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Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor

growth, and therapy response rely on the accurate delineation of the tumor volume and quantification

of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the

presence of heterogeneity of tracer uptake within the lesion. This work presents an active contour

model approach based on the method of Chan and Vese [“Active contours without edges,” IEEE

Trans. Image Process. 10, 266–277 (2001)] designed to take into account the high level of statistical

uncertainty (noise) and to handle the heterogeneity of tumor uptake typically present in PET images.

Methods: In the proposed method, the fitting terms in the Chan-Vese formulation are modified by

introducing new input images, including the smoothed version of the original image using anisotropic

diffusion filtering (ADF) and the contourlet transform of the image. The advantage of utilizing ADF

for image smoothing is that it avoids blurring the object’s edges and preserves the average activity

within a region, which is important for accurate PET quantification. Moreover, incorporating the con-

tourlet transform of the image into the fitting terms makes the energy functional more effective in

directing the evolving curve toward the object boundaries due to the enhancement of the tumor-to-

background ratio (TBR). The proper choice of the energy functional parameters has been formulated

by making a clear consensus based on tumor heterogeneity and TBR levels. This cautious parameter

selection leads to proper handling of heterogeneous lesions. The algorithm was evaluated using simu-

lated phantom and clinical studies, where the ground truth and histology, respectively, were available

for accurate quantitative analysis of the segmentation results. The proposed technique was also com-

pared to a number of previously reported image segmentation techniques.

Results: The results were quantitatively analyzed using three evaluation metrics, including the spatial

overlap index (SOI), the mean relative error (MRE), and the mean classification error (MCE). Al-

though the performance of the proposed method was analogous to other methods for some datasets,

overall the proposed algorithm outperforms all other techniques. In the largest clinical group com-

prising nine datasets, the proposed approach improved the SOI from 0.41 ± 0.14 obtained using the

best-performing algorithm to 0.54 ± 0.12 and reduced the MRE from 54.23 ± 103.29 to 0.19 ± 16.63

and the MCE from 112.86 ± 69.07 to 60.58 ± 18.43.

Conclusions: The proposed segmentation technique is superior to other representative segmentation

techniques in terms of highest overlap between the segmented volume and the ground truth/histology

and minimum relative and classification errors. Therefore, the proposed active contour model can

result in more accurate tumor volume delineation from PET images. © 2013 American Association

of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4816296]
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1. INTRODUCTION

Accurate delineation of metabolically active regions of tu-

mors is vital for PET-guided radiation therapy treatment plan-

ning, clinical diagnosis, tumor growth, and therapy response

assessment.1, 2 The accurate definition of the tumor volume

is especially important in radiation therapy, since underdos-

ing may cause tumor recurrence and overdosing may lead

to severe damage to the surrounding normal tissues.3 How-

ever, segmentation of target volumes on PET images has re-

mained a challenging task for many years, due to the coarse

spatial resolution and inherent noisy characteristics of PET

images.4, 5

Numerous PET image segmentation techniques have been

proposed during the last few years, with manual delineation

still being the most widely used method in the clinic. How-

ever, due to its vulnerability with respect to intra- and inter-

observer variability and reproducibility, automated and semi-

automated segmentation techniques have been promoted as

alternative techniques and are generally preferred over the
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manual technique. PET image segmentation techniques are

generally categorized in four groups: thresholding techniques,

variational approaches, learning methods, and stochastic

modeling-based methods.4 In a recent work, we selected rep-

resentative methods from each category and compared their

relative performance using clinical studies where the 3D con-

tour derived on the macroscopic specimen was used as refer-

ence for comparison.6 Five thresholding techniques, including

a fixed percentage of the maximum standardized uptake value

(SUV) (Ref. 7) and four adaptive thresholding methods,8–11

one variational approach referred to as deformable active con-

tour model,12 two learning methods including fuzzy C-means

(FCM) (Refs. 13 and 14), and an improved version of FCM

(FCM-SW) (Ref. 15) as well as the expectation maximization

method16, 17 belonging to the stochastic modeling category

were included in this comparative study. It was shown that

the FCM-SW approach outperforms the other selected tech-

niques; however, the deformable active contour model also

appeared as a potent segmentation technique, provided that

appropriate improvements are applied to the method.

The classical active contour model, known as snake, was

proposed by Kass et al.18 where an initial contour around the

target deforms and moves toward the desired object’s edges.

