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Contracting convex hypersurfaces
in Riemannian manifolds by their mean curvature

Gerhard Huisken*
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D-6900 Heidelberg, Federal Republic of Germany

We study compact hypersurfaces M", n=2, without boundary, which are
smoothly immersed in a Riemannian manifold N"*!. Let M"=M, be given
locally by some diffeomorphism

Fy: UcR">F(U)caM =N+,

We want to move M, along its mean curvature vector, that is, we want to find
a whole family F(-,1) of diffeomorphisms corresponding to surfaces M,, such
that the evolution equation

0 -
—F(X,t)=H(X xeU
0 Py F(x,1) (X,£) Xe

F(':'O):FO

is satisfied. Here H(%,t) is the mean curvature vector of the hypersurface M, at
the point F(X,t) and we will see that (1) is a quasilinear parabolic system with
a smooth solution at least on some short time interval. If for example M, is a
sphere of radius r(0) in R"*!, then M, is a family of concentric spheres of

radi
" r(t)=yr*(0)—2nt

which shrink towards the center of the initial sphere in finite time. It was
shown in [3], that this behaviour is very typical: If the initial hypersurface M,
cIR"*1! is uniformly convex, then the surfaces M, contract smoothly to a single
point in finite time and the shape of the surfaces becomes spherical at the end
of the contraction.

If the ambient space N is a general Riemannian manifold, the curvature of
N will interfere with the motion of the surfaces M,. We want to show here that
the contraction ~ first to a small sphere and then to a single point — is still

* This work was carried out at the Centre for Mathematical Analysis, Australian National

University, Canberra
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working in the general case, if we only assume that the initial surface is convex
enough to overcome the obstructions imposed by the geometry of N. By
‘convex enough’ we mean that the principle curvatures of M, i.e. the eigenval-
ues of the second fundamental form on M, are bounded from below by a
positive constant depending on N. Since we do not have to assume a priori
that the initial surface M, is a sphere, we also obtain results concerning the
question when a locally convex hypersurface is the immersion of a sphere and
under what conditions a locally convex hypersurface bounds a region diffeo-
morphic to a ball in N.

1. The result

In the following Latin indices range from 1 to n, Greek indices range from 0 to
n and the summation convention is understood. We denote the induced
metric and the second fundamental form on M by g={g,;;} and A= {h;;}. The
mean curvature Qf M is the_t{ace of_ tlle second fundamental form, H=g" hi;.
We write Rm={R,;,;} and VRm={V, R, ;} for the curvature tensor of N and
its covariant derivative. Let us denote by o, (P) the sectional curvature of a 2-
plane P at xeN and let i, (N) be the injectivity radius of N at x. Let us also
agree to write T;;=0 if all eigenvalues of a symmetric tensor T={T;;} are
nonnegative.

1.1 Theorem. Let n=2 and N"*! be a smooth complete Riemannian manifold
without boundary which satisfies uniform bounds

-K, 20, (P)SK,, K,,K,=20
[FRm|><I?, L=0
i.(N)Zi(N)>0.

Let M, be a compact connected hypersurface without boundary which is smoothly
immersed in N, and suppose that on M, we have

2
n
2 Hhij>nK1gij+ELgij

Then (1) has a smooth solution M, on a finite time interval 0St<T and the M,s
converge uniformly to a single point 0eN as t—T. If we take for t—T homo-
thetic expansions of normal coordinates around 0 such that the total area of the

expanded surfaces M, is fixed, then the M, converge to a sphere of that area in
the C®-topology.

Remarks. (i) Inequality (2) does not depend on K ,, so positive sectional curva-
ture in the ambient space helps toward mean curvature contraction, whereas
negative sectional curvature slows it down. In particular, if N is locally sym-
metric (FRm=0), we have L=0 and condition (2) is satisfied if all eigenvalues
of A are bigger than K}'2. If in addition the sectional curvature in the ambient
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space is non-negative, Theorem 1.1 takes exactly the same form as in Euclidean
space: All locally convex hypersurfaces contract to a single point.

(i1) Condition (2) implies (for a suitable choice of normal to M)
(3) H>nK}2.

