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1 Introduction

If string theory is the correct theory that unifies all four forces of nature at the quantum
level, then resulting low energy effective field theories are expected to obey a number of
consistency conditions (see e.g. [1, 2] for reviews of this “swampland” research program).
In particular, in the case that a canonically normalized scalar field φ dominates the energy
density of the universe, then its potential energy function V (φ) must be sufficiently steep,
namely [3]

|V ′| ≥ c1M
−1
pl V , (1.1)

(the “dS conjecture”) where c1 is a constant of order one, a prime denotes the derivative
with respect to φ, and Mpl is the four-dimensional Planck mass. In the above, it is usually
assumed that the potential V is positive as the inequality trivializes for negative potentials.
In particular, this is true in the derivation of (1.1) based on the covariant entropy bound [4].
The physical intuition behind this condition is as follows: every scalar field in a string-
derived low energy effective action is a modulus field of string theory and corresponds, for
example, to size and shape moduli of the compactified extra dimensions, or to positions of
branes. These moduli need to be stabilized at low energies, and stabilization mechanisms
typically yield rather steep potentials (see e.g. [5, 6] for some concrete examples).

A refinement of the above condition was proposed in [4, 7] and gives effective field
theories another chance of being consistent with string theory. The refined condition states
that if (1.1) is not satisfied at a particular field value, then at that field value the potential
needs to be sufficiently tachyonic:

V ′′ ≤ −c2M
−2
pl V , (1.2)

(the “refined dS condition”) where c2 is another positive constant of order unity, and it is
again assumed that the potential is positive. This condition allows for local maxima of the
potential such as the field value h = 0 in the case of the Higgs field h.

These swampland criteria have important consequences for early universe cosmology.
In particular, they impose stringent constraints on inflationary cosmology [8]. Simple single
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field slow-roll inflationary models based on canonically normalized scalar fields are excluded
by (1.1) since the slow-roll condition would violate (1.1). Similarly, the condition (1.2)
rules out false vacuum inflation. These conditions also constrain late time cosmology.
They imply that the currently observed period of accelerated expansion cannot be due to
a cosmological constant [8], and they constrain quintessence models of dark energy [9].

Note that the swampland conditions are also consistent with the mounting evidence
that it is not possible to obtain de Sitter space from string theory making use of perturbative
effective field theory techniques [10–16] (but see [17–22] for non-perturbative constructions
of a period of de Sitter expansion from string theory and [23–27] for a promising avenue),
and with the evidence pointing to a perturbative infrared instability of de Sitter space
(see [28–34] for a list of different approaches demonstrating this instability). Note that
neither the impossibility of obtaining de Sitter space from string theory, nor the instability
of de Sitter due to infrared effects, have been rigorously established (see e.g. [35–37] and for
works supporting the existence of effective field theory constructions of de Sitter in string
theory, and [38] for a defence of the stability of de Sitter space).

In contrast to de Sitter space, anti-de Sitter space (AdS) is known to be a consistent
ground state of string theory. At the level of an effective field theory, one can model AdS
via a scalar field with a negative potential. Negative potentials have also been used in
the context of early universe cosmology. Specifically, the Ekpyrotic scenario [39, 40], an
interesting alternative to inflation to describe the very early universe, is obtained at the
level of an effective field theory by postulating a canonically normalized scalar field with a
negative exponential potential. Thus, it is an interesting question to extend the swampland
criteria to the case of negative potentials.

The Ekpyrotic scenario1 assumes that the universe started in a period of slow contrac-
tion obtained by matter being dominated by a scalar field φ with a negative exponential
potential

V (φ) = −V0e
−λφ/Mpl (1.3)

with V0 > 0 and λ � 1, with φ being minimally coupled to Einstein gravity. For a
potential of that form, there are homogeneous and isotropic contracting solutions with the
scale factor a(t) evolving as

a(t) ∝ (−t)2/λ2 (1.4)

