
Contract Types for Satisficing Task Allocation:

Tuomas W. Sandholm
sandholm@cs.wustl.edu

Department of Computer Science

Washington University
One Brookings Drive

St. Louis, MO 63130-4899

I Theoretical Results

Abstract

We analyze task reallocation where individually ratio-
nal ([R) agents (re)contract tasks among themselves
based on marginal costs. A task allocation graph is
introduced as a tool for analyzing contract types. Tra-
ditional single task contracts always have a short path
(sequence of contracts) to the optimal task allocation
but an IR path may not exist, or it may not be short.
We analyze an algorithm for finding the shortest IR
path.

Next we introduce cluster contracts, swaps, and multi-
agent contracts. Each of the four contract types avoids
some local optima that the others do not. Even if the
protocol is equipped with all four types, local optima
exist. To attack this problem, we introduce OCSM-
contracts which combine the ideas behind the four ear-
lier types into an atomic contract type. If the proto-
col is equipped with OCSM-contracts, any sequence of
IR contracts leads to the optimal task allocation in a
finite number of steps: an oracle--or speculation--is
not needed for choosing the path (no subset of OCSM-
contracts suffices even with an oracle). This means
that the multiagent search does not need to backtrack.

This is a powerful result for small problem instances.
For large ones, the anytime feature of our multi-
contract-type algorithm--with provably monotonic
improvement of each agent’s solution--is more impor-
tant. 1

Introduction
Multiagent systems are becoming increasingly impor-
tant due to strong technology push and application
pull. The capability of (re)allocating tasks among
agents is a key feature in such systems. In many do-
mains, significant savings can be achieved by reallo-
eating tasks among agents. Some tasks are inherently
synergic, and should therefore be handled by the same

ISupported by NSF CAREER award IRI-9703122 and
NSF grant IRI-9610122. A one-page poster on this work
was published in (Sandholm 1997). An experimental anal-
ysis of these contract types is presented in (Andersson
Sandholm 1998; 1997).

agent. On the other hand, some tasks have negative

interactions, in which case it is better to allocate them
to different agents. Furthermore, different agents may
have different resources which leads to different capa-
bilities and costs for handling tasks. This paper studies
task allocation among self-interested agents in the fol-
lowing model which captures the above considerations.

Definition 1 Our task allocation problem is defined
by a set of tasks T, a set of agents A, a cost func-

tion ci : 2T -+ ~ t3 {~) (which states the cost
that agent i incurs by handling a particular subset
of tasks}, and the initial allocation of tasks among
agents (Til nit, ,-i.init\ where [-JieA Ti init T, and

""’~IAI /’ =
Tinlt (q i.nit =0 for al l i ~ j. 2 3

-3

We use a variant of the contract net approach--
which is a distributed method for mutual selection of

contractors and contractees (Smith 1980)--for satisfic-
ing task (re)allocation.

The next section presents the use of marginal costs
as a basis for making individually rational (IR) con-
tracts. Then, classic contracts of one task at a time are
studied. After that, three new contract types--cluster
contracts, swaps, and multiagent contracts--are intro-
duced and analyzed. Finally, combinations of these
contracts types are discussed.

Marginal cost based contracting

The original contract net (Smith 1980) lacked a for-
mal model for making bidding and awarding decisions.

2This definition generalizes what are called "Task Ori-
ented Domains" (Rosenschein & Zlotkin 1994). Specifi-
cally, we allow asymmetric cost functions among agents
(e.g. due to different resources). We also allow for the pos-
sibility that some agent may be unable to handle some sets
of tasks. This is represented by a cost of infinity.

3Although we analyze the static version of the problem,
the contracting scheme that we will present works even if
tasks and resources (resources affect the cost functions) are
added and removed dynamically.

68

From: AAAI Technical Report SS-98-05. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Such a model would allow one to develop methods
that provably lead to desirable task allocations among
agents. We follow the approach of (Sandholm 1993),
where contracting decisions are based on marginal cost
calculations. In so doing we invoke the concept of in-
dividual rationality on a per contract basis. A contract
is individually rational (IR) to an agent if that agent
is better off with the contract than without it. 4 This
implies individual rationality of sequences of contracts.

Specifically, a contractee g accepts a contract if it
gets paid more than its marginal cost

MCaad(TC°ntractlTg) = cg(Tc°ntract t_J Tg) - eg(Tg)

of handling the tasks Tc°ntract of the contract. The
marginal cost is dynamic in the sense that it depends
on the other tasks Tg that the contractee already has.