The deformation of the contour is handled by minimizing an

energy functional in such a way that the set of local minima

matches the desired features of the image. The energy func-

tional consists of two set of terms, commonly known as inter-

nal and external energies. The internal energy guarantees the

smoothness of the contour, whereas the external energy serves

to force the contour to move toward the desired features of the

image. The traditional snake deforms the contour based on the

gradient information and, as such, its performance depends on

the position of the initial contour, that is, the initial contour

must be located close to the target so that the external energy

is strong enough to push the contour toward the object bound-

aries. Moreover, this model cannot automatically handle the

topologic changes of the curve.

Geometric active contour models capable of handling the

topological changes were introduced later by Caselles et al.19

This model utilizes the gradient information of the image to

define an edge detector to stop the evolving curve at the object

boundaries. The energy functional minimization procedure

is carried out using the level set formulation.12 The region-

based active contour models, initially introduced by Mumford

and Shah,20 do not depend on the image gradient. The curve

deforms based on global regional information of the image,

which leads to outperformance of the model over classical

approaches. The region-based active contour technique pro-

posed by Chan and Vese21 is a reduced form of the Mumford

and Shah model, which proved to be efficient in the presence

of discontinuities or blurriness across the boundaries.

In this work, an active contour model based on the work

presented by Chan and Vese21 is proposed for tumor volume

delineation on PET images. The proposed model aims to han-

dle the high noise characteristics and heterogeneity of tumor

uptake to improve the capability of the energy functional in

attracting the contour toward the object boundaries and to ob-

tain a smooth surface over the segmented PET volume. We

also provide a consensus regarding the choice of the param-

eters used in the energy functional in order to make the seg-

mentation technique more robust.

2. MATERIALS AND METHODS

2.A. Proposed active contour model

We adopted the Chan-Vese (C-V) energy functional in our

proposed active contour formulation owing to its potential

to accurately delineate blurred edges.21, 22 The limited spatial

resolution, partial volume effect, and high level of noise of

PET images make the edge detection task a very challenging

issue,23, 24 even for a potent region-based segmentation tech-

nique such as the C-V active contour method. In order to han-

dle the intrinsic limitations of the energy functional formula-

tion, we modified the fitting terms by introducing two input

images. The original PET image, which serves as input to the

C-V energy functional, is replaced by the smoothed image

and the contourlet transform of the image. The regularizing

terms have also been modified to keep the evolving surface as

smooth as possible. To achieve this aim, the curvature of the

evolving curve substituted the length and area of the curve. In

Subsections 2.A.1–2.A.3, each modified term of the energy

functional is explained separately.

2.A.1. Anisotropic diffusion filtering

The anisotropic diffusion filter (ADF) is the filter of

choice to smooth low resolution blurred images due to its

edge-enhancing and intraregional intensity-preserving fea-

tures, which are crucial for accurate boundary delineation and

quantification of PET data.25 We have applied the ADF model

proposed by Perona and Malik,26 which is defined as follows:

∂tI = div(g(|∇I |2)∇I ), (1)

where I is the original image in gray scale, ∂ tI is the partial

derivative of I with respect to diffusion time t, and g is the

diffusivity function defined as

g(|∇I |2) =
1

1 + |∇I |2/λ2
(λ > 0), (2)

where the constant λ is estimated using the noise estimator

proposed by Canny.27

ADF is a suitable filtering technique for low count PET im-

ages which improve their qualitative aspects without impact-

ing their quantitative characteristics. Figure 1(b) illustrates the

efficient intraregion smoothing and edge-preserving charac-

teristics of ADF. The smoothed version of the PET image is

used as input to the proposed active contour model to enable

more accurate delineation of the lesion contours.

2.A.2. Contourlet transform

The contourlet transform of the original image, which is

utilized as second input to the fitting terms of the energy

functional, provides a multiresolution and directional image

expansion using contour segments. Do and Vetterli28 intro-

duced this transform as an efficient sparse representation of an

Medical Physics, Vol. 40, No. 8, August 2013
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FIG. 1. Representative slice of a clinical PET study with laryngeal squamous cell carcinoma showing: (a) the original PET image, (b) the ADF smoothed image,

and (c) the contourlet transform of the image.

image to capture significant features of the object of interest.