(recall that t is taken to be negative). The dynamical evolution of φ(t) corresponds to a
perfect fluid with equation of state

w ≡ P

ρ
= λ2

3 − 1, (1.5)

with P and ρ being pressure and energy density, respectively. This homogeneous and
isotropic solution has the property that the increasing kinetic energy tracks the decreasing
potential energy V and the total energy density is

ρ(φ) = −ξV , (1.6)
1Which more generally can be called the “slow-contraction scenario” [44].
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where ξ = 2(w− 1)−1 is a positive constant for w > 1 in order for the Friedmann equation
3M2

plH
2 = ρ to be satisfied. Hence, λ2 > 6 and the potential should be steep enough for

the solution to exist.
The Ekpyrotic trajectory corresponds to the limit w � 1 (or λ2 � 6) which has ξ �

1 [39, 40]. This solution can be shown to be a global attractor in initial condition space [41–
44]. Anisotropies and spatial curvature are diluted during the phase of contraction. Hence,
the Ekpyrotic scenario provides a promising alternative to the inflationary model. As
shown in recent work, the addition of an S-brane to the low energy effective action [45–47]
yields a nonsingular transition between the contracting Ekpyrotic phase and an expanding
radiation phase of Standard Big Bang cosmology, and also yields roughly scale-invariant
spectra of cosmological fluctuations and gravitational waves, with a slight red tilt for the
scalar spectrum and a slight blue tilt for the tensor spectrum. Thus, the Ekpyrotic scenario
is also promising in terms of explaining the origin of structure in the universe.

Note, from the discussion below (1.3), that a steep exponential potential is required
in order to obtain slow Ekpyrotic contraction. It is natural to ask whether such potentials
can be consistent with string theory. Since potentials of scalar fields arising from string
theory are determined by local processes such as confining forces and brane interactions,
the steepness of the potential should be a local property and independent of whether the
potential is positive or negative. Hence, based on the de Sitter conjecture [3], we expect
that potentials arising from string theory will have a slope which is bounded from below.
But will the potential be steep enough to give rise to the slow contraction scenario? In
fact, simple constructions of such potentials based on a ten-dimensional supergravity setup
including the effects of fluxes, Dp-branes and Op-planes do not yield potentials with λ �
1 [48] (orientifold planes generically give a negative exponential potential with λ ∼ O(1)).
Also, while negative exponential potentials are ubiquitous in string theory constructions,
examples used in [3] to motivate the dS conjecture do not yield sufficiently steep potentials.
In addition, considering an effective field theory approach for supersymmetry-preserving
Type II compactifications on Calabi-Yau orbifolds with fluxes, and assuming a KKLT-like
superpotential [49] to generate a potential for the Kähler moduli, it appears that it is not
possible to get a sufficiently steep negative potential in a large enough field range to support
Ekpyrosis. A similar conclusion can be seen by looking at potentials which are used in the
“Large Volume” scenario [50]. Moreover, in the last section of [51], a generic argument was
proposed for why the F-term potential coming from the N = 1, d = 4 supergravity action
should not be steep in regions where it is negative. Hence, one might worry that there
could be an analog of the dS criterium which prohibits steep potentials.

Here, we find that we need not worry. Following the method which was applied in [4] to
derive the dS condition based on the covariant entropy bound [52, 53], we apply this bound
to derive the following analog of the dS condition valid in the case of negative potentials

|V ′| ≥ − c

Mpl
V , (1.7)

where c is a constant of the order one. Hence, also in the case of negative potentials,
the potential needs to be sufficiently steep. This bound is evidently consistent with the
assumptions made to obtain Ekpyrotic contraction.

– 3 –



J
H
E
P
0
7
(
2
0
2
1
)
2
0
6

We also study the analog of the “refined dS condition” which needs to be satisfied at
field values where (1.7) does not hold, e.g. at local minima of the potential:

V ′′ ≥ − c′

M2
pl

|V | (1.8)

where c′ is another constant of the order one. This is consistent with the Breitenlohner-
Freedman bound [54].

