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ABSTRACT

Recently, the contourlet transform1 has been developed as a true two-dimensional representation that can cap-
ture the geometrical structure in pictorial information. Unlike other transforms that were initially constructed
in the continuous-domain and then discretized for sampled data, the contourlet construction starts from the
discrete-domain using filter banks, and then convergences to a continuous-domain expansion via a multiresolu-
tion analysis framework. In this paper we study the approximation behavior of the contourlet expansion for
two-dimensional piecewise smooth functions resembling natural images. Inspired by the vanishing moment prop-
erty which is the key for the good approximation behavior of wavelets, we introduce the directional vanishing
moment condition for contourlets. We show that with anisotropic scaling and sufficient directional vanishing
moments, contourlets essentially achieve the optimal approximation rate, O((log M)3M−2) square error with
a best M -term approximation, for 2-D piecewise smooth functions with C2 contours. Finally, we show some
numerical experiments demonstrating the potential of contourlets in several image processing applications.

1. INTRODUCTION

Efficient representation of visual information lies at the heart of many image processing tasks, including compres-
sion, filtering, and feature extraction. Efficiency of a representation refers to the ability to capture significant
information about an object of interest using a sparse description. For image compression or content-based image
retrieval, the use of efficient representation implies the compactness of the compressed file or the index entry for
each image in the database. For practical applications, such an efficient representation has to be obtained by
structured transforms and fast algorithms.

For one-dimensional piecewise smooth signals, like scan-lines of an image, wavelets have been established as
the right tool, because they provide an optimal approximation for these signals in a certain sense.2, 3 In addition,
the wavelet representation is amenable to efficient algorithms, in particular fast transforms and effective tree data
structures. These are the key reasons for the success of wavelets in many signal processing and communication
applications; for example, the wavelet transform was adopted as the transform for the new image-compression
standard, JPEG-2000.4

However, natural images are not simply stacks of 1-D piecewise smooth scan-lines; discontinuity points (i.e.
edges) are typically positioned along smooth curves (i.e. contours) owing to smooth boundaries of physical ob-
jects. As a result of a separable extension from 1-D bases, wavelets in 2-D are good at isolating the discontinuities
at edge points, but will not see the smoothness along the contours. In addition, separable wavelets can capture
only limited directional information – an important and unique feature of multidimensional signals.

These disappointing behaviors of wavelets have led to a number of new constructions of “true” two-dimensional
representation that can capture the geometrical structure in visual information. In particular, the curvelet con-
struction5, 6 of Candès and Donoho with its optimal approximation property for 2-D piecewise smooth functions
with singularities on C2 curves has shown the possibility of efficient, fixed expansions in R

2. Inspired by the
success of curvelets, Do and Vetterli pursued the same goal with a different point of view. Unlike other transforms
that were initially constructed in the continuous-domain and then discretized for sampled data, our approach
starts with a discrete-domain construction that is amenable to efficient algorithms, and then investigates its
convergence to an expansion in the continuous-domain. This has resulted in the contourlet construction1 which
is based on 2-D nonseparable filter banks and a directional multiresolution analysis framework.
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The main goal of this paper is to provide a theoretical analysis of the approximation property of the contourlet
expansion. After a brief introduction to the contourlet transform, we will concentrate on its approximation
behavior for 2-D functions that are smooth everywhere except discontinuities along a smooth curve. These
functions model typical natural images with smooth contours. Inspired by the vanishing moment condition which
is the key for the good approximation property of wavelets for 1-D piecewise smooth functions, we introduce
the directional vanishing moment condition for the good approximation property of contourlets. We show that
with the anisotropy scaling relation and sufficient directional vanishing moments, contourlets provide an optimal
approximation decay for the 2-D piecewise smooth functions with C2 contours. Finally, we will show some
numerical results to demonstrate the potential of contourlets in several image processing applications.