The wavelet transform also provides an optimal representa-

tion for one-dimensional piecewise smooth signals,29 but in

two dimensions, where they are obtained by a tensor product

of one-dimensional wavelets, they are only capable of isolat-

ing the discontinuities at edge points and fail to realize the

smooth nature of the boundaries along the contours.30

The contourlet transform uses a wavelet-like transform to

detect the discontinuous points on the edges, and then uti-

lizes a local directional transform to link the captured points

and detect the contour segments (contourlets). This is done

by constructing a double filter bank structure, consisting of a

Laplacian pyramid (LP) decomposition31 followed by a direc-

tional filter bank (DFB) image decomposition32 of each LP

scale level. The contourlet transform generates 2lj high fre-

quency images at each LP decomposition level j, where lj is

the number of DFB sub-bands. At each finer scale, the num-

ber of DFB decomposition levels is doubled and at the finest

scale, there are five decomposition levels. Keeping the most

significant contourlet coefficients results in improvement for

many different applications of contourlet transforms, such as

compression, denoising, and feature extraction. It must be

noted that the significant coefficients are produced by the con-

tourlets which match both location and direction of the image

contours.28 Figure 2 represents a schematic illustration of the

multiscale and directional decomposition using the contourlet

transform. In our experiments, we have opted to truncate

the contourlet coefficients to the 200 most significant ones

and to reconstruct the image using the selected coefficients,

which has resulted in an improved target-to-background ratio

[Fig. 1(c)].

2.A.3. Curvature, the regularizing term

The curvature of a curve is used as a measure of the speed

in changing direction at a given point. In order to prevent the

evolving curve to get a fluctuating shape and to keep it as

smooth as possible, we utilized the curvature of the curve as a

fitting term in the energy functional. By minimizing the whole

energy functional, the curvature will be in essence minimized,

leading to a smooth surface over the segmented object.

In 3D, the curvature of a surface defined as a function of

location, f(x, y, z), is known as Gaussian curvature K,

K =

(

fxx

(

f 2
y + f 2

z

)

+ fyy

(

f 2
x + f 2

z

)

+ fzz

(

f 2
x + f 2

y

)

− 2fxyfxfy − 2fxzfxfz − 2fyzfyfz

)

(

f 2
x + f 2

y + f 2
z

)3 / 2
, (3)
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FIG. 2. Schematic illustration of the contourlet filter bank. LP stands for Laplacian pyramid and DFB stands for directional filter bank.

where f. and f.. are the first and second partial derivatives of

the curve with respect to the location (x, y, z).12

2.A.4. The energy functional formulation

Classical active contour models construct a stopping edge-

function based on the gradient of the image I(x, y). The stop-

ping function might never reach zero since the discrete gradi-

ent is delimited, which might lead the evolving curve to get

trapped in local minima states or makes it permeate through

the boundary of the object. Unlike traditional active contour

models, the C-V method21 does not apply a stopping function

and the evolving curve converges based on the Mumford and

Shah formulation.20 Chan and Vese21 introduced the follow-

ing energy functional:

E (cin, cout, C) = μ.Length (C) + ν.Area (inside (C))

+ λin

∫

inside(C)

|I (x, y) − cin|
2dx dy

+ λout

∫

outside(C)

|I (x, y) − cout|
2dx dy,

(4)

where the evolving curve in � is denoted as C and is defined

as the boundary of an open subset of �, cin, and cout are the av-

erages of the image I(x, y) inside and outside C, respectively,

and μ, ν, λin, and λout are positive constants. The first two

terms of the functional, known as regularizing terms, measure

the length and the area inside the curve, and the last two terms

are the fitting terms.

In our proposed energy functional formulation, the C-V

regularizing terms are modified to improve the smoothness

of the evolving curve. The second term, which calculates the

area inside the contour, has been set to zero in the original

formulation by Chan and Vese,21 and in our experiments, the

first term appeared to be not effectively influencing the curve

evolution process. Therefore, these two terms are replaced by

a more effective regularizing term, which measures the curva-

ture of the evolving curve, as explained in Subsection 2.A.3.

The fitting terms are also modified by replacing the original

image by the smoothed version of the image (Is) using ADF

to handle the noisy characteristics of PET images. An extra

input image is also introduced to the fitting terms to enhance

the target/background contrast and to improve the edge detec-

tion feature of the algorithm. For this purpose, the contourlet

transform of the image (Ic) is used as second input to the en-

ergy functional. The original 2D formulation of the energy

functional has been properly extended to 3D in order to en-

able 3D segmentation of the lesion.