In the following section we will apply the covariant entropy bound [52, 53] combined
with the swampand distance conjecture [55] to derive (1.7), the analog of the dS condition
in the case of a contracting universe obtained by employing a scalar field with a negative
potential, following the derivation given in [4] of the dS condition for an expanding universe
with a positive scalar field potential.2 In section 3 we motivate the refined condition (1.8),
and we conclude with a discussion of our results. We make use of natural units in which
the speed of light, Planck’s constant and Boltzmann’s constant are set to 1. We work in
the context of a homogeneous and isotropic metric

ds2 = −dt2 + a(t)2dr2 + r2dΩ2 ≡ a(η)2[−dη2 + dr2 + dΩ2] , (1.9)

where t is physical time, η is conformal time, dΩ2 is the metric of the 2-sphere with unit
radius and r is the comoving spatial radius. The Hubble radius (or physical apparent
horizon) lH(t) is given by

lH(t) ≡ H−1(t) where H(t) ≡ ȧ

a
, (1.10)

the overdot representing the time derivative.

2 Consequences from the covariant entropy bound

The Bousso bound [52, 53] is a generalization of the Bekenstein bound which is based
on considerations about the generalised second law of thermodynamics [57–59]. In a D-
dimensional spacetime, it states that the entropy on a light-sheet L emanating from the
(D − 2)-dimensional spacelike surface B is bounded by its area A(B),

S(L) ≤ A(B)
4 . (2.1)

For cosmological spacetimes, one is often interested in the area of the apparent horizon
which coincides with the area of the comoving Hubble volume. In this context, one can
find a bound on the entropy inside the Hubble volume by means of the spacelike projection
theorem [52, 53]: suppose V is a compact region on a spacelike hypersurface with boundary
B that has a complete future directed light-sheet L (spanned by light rays starting from
B and pointing towards the inside of V); the entropy S(V) on the spacelike hypersuface V
is bounded by the entropy in L,

S(V) ≤ S(L) ≤ A(B)
4 . (2.2)

2See [56] for a proposal to relate the dS conjecture with the time dependence of fluxes via the covariant
entropy bound.
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Roughly speaking, this follows from the second law of thermodynamics and the fact that
all energy content in V will pass through L. In applying this theorem to cosmology, B
would be the apparent horizon and thus only ingoing light-sheets are relevant, since the
outgoing ones could not probe the region bounded by B.

Before investigating how can we apply the covariant entropy bound to contracting cos-
mologies, let us discuss some aspects of Penrose diagrams for flat FRLW cosmologies. Such
spacetimes have vanishing Weyl tensor and hence are locally conformally flat, a property
that is manifested when writing the metric in terms of the conformal time η as in (1.9).
Thus, the Penrose diagram of a flat FRLW cosmology is either a portion of or the whole
Minkowski space’s Penrose diagram. To determine what part of the flat space diagram
is covered, we need to look at the range of η, which by definition is determined from the
analytic behaviour of the scale factor, η =

∫
a−1(t)dt. In the accelerating cases, the integral

diverges close to the singularity at t→ 0, allowing η to reach −∞ in the expanding case or
+∞ in the contracting case [60]. For non-accelerated contracting (expanding) cosmologies,
the integral converges, the conformal time is negative (positive) and the resulting Penrose
diagram is the lower (upper) half of the Penrose diagram for Minkowski space. Hence, for
non-accelerated contracting (expanding) FRLW cosmologies, the conformal future (past)
null-infinity will be spacelike and singular, implying in the existence of an event (particle)
horizon (see [61] for a review on Penrose diagrams and causal structure of cosmological
spacetimes).

In the following, we apply the spacelike projection theorem for the area of a Hubble
volume. During a phase of decelerated contraction, the conformal time η is negative, and
the contraction ends with a singularity at η = 0. Referring to the Penrose diagrams of
collapsing cosmologies sketched in figures 1 and 2, there are two ingoing light-sheets which
can potentially be used to bound the entropy of the apparent horizon region at conformal
time η, namely L+ and L−. The first figure corresponds to the case of fast contraction when
the apparent horizon (the solid black curve) is steeper than the diagonal ingoing light ray
(the dashed black curve). The second figure corresponds to the case of slow contraction —
required in the Ekpyrotic scenario — where the apparent horizon is less steep than the in-
going light ray. In both cases, only the ingoing future directed lightsheet L+ can be used to
find a bound on the entropy inside the Hubble volume via the spacelike projection theorem.