Similarly, a contractor h is willing to allocate the
tasks Tc°ntract from its current task set Th to the con-
tractee if it has to pay the contractee less than it saves
by not handling the tasks Tc°’*tract itself:

M crem°ve(Tc°ntractlTh) = ch (Th) --Ch (Th - Tc°ntract).

In the protocol, agents then suggest contracts to
each other, and make their accepting/rejecting deci-
sions based on these marginal cost calculations. An
agent can take on both contractor and contractee roles.
It can also recontract out tasks that it received earlier
via another contract. The scheme does not assume
that agents know the tasks or cost functions of others.

With this domain independent contracting scheme,
the task allocation can only improve at each step. This
corresponds to hill-climbing in the space of task alloca-
tions where the height-metric of the hill is social welfare
(- ~--]~ieA ci(Ti)). The fact that the contractor pays the
contractee some amount between their marginal costs
(e.g. half way between) causes the benefit from the im-
proved task allocation to be divided so that no agent
is worse off with a contract than without it.

4 This differs from payoff maximizing agents of game the-
ory (Mas-Colell, Whinston, & Green 1995; Fudenberg
Tirole 1991). Such an agent may reject an IR contract e.g.
if it believes that it could be better off by waiting for a
more beneficial contract that cannot be accepted if the for-
mer contract is accepted (e.g. due to limited resources).
Similarly, such an agent may accept a non-IR contract in
anticipation of a synergic later contract that will make the
combination beneficial. Our approach is more practical be-
cause each contract can be made by evaluating just a single
contract (each contract party evaluating one new task set)
instead of doing exponential lookahead into the future. Our
deviation from game theory comes at the cost of not being
able to normatively guarantee that a self-interested agent
is best off by following the strategy (of accepting any IR
contracts) that we propose.

The scheme is an anytime algorithm: contracting can
be terminated at any time, and the worth (payments
received from others minus cost of handling tasks) of
each agent’s solution increases monotonically. It fol-
lows that social welfare increases monotonically. De-
tails on an asynchronous distributed contract net im-
plementation based on marginal costs can be found
in (Sandholm 1993).

Classic contracts of one task at a time

(O-contracts)
In most contract net implementations, each contract
regards only one task (Smith 1980; Sen 1993; Gu
Ishida 1995). We now formalize this contract type:

Definition 2 An O-contract is defined by a pair
(Ti,j,Pi,j), where IT/,j] = 1. Ti,j is the task set (in-
cluding one task) that agent i gives to agent j, and Pi,j
is the contract price that i pays to j for handling the
task set.

IAI=3, ITI=2 , ~ T1, T~ T3v=IAIITI {t } {t } { } (=l’s (~sks, 2’s tasks, 3’s

t t " -1{}’{ 1 2}{}H{}{t2}{tl}] {tit2}{}{} {tl} {}{t2}i’ ’"’ I’"H " I
It2},{tl},l} {I,{tl},lt2} I},{I,{tl,t2}

tasks)

Figure 1: Task allocation graph. The vertices represent
task allocations, and the edges represent O-contracts.

For any problem instance, the optimal task alloca-
tion can be reached via O-contracts:

Proposition 1 (Path) A path of O-contracts always
exists from any task allocation to the optimal one. The
length of the shortest such path is at most [T[.

Proof. The path can be constructed by moving
one task at a time from the agent that initially has it
to the agent that has it in the globally optimal task
allocation. D

This means that if agents could carry out full
lookahead--which is impossible in all but the smallest
problem instances--O-contracts would suffice to reach
the optimal task allocation because agents would be
willing to temporarily move to worse task allocations
in order to finally reach the optimal one. However,
when agents use individual rationality as a criterion
for contracting, they will not accept the temporary de-
crease in social welfare. It turns out that this leads to
local optima--even if there were an oracle for choosing
the sequence of IR contracts:

69

Proposition 2 (lit path) In some instances of our
task allocation problem, no path of IR O-contracts ex-
ists from the initial allocation to the optimal one. The
length of the shortest IR path (if one exists) may
greater than [T[. However, the shortest IR path is
never longer than [AIlTI- ([A]- 1)IT[. 5

Since the number of task allocations is IA[[T[, this
means that not all task allocations can be visited on
the shortest IR path to the optimum.