The energy functional proposed in this work is formulated

as follows:

E
(

cs
in, c

s
out, c

c
in, c

c
out, C

)

= μ.Curvature (C) + λin

∫

in(C)

[
∣

∣I s(x, y, z) − cs
in

∣

∣

2

+
∣

∣I c(x, y, z)−cc
in

∣

∣

2]

dx dy dz

+ λout

∫

out(C)

[∣

∣I s(x, y, z)−cs
out

∣

∣

2

+
∣

∣I c(x, y, z)−cc
out

∣

∣

2]

dx dy dz, (5)

where cs
in and cs

out are the averages of Is inside and outside the

evolving curve C, respectively, cc
in and cc

out are the averages of

Ic inside and outside the evolving curve, respectively, and μ,

λin, and λout are user-defined positive constants.

The energy functional is minimized by means of the level

set formulation.12 The level set formulation represents the

evolving curve by the zero level set of a Lipschitz function

φ : � → R, in such a way that the function φ has a positive

value inside and a negative value outside the curve. In the

level set formulation the variable C is replaced by φ and, uti-

lizing the Euler-Lagrange equation, the energy functional is

minimized with respect to φ. Therefore, the terms in the en-

ergy functional are expressed in the level set formulation as

follows:

Curvature {φ = 0} =

∫

�

div

(

∇φ (x, y, z)

|∇φ (x, y, z)|

)

dx dy dz,

(6)
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∫

φ>0

[
∣

∣I s (x, y, z)−cs
in

∣

∣

2
+

∣

∣I c (x, y, z) − cc
in

∣

∣

2]

dx dy dz

=

∫

�

[

∣

∣I s (x, y, z) − cs
in

∣

∣

2
+

∣

∣I c (x, y, z) − cc
in

∣

∣

2
]

×H (φ (x, y, z)) dx dy dz,
∫

φ<0

[
∣

∣I s (x, y, z)−cs
out

∣

∣

2
+

∣

∣I c (x, y, z)−cc
out

∣

∣

2]

dx dy dz

=

∫

�

[
∣

∣I s (x, y, z) − cs
out

∣

∣

2
+

∣

∣I c (x, y, z) − cc
out

∣

∣

2]

× (1 − H (φ (x, y, z))) dx dy dz,

where H denotes the Heaviside function, defined as

H (u) =

{

1 if u ≥ 0

0 if u < 0
.

The energy functional can now be written as follows:

E
(

cs
in, c

s
out, c

c
in, c

c
out, φ

)

= μ

∫

�

div

(

∇φ (x, y, z)

|∇φ (x, y, z)|

)

dx dy dz

+ λin

∫

�

[
∣

∣I s (x, y, z) − cs
in

∣

∣

2
+

∣

∣I c (x, y, z) − cc
in

∣

∣

2]

×H (φ (x, y, z)) dx dy dz

+ λout

∫

�

[
∣

∣I s (x, y, z) − cs
out

∣

∣

2
+

∣

∣I c (x, y, z)

−cc
out

∣

∣

2]

(1 − H (φ (x, y, z))) dx dy dz. (7)

To minimize the energy functional E with respect to φ, the

Euler-Lagrange equation is used. For this purpose, a dummy

time parameter t ≥ 0 is introduced to the level set function

φ(t, x, y, z) and the Euler-Lagrange equation is written as

∂φ

∂t
= μ

∣

∣

∣

∣

∇

(

div

(

∇φ

|∇φ|

))
∣

∣

∣

∣

− δ (φ)
[

λin

( (

I s − cs
in

)2

+
(

I c − cc
in

)2 )

− λout

( (

I s − cs
out

)2
+

(

I c − cc
out

)2 )]

= 0,

(8)

where φ(0, x, y, z) = φ0(x, y, z) defines the initial contour and

δ(φ) is the Dirac delta function, defined as the derivative of

the Heaviside function with respect to φ.

We have used the following numerical approximation of

the Heaviside function in our formulation:33

Hε (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if x > ε

0 if x < −ε

1

2

[

1 +
x

ε
+

1

π
sin

(π x

ε

)

]

if |x| ≤ ε.