In §4 we show that (2) and (3) remain valid on M, for all 0<t<T In
particular, if N is locally symmetric and the initial surface M, is totally

I 1 . .
umbilic (1.e. h;=-H gx.j), then this remains so and we have only to assume
n

that (3) holds on M,

(iii) We will see in Lemma 7.3 that (2) and (3) are just strong enough to
force all eigenvalues of the intrinsic Ricci tensor of M, to be positive. Thus in
the two dimensional case it follows from the GauB3-Bonnet theorem that M, is
the immersion of a sphere. In the higher dimensional case this is a consequence
of Theorem 1.1: Since M, is a sphere for ¢ close to T, already M, must have
been a sphere. We have

1.2 Corollary. Any isometric immersion M"—N""! with N and M satisfying
the conditions in Theorem 1.1, is the immersion of a sphere.

If M, is imbedded in N, then it follows from the strong parabolic maxi-
mum principle (see Lemma 3.2) that M, is imbedded for all 0<t<T. Thus we
have

1.3 Corollary. If M"—>N"*! is an isometric imbedding satisfying the assump-
tions of Theorem 1.1, then M bounds a region in N, and the region is diffeomor-
phic to a ball.

(iil) Since condition (2) remains valid for all M,, 0<t<T, we obtain from
the strong elliptic maximum principle

1.4 Corollary. If N**' is a manifold with boundary 0N and the mean curvature
of the boundary H(0N) with respect to the inner normal satisfies

4 infH@ON)Z —nK3,
then M, 0<t< T, cannot touch ON and all results stated above remain true.

Corollary 1.4 can be used to obtain results in manifolds N without a lower
bound on the injectivity radius. If for example N admits an exhaustion B, cc
B,c<B,... by compact regions B,, IeN, such that each boundary 0B,
satisfies (4) with respect to the inner normal, then these boundaries act as
obstacles for the evolution of M,. Thus we have an automatic lower bound on
the injectivity radius since the surfaces M, remain in one of the compact
regions B, and Theorem 1.1 applies. We illustrate this with an example which
also shows that inequalities (2) and (4) are optimal.

Example. Let N=N? be as in ([7], §5) a non-compact hyperbolic three-
manifold with a finite number of ends E,,...,E, and assume that each end is
homeomorphic to T2 x [0, c0), where T? is the 2-torus. Suppose that each end
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is isometric to the quotient of a region in H? (hyperbolic three-space in the
upper half-space representation) above an interior horizontal euclidean plane
by a group which is generated by two parabolic transformations which leave
the point at infinity fixed. Then L=0, K, =1 and the injectivity radius tends to
zero in each end. All tori T?x {s} are flat and all principal curvatures with
respect to the inner normal are equal to —1 such that relation (4) is satisfied
with equality. Thus, choosing a sequence s, in each end, we can construct
an exhaustion of N as mentioned above and all results quoted before are true
in this manifold.

The proof of Theorem 1.1 follows the proof in the euclidean case [3]. After
proving in §4 that the assumptions (2), (3) are preserved as the evolution goes
on, we show in §5 that the eigenvalues of the second fundamental form
approach each other, an idea which was originally used by Hamilton, [17, for a
different problem. Using this we can show that the diameter of the surfaces M,
tends to zero at some stage and the result then follows from the assumption
that the injectivity radius of N is bounded from below.

2. Preliminaries

Let v be the outer unit normal to M,, i.e, we choose v such that inequalities (2)
and (3) hold with respect to —v and the surfaces are moving in direction —v.
Then for a fixed time ¢t we choose a local field of frames e, e,, ..., ¢, in N such

oF

that restricted to M,, we have e,=v, ¢;=——. We use the same notation as in
ax;

[3] and write in particular i

H:gijhij:hii
|A|2=gijgklhikhjl:hikhik
C=gig '""h h,mhnj-—h hk Kt

Z=H-C—|A*

If we mean the metric or the connection on N, this will be indicated by a
bar, for example g,,, I;7 and V. The Riemann curvature tensors of M and N
will be denoted by Rm={R,;,} and Rm= {Raﬁ s;- The relation between 4, Rm
and Rm is then given by the equations of GauB and Codazzi:

Rijkl =Rijkl + hik hjl .—-hil hjk
th V hlk Ol_)k

These relations now imply Simons’ identity, [6], for the Laplacian of the
second fundamental form on M. See also [5] for a simple derivation.