Computing the shortest IR path

We mainly use the task allocation graph to analyze
contract types. However, if the problem instance is
not very large, the graph can actually be constructed
and used to choose a sequence of contracts. To avoid
unnecessary negotiations, it is desirable to minimize
the number of contracts while still reaching the opti-
mal task allocation. The approach is to first determine
the optimal task allocation via a linear pass through
the vertices. Next, breadth-first-search is run on the
graph starting from the initial task allocation. The
only difference is that when inserting children into the
open list, the algorithm omits children that have lower
social welfare than the parent (these contracts would
not be IR). When the search reaches the optimal task
allocation for the first time, the shortest IR path has
been found. If the search terminates without reaching
the optimal vertex, no IR path exists.

It is known that breadth-first-search runs in O(v
e) time, where v is the number of vertices and e is
the number of edges in the graph (Cormen, Leiserson,
& Rivest 1990). 6 There is one vertex for each task
allocation, so v = [AIITI. The number of edges is the
same at each vertex:]T[(]A[- 1). This is because
in an O-contract, any task can be transferred to any
agent except its current holder. So, e = ~]T[(]A]-

1). Therefore, the total running time is O([A[ITI
IAlIr’ [T[([A[- 1)) O([T[[A] IT+I[) C O(vx/-v).

2

Sparseness of O-contracts

To get an intuition about the search space in which
contracting occurs, we show that the task allocation
graph becomes arbitrarily sparse as the problem size
increases:

Proposition 3 Let IAI > 2 and ITI > 2. Now,
e

#edges in fully connected graph -+ 0 as IT[-+ oo as
well as when [AI --~ oo.

5Some proofs are omitted for brevity.
6This assumes that the graph uses an adjacency list rep-

resentation. If not, building this representation from a dis-
tance matrix requires O(v) time.

Proof. e
#edges in fully connected graph =

IA~lTI [Tl(IA[-1) -- ~ This approaches 0 when
v2-v [A[IT[_ 1 ¯

IAI _> 2 and ITI -+ ~. It also approaches 0 when
ITI __ 2 and IA[-+ ~. []

Cluster contracts (C-contracts)
Using one task per contract is insufficient: the agents
may get stuck in a local optimum (if the cost or feasibil-
ity of carrying out a task depends on the carrying out of
other tasks, or agents have asymmetric cost functions).
We now formalize a contract type that addresses this
problem:

Definition 3 A cluster contract (C-contract) is de-
fined by a pair <Ti,j,pl,j>, where IT,, l > 1. is the
task set that agent i gives to agent j, and p~,j is the
contract price that i pays to j for handling the task
set.

Agent l’s tasks Agent 2’a tasks

Figure 2: Example of a cluster contract.

C-contracts induce a set of edges in the task alloca-
tion graph that is disjoint from the set of edges induced
by O-contracts. This leads to C-contracts avoiding
some of the local optima of O-contracts (O-contract
also avoid some of the local optima of C-contracts).
This issue is formalized later in Thrm 8.

The need for larger transfers is well known in
centralized iterative refinement optimization (Lin
Kernighan 1971; Waters 1987), but has been histori-
cally ignored in automated negotiation. Recently, the
TRACONET system extended the contract net to han-
dle task interactions by having the announcer cluster
tasks into sets to be negotiated atomically (Sandholm
1993). Alternatively, the bidder could have done the
clustering by counterproposing. Later, a protocol was
presented that generalizes this by allowing either party
to do the clustering at any stage of the protocol (Sand-
holm & Lesser 1995).

In some non-automated allocation settings, the need
for clusters has recently been realized. For example,
when the Federal Communications Commission (FCC)
auctions airwave bandwidth for restricted geographical
areas, the bidders’ valuations for the auctioned items
depend on what other items they are awarded (McAfee
& McMillan 1996). For example, some bidders want to
receive a cluster of awards that allows them to estab-
lish nationwide coverage. In the FCC auctions, explicit

7O

clustering was not used, but the agents could construct
the clusters from individually auctioned items. A si-
multaneous ascending auction was used, where each
agent sees the other agents’ bids. Therefore, the agents
could see which clusters they were likely to get, and
bid accordingly. The auction was carried out in stages,
where each stage had a quantitative activity rule. This
disables any bidder from staying out at first, and then
bidding on the last moment when it knows the oth-
ers’ bids. If the latter were possible, few agents would
want to bid up front. The auction terminated when no
agent wanted to raise its bids. The auction designers
supported profitable clustering also by allowing agents
to withdraw from their bid--e.g, if an agent did not
get the cluster that it strived for. If an agent with-
drew, the item was opened for reauctioning. If the
new highest bid was lower than the old one, the with-
drawing agent had to pay the difference. Alternatively,
the decommitting penalties could have been fixed when
the item was first auctioned. Deceitful decommitting
strategies in such protocols have been game theoreti-
cally analyzed in (Sandholm & Lesser 1996).