2. THE CONTOURLET CONSTRUCTION

2.1. Discrete-Domain: A Filter Bank Approach

One way to obtain a sparse expansion for images with smooth contours is first to apply a multiscale, wavelet-
like transform to capture the edge points; and then use a local directional transform to gather the nearby edge
points into contour segments. This prompted us1 to construct a multiscale and directional filter bank, where the
Laplacian pyramid (LP)7 is first used to capture the point discontinuities, then followed by a directional filter
bank (DFB)8 to link point discontinuities into linear structures. The overall result is an image expansion using
basic elements like contour segments, and thus are named contourlets. The block structure for the contourlet
filter bank is shown in Figure 1 together with an example of its frequency partition.
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Figure 1. (a) Block diagram of the contourlet filter bank. First, a standard multiscale decomposition into octave bands
is computed, where the lowpass channel is subsampled and iterated, while a directional filter bank is applied the to the
bandpass channel. (b) Resulting frequency division, where the number of directions is increased with frequency

With perfect reconstruction LP and DFB, the contourlet filter bank achieves perfect reconstruction, and thus
it is a frame operator for 2-D signals. With orthogonal filters, the contourlet transform was shown1 to be a tight

frame. The contourlet filter bank has the same redundancy as the LP – up to 33% when subsampling by two
in each dimension. Since the implementation of both the LP and the DFB are based on iterated filter banks,
when the numbers of decomposition levels in each iterated filter bank is finite, it is can be checked that each
contourlet coefficient require O(1) operations. Thus the computational complexity of the contourlet transform
is O(N) for an image of N pixels.

2.2. Continuous-Domain: Convergence via Multiresolution Analysis

Similar to the wavelet filter bank,3, 9 the contourlet filter bank has an associated continuous-domain expansion
in L2(R

2) that is connected via a directional multiresolution analysis framework.1 With orthogonal filters,
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Figure 2. (a) Multiscale and multidirectional subspaces generated by the contourlet transform which is illustrated on a

2-D spectrum decomposition. (b) Sampling grid of a “mostly horizontal” subspace W
lj
j,k. For “mostly vertical” subspaces,

the grid is transposed.

through its iterated filter bank, the continuous-domain contourlet transform decomposes L2(R
2) into multiscale

and multidirectional subspaces (see Figure 2(a))
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where the familiar wavelet detail subspace Wj at scale 2j is decomposed into 2lj directional subspaces W
(lj)
j,k .

The approximation subspace Vj0 is spanned by an orthogonal basis of a scaling function and its translation
{

φj0,n(t) = φj0(t − 2j
n)

}

n∈Z2 . Each subspace W
(lj)
j,k is spanned by a tight frame of a translated family of

contourlet functions
{

ρ
(lj)
j,k,n(t) = ρ

(lj)
j,k (t − 2j−1

S
(lj)
k n)

}

n∈Z2
(1)

where S
(lj)
k = diag(2lj−1, 2) for 0 ≤ k < 2lj−1 (the mostly horizontal directions) and S

(lj)
k = diag(2, 2lj−1) for

2lj−1 ≤ k < 2lj (the mostly vertical directions). This means that the subspace W
(l)
j,k is defined on a rectangular

grid with intervals 2j+l−2 × 2j or 2j × 2j+l−2, depending on whether it is mostly horizontal or vertical (see
Figure 2(b)).

Combining all scales, directions and locations, we have that for a sequence of finite positive integers {lj}j≤j0
,

the family

{φj0,n, ρ
(lj)
j,k,n(t)}j≤j0, 0≤k≤2lj −1, n∈Z2 (2)

is a tight frame for L2(R
2). The indexes j, k, and n specify the scale, direction and, location, respectively. The

contourlet frame in (2) the following distinguishing features:

1. The contourlet expansions are defined on rectangular grids, and thus offer a seamless translation to the
discrete world, where image pixels are stored on a rectangular grid. To achieve this “digital-friendly”

feature, the contourlet kernel functions ρ
(lj)
j,k have to be different for different directions k and cannot be

obtained by simply rotating a single function. This is a key difference between the contourlet and the
curvelet5, 6 systems.