2.1 Lemma. We have the identities
() Ah;=V,V;H+Hh,h';—|A> h;+ HR,;
‘hij ﬁozol + hjl Elmim + hil lejm —2hlm Rlimj+ 17jﬁozil + ﬁz Roul-
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(i) 34147 =<k, V,V;HY+|VAI*+Z
+HhY Ro0;,—AI* Ry +2h by R, ™ —2h¥ h'™ R
+ hij(‘—7j Rotil + ‘_71 Ro;'jl)'

limj

We also need an extension of ([3], Lemma 2.2) to hypersurfaces in general
Riemannian manifolds. For that purpose we denote by w={w,} the vector with
components w;=R,,}, i.e, w is the projection of Ric(v,*) on M.

2.2 Lemma. For any y>0 we have the inequality

3 2 2 n
i VAZZ(——— ) VH|? - ( e ) 2
@ | "2 n+2 n)! | n+2 n+2n n-—1 Il

and in particular

1 ) 2n R
1'“‘ “wnanen ™

. 1 -
(i) |VA]>—~|FH]?>~
n 2n+
n— 2
22 |VAI (naKlaKZ)'

Proof. First note that the second inequality follows from the first one with
2(n—1)
T n(n+2)’

To prove (i), we decompose the tensor VA= {V,h,} as follows:

Vihj=E+ F

ijk
where

1
E;j =m(‘7ngjk +V;Hg, +V,Hg,)
2 N n 4
D=1 " Gy B i)
Then E,;, has the same traces as V;h, in view of the Codazzi equations and

<Eijk’ Fijk> =0.
Furthermore

3 2n 4
2 —_ VHZ 2 _ , V.H
BP = s VP + o bl = (v, D

3 2 n 2
> I 2 _ -1 2
( +2 '7)| VHI"+ n+2(n—1 nt2! )|W|

which proves the Lemma. It is worth noting that in case of an Einstein
manifold N the vector w vanishes identically and therefore 5 can be chosen
equal to zero.

3. The evolution equations

In a general Riemannian manifold N"*! the GauB3-Weingarten relations take
the form
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OPF_OF -, OF OF

5) ax‘-@xj— Y3x, 7 0x, 6xj= Y
ov _ OF | m OF°
—y'=h. e
dx; "7 adx; e ax,

and evolution Eq. (1) becomes
——F“(x 1) =H%10)=—H&)v(%1)

_ OFPOF° .
= L T8 o if T
AtF (x’ t)+{1;a' 6xi axj g }(X, t)

(1)

where 4, is the Laplace-Beltrami operator on M, and the indices «, p, ¢ refer
to a local coordinate system y* in N**!. This is a quasi linear parabolic system
and we obtain a smooth solution at least on some short time interval, cf. [1].

31 Lemma. If the initial surface M is smooth, then (1) has a smooth solution
on some maximal open time interval 0<t<T £ 0.

Since (1) is parabolic, we can also show that two surfaces moving by their
mean curvature cannot overtake each other:

32 Lemma. (i) Let M,, and M, be two smooth closed surfaces moving by
their mean curvature for 0<t<t,. If M, and M, are disjoint for t =0, they stay
disjoint on the whole interval 0=t <t,.

(ii) If M, , is imbedded for t=0, then this remains so for 0t <t,.

Proof. If the surfaces were intersecting at one stage, there was a first time 0<t¢,
such that M, , touches M,, at some point peN. Let S be some fixed
reference surface which is tangential to the surfaces M, , and M, at p and
assume that we have Gaussian coordinates in a neighbourhood of §, ie., y°(q)
is the length of the geodesic arc perpendicular to S through g, and y'(g) =x;(q)
are the coordinates of the basepoint of the geodesic in S. Then locally around
p we can write M, , and M, , for te(t,—e,t,+¢) as graphs of functions u,(f)
and u,(t) on S. The unit normal to M, i=1, 2, is then given by