In general, a cluster can encompass any number of
tasks. T A task allocation is called k-optimal if no
beneficial cluster contract of any k tasks can be made
between any two agents. Now, m-optimality does not
imply n-optimality when m < n. More surprisingly,
n-optimality does not imply m-optimality.

Global optimality implies k-optimality for all k.
However, the reverse is not true. It also turns out
that C-contracts may not lead to the optimal task
allocation--even if there were an oracle for choosing
the path of C-contracts of any cluster size:

Proposition 4 (No path)There are instances of
the task allocation problem where no path (IR or not)
of C-contracts leads from the initial task allocation to
the optimal one.

Proof. Say that there are two agents, and one
task. Since there is only one task, no C-contract is
possible. However, the allocation is not optimal if the
agent with the higher cost of handling the task has the
task, and the costs of handling no tasks are zero. D

Another problem is that without an oracle, contract-
ing may get stuck in a local optimum even if some IR
path from the initial allocation to the optimal one ex-
ists because that path may not be chosen.

VTRACONET used clusters of 2 or 3 tasks per an-
nouncement. Heuristic methods for choosing the tasks to
cluster and sequencing the different cluster sizes were also
studied.

Swap contracts (S-contracts)

Sometimes there is no task set size such that transfer-
ring such a set from one agent to another (C-contract
or O-contract) enhances the task allocation. Yet there
may be a beneficial swap of tasks where the first agent
subcontracts a task to the second and the second sub-
contracts another task to the first (Sandholm & Lesser
1995). We now formalize this concept:

Definition 4 A swap contract (S-contract) is defined
by a 4-tuple (~q,j, Tj,i, pi,j, Pj,i), where ITi,j] =]Tj,il
1. ~,j is the task set (including one task) that agent
i gives to agent j. Tj,i is the task set (including one
task) that agent j gives to agent i. Pi,j is the amount
that i pays to j, and Pj,i is the amount that j pays to
i.

Agent l’s tasks Agent 2’s tasks

Figure 3: Example of a swap contract.

S-contracts induce a set of edges in the task allo-
cation graph that is disjoint from the sets of edges in-
duced by O- and C-contracts. This leads to S-contracts
avoiding some of the local optima that O- and C-
contracts cannot resolve (O- and C-contracts in turn
avoid some of the local optima of S-contracts). This
issue is formalized later in Thrm 8.

The protocols needed for cooperative agents and
those needed for self-interested agents differ. Coopera-
tive agents can be assumed to take care of each others
tasks without compensation whenever that is beneficial
for the society of agents. Self-interested agents need
some compensation to take care of some other agent’s
task. This compensation can be organized as barter
trade: one agent takes care of some of another agent’s
tasks if the latter agent takes care of some of the former
agent’s tasks. Barter trades that benefit both agents
(IR deals) do not always exist even if it were profitable
to move a task from one agent to another. Secondly,
identifying beneficial barter exchanges is more complex
than identifying one way transfers of tasks--especially
in a distributed setting. A finer resolution of cooper-
ation among self-motivated agents can be achieved by
a monetary compensation mechanism: an agent pays
another agent to take care of some of its tasks. The
need for swaps shows that payment based exchanges
cannot replace all barter exchanges. What is needed is
the monetary exchange method (that allows infinitely
divisible side-payments) but also a linking mechanism

71

that allows swapping tasks atomically among agents
(S-contracts).

Although S-contracts are necessary, they are not suf-
ficient for reaching the global optimum:

Proposition 5 (No path)There are instances of
the task allocation problem where no path (IR or not)
of S-contracts leads from the initial task allocation to
the optimal one.

Proof. If some agent has a different number of
tasks in the initial task allocation than what that agent
would have in the optimal allocation, then the opti-
mal allocation cannot be reached. This is because S-
contracts preserve the number of tasks that each agent
has. []

Also, even if an IR path exists, the contracting
agents may use some other path of IR contracts and
get stuck in a local optimum. Furthermore, because S-
contracts preserve the number of tasks that each agent
has, they can only reach a very small subset of task
allocations:

Proposition 6 Let {A{ >_ 2 and {TI > 2. As fT$ -~
oo, or [A{ --+ co, the fraction of task allocations that
are reachable via any (IR or not) S-contracts from any
given initial vertex approaches zero.