2. It is easy to verify that with FIR filters, the iterated contourlet filter bank leads to compactly supported

contourlet frames. More precisely, the contourlet function ρ
(lj)
j,k,n has support of size width ≈ W2j and

length ≈ L2j+lj−2. In other words, at each scale and direction, the set
{

ρ
(lj)
j,k,n

}

n∈Z2
tiles the plane R

2. As

a result, to make the contourlet expansion satisfy the anisotropy scaling law like curvelets width ≈ length2,5

we simply set
lj = lj0 − b(j − j0)/2c, for j ≤ j0. (3)

This means that the number of directions is doubled at every other finer scale in the contourlet pyramid.

3. Since the contourlet functions are defined via the iterated filter banks; like wavelets, the contourlet expan-
sion has fas filter bank algorithms and convenient tree structures.

3. CONTOURLET APPROXIMATION

3.1. Directional vanishing moment

The proposed 2-D filter bank and its associated continuous-domain frames in the previous sections provide a
framework for constructing general contourlet expansions. Since our goal is to develop sparse expansions for
images having smooth contours, the next important issues are: (1) what conditions should we impose in order
to obtain a sparse contourlet expansion for certain classes of images; and (2) how can we design filter banks
that can lead to contourlet expansions satisfying those conditions. We will consider the first issue here while the
second one will be addressed in a forthcoming paper.

In analogy with the wavelet case, while most two-channel filter banks would lead to discrete and continuous
wavelet bases, not all guarantee sparse expansions. Wavelet approximation theory brought a new condition into
filter bank design, which earlier only focused on designing filters with good frequency selection properties. This
new condition requires wavelet function to have a sufficient number of vanishing moments or equivalently the
lowpass filter must have enough “zeros at ω = π”. The vanishing-moments property is the key for the sparse
expansion of piecewise smooth signals by wavelets.3, 10, 11 Intuitively, wavelets with vanishing moments are
orthogonal with polynomial signals, and thus only a few wavelet basis functions around discontinuity points
would “feel” these singularities and lead to significant coefficients.12

In the contourlet case, our target for approximation are 2-D piecewise smooth functions with discontinuities
along smooth curves. For this type of signals, the singularities are localized in both space and direction. More
specifically, a local region around a smooth contour has a 2-D singularity that can be approximated by straight

line separating two polynomial surfaces. Since each contourlet function ρ
(lj)
j,k,n is localized at a specific scale,

direction and location, it is desirable that only the contourlet basis functions which are located and oriented
around the discontinuity line would “feel” this singularity. This requirement can be satisfied if all 1-D slices in

a certain direction of a contourlet kernel function ρ
(lj)
j,k have vanishing moments. We refer to such a contourlet

function as having directional vanishing moments (DVMs).

Definition 3.1 (Directional vanishing moment). A 2-D function ρ(t1, t2) is said to have L-order

directional vanishing moment along a direction u = (u1, u2)
T if, depending on whether u1 6= 0 or u2 6= 0, all 1-D

slices of that function along direction u

ρ
(1)
u,d(t) = ρ(t, tu2/u1 − d), or

ρ
(2)
u,d(t) = ρ(tu1/u2 − d, t),

have L vanishing moments. That means

∫ ∞

−∞

ρ
(i)
u,d(t)t

n = 0, ∀d ∈ R, 0 ≤ n < L,

for either i = 1 or i = 2.∗

∗If both u1 6= 0 or u2 6= 0 then it is easy to see that the two conditions for i = 1 and i = 2 are equivalent.