(9)

2.A.5. Parameter optimization

As mentioned earlier, the parameters μ, λin, and λout are

determined by the user. The proper choice of the parameters

is of utmost importance since it can considerably alter the seg-

mentation results. A priori knowledge of the factors influenc-

ing the performance of the algorithm can lead to better un-

derstanding of how the selection of the parameters should be

done. It is also essential to recognize the role each parame-

ter plays during the evolution procedure. The parameter μ is

mainly responsible for normalization of the regularizing term

so that its value is within the range of fitting terms. For this

purpose, we have experimentally defined an adaptive formu-

lation which calculates the proper value of the parameter μ,

μ = 15.max
{(

I s − cs
out

)2
,
(

I c − cc
out

)2}

. (10)

The parameter λin decides how strongly the internal en-

ergy attracts the contour inwards. Therefore, in cases of low

tumor-to-background ratios (TBRs), a higher value of λin is

required to attract the contour toward the low-contrast edges.

In contrast, λout modulates the strength of the external energy

moving the contour outwards. In cases of high heterogeneity

in the lesion uptake, a higher value of λout is required in order

to force the contour toward the boundaries of the lesion.

To get a clear insight into the behavior of the algorithm

when λin and λout are modified, we have examined the seg-

mentation results by setting one of these parameters to 1 and

altering the other successively within the range [1. . . 10]. Plot-

ting the segmented volume over the parameter values illus-

trates appropriately how the algorithm behaves when the pa-

rameters are modified and guides the user to select the best

combination of the parameters under various TBR and het-

erogeneity conditions.

2.B. Phantom and clinical studies

The performance evaluation of the proposed segmentation

technique was performed using a simulated phantom study by

means of the 4D extended cardio-torso (XCAT) phantom.34

The phantom was originally designed to allow the user to sim-

ulate spherical lesions with homogeneous activity concentra-

tion, which does not emulate realistically clinical situations.

As such, we followed the procedure proposed by Le Maitre

et al.35 to simulate an irregular shaped tumor with heteroge-

neous activity concentration. This realistic tumor simulation

consists of the following steps. First, the tumors are manu-

ally segmented from a clinical PET dataset and a 3D mesh

is constructed over the whole volume using the AMIRA soft-

ware (http://www.vsg3d.com/amira). Thereafter, since the or-

gans in the XCAT phantom are modeled using nonuniform

rational B-spline (NURBS) surfaces, the generated 3D mesh

is converted to a NURBS surface using Rhinoceros software

(CADLINK, France). The heterogeneity within the tumor is

modeled by defining NURBS surfaces of different sizes to

which different activity levels are assigned. In our simula-

tion, we have modeled two levels of activity concentration,

which was reported to be sufficient for proper modeling of

tumors with heterogeneous activity uptake.35 For data simu-

lation, we applied an analytical simulator incorporated within

the Software for Tomographic Image Reconstruction (STIR)

package.36

Medical Physics, Vol. 40, No. 8, August 2013
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The proposed technique was further evaluated using vari-

ous clinical databases of oncologic FDG-PET images includ-

ing three head and neck datasets with T3-T4 laryngeal squa-

mous cell carcinoma (Louvain database),37 nine datasets of

patients with lung tumors,38 and two datasets of patients with

head and neck cancer (University of Turku, Finland).39 For all

clinical datasets, except the last group, the 3D contours of the

lesions, defined from the histology macroscopic specimen fol-

lowing surgical removal of the tumors, served as reference for

evaluation. For the last group of clinical datasets, multiple ex-

pert delineations combined with statistical methods (inverse

receiver operating characteristic approach) were used to pro-

vide a surrogate of the truth.39 Four patients from the Louvain

laryngeal carcinoma datasets and one patient from the Lou-

vain lung datasets were discarded from the study owing to

unexplained significant mismatch between the hot metabolic

activity seen on PET images and the histology contours as

reported by the Task Group No. 211 of the American Associ-

ation of Physics in Medicine (AAPM).40

2.C. Comparative study and evaluation metrics

The proposed segmentation technique was compared with

three other segmentation methods, including an adaptive

thresholding proposed by Nestle et al.,10 where the threshold

is determined based on the mean intensity within the target

and the surrounding background, the fuzzy clustering-based

approach (FCM),41 and its improved version referred to as

FCM-SW, which incorporates spatial information to optimize

the objective function with knowledge about spatial constraint

and also handles the heterogeneous lesion uptake using the

à trous wavelet transform of the image.15

To validate the proposed algorithm and compare its perfor-

mance to the above referenced techniques, we used various

metrics including the mean relative error (MRE) and the spa-

tial overlap index (SOI), as well as the mean classification

error (MCE) between the estimated and reference volumes,

MRE = mean

(

Vsegmented − Vtrue

Vtrue

)