This implies that the chance of reaching the optimal
task allocation via any (even one with an oracle for
picking the path) hill-climbing S-contracting algorithm
vanishes.

Multiagent contracts (M-contracts)
Even if negotiations have reached a local optimum with
respect to mutual (0-, C-, and S-) contracts of any
size, solution enhancements may be possible if tasks
were transferred among more than two agents, s

8 Sathi and Fox studied the role of grouping buy and sell
bids into cascades which may involve multiple agents (Sathi
& Fox 1989). Their setting is simpler than ours in that the
value of a contract to an agent does not depend on which
other ones of the agent’s bids get accepted. In our setting,
an agent’s valuation of a contract depends significantly on
which other ones of the agent’s bids get accepted (marginal
cost depends on which other tasks the agent has). Their
algorithms also differ from ours in that they do not allow
recontracting once a contract has been made. They present
three heuristic algorithms for choosing the order in which
to execute possible contracts. The order is important be-
cause one contract can preclude another if the two involve
the allocation of the same resource. Because recontract-
ing is not used, the former contract cannot be undone to
allow the latter--even if the latter is more beneficial. The
heuristics focus on handling more constrained requests first.
They do not guarantee that the optimal solution is reached.
Some of the algorithms are distributed while others involve
centralized matching of bids.

Definition 5 A multiagent contract (M-contract) is
defined by a pair (W, p) of IA{ x IA{ matrices, where
least three elements ofT are non-empty (otherwise this
would be just a 2-agent contract), and for all i and j,
{Ti,jl < 1. An element Ti,j is the set of tasks that agent
i gives to agent j, and an element Pi,j is the amount
that i pays to j.

A~sks

Figure 4: Example of a multiagent contract.

Decentralized multiagent contracts can be imple-
mented for example by circulating the contract mes-
sage among the parties and agreeing that the contract
becomes valid if every agent signs. M-contracts in-
duce a set of edges in the task allocation graph that
is disjoint from the sets of edges induced by O-, C-,
and S-contracts. This leads to M-contracts avoiding
some of the local optima that 0-, C-, and S-contracts
cannot resolve (0-, C-, and S-contracts in turn avoid
some of the local optima of M-contracts). This issue is
formalized later in Thrm 8.

Although M-contracts are necessary, they are not
sufficient:

Proposition 7 (No path)There are instances of
the task allocation problem where no path (IR or not)
of M-contracts leads from the initial task allocation to
the optimal one.

Proof. Say that there are two agents, and one
task. Since there are only two agents, no M-contract is
possible. However, the allocation is not optimal if the
agent with the higher cost of handling the task has the
task, and the costs of handling no tasks are zero. []

Another problem is that contracting may get stuck
in a local optimum even if some IR path from the initial
allocation to the optimal one exists because the agents
may choose some other path of IR contracts.

Merging the types: OCSM-contracts
No one of the presented four contract types is sufficient
for reaching the global optimum via IR contracts--
even if there were an oracle for choosing the path of
contracts--because no IR path need exist to the opti-
mal task allocation. However, each of the four contract
types avoids some of the local optima that the other
three do not:

Proposition 8 For each of the four contract types (0,
C, S, and M), there exist task allocations where no IR

72

contract with the other three contract types is possible,
but an IR contract with the fourth type is.

Proof. The following example shows this for O-
contracts. Let there be one task tl and two agents: 1,
2. Let the current task allocation be T1 = {tl}, T2 = 0.
Let the task handling costs be c1(0) = 0, cl({tl})
c2(0) = 0, c2({tl}) = 1. The O-contract of moving
to 2 would decrease the global cost by 1. At the same
time, no C-, S-, or M-contract is possible.

The following example shows this for C-contracts.
Let there be two tasks: tl, t~, and two agents: 1,
2 (Fig. 2). Let the current task allocation be T1
{tl,t~}, T2 = 0. Let the task handling costs be
c1(0) = 0, cl({tl}) = cl({t~}) cl ({t l,t2}) = 5,
e2(0) = 0, c2({tl)) = c2({t l,t }) =
So, the current global cost is 5. Moving tl to 2 would
increase the global cost to 6. So would moving t2 to 2.
So, no O-contract is IR. No S- or M-contract is possi-
ble at all. However, the C-contract of moving both tl
and t2 to 2 would decrease the global cost to 3.