For a contourlet functions ρ
(l)
j,k(t) constructed from filter banks, the DVM property can be enforced via filter

bank design as in the wavelet case. We observe that the DVM property also holds in other 2-D expansions. In
particular, 2-D separable wavelets have directional vanishing moments in the horizontal and vertical directions,
which make wavelets especially good in capturing horizontal and vertical edges. Ridgelets,13 which offer an
optimal representation for 2-D functions that are smooth away from a discontinuity along a line, have directional
vanishing moments in all but one direction.

3.2. Intuition Behind the Proof

Now we show that a contourlet expansion that satisfies the anisotropy scaling law and has sufficient DVMs
achieves the optimal non-linear approximation behavior for 2-D piecewise smooth functions with discontinuities
along smooth curves. We first present a heuristic argument. Consider a simple piecewise smooth function f = 1Ω

defined on the unit square [0, 1]2 with “black” and “white” regions separated by a discontinuity curve δΩ, which
is twice differentiable and has finite length.

Recall that for a contourlet frame (2) to satisfy the anisotropy scaling condition, lj has to follow (3). For
simplicity, set j0 = 0 and l0 = 2.† This leads to a contourlet frame which at scale 2j (j = −1,−2, . . .) has about
2−j/2 directions and each contourlet function ρj,k,n has support size of order width ∼ 2j and length ∼ 2j/2. It
follows that the maximum amplitude of ρj,k,n is of order of Aj ∼ 2−3j/4.

Suppose that the contourlet kernel functions ρj,k have one-order DVMs along a dense enough set of directions
(this will be made precise later). Then we can localize the support area of ρj,k,n that would be effected by the
discontinuity curve δΩ to be “sandwiched” between two lines parallel to the tangent of the curve (see Figure 3(b)).
Outside that area, because of the vanishing moments on the tangent direction, the product f ·ρj,k,n has zero line
integrals along that direction. Denote dj,k,n to be the length of δΩ that intersects with the support of ρj,k,n.
Because the curve is twice differentiable, using Taylor expansion, the width of the affected area is of the order
d2

j,k,n. Thus, the corresponding contourlet coefficient behaves like

|〈f, ρj,k,n〉| ∼ Aj · d
3
j,k,n ∼ 2−3j/4 · d3

j,k,n. (4)
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Figure 3. (a) Contourlet functions correspond to three types of coefficients: (from left to right) significant, insignificant,
and zero. (b) A zoom-in examination of a contourlet basis function that intersects with a discontinuity curve.

At a scale 2j , the contourlet coefficients 〈f, ρj,k,n〉 can be classified into three types (see Figure 3(a)). The
first type contains significant contourlet coefficients, which correspond to the contourlet basis functions ρj,k,n

whose support is aligned with the discontinuity curve δΩ. For these contourlet functions, we have dj,k,n ∼ 2j/2

†Other values of l0 only changes the constant but not the asymptotic approximation rate.



and from (4), the significant contourlet coefficients behave as |〈f, ρj,k,n〉| ∼ 2−3j/4(2j/2)3 = 23j/4. In addition,
because the curve is finite length, there are O(2−j/2) of them.

The second type contains insignificant contourlet coefficients, which correspond to contourlet functions ρj,k,n

whose supports intersect with the discontinuity curve but the direction does not match. From Figure 3(b) we
see that for most of these contourlet functions dj,k,n ∼ 2j , and using (4) the insignificant contourlet coefficients
behave as |〈f, ρj,k,n〉| ∼ 2−3j/4(2j)3 = 29j/4. In addition, most of the directions (except the ones that match
with the discontinuity curve) fall into this category, and thus we have an order of 2−j/22−j = 2−3j/2 insignifi-
cant contourlet coefficients. The final type contains zero contourlet coefficients which correspond to contourlet
functions ρj,k,n whose support does not intersect with the discontinuity curve δΩ.