0 i
= .2 -3 — e U — .
vi=(1+|Vu,l9) (1, ﬁxlu””" iy u,)

n

and u;, i=1, 2, satisfies the evolution equation

0

U= — -4,
© o= =L+ H,

where H, is the mean curvature of M;. We have Vu, =Vu,=0 at (p,z,) and (6)
becomes a uniformly parabolic equation in a small neighbourhood of (p, t,). By
assumption we have u, (t)>u,(t) (say) for t<t, and the contradiction follows
from the strong parabolic maximum principle, see for example ([4], §§3.3, 3.7).
The same argument applies for the second part of the Lemma.
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Now we want to establish evolution equations for the induced metric and
the second fundamental form on M,. It will be convenient to assume that at a
fixed point X, and a fixed time ¢, we have g;;(X,,t,)=9,; and that the coor-
dinates y*, 0=a<n for N are normal coordinates at F(%,1t,). We can also

. . OF*
arrange that in these coordinates v*= —9% and a—:é‘; at F(X,,t,). Then all
X
Christoffel symbols of the connection I' vanish at F(%,t,) and we have only to
take derivatives of the Christoffel symbols into account, which will lead to

curvature terms eventually. Using the GauB-Weingarten relations (5) and the
0

fact that Wg_aﬂ vanishes at F(%,,t,) for 0<6<n in our coordinates, we derive

exactly as in ([3], Lemma 3.2 and 3.3):

3.3 Lemma. The metric and the normal of M, satisfy the evolution equations

0
i —_—.. = ——2H
(1) atglj h

ij

.0 VH
(i) Ev— .

Furthermore we have

34 Theorem. The second fundamental form of M, satisfies the evolution equa-
tion P
é—thij=Ah,.j—2Hh,.,h’j+|A|2h +hy; R
—hyR',,"—h, R, +2h,m§',.'",.
—I7J.R0,l —VRy;

Proof. From (1) and (5) we derive

0 o ( 0*F 0 OF*
R = Hs @6 B
a1 ax(axiax )+ B gy T 5
o2 ?F 0 oF
— s _ ______’__H lm_)
(6x.6x‘(H‘)’v) (ﬁxﬁxj 0x, 8 dx,,
0 = BF"
F g
+Hg, 55y 5Ly ax Fd

where we used the notation (, ) for the inner product in N**!, Using again (5)
this is equal to

L L0 o -, ,OF
_ ok Hé¢ ,—T™ a7 B
6x,.é‘xjH F”@ka+ Bap a1 6xjv

0*F 0 -, sOF°
. im _ o 1"‘1 d B
+H (hj,g ———aXiaxm,v) Hg"p‘—é’xi poV axjv

=V, l7jH—Hhi,h‘j+HR0ioj

and the conclusion follows from Lemma 2.1.



470 G. Huisken

From this we derive as in [3]

3.5 Corollary. We have the evolution equations

3 _
() = H=AH+H(A]’+Ric(v)),

(ii) g—t|A|2=A |A]2=2|VA2+2|A4|%(14|> + Ric(v, v))

_—4(}1” hjmﬁmlil —hij hlm Rmilj)
—2hij(l7jﬁmil + l_711_{-0;'1'1)

2 1
(iif) —(|A|2—1H2)=A (|A|2—3H2)—2(|VA|2——|VH|2)
ot n n n

1 = o= o _
+2 (|41 H?) A1+ Ric(o, W) —2K9(F, Rosd + 7Ry
— 4R~ R .
where Ric(v,v)=R,,,".

Let us also note that in view of Lemma 3.3(i) the time derivative of the
measure dy,=p,dx on M, is the same as in the euclidean case:

5,
E:uz= _qut

and the area of the surfaces M, is decreasing very rapidly.