The following example shows this for S-contracts.
Let there be two tasks: tl, t2, and two agents: 1, 2
(Fig. 3). Let the current task allocation be T1 = {tl},
T2 = {t2}. Let the task handling costs be c1(~) =
cl({tl}) = 2, Cl({t2}) = el({tl,t~}) = 5, e2(0) = 0
e~({tl}) = 1, c~({t2}) = c2({tl,t2}) = 5. So,the
current global cost is 4. Because each agent has only
one task, no C-contract is possible. Because there are
only two agents, no M-contract is possible. Moving
tl to 2 would increase the global cost to 5. So would
moving t~ to 1. Thus no O-contract is IR. However, the
S-contract of moving tl from 1 to 2 and simultaneously
t2 from 2 to 1 would decrease the global cost to 2.

The following example shows this for M-contracts.
Let there be three tasks: tl, t2, t3, and three agents:
1, 2, 3 (Fig. 4). Let the current task allocation
T1 = {tl}, T2 = {t~}, T3 = {t3}. Say that the
task handling costs are e1(0) = 0, cl({tl})

c1({t2}) = 5, c1({t3}) = 1, Cl({tl,t2}) =Cl({tl,t3})
el({t2,t3}) = 10, cl({tl,t2,t3}) = 15, c2(l~) =
c2({tl}) = 1, e2({t2}) = 2, c2({t3)) c2({t l,t~}) =
c2({tl,t3}) = e2({t2,t3}) = 10, e~({tl,t2,t3}) = 15,
e3(0) : 0, = 5, : 2,
1, c3({tl,t2}) = c3({tl,t3}) = c3({t2,t3}) = 10,
c3({tl,t2,t3}) = 15. So, the current global cost is
2 + 2 + 2 = 6. C-contracts are impossible here be-
cause no agent has more than one task. Any one of
the six possible O-contracts would increase global cost
to 0 + 24- 10 = 12. Any one of the three possible swaps
would increase global cost to 1 + 2 + 5 = 8. Therefore,
no O-, or S-contract is IR. However, the M-contract of
moving tl from 1 to 2, t2 from 2 to 3, and t3 from 3 to
1 would decrease the global cost to 3. []

Unfortunately, even if the contracting protocol is
equipped with all four of the contract types, the
optimal task allocation may not be reached via IR
contracts--even with an oracle: 9

Proposition 9 (IlL path) There are instances of the
task allocation problem where no IR path from the ini-
tial task allocation to the optimal one exists using O-
contracts, C-contracts, S-contracts and M-contracts.

Proof. Think of a deal where one agent gives a task
to another agent, and the other agent gives two tasks
to the first agent. This can be made to be the only
welfare increasing deal by picking the cost functions
appropriately. However, this deal is not possible via
an O-, C-, S-, or M-contract. []

Clearly, no subset of the contract types suffices ei-
ther:

Corollary 1 (IR path) There are instances of the
task allocation problem where no IR path from the
initial task allocation to the optimal one exists using
any pair or triple of the following contract types: O-
contracts, C-contracts, S-contracts and M-contracts.

Proof. Proposition 9 shows that an IR path may
not exist even with all four contract types. Removing
contract types can only remove edges from the task al-
location graph. Thus, removing contract types cannot
introduce new paths. []

Another problem is that without an oracle, contract-
ing may get stuck in a local optimum even if some IR
path exists because the agents may choose some other
IR path.

To address these shortcomings, let us define a new
contract type, OCSM-contract, that combines the
characteristics of O-, C-, S-, and M-contracts into one
contract type--where the ideas of the four earlier con-
tract types can be applied simultaneously (atomically).

Definition 6 An OCSM-contract is defined by a pair
(T, p) of]A] ×]A[matrices. An element Ti, j i8 the set
of tasks that agent i gives to agent j, and an element
Pi,j is the amount that i pays to j.

OCSM-contracts induce a fully connected task al-
location graph. On the other hand, O- (Fig. 1), C-,
S-, and M-contracts each induce disjoint sets of edges
which are strict subsets of the edges of the fully con-
nected graph. The union of the edge sets induced by
O-, C-, S-, and M-contracts is a strict subset of the
edges of the fully connected graph.

We could proceed to show that a path and an
IR path always exist from any task allocation to

9The optimal task allocation can be reached with these
four contract types if one allows a non-IR path. This is
because even O-contracts alone suffice for that (Prop. 1).