For a best M -term approximation, based on the above rates of decay of contourlet coefficients and by setting
the threshold T = 29J/4(J ¿ 0), we keep the significant coefficients up to level 3J and insignificant coefficients
up to level J . Then the total number of retained coefficients is:

M ∼

0
∑

3J

2j/2 +

0
∑

J

23j/2 ∼ 2−3J/2. (5)

The distortion due to truncation is:

‖f − f̂ contourlet
M ‖2 ∼

3J−1
∑

−∞

2−j/2(23j/4)2 +

J−1
∑

−∞

2−3j/2(29j/4)2

∼ 2
J−1
∑

−∞

23j ∼ 23J . (6)

Combining (5) and (6) we see that the nonlinear approximation error by the contourlet expansion decays like

‖f − f̂ contourlet
M ‖ ∼ M−2. For comparison, the approximation error of the same function f by wavelets decays

like M−1 (see for example3). Because the “complexity” of f is at least equal to the “complexity” of δΩ, which
is a C2 curve, no other approximation scheme can achieve a better rate than M−2. In this sense, the contourlet
expansion achieves the optimal approximation rate for piecewise smooth functions with C2 contours.

3.3. Finer Analysis

The above heuristic argument on the approximation property of contourlets needs more precise and finer analysis
on the following two points. First, how dense is the set of directions that the contourlet functions are required to
have DVMs. Second, it is inaccurate to claim that all insignificant coefficients would have dj,k,n ∼ 2j . In fact,
dj,k,n decays from 2j/2 to 2j as the direction of the intersected contourlet slowly turn away from the direction
of the discontinuity curve. We need to analyze this decay and its effect in the overall approximation rate.

The first point is illustrated in Figure 4(a), where we suppose that instead of having DVMs on the tangent
direction of the discontinuity curve, we only have DVMs on a direction that is θ away. Then simple geometrical
argument shows that instead of d3, the affected area would be upper bounded by

d3 + d · d tan θ.

Thus, if tan θ ≤ A1d then the approximation rate in the above analysis will be unchanged. To achieve this and
since dj,k,n ≤ A22

j/2, the maximum gap θj between directions that ρj,k,n has DVMs must be of the order

θj ≤ A2j/2. (7)

Recall that at scale 2j , there would be 2−j/2 directions. Hence, the number of directions on which the
contourlet function ρj,k has DVMs grows with the same order as the number of directions in the directional filter
bank.



� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

d

d2

θ

d

θ

2j

Figure 4. Finer analysis of contourlet approximation. (a) Illustrating the allowable gap in angle with directional vanishing
moments. (b) Finer approximation of the intersection.

For the second point, Figure 4(b) illustrates the situation where a contourlet function ρj,k,n intersects with
the discontinuity curve δΩ and is θ angle away from the tangent direction, 0 < θ ≤ π/2. In that case, using
geometry we have

sin θ ∼ 2j/dj,k,n, or dj,k,n ∼ 2j/ sin θ.

Since there is about 2−j/2 directions, as θ increases almost uniformly with a step size of the order 2j/2

to π/2 (i.e. the contourlet function slowly turns away from the discontinuity direction), dj,k,n decays like
2j/(m2j/2) = 2j/2m−1, for 1 ≤ m ≤ 2−j/2. Correspondingly, the number of contourlets functions with these
intersection lengths grows like 2−j/2m. Using (4), it follows that the non-zero contourlet coefficients decay like
2−3j/4(2j/2m−1)3 = 23j/4m−3, for 1 ≤ m ≤ 2−j/2.

Now by setting the threshold T = 29J/4 (J ¿ 0), then at scale 2j we would keep coefficients with m ≤
2(j−3J)/4. This leads to the following number of retained coefficients:

M ∼
0

∑

j=J

2−j/2
∑

m=1

2−j/2m +
J−1
∑

j=3J

2(j−3J)/4
∑

m=1

2−j/2m

∼
0

∑

j=J

2−j/2(2−j/2)2 +
J−1
∑

j=3J

2−j/2(2(j−3J)/4)2

= 2−3J/2 + (−2J)2−3J/2 ∼ (−J)2−3J/2. (8)