4. A lower bound for the eigenvalues of A4

In this section we want to show that our convexity assumptions, i.e., inequali-
ties (2) and (3) are preserved during the evolution of M,. In view of the strict
inequality in (2) there are some ¢,, &, >0 such that

(7a) H*>zn?K,+ne, H?,
2
n
(7b) HhijgnKlgij'*'ﬁLgij“i'%(Hz"‘nZKl)gij
1 ~ - .
holds on M,. Since }A!2_>_:;H2 and Ric(v,v)=R,,'= —nK,, it follows from

Corollary 3.5(i) and the maximum principle, that (7a) is preserved with the
same ¢,>0 for all 0=t < T Then we have

%HzAH+82H3
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and as in ([3], Lemma 5.8) we conclude that this inequality can have a
bounded solution only on a finite time interval since minH=H ; (0)>0. We
have Mo

4.1 Lemma If (7a) holds on M, then it remains true on M, for 0<t<T and
we have T<3e; ' H,2(0).

Now we derive a lower bound for the eigenvalues of A.

mm(

1
42 Theorem. If for some 0<g, <— the inequality
n

n2
Hh;znK g+~

q Lgij+61(H2—n2K1)g,-j

is valid on M, then it remains true on M,, 0<t<T.
Proof. We are going to show that all eigenvalues of

h; n(l —ne,) n?
Mij:ﬁj—glgij_TKlgu 0 Lg;;

remain non-negative. First of all we need an evolution equation for M,,. Using

the evolution equation for h; in Theorem 3.4 and the fact that by
Corollary 3.5(i)

o 1 —A(l) a1 [VH?
6[ Haz_ H® « Ha(+2

—%(W +Ric(v,v))

-4 () 2<VH ¢ (f}a)>

\VH|? —

—ofo—1)——

H” 3 + Ric(v, v)),

we derive as in ([3], §4) that

0 2
EMij:AMij+E<VlH’VIMij>+N1
where 2n(l ) )
—ng n
Ny= —2hy i+ 26, Hh+ = VK v o L

1 u H2 ij

2n(l —ne 6n?
+——(—H—QK |VH| gt us L||7H]2gij

1 - _ N Qg o
+ﬁ(2h1leimj—hlelmim—hillej )—ﬁ(VjRonl+ VIROijl)

2n(l —ne 3n? Ri
+ (_('}-I-r_12 K, +?ITL) (| A|> + Ric(v, v)) g;;-
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In ([1], Theorem 9.1) a maximum principle for such an evolution equation
was proved under the assumption that the absolute term N;; is a polynomial of
M;; and g;;. Since Rm is smooth, it is easy to see that the argument is valid in
our case as well. We have then only to consider the first time t,, where at some
point peM, a zero eigenvector = {v'} of M;; occurs, and Theorem 4.2 is
proved if we can show that N;;v'v/ is non-negative. For that purpose we choose
an orthonormal basis (e, ...,e,) for T,M, such that h; (and thus M,; becomes
diagonal. Let us assume that v=e, and that k..., k, are the eigenvalues of h;
at p. Then from M, =0 it follows that at p

n(l —ne) K + n?

g Kttt

kK, =¢eH+

and we obtain

- 2 &= 2n
Njv' /=N, 2— Y Ry (k,—k) ——L+2(1 —ne)K,
H .o H

+3_nL_2n2(1 —ne) 3n?

H g K LK

1 = = = .
Here we used |4|>Z-H?, Ric(v,v)2 —nK, and |V,R,,,,|SL. Since k, is
n

the smallest eigenvalue of h;; it follows that

20X 2 "
ﬁlg,zRuu(Kl_Kl)g _H__Kllgz(Kl—Kl)

2 2 n(l— 2
— —HK1(H_"K1)= —2K1-|—~I;nK1 (81H+—(——HE—1—)K1+£I—2~L)-

Thus we obtain

3

n n
gL LK.20

)
Nijvng

by Lemma 4.1 and the Theorem follows.

5. The pinching estimate

We will show that the eigenvalues of the second fundamental form come close
together if the mean curvature becomes very large.

5.1 Theorem. There are constants 6>0 and Cy< oo depending only on M, and
the curvature bounds K, K,, L and i(N) such that

1
AP~ H?<Co  H*™?

holds on 0Lt < T.
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Proof. We want to bound the function

1
lA‘Z —~H2
n

fo=—gp=s—
for some small 6>0. Using the evolution equations in §3 we derive similar as

in [3]

52 Lemma. Let a=2—g. Then for any o

0 2@—1)
'a_;fazAfa+_H—<VlH’ Vlfa>
2 2-a)(x—1) 1
e VH = P B =220 (14— 2 (7P

+(2—a)(|4|*+ Ric(v,v)) £,

1 U . _ R _
_ﬁ [4(;‘” hlelmim —hip'm Riljm)+hu(‘7jRolil + VIROijl)]‘

We now need the following consequences of inequality (7b) and Theorem 4.2.