73

the optimal one if the contracting protocol incorpo-
rates OCSM-contracts. However, we show something
stronger. The following proposition states that OCSM-
contracts are sufficient for reaching the global task al-
location optimum in a finite number of contracts. The
result holds for any sequence of IR OCSM-contracts,
i.e. for any hill-climbing algorithm that uses OCSM-
contracts: an oracle is not needed for choosing the
path. This means that from the perspectives of so-
cial welfare maximization and of individual rational-
ity, agents can accept IR contracts as they are offered.
They need not wait for more profitable ones, and they
need not worry that a current contract may make a
more profitable future contract unprofitable. Neither
do they need to accept contracts that are not IR in
anticipation of future contracts that make the com-
bination beneficial. Furthermore, these hill-climbing
algorithms do not need to backtrack.

Proposition 10 Let [A[and [T] be finite. If the
contracting protocol allows OCSM-contracts, any hill-
climbing algorithm (i.e. any path of IR contracts)finds
the globally optimal task allocation in a finite number
of steps (without backtracking).

Proof. An OCSM-contract can move from the
current task allocation to any other in a single step.
Thus the optimal task allocation can be reached from
any task allocation: there are no local optima. Clearly
the move to an optimal task allocation is IR because
an optimal task allocation has higher welfare than any
other. Thus the hill-climbing algorithm does not need
to backtrack in order to reach the optimum.

Because agents only make IR contracts, every con-
tract (strictly) improves social welfare. Therefore,
task allocation is visited more than once. Because
there are a finite number of tasks T and agents A, the
number of task allocations (]A[ITI) is finite. It follows
that the global optimum is reached in a finite number
of steps, n

OCSM-contracts are also necessary: no weaker set
of contract types suffices--even if there were an oracle
to choose the order in which to apply them:

Proposition 11 If there is some OCSM-contract that
the protocol does not allow, there are instances of the
task allocation problem where no IR path exists from
the initial allocation to the optimal one.

Proof. If some OCSM-contract is missing, the
task allocation graph contains (at least) two vertices
that do not share an edge. Let the initial and optimal
allocations be these two. The social welfares can be
chosen so that in all vertices adjacent to the initial
one, welfare is lower than in the initial one. Thus no
IR path can lead away from the initial task allocation.
[3

Proposition 10 gives a powerful tool for problem in-
stances where the number of possible task allocations is
relatively small. On the other hand, for large problem
instances, the number of contracts made before the op-
timal task allocation is reached may be impractically
large--albeit finite. For example on a large-scale real-
world distributed vehicle routing problem instance,
TRACONET (Sandholm 1993) never reached even
local optimum even with just O-contracts--with mul-
tiple hours of negotiation time on five Unix machines.
Another problem is that although any OCSM-contract
can be represented in O(IAI~+ITI) space, the identifica-
tion of welfare increasing contracts may be complex--
especially in a distributed setting--because there are

v2-v - IAI2trt--lAftrt possible OCSM-contracts, and
2 -- 2

the evaluation of just one contract requires each con-
tract party to compute the cost of handling its current
tasks and the tasks allocated to it via the contract.

With such large problem instances, one cannot ex-
pect to reach the global optimum. Instead, the con-
tracting should occur as long as there is time, and then
have a solution ready: the anytime character of our
contracting scheme is more important. The presented
marginal cost based (re)contracting method guaran-
tees that the algorithm has a feasible solution even if
terminated at any time (assuming that the initial solu-
tion was feasible). Furthermore, it guarantees that the
worth of each agent’s solution (payoffs received from
others minus cost of handling tasks) increases mono-
tonically. It follows that no agent is worse off after
the negotiation than it was under the initial solution
where it handled its own tasks. It also follows that
the social welfare increases monotonically during the
negotiation.

Conclusions
The task allocation graph is a useful tool for analyz-
ing contracts among IR agents. We showed that tra-
ditional O-contracts always have a short path to the
optimal task allocation but an IR path may not exist,
or it may not be short. We also analyzed an algorithm
for finding the shortest IR path, and showed that the
graph becomes arbitrarily sparse as problem size in-
creases.

Next we introduced cluster contracts, swaps, and
multiagent contracts. Unlike O-contracts, these do not
even guarantee that a non-IR path to the optimum ex-
ists. However, each of the four contract types avoids
some local optima that the others do not.

Even if the contracting protocol is equipped with all
four types, local optima exist. To attack this prob-
lem, we introduced OCSM-contracts which combine
the ideas from the four earlier types into an atomic

74

contract type. If the protocol is equipped with OCSM-
contracts, any sequence of IR contracts leads to the
globally optimal task allocation in a finite number of
steps: an oracle--or speculation--is not needed for
choosing the path (no subset of OCSM-contracts suf-

fices even with an oracle).