The distortion due to truncation is

‖f − f̂ contourlet
M ‖2 ∼

J−1
∑

j=3J

2−j/2
∑

m=2(j−3J)/4+1

2−j/2m (23j/4m−3)2 +

3J−1
∑

j=−∞

2−j/2
∑

m=1

2−j/2m (23j/4m−3)2

∼
J−1
∑

j=3J

2j
2−j/2
∑

m=2(j−3J)/4+1

m−5 +
3J−1
∑

j=−∞

2j
2−j/2
∑

m=1

m−5. (9)



To simplify the last expression, we use the following approximation

b
∑

m=a

m−5 ∼

∫ b

a

x−5dx = (a−4 − b−4)/4.

Substitute this back into (9) we obtain

‖f − f̂ contourlet
M ‖2 ∼ (−J)23J . (10)

Combining (8) with (10) we have the following nonlinear approximation error by contourlets

‖f − f̂ contourlet
M ‖2 ∼ (−J)3M−2 ∼ (log M)3M−2,

which except for a log factor, achieves the optimal rate as before. Interestingly, this is exactly the same ap-
proximation behavior derived for curvelets,6 where curvelets are compactly supported in frequency and the
approximation analysis was carried in the Fourier domain. We summarize the above results in the following
theorem.

Theorem 3.2. Suppose that the contourlet frame (2) satisfies the anisotropy scaling law (3) and each contourlet

kernel function ρj,k has directional vanishing moments on a set of directions with maximum gap of A2j/2. Then

for a function f that is C2 smooth away from a C2 curve, the best M -term approximation by this contourlet

frame achieves

‖f − f̂contourlet

M ‖2 ≤ C(log M)3M−2. (11)

4. NUMERICAL EXPERIMENTS

All experiments in this section use a wavelet transform with “9-7” biorthogonal filters14, 15 and 6 decomposition
levels. For the contourlet transform, in the LP stage we also use the “9-7” filters. The choice of the “9-7”
biorthogonal filters rather than orthogonal one is motivated by the fact that these filters are very popular and
successful in image processing practice (partly because they are linear phase) and actually they are close to being
orthogonal. In the DFB stage we use the “23-45” biorthogonal quincunx filters designed by Phoong et al.16 and
modulated to them to obtain the biorthogonal fan filters. Apart from being linear phase and nearly orthogonal,
these fan filters are close to have the ideal frequency response and thus can approximate the directional vanishing
moment condition. The drawback is that they have large support which create a large number of significant
coefficients near edges. As mentioned before, designing optimized contourlet filters is a topic to be studied
further.

The number of DFB decomposition levels is doubled at every other finer scale and is equal to 5 at the finest
scale. Note that in this case, both the wavelet and the contourlet transforms share the same detail subspaces
Wj . The difference is that each detail subspace Wj in the wavelet transform is represented by a basis with
three directions, whereas in the contourlet transform it is represented by a redundant frame with many more
directions. An example of the contourlet transform is shown in Figure 5.

4.1. Non-linear approximation

We compare the non-linear approximation (NLA) performances of the wavelet and the contourlet transforms.
In these NLA experiments, for a given value M , we select the M -most significant coefficients in each transform
domain, and then compare the reconstructed images from these sets of M coefficients. Since the two transforms
share the same detail subspaces, it is possible to restrict the comparison in these subspaces. We expect that
most of the refinement happens around the image edges.

Figure 6 shows sequences of nonlinear approximated images at the finest detailed subspace Wj using the
wavelet and the contourlet transforms, respectively, for the input peppers image. The wavelet scheme is seen to



Figure 5. Example of the discrete contourlet transform, applied to the peppers image.

M = 4 M = 16 M = 64 M = 256

(a) Using wavelets

M = 4 M = 16 M = 64 M = 256

(b) Using contourlets

Figure 6. Sequence of images showing the nonlinear approximations of the peppers image using M most significant
coefficients at the finest detailed subspace Wj , which is shared by both the wavelet and contourlet transforms.

slowly capture contours by isolated “dots”. By contrast, the contourlet scheme quickly refines by well-adapted
“sketches”, in much the same way as the “X-let” painter discussed in the Introduction.

