
edges. An edge can be characterized by its derivatives, namely by its first and
second derivative. The first derivative or the magnitude of the gradient vector,
VI, can be used to measure the strength of an edge. The zero-crossings of the
second derivative indicate a local optimum of the first derivative which is equivalent
to the centre of an edge. In order to maximize the gradient and to minimize the
distance D to the nearest zero-crossing of each pixel along the curve, the image
energy can be written as

Eimage = E3(Qi) + EA{Qi) = Y, (-|VZ(ar, y)|2 -I- |Z>(ar, y)|2) (12)

The total energy is computed as a linear combination of the energy terms Ei. The
influence of the each energy term is controlled by constant weighting factors <Xj:

E(Qi) = ai£i (Q,-) + a7E2(Qi) + a3E3(Qi) + a4E4(Qi) (13)
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4 Optimization by stochastic and probabilistic
relaxation

The deformation of the adaptive spline model is controlled by minimizing its as-
sociated energy function. Thus the robustness of the minimization is essential in
order to achieve good segmentation results. The size of the configuration space
makes any direct optimization impossible, even for very small MRFs. We have
consequently implemented Simulated Annealing (SA) as a minimization technique,
which is able to escape local energy minima. However, our contour fitting process
requires several optimizations which makes the use of SA with its high computa-
tional demands not practical. We have implemented a second minimization tech-
nique, Iterated Conditional Modes (ICM), which is an efficient local minimization
technique. ICM is very robust concerning noise if given a reasonable estimate of
the object contour. Using the final estimate of the previous deformation process
as an initial estimate for the following deformation process, the combination of SA
and ICM provides a very robust and efficient minimization technique.

4.1 Stochastic relaxation

Simulated Annealing [11], [16] is a stochastic relaxation technique which is based
on the analogy to the physical process of annealing a metal: At high temperatures
the atoms are randomly distributed. With decreasing temperatures they tend to
arrange themselves in a crystalline state which minimizes their energy. Using this
analogy, the algorithm generates randomly new configurations by sampling from
the probability distribution of the system.

If the adaptive spline model is defined as a 1-D Markov-Random-Field (MRF),
which assumes that the position of a control point depends only on itself and on
its neighbors, the probability distribution is given by a Gibbs distribution:

^ ^ M ] (14)

where Z(T) is a normalization factor. T is a control parameter, called tempera-
ture, which influences the form of the probability distribution. New configurations
are accepted with a certain acceptance probability H(T) depending on the tem-
perature:

A/*1

H(T) = exp[-—} (15)

Since increases of energy can be accepted, the algorithm is able to escape local
energy minima. It has been shown [8] that the algorithm converges to a global
energy minimum, if the temperature at iteration k is

where c is a constant depending on the amount of energy which is necessary to

escape local minima.
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Figure 2: Evolution of the adaptive spline model during the SA optimization

4.2 Probabilistic relaxation

In contrast to stochastic relaxation, which makes random changes, probabilistic
relaxation makes only deterministic changes and converges much faster. Besag [2]
proposed an iterative algorithm, called Iterative Conditional Modes (ICM), which
maximizes the conditional probability based on a provisional estimate: Suppose
w denotes a provisional estimate of our adaptive spline model and that our goal
is to update the position of the control point Vi in the context of all available
information. This means that we want to maximize the conditional probability
of u>i given our current estimate w. Since our system is described by a MRF, the
probability />(wt|w) is given by the Gibbs distribution in eq. (14).

It should be noted that the ICM algorithm is equivalent to the SA algorithm with
instantaneous freezing; it converges therefore much faster. However, the ICM
algorithm is not a global minimization technique but rather a local one, as the
results are dependent on the initial estimate.

5 Results

We have tested the segmentation algorithm on medical images. These medical
images are magnetic resonance (MR) images of the cardiovascular system. The
task was to segment the ascending and descending aorta to measure regional aortic
compliance. This is a very challenging task since MR images of the cardiovascular
system are characterized by motion artefacts and a low signal-to-noise ratio which
makes the accurate and reproducible segmentation even for expert cardiologists
difficult. The parameters of the algorithm have been fixed empirically. The same
set of parameters has been used for all tests. It should be noted that the initial
estimate of the contour does not influence the final estimate of the contour. This
is a result of the SA optimization which at high temperatures makes the system
behave chaotic while at lower temperatures the systems becomes more stable and
finally converges to the global optimum. The evolution of the adaptive spline
model during the SA optimization is shown in Figure 2.
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Figure 3: Segmentation results of the ascending aorta in spin echo MR images

In the first study we have compared manual and automated segmentation results
of the ascending and descending aorta of 12 individuals. The images are spin-echo
MR images with a resolution of 256 x 256 and are acquired at the systole and dias-
tole of the heart cycle. Figure 3 shows the segmentation results for these images.
To evaluate the accuracy and reliability of the segmentation, we have compared the
intra- and interobserver variability of expert cardiologists with the performance of
our segmentation algorithm. It is important to note that the standard procedure
for measuring the aortic area requires four different manual segmentations by the
same cardiologist. The average area of all four segmentation results is then taken
as the standard area. The intraobserver variability indicates the variation of these
measurements with respect to the standard area. Due to the low signal-to-noise
ratio and the size of the aorta the intraobserver variability is about 3.1 % for
the ascending aorta and about 2.7 % for the descending aorta. Another impor-
tant evaluation factor is the interobserver variability which indicates the variation
of the standard area measured by different cardiologists. The interobserver vari-
ability lies between 3.9 % for the ascending and 3.3 % for the descending aorta.
Compared to these results, our segmentation algorithm performs very well: The
segmentation error, which is defined as the deviation between the standard man-
ual segmentation and our algorithm, lies between 3.2 % for the ascending and 2.9
% for the descending aorta. Thus the segmentation error of the computer-based
segmentation is only slightly larger than the deviation of different segmentations
by the same observer but smaller than the deviation between different observers.
As a consequence our algorithm allows the precise and objective measurement of
the aortic compliance in spin echo MR images.

The second set of tests was performed on cine gradient echo MR image sequences
of the heart. These images have a resolution of 256 x 256 and contain 16 frames
in time and cover the whole heart cycle. As before, the ascending as well as the
descending aorta have been located successfully and their boundaries have been
correctly segmented (Figure 4). In both cases we have found that the segmen-
tation algorithm provides an accurate and automated method for reproducible
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Figure 4: Segmentation results of the ascending aorta in gradient echo MR images

quantitative studies of regional aortic compliance.

6 Conclusion and future work

We have presented a new algorithm for active contour models using a contour
representation based on piecewisely interpolating polynomial splines. This com-
pact and analytic representation allows for a fast and efficient computation of the
internal energy due to elastic and bending deformations avoiding the problems of
discrete approximations. The use and combination of stochastic and probabilistic
relaxation methods yields very robust segmentation results which overcomes most
of the problems concerning noise and initialization using the classical snake model.

As the presented results are very encouraging and have demonstrated the robust-
ness for 2D images, there is need to further investigate the influence of the energy
function and its parameters. A critical point is concerned with the a-priori con-
straints made in the energy function. For example, the smoothness (or minimal
curvature) constraint may not be true for object with more complex shapes, e.g.
the human brain. A possibility of avoiding the problems, e.g. matching contour
and image curvature, is given in [13].
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