× 100%,

SOI =
2(Vtrue ∩ Vsegmented)

(Vtrue + Vsegmented)
,

MCE =
(PCE + NCE)

VoVtrue

× 100%, (11)

where Vtrue is the true volume belonging to the ground

truth/histology, Vsegmented is the segmented volume obtained

using the different techniques, PCE and NCE are the positive

and negative classification errors, respectively, and VoVtrue

FIG. 3. Segmented volumes (in cc) for various combinations of the parameters (λin, λout). In the figure caption, P_n stands for the ID of the patient in the

Louvain lung dataset, A_n stands for the ID of the patient in the Louvain pharyngolaryngeal carcinoma dataset.
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FIG. 4. Realistic irregularly shaped simulated lesion defined on the XCAT phantom with heterogeneous uptake together with the results using the proposed and

commonly used PET image segmentation techniques as compared to the ground truth.

is the number of voxels within the ground truth volume.42

The value of SOI varies between 0 and 1, where 0 corre-

sponds to no overlap between the segmented volume and the

ground truth and 1 characterizes full overlap between the two

volumes.

3. RESULTS

As mentioned earlier, to optimize the parameters λin and

λout in the energy functional, the performance of the algo-

rithm was experimentally examined by altering one param-

eter in the range [1. . . 10] and setting the other parameter to

1. The optimization procedure was performed on ten selected

datasets, which showed better agreement between the ground

truth and the visually observed high activity concentration on

PET images. Figure 3 presents the results of this examination

by plotting the segmented volume in cubic centimeters (cc)

versus different combinations of the two parameters. Since the

graphs show dissimilar trends in each half of the plot, each re-

gion is presented separately in a subplot below the main plot.

On the right side of the subplot, the data points from the three

datasets with exceedingly increasing values are eliminated for

clear observation of the trend in other cases. The strange be-

havior of these three datasets is understandable as discussed

in Sec. 4.

Both subplots shown in Fig. 3 show an approximately lin-

ear correlation between the segmented volume and successive

alteration of the parameters. However, the slopes of the esti-

mated lines are different. In general, setting λin to 1 and λout to

a higher value results in a larger segmented volume. This was

already expected due to the fact that λout forces the evolving

curve to move outwards and, thus, a higher value of λout leads

to stronger external energy that results in a larger segmented

volume. On the other hand, setting λout to 1 and increasing the

value of λin makes the internal energy stronger which pushes

the evolving curve to move inwards and makes the segmented

volume smaller.

Based on the ground truth volumes, it was observed that

for cases with high TBRs a higher value of λout is required

to obtain a segmented volume which is in close agreement

with the true volume. In contrast, those cases presenting with

low TBR entail a higher λin value to reach an acceptable

concordance. In the presence of high heterogeneity level in

the tracer uptake, λin is set to 1 and a larger value has to

be assigned to λout, whereas low heterogeneity levels re-

quire a high λin value and λout is set to 1. In our experi-

ments λin varies within the range [1. . . 3], and λout within the

range of [1. . . 6], depending on the TBR and the heterogeneity

level.

The proposed segmentation technique and the three other

methods were applied to the simulated heterogeneous lesion

within the XCAT phantom. Figure 4 shows the obtained con-

tours as well as the true contour of the simulated tumor. The

quantitative analysis of the results is performed using the pre-

viously introduced evaluation metrics. Table I summarizes the

segmentation results using the proposed as well as Nestle,

FCM, and FCM-SW techniques.

Figure 5 illustrates the segmentation results on a represen-

tative slice from the Louvain laryngeal squamous cell carci-

noma dataset. The ground truth contour is shown in white,

whereas the contours generated by the PET image segmen-

tation techniques are presented in different colors. It can be

observed that the proposed and the FCM-SW methods can

properly handle the heterogeneity of the lesion uptake. The

results of the quantitative analysis of this dataset are presented

in Fig. 6, where the segmented volumes are compared to the

volume defined on the macroscopic specimen. It can be seen

that FCM-SW and the proposed active contour method out-

perform similarly the other techniques. Although FCM-SW

TABLE I. Quantitative analysis of segmentation results of the realistic tumor

simulated using the XCAT phantom obtained using the proposed and com-

monly used PET image segmentation techniques.