Thus, we consider the light-sheet L+. In the case of fast contraction depicted in
figure 1, the light-sheet starting at some (negative) conformal time η focuses at the center
before the singular surface at η = 0 and we can apply the covariant entropy bound in the
same way as in an expanding cosmology. The Ekpyrotic scenario, however, requires slow
contraction, and the corresponding Penrose diagram is sketched in figure 2. In this case,
the application of the covariant entropy bound is a bit more tricky, as discussed below.

As just mentioned, in the case relevant to Ekpyrotic contraction we know that the fu-
ture lightsheet of the apparent horizon rah(η) ends at the singular surface before completely
focusing. Thus, by the second law of thermodynamics, it bounds part of the entropy in
the spatial volume bounded by rah, namely the spatial volume whose radial direction is in
the range

rah − ηah < r < rah (2.3)
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i−

η̄rah(η̄)

L−

L+

I +

I −

Figure 1. Conformal Penrose diagram for a flat contracting cosmology with apparent horizon (the
solid black curve) at η smaller than r = −η (drawn as the dashed line), where r is comoving distance.
The lightsheet L+ emanating from the apparent horizon at η̄ focuses (ends) at the caustic point at
the spatial origin at a time prior to the singularity. In this case, the second law of thermodynamics
implies that the entropy S(L+) bounds the entropy in the region inside the apparent horizon,
because L+ intersects the time evolved region inside the Hubble radius at η̄. Then, the covariant
entropy bound can be easily applied as in the expanding case.

or
rah(1− β) < r < rah , (2.4)

(see figure 2) where β depends on λ

β = 1
λ2

2 − 1
< 1, β = 2

1 + 3w. (2.5)

Note that in a Penrose diagram, β represents the tangent of the angle between rah and the
singularity. Thus, the covariant entropy bound yields

S(rah(1− β) < r < rah) ≤ S(L+) ≤ Aah
4 (2.6)

Let us estimate how much entropy the lightsheet L+ bounds. We will follow the analysis
of [4] which takes into account the key lesson from the swampland program, namely the
fact that as the scalar field value evolves, the number N of string states whose mass is
below the cutoff scale relevant to the cosmology of the background changes. In our case,
this means that as φ decreases and the background energy density increases, the number
N(φ) will increase. Another way to view this is as follows: in the expanding case, the
evolution to the weak coupling regime was oriented towards larger values of φ and N(φ)
was increasing as φ increased (see calculations in [4]). In the contracting case with pure
negative exponentials, the evolution towards the weak coupling regime is towards smaller
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i0
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η̄rah(η̄)

rah(η̄) − η̄

L−

L+

I +

I −

Figure 2. Conformal Penrose diagram for a flat contracting cosmology with apparent horizon at
η which is larger than r = −η. In this case, L+ does not focus before the singular surface η = 0.
In fact, L+ intersects part of the time evolved spacelike region inside rah(η̄) and the area of the
apparent horizon will bound the entropy on part of the volume inside it. The volume of this region
is determined by how much of it L+ probes before hitting the singularity, and its radial range is
depicted in the figure by lines of constant r drawn in blue.

values of φ, and so N(φ) should increase as φ decreases. Thus we parametrize the number
of light states as

N(φ) = n(φ)e−bφ, (2.7)

where b is a positive number, n(φ) is the number of towers of light states, and, as in the
expanding case [4], n(φ) should increase towards the weak coupled regime, that is, it should
increase as φ decreases, d lnn/dφ ≤ 0. Then,

1
b

d lnN
dφ

= −1 + 1
b

d lnn
dφ

≤ −1. (2.8)

We take the comoving entropy density s to be such that when integrated over the volume
of the apparent horizon we have the same parametrization as in [4], i.e.,

s = δaδ

4π N
γrδ−3 (2.9)

which implies

S(Volah) =
∫

Volah

s

a3dV = 4π
∫
drr2s

= Nγaδrδah, (2.10)
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and hence we have