53 Lemma. If H>0 and (7b) is valid with some &, >0, then
. |
(i) ZznelH? (|A|2 —~H2)
]

() |Vh, H—V,Hh|>*2%cH?*|VH|* —¢7 *c,max(K2, K2)H?
where c, here and in the following denotes a constant only depending on n.

Proof. This is a generalization of the result in ([3], Lemma 2.3). The proof of
the first inequality carries over unchanged and to obtain the second inequality
we estimate

|Vihk1H‘ ViHhu'Zg%'(Vihkz‘ thil)H_(ViHhkl_ Vthi1)|2
=%lR—OlkiH—(ViHhkl_Vthil)|2'

Rotating now the coordinates as in [3] such that FH=e, |FH|, we see that
this is larger than

7}-”E()Z 1H~|Vth22|2+i|R-0212H+]Vth22|2

2
23elHA\VHI> +3H?*RY,,, + Hhy, [VH| Ry, 5
2L H2|VH|> —e7*H*R2,,,
>1et H?|VH|* —c,e; *max(K?, K2) H?

since h,,>¢, H by assumption.
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Choosing now again coordinates such that at a fixed point we have h;;
=k;0;; we get (see also [5], 1.24)

) Wy R ™ —h R R,y =Y (6~ 5)? Rypim

l<m

—K, Y (k,—k,)*=—nK, (IAI2 —%Hz).

l<m

Furthermore we have

9) h(V;Roi! +VRo;) = hi '(V;Rou + ViR

=|A|2——H2 and combining (8), (9) with Lemma 5.3, we derive from Lem-
n
ma 5.2

5.4 Corollary. We have the inequality

2 fsag 20

VH V> — .‘31#—II7H|2

1
A2
+ 0| A| fa+CH¢

where C only depends onn, ¢,, K, K, and L.
We want to exploit the negative term on the right hand side involving
|VH|2%. First we conclude from Lemma 2.1(ii) that
$A|APP 2 hy, ViV HY + Z +|VA)?
—~CH*-C

where C=C(n,K,K,, L). Then it follows that

2
Af. = <hU,VI7H>—|-

=T
2(0: 1)

MH V[0~ f
—CHZ‘“—CH‘“

and we derive as in ([3], Lemma 5.4) for any p=2, >0

1
nel [fPH dps@np+9) 1o /2 IVH

+n Hp =D 2IVS, du+CIIVHl 1 tdu

+CIH*fP'dy
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where C depends on n, K, K,, L and H_}(0). Using now Young’s inequality

min

1 1
xySexP4+e 9Pyl >0, —+-—=1
_ P q
we obtain

55 Lemma. Let p=2. Then for any n>0 and any 0<o=<3i we have the
estimate

1
%mﬂfa”sz#é(Mp+5)§ﬁ;f,,”‘1 \VH|*dp

+n e =D WP dp+ €
where C depends on ¢, My, K, K, and L.
Now we can bound IP-norms of f.

5.6 Lemma. There is a constant C, < oo depending only on M, K,, K, and L
such that for all

> -2
(10) p=200¢]
o<n2 delp~?
we have the estimate
(jf,,"du)”"§ C,, 0zt<T

M,

Proof. Using the same calculations as in ([3], Lemma 5.5) we obtain from
Corollary 5.4 and Lemma 5.5 for ¢ and p as in (10)

P
5 §frdusp-C{frdu+pC®
M, M,

where C depends on M, K,, K, and L. Thus

sup [frdps{fldpl,_o+pCPTe"

{0.7) M,

and the conclusion follows from Lemma 4.1.
To proceed further, we need a Sobolev inequality for submanifolds of
Riemannian manifolds, which was derived in [2]. In our case it takes the form

5.7 Lemma. Let v be a Lipschitz function on M. Then

n—1

(flol-tdw » Zc {f|Voldu+ | HIvldpu}
M M M
provided

N

_2
K3(1—a) "(w, 'lsuppo)" =1
and

2p,<i(N)

where w, is the volume of the unit ball and
1 1

po=Kj *aresin{K,(1-2) "(w; * lsuppul)"}.
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Here o is a free parameter, 0 <a < |, and
1 1
. n—1_-—1 — A n “n
¢, =n2" " ta" ' (1—a) "n_lwn".