Figure 7 shows a detailed comparison of two nonlinear approximated images by the wavelet and contourlet



transforms using the same number of coefficients. Contourlets are shown to be superior compared with wavelets
in capturing fine contours (directional textures on cloths). In addition, there is a significant gain of 1.46 dB in
peak signal-to-noise ratio (PSNR) by contourlets.

Original image Wavelet NLA: PSNR = 24.34 dB Contourlet NLA: PSNR = 25.70 dB

Figure 7. Nonlinear approximations (NLA) by the wavelet and contourlet transforms. In each case, the original image
Barbara of size 512 × 512 is reconstructed from the 4096-most significant coefficients. Only part of images are shown for
detail comparison.

4.2. Denoising

The improvement in approximation by contourlets based on keeping the most significant coefficients will directly
lead to improvements in applications, including compression, denoising, and feature extraction. In particular,
for image denoising, random noise will generate significant wavelet coefficients just like edges, but is less likely
to generate significant contourlet coefficients. Consequently, a simple thresholding scheme17 applied on the
contourlet transform is more effective in removing the noise than it is for the wavelet transform.

Figure 8 displays a “zoom-in” comparison of denoising when applying wavelet and contourlet hard-thresholding
on the Lena image. The contourlet transform is shown to be more effective in recovering smooth contours, both
visually as well as in signal-to-noise ratio (SNR). A more sophisticated denoising scheme that takes into account
the dependencies across scales, directions and locations in the contourlet domain using a hidden Markov tree
model is presented in18 and shows further improvements.

Figure 8. Denoising experiments. From left to right are: original image, noisy image (SNR = 9.55 dB), denoising using
wavelets (SNR = 13.82 dB), and denoising using contourlets (SNR = 15.42 dB).

5. CONCLUSION

The contourlet construction offers new directional multiresolution expansions in both discrete and continuous
domains. For contourlets to provide sparse expansions for images with smooth contours, we suggest that the key
property is directional vanishing moment. With anisotropic scaling and sufficient directional vanishing moments,



we show that the contourlet expansion achieves the optimal approximation rate for piecewise smooth functions
in R

2 with C2 contours. Experiments with real images indicate the potential of contourlets in several image
processing applications. A key issue for future research is to design optimized contourlet filters that satisfies the
directional vanishing moment condition.

Acknowledgment. The author would like to thank Prof. Martin Vetterli for fruitful interactions on directional
multiresolution image representations.

REFERENCES

1. M. N. Do and M. Vetterli, “Contourlets,” in Beyond Wavelets, G. V. Welland, ed., Academic Press, New
York, 2003. to appear, http://www.ifp.uiuc.edu/~minhdo/publications.

2. D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data compression and harmonic analysis,”
IEEE Trans. Inform. Th. 44, pp. 2435–2476, October 1998.

3. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2nd ed., 1999.

4. A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE

Signal Processing Magazine 18, pp. 36–58, Sep. 2001.

5. E. J. Candès and D. L. Donoho, “Curvelets – a suprisingly effective nonadaptive representation for objects
with edges,” in Curve and Surface Fitting, A. Cohen, C. Rabut, and L. L. Schumaker, eds., Vanderbilt
University Press, (Saint-Malo), 1999.

6. E. J. Candès and D. L. Donoho, “New tight frames of curvelets and optimal representations of objects with
smooth singularities,” tech. rep., Department of Statistics, Stanford University, 2002. submitted.

7. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun.

31, pp. 532–540, April 1983.

8. R. H. Bamberger and M. J. T. Smith, “A filter bank for the directional decomposition of images: Theory
and design,” IEEE Trans. Signal Proc. 40, pp. 882–893, April 1992.
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