S(rah(1− β) < r < rah) = δaδNγ
∫ rah

rah(1−β)
rδ−1dr

= Nγaδrδah(1− (1− β)δ), (2.11)

which differs from the total entropy within rah by the factor (1− (1− β)δ).
We conclude that, for the contracting solutions with λ >

√
6, the best bound we can

impose without assuming an isentropic evolution is

NγRδah(1− (1− β)δ) ≤ Aah
4 = πR2

ah, (2.12)

where Rah = arah = lH is the physical apparent horizon radius. In the Ekpyrotic limit,
β � 1, and we have

NγRδahδβ ≤ πR2
ah. (2.13)

As Rah decreases, N should increase such that eventually the bound is saturated.
When that happens

Rah ∼ N
γ

2−δ (δβ)
1

2−δ . (2.14)

From the Friedmann equation, we have (recall (1.6))

− ξV ∼ R−2
ah ∼ N

− 2γ
2−δ (δβ)−

2
2−δ , (2.15)

and the subsequent evolution should be such that the bound is preserved. Then, we can
take the derivative with respect to φ, and this gives

−ξV ′ ∼ − 2γ
2− δ (δβ)−

2
2−δN−

2γ
2−δ−1dN

dφ

= − 2γ
2− δ (−ξV ) 1

N

dN

dφ
(2.16)

or
V ′ = − 2γ

2− δV
d lnN
dφ

= −c
b
V
d lnN
dφ

, (2.17)

where c is defined as in the expanding case, c ≡ 2γ/(2− δ). We see that the fact that we
cannot write a bound for the total entropy within the apparent horizon does not prevent
us from getting a relation between V and its derivative from the covariant entropy bound.
It should be clear that this is valid even for non-Ekpyrotic contraction, i.e. even for fast
contracting solutions of the type depicted in figure 1, for which the entropy in L+ bounds
the entropy inside the whole Hubble volume.

Combining (2.17) with the result (2.8) for the number of light states we obtain

V ′ = −cV 1
b

d lnN
dφ

≤ cV. (2.18)

In [4], it was argued/assumed that δ < 2 since the entropy cannot grow faster than the area
Rah of the apparent horizon. In the contracting case, we would rather expect δ < 2 since
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Rah decreases instead. We now show that we get the same bound on |V ′| for both cases.
Assuming δ < 2 (c > 0), we have V ′ < 0 such that the last inequality may be written as

− |V ′| ≤ cV =⇒ |V ′| ≥ −cV. (2.19)

On the other hand, if δ > 2 such that c < 0, we have

V ′ = |c|V 1
b

d lnN
dφ

≥ −|c|V, (2.20)

and, since in this case we have V ′ > 0,

|V ′| ≥ −|c|V. (2.21)

Thus, we conclude that the covariant bound plus the distance conjecture are imposing
|V ′| ≥ −cV for V < 0, where c is a positive order 1 number.

3 Refined bound

The Ekpyrotic contracting solution ends with a Big Crunch singularity. We expect string
theory to resolve this singularity, and a concrete proposal making use of a stringy S-brane
construction was suggested in [45–47]. At the level of an effective field theory, it was already
suggested in the original works [39, 40] that the negative exponential potential for φ must
reach a minimum. At the value of this minimum the condition (2.19) is obviously violated,
in the same way that in the case of an expanding cosmology the dS condition is violated
at a local maximum of the potential. In [4, 7], a refined conjecture was proposed which a
model derived from string theory needs to satisfy if the original dS condition is violated.
In the following, we will propose a refined condition which needs to be met in the case
that (2.19) is not satisfied.

To motivate our analysis, let us return to the original dS conjecture in [4] which reads

|V ′| ≥ c

Mpl
V. (3.1)

Note that if we divide both sides of the inequality by V , we need to change the inequality
sign if V < 0.3 In fact, for V < 0, the inequality is trivially satisfied and the conjecture does
not constrain the potential. So, we stick to the V > 0 case to get something non-trivial.
There are two special limits to consider in the inequality above:

• V → 0 limit: we get |V ′| ≥ 0, which is a trivial condition;

• V ′ → 0 limit: we get 0 ≥ cV , which is inconsistent if V > 0.