Segmentation method Mean volume (cc) SOIa REa (%) CEa (%)

Nestle 35.51 0.80 19.11 24.63

FCM 23.45 0.76 − 21.33 23.70

FCM-SW 27.29 0.83 − 8.44 16.99

Active contour 29.94 0.85 0.44 16.18

True volume 29.81 . . . . . . . . .

aSOI = Spatial overlap index, RE = Relative error, CE = Classification error.
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FIG. 5. Representative clinical PET study from the Louvain pharyngolaryngeal carcinoma dataset and comparison of the results obtained using the proposed

and commonly used PET image segmentation techniques with the histology.

achieves slightly lower mean classification error and spatial

overlap index, it must be emphasized that the mean relative

error associated with FCM-SW is much higher compared to

the proposed active contour model.

The segmentation results of the clinical lung datasets are

presented in Fig. 7. The evaluation metrics used for the quan-

titative analysis are plotted in Fig. 8. It can be observed that

our proposed method outperforms noticeably the other tech-

niques for this group of datasets, which is the largest group

used in this study. It must be noted that the large error bars

in Figs. 6(a) and 8(a) are due to the large variation between

lesion sizes and should not be misinterpreted as intrinsic bias

induced by segmentation techniques.

Figure 9 represents an example of one clinical study be-

longing to the head and neck Turku datasets where the con-

tours determined by the segmentation algorithms and the

contour defined using the multiple expert delineation ap-

proach are shown. Due to the small sample size in this group

(only two patients), we did not perform descriptive statisti-

cal analysis. Instead, all the evaluation metrics are reported in

Table II. It can be seen that in the case of the large lesion (tu-

mor “a”), Nestle’s method performs very well, whereas the

evaluation metrics are comparable to those of the active con-

tour model. However, for the small lesion (tumor “b”), the

proposed model outperforms significantly the other segmen-

tation techniques.

FIG. 6. Comparison between segmentation results obtained using the proposed and commonly used PET image segmentation techniques using the Louvain

pharyngolaryngeal carcinoma datasets with histology: (a) mean volumes, (b) spatial overlap index, (c) mean relative error (%), and (d) mean classification

error (%).
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FIG. 7. Representative clinical PET image from the three Louvain lung dataset and comparison of the results obtained using commonly used PET image

segmentation techniques with the histology.

FIG. 8. Quantitative analysis of segmentation results of the nine Louvain clinical lung datasets obtained using the proposed and commonly used PET image

segmentation techniques compared with the histology: (a) mean volumes, (b) spatial overlap index, (c) mean relative error (%), and (d) mean classification

error (%).

FIG. 9. Representative clinical PET image from Turku head and neck dataset and comparison of the results obtained using the proposed method and commonly

used PET image segmentation techniques with the histology.
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TABLE II. Quantitative analysis of segmentation results of the clinical head and neck datasets obtained using the proposed and commonly used PET image

segmentation techniques. Tumor (a) indicates the dataset presenting with the large lesion whereas tumor (b) represents the dataset with the small lesion.

Tumor volume (cc) SOIa REa (%) CEa (%)

Segmentation method Tumor a Tumor b Tumor a Tumor b Tumor a Tumor b Tumor a Tumor b

Nestle 29.46 5.75 0.76 0.19 − 0.41 400.00 27.69 412.77

FCM 19.17 1.32 0.60 0.53 − 35.19 14.78 41.16 65.96

FCM-SW 19.36 1.56 0.60 0.57 − 34.55 35.65 41.82 65.96

Active contour 30.78 1.22 0.76 0.57 4.06 6.09 27.36 57.45

True volume 29.58 1.15 . . . . . . . . . . . . . . . . . .

aSOI = Spatial overlap index, RE = Relative Error, CE = Classification error.

4. DISCUSSION

This work presents a deformable active contour model for

PET tumor volume delineation, which handles appropriately

the intrinsic high noise level of PET images and the hetero-

geneity of the tumor uptake by incorporating prior knowledge

regarding the TBR and tumor heterogeneity. It also attempts

to preserve the evolving curve as smooth as possible during

the contour deformation by minimizing the curvature of the

contour. Application of ADF, which is capable of preserv-

ing the object’s edges and the mean intensity within the ob-

ject volume, makes the handling of the high level of noise in

PET images feasible without influencing PET quantification.