Now let f, , =max(f,—k,0) for all k=zk —supf and denote by A(k) the set

where f,>k. If we set v=fF{? for p=200¢]? then we derive as in [3] from
Corollary 5.4

9 fvidu+ | |Vv]2du

0t 4 Ak
<op | H*fPdu+C, j Potdu+C, | frdu
Ak dwH Atk
<C, | H*frdu
A(k)

where C depends on M, K, K, and L. We have from Lemma 5.6

—

Ajl uEy

| -

|[A(k)| = [ dpus

Alk)

where C depends on C, and |M,|. Thus we can choose k, >k, so large that
the conditions in Lemma 5.7 for |4(k)| =|suppv| are satisfied. Then k, depends
on kg, i(N), My, K|, K,, L and we can now apply the Sobolev inequality as in
[3] to derive a bound for f, if ¢ is small.

6. The gradient bound

The gradient estimate for the mean curvature in [3] is also valid in the context
of Riemannian manifolds.

6.1 Theorem. For any n>0 there is a constant C, <o depending on n, C,, 8,
My, n, K, K, and L such that

IVHi> <nH*+C,.

Proof. Proceeding as in ([3], Lemma 6.1) and observing that
AV, H)=V,(AH)+g" V, H(Hhy;—h,,, g"" h,;+R,)),
V(Ric(v,v))=V,Ry,,' +2R,,,o' h™

i

we obtain

6.2 Lemma. We have the evolution equation

]
5 IVHP =4|VH? 2|7 HI* +2| A" |V HI”
+ 24V, Hh,, V;Hh,, > +2HCVH, V1 47

+2Ric(v,)|VH|*-2R,; V' HV'H
+2H{V,Ry,, V.H +4H<Rm,0* W V.H.
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6.3 Corollary. We have the estimate

0
5 IVHIPS4|VH]? =2|V2H|? +6|4|* | PHI?

+2H{V,H,V,|A|*>+ C|VH|*+ CH?
where C depends on K, K, and L.

6.4 Lemma. We have

8
() 5 H24H®—6H|VH]+3¢,H®

0 1 1 n—1
i) — (H (|42 —-H?))< ( 2 - 2)>_ VA2
(i) 6t( (|A1 nH ))_A(H 14| nH 2n+1H| Al

1
+C,|VAP?+ C H3+3|A12-H (|42 — H?
2 3 n

where C, and C, depend on M, C,, K,, K,, é and L.
Proof. (i) We have

0 _
a7 H3=4H* ~6H|VH|*+3H* (A +Ric(v,v)

1
and in view of |4|> >~ H? the first inequality follows from Lemma 4.1.
n
(i) From Lemma (iii) we derive
d

5 (H (lAIZ—%HZ))gA (H (|A|2——:;H2)) -2 (l VAP—%IVHIZ) H

I i
—2<l7iH, % (|A|2 —;H2)>+3|A|2-H (lAlZ—;HZ) +CH?

where C depends on K, K,, L and H_(0). Using Theorem 5.1 one estimates

min

1 o .
|<ZH,Z (AZ—;H2)>|=2|<ZHhk,, A

<2|VH| |kl VA
<2nC{H'~%% |V A)?
n—1

< VAI*+ C(n, Cy, 0)|VAJ?
<3 HIVA"+ C(n, C0,) VAl

and the second inequality follows then from Lemma 2.2(ii).
Now proceeding exactly as in [3], we study the function

_IVHP?

|
1 +P(|A|2—;H2>H+PC4|A|2—71H3
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where P depending only on N is large and C,>0 depends on K,, K,, L and
C,. Using Corollary 6.3, Lemma 6.4 and Corollary 3.5(ii), we obtain as in [3]

0
~f<
atf:Af+C

since all terms which do not already occur in the case N=R"*' are of lower
order. Here C depends on n, M, C,, J, K, K,, L and ¢,. This implies the
estimate in Theorem 6.1.