Since it is possible to have potentials with local maxima, the dS conjecture needs to be
refined to constrain V in the second limit. This is indeed the case, as the refined version
states that V should satisfy (3.1) or [4, 7]

V ′′ ≤ − c′

M2
pl

V, (3.2)

which has special limits
3If we do not do this carefully, the dS conjecture would rule out all negative exponential potentials!
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• V → 0 limit: we get V ′′ ≤ 0, which constrains the “mass term” to be negative (a
tachyonic instability if we have an extremum at V > 0).

• V ′′ → 0 limit: we get 0 ≤ −c′V , which is inconsistent for V > 0;

Summarizing, for V > 0 the refined dS conjecture does not allow a meta-stable dS minimum
in the potential and running solutions should not be quasi-dS.

Let us do a parallel analysis with the proposed new conjecture:

|V ′| ≥ − c

Mpl
V. (3.3)

The special limits are

• V → 0 limit: we get |V ′| ≥ 0, which is trivial;

• V ′ → 0 limit: we get 0 ≥ −cV , which is inconsistent for V < 0;

However, the stability of AdS (anti-de Sitter space) tells us that potentials with local
minima at negative values of V are possible. Thus, similar to how the dS conjecture needed
to be refined to constrain V in the V → 0 limit, we need to refine the new conjecture. The
dS conjecture was refined taking into account the instability of perturbations of the moduli
fields that dominates the potential. For V > 0, (3.2) is the condition for the perturbations
to be unstable which we know is true for dS maxima in string theory. For V < 0, on the
other hand, the refinement should allow for stable AdS solutions, that we know exist in
string theory, and so the bound involving V ′′ should be compatible with the Breitenlohner-
Freedman (BF) bound. Thus, the proposed refinement is that for V < 0, the potential
should satisfy (3.3) or

V ′′ ≥ c′

M2
pl

V, (3.4)

which at a critical point is consistent with the BF bound for scalar fields in AdS. This
inequality has the special limits

• V → 0 limit: gives V ′′ ≥ 0, which constrains the “mass term”;

• V ′′ → 0 limit: we get 0 ≥ c′V , which is consistent with V < 0.

Summarizing, for V < 0 the refined new conjecture allows for stable AdS and Minkowski
minima.

4 Conclusions and discussion

We have applied the covariant entropy bound together with arguments from the swampland
distance conjecture to find a criterion on the slope of negative potentials of scalar fields
which are running and which dominate the energy of the universe. The condition is (1.7)
and states that the potentials have to be sufficiently steep. This condition is satisfied for
scalar fields yielding Ekpyrotic contraction. Since AdS is a stable ground state of string
theory, the condition (1.7) must be refined in order to allow for negative potentials with
local minima. We have argued that this refined condition takes the form of (1.8).
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Note that the Ekpyrotic scenario is consistent with the recently proposed Trans-
Planckian Censorship Conjecture (TCC) [62], unlike inflationary models which are very
tighly constrained by the TCC [63].

In light of these results it appears that the Ekpyrotic scenario is a promising alternative
to the inflationary model. It solves the flatness and horizon problems of Standard Big Bang
cosmology, it provides a causal mechanism of structure formation, and it is consistent with
the swampand criteria and the TCC. Hence, our work should motivate the search for
well-motivated potentials for Ekpyrosis coming from string theory (see [64] for some early
attempts).

Summarizing, our results motivate us to introduce the following conjecture, that we
call the fast-roll contraction conjecture: the potential V (φi) for scalar fields of a low energy
effective field theory of a consistent quantum gravity theory should satisfy

|∇iV | ≥ −
c

Mpl
V or max(∇i∇jV ) ≥ c′

M2
pl

V (4.1)

in regions where V (φi) < 0, where c and c′ are positive O(1) numbers and max(∇i∇jV )
refers to the larger eigenvalue of the Hessian of V in an orthonormal field basis.
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