Moreover, integrating the contourlet transform of the image

to the energy functional formulation makes the fitting terms

more potent in attracting the evolving curve toward the object

boundaries due to the enhancement of the TBR.

The proper setting of the parameters λin and λout can in-

fluence the segmentation results significantly. Therefore, as

mentioned in Sec. 1, we attempted to derive a clear and pre-

cise consensus of the choice of the parameters. For this pur-

pose, the algorithm was examined by varying the values of

one parameter in the range of [1. . . 10], keeping the other pa-

rameter values fixed to 1. As can be seen in Fig. 3, the algo-

rithm presents an approximately bilinear behavior. On the left

subplot, λout is set to 1 and λin is decreasingly altered from 10

to 1. The segmented volume increases linearly with a small

slope. A decrease in the values of λin is equivalent to reduc-

ing the power to push the contour inward, meaning that the

evolving curve would stop at the borders of a larger volume.

The right side subplot follows a similar trend, except that the

linear behavior changes with a higher slope. By setting λin

to 1 and increasing the value of λout from 2 to 10, the con-

tour is forced outwards more strongly. In particular, in cases

of low TBRs, an increase in the value of λout may cause an

extraordinary increase of the segmented volume, which is the

case for P_04, A_03, and A_12. This is why we have removed

those data points on the right side subplot to present the be-

havior of other datasets more clearly. These results imply that

in the case of low TBR, the parameter values must be selected

based on the heterogeneity level of the tumor, either from the

left side subplot, or λin must be set to 1 and the value of λout

should not be far from that of λin to prevent the contour to

exceedingly overestimate the volume.

Comparing the segmented volumes with the corresponding

ground truth reveals that in the presence of high heterogeneity

level in the tracer uptake, a λin equal to one and λout equal to

or higher than one is required to stop the evolving curve at

the right boundary of the object. A higher λout guarantees the

sufficient strength of the external energy to push the contour

away from the higher activity foci within the lesion and to

move it out toward the correct boundaries of the target. How-

ever, when tumor heterogeneity is not pronounced, there is no

need for stronger external energy and λout can conveniently

be set to one and a higher value has to be assigned to λin,

depending on the TBR level. The cautious selection of the

parameters facilitates proper handling of the heterogeneity in

tumor uptake.

The TBR level also has a vital role in the selection of pa-

rameters. In the presence of high TBR, a high λout value is

required to stop the evolving curve at the right boundary of

the object. This is due to the fact that a high TBR makes the

internal energy stronger to attract the contour inwards and,

as such, more powerful external energy is needed to avoid an

underestimated segmented volume. However, in the case of

low TBR, a higher λin is needed to force the contour to move

toward the object’s boundary.

The proposed algorithm is compared to three representa-

tive PET image segmentation techniques selected from a re-

cent comparative study,6 particularly those which were shown

to outperform commonly used techniques. The quantitative

analysis of the various segmentation approaches using phan-

tom and clinical studies revealed that the proposed segmen-

tation technique is superior to the representative methods.

The accuracy of the techniques was tested using three eval-

uation metrics and all of them confirm the superiority of

the proposed active contour model. The results demonstrate

that among all the tested techniques, the proposed approach

achieves the highest overlap between the segmented volume

and the ground truth and the lowest mean relative and classi-

fication errors. However, in some few cases, the method pro-

posed by Nestle and the FCM-SW technique competes with

our method, but ultimately yield comparable results.

The visual assessment of the contours confirms that the

algorithm successfully achieves a smooth contour over the

segmented volume, which is not normally the case of clas-

sical active contour models when the image contains a high

level of noise.
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5. CONCLUSION

We have presented a deformable active contour model

based on the method proposed by Chan and Vese.21 A con-

sensus was made to choose appropriate parameters for the en-

ergy functional to enable the model to handle heterogeneous

tumors properly. We have also introduced new inputs to the

energy functional to deal with the high levels of noise in PET

images and to enhance the edge detection properties of the

model. Incorporating the curvature of the evolving curve fa-

cilitates achieving a smooth contour over the segmented vol-

ume. The evaluation metrics used to quantitatively analyze

phantom and clinical studies revealed the superiority of the

proposed method over commonly used techniques, since it

presents the highest overlap between the segmented volume

and the corresponding ground truth and the lowest mean rel-

ative and classification errors. Therefore, the proposed active

contour model results in more accurate tumor volume delin-

eation from PET images.
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