This is a powerful result for small problem instances.
For large ones, the number of contracts before the op-
timum is reached may be impractically large. Iden-
tifying profitable OCSM-contracts may also be com-
plex. In such settings, the anytime feature of our
multi-contract-type algorithm--with provably mono-
tonic improvement of each agent’s solution--is more
important for finding satisficing solutions in reason-
able time. One practical way of sequencing the con-
tract types is to first apply simpler contracts, and use
the more complex ones if a local optimum is reached
and more negotiation time is available.

Future research includes studying restricted domains
where the cost functions have some special structure.

In such settings, the necessity results on the contract
types do not apply since a weaker set of contract types
could suffice.

The equivalent of a complex contract (C-, S-, M-,
or any OCSM-contract) can be accomplished by a se-
quence of O-contracts if the agents are willing to take
risks. Even if no O-contract is IR, the agents can se-
quentially make all the O-contracts that sum up to
a more complex beneficial contract. Early in this se-

quence, the global solution can degrade until the later
contracts enhance it. When making the early com-
mitments, at least one of the agents has to risk tak-
ing a permanent loss in case the other agent(s) do not
agree to the later contracts that are needed to make
the sequence of contracts profitable. This risk can be
reduced--as much as desired--by a leveled commit-

ment contracting protocol where agents can back out
of contracts by paying penalties (Sandholm & Lesser
1996). If the later contracts in the sequence do not
happen, the agent can decommit from the earlier ones.
Future work should more closely analyze how best
to combine OCSM-contracts and leveled commitment
contracts.

References

Andersson, M., and Sandholm, T. W. 1997. Contract
types for optimal task allocation: II experimental results.
Technical Report WUCS-97-36, Washington University,
Department of Computer Science. To appear.

Andersson, M., and Sandholm, T. W. 1998. Contract
types for satisficing task allocation: II experimental re-
sults. In AAAI Spring Symposium Series: Satisficing
Models.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. MIT Press.

Fudenberg, D., and Tirole, J. 1991. Game Theory. MIT
Press.

Gu, C., and Ishida, T. 1995. A quantitative analysis of the
contract net protocol. In Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95),
449. In the poster collection.

Lin, S., and Kernighan, B. W. 1971. An effective heuristic
procedure for the traveling salesman problem. Operations
Research 21:498-516.

Mas-Colell, A.; Whinston, M.; and Green, J. R. 1995.
Microeconomic Theory. Oxford University Press.

McAfee, R. P., and McMillan, J. 1996. Analyzing
the airwaves auction. Journal of Economic Perspectives
10(1):159-175.

Rosenschein, J. S., and Zlotldn, G. 1994. Rules of En-
counter. MIT Press.

Sandholm, T. W., and Lesser, V. R. 1995. Issues in au-
tomated negotiation and electronic commerce: Extending
the contract net framework. In Proceedings of the First In-
ternational Conference on Multi-Agent Systems (ICMAS-
95), 328-335. Reprinted in Readings in Agents, Huhns
and Singh, eds., pp. 66-73.

Sandholm, T. W., and Lesser, V. R. 1996. Advantages of a
leveled commitment contracting protocol. In Proceedings
of the National Conference on Artificial Intelligence, 126-
133.

Sandholm, T. W. 1993. An implementation of the con-
tract net protocol based on marginal cost calculations. In
Proceedings of the National Conference on Artificial In-
telligence, 256-262.

Sandholm, T. W. 1997. Necessary and sufficient contract
types for optimal task allocation. In Proceedings of the
Fifteenth International Joint Conference on Artificial In-
telligence, 87. Poster session abstracts.

Sathi, A., and Fox, M. 1989. Constraint-directed nego-
tiation of resource reallocations. In Huhns, M. N., and
Gasser, L., eds., Distributed Artificial Intelligence, vol-
ume 2 of Research Notes in Artificial Intelligence. Pitman.
chapter 8, 163-193.

Sen, S. 1993. Tradeoffs in Contract-Based Distributed
Scheduling. Ph.D. Dissertation, Univ. of Michigan.

Smith, R. G. 1980. The contract net protocol: High-
level communication and control in a distributed problem
solver. IEEE Transactions on Computers C-29(12):1104-
1113.

Waters, C. D. 1987. A solution procedure for the vehicle-
scheduling problem based on iterative route improvement.
Journal of the Operational Research Society 38(9):833-
839.

75