7. Contraction to a point

Let again 0<t<T<oo be the maximal time interval where the smooth so-
lution of (1) exists.

7.1 Theorem. The quantity max |A|* becomes unbounded as t—T.

t

Proof. If the Lemma is false, there is some C4< o0 such that

(11) max |42 < C,

M;

on 0<t < T It follows that for XeU, O<a<p<T
P
(12) dist(F(%, p), F(%,0)) <{H(X,7)dt < C(p —0)

and F(-,1) converges uniformly to some continuous limit function F(-,T). We
want to show that F(-,T) actually represents a smooth limit surface M. This
is then a contradiction to the maximality of T in view of the local existence
result in Lemma 3.1. In order to show that F(-,T) represents a smooth surface
M, we have only to establish uniform bounds for all derivatives of the second
fundamental form on M,, 0=t < T, (see [3], section ).

7.2 Lemma. If (11) holds, then for each m=0 there is C,, < oo depending on m,
Cs, M and N such that max |[V™A*<C,, for all 0<t<T.
M,

Proof. Since M, stays in a compact region of N in view of (12), we have

max |V'Rm{< C,, for fixed constants C,. Now, starting from the evolution
O=slzm

equation for A4 in Theorem 3.4, one derives as in [3] and ([1], §13) evolution
equations for all iterated derivatives '™ A4 and obtains

0
_a_tiVmAPéAIVmA‘Z_ZIVm+XA|2

+Cn,m){ Y. |VIA||VIA||V*A4] V™A

i+j+k=m

+C, Y IV AV A+ C, . IV™ AL}

iZ=m
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The generalized Holder inequality and interpolation yields
d 2 1 2
EﬂV"‘/ﬂ du+2f|Vm+t412du
< C(max| AP + D{fIV" AP dp+ (| V™ AI* d )}
M,

where C depends on n, m and Cm+1' Then the assertion follows as in [3] from
the Sobolev inequality, proving Theorem 7.1.

To proceed further, we need a lower bound for the intrinsic Ricci curvature
R;; of the surfaces M,.

7.3 Lemma. The intrinsic Ricci curvature R;; of M, satisfies
Rijz(n_l)SIEZHzgij'
Proof. The Ricci curvature on M is given by Gaul}’ equation
_p I 1
R;j=Ry; +Hh;—h,h';.

Let us suppose that R;; is diagonal at the point of consideration, then R}
is the sum of (n —1) sectional curvatures and therefore larger than —(n—1)K.

Any eigenvalue of Hh,;—h,h'; is larger than . Hix,, where k, is the

smallest eigenvalue of h;;. But from (2) and (7) we obtain
Hx,ze,(n*K,+ne, H)+nK, —n%¢, K,

and the conclusion follows.
Combining now Theorem 6.1, Theorem 7.1 and Lemma 7.3 exactly as in
[3], we derive

7.4 Theorem. We have H__ /H
Once this is established it follows from Theorem 7.1 that both H and

H . tend to infinity as t— T and therefore the diameter of M, tends to zero.
Since the injectivity radius of N is bounded from below, there is §< T such
that M, is contained in a ball B,(p)={qeN|disty(p,q)<p} where p is small
compared to i(N) and (K, +K,)™". It is well known that then B, (p) is a convex
region. In view of the elliptic maximum principle the M,’s will then stay in
B (p) for all 0<t<T. As H_; — oo for t—»T, we see from Theorem 5.1 that all
ratios of principal curvatures tend to one as t—7T. Thus for ¢ close to T, M, is
an imbedded sphere bounding a convex region. The region enclosed by M, is
contained in the region enclosed by M, for t,>t, 20 since the surfaces are
shrinking and so the M/s converge to a single point as t— 7. The last state-
ment of Theorem 1.1 is proved in exactly the same way as in the euclidean case
({37, §10), since for ¢ close to T all quantities arising from the metric of N are
negligible compared to the mean curvature H of the hypersurface.

max; min_’1 as t—T
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