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Contracting under Ex Post Moral Hazard
and Non-Commitment*

M. Martin Boyer†

Résumé / Abstract

Ce document de travail caractérise le contrat optimal dans une économie
où un agent informé de l'état de la nature doit rapporter cet état à un principal qui
ne peut se commettre de manière crédible dans une stratégie de vérification de
l'annonce de l'agent. Puisque le principal ne peut se commettre, il devient optimal
pour l'agent de mentir avec une certaine probabilité. En supposant qu'il existe
T > 1 pertes possibles en cas d'accident, que l'agent ne peut feindre un accident (il
est restreint à rapporter la perte en cas d'accident, mais la présence d'un accident
est une information de nature commune), le contrat optimal est tel que les hautes
pertes sont sur-indemnisées alors que les faibles pertes sont sous-indemnisées en
moyenne. Le niveau de sur-indemnisation des hautes pertes diminue toutefois
avec la perte elle-même. Le contrat optimal peut ainsi être représenté comme une
simple combinaison d'une franchise, d'un paiement forfaitaire et de co-paiements.

This paper characterizes the optimal insurance contract in an environment
where an informed agent can misrepresent the state of the world to a principal
who cannot credibly commit to an auditing strategy. Because the principal cannot
commit, the optimal strategy of the agent is not to tell the truth all the time.
Assuming that there are T > 1 possible losses, and that the agent cannot fake an
accident (he is constrained only to misreport the size of the loss when a loss
occurs), the optimal contract is such that higher losses are over-compensated
while lower losses are on average under-compensated. The amount by which
higher losses are over-compensated decreases as the loss increases. The optimal
contract may then be represented as a simple combination of a deductible, a
lump-sum payment and a coinsurance provision.
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1 Introduction

1.1 Motivation

In many economic settings agents have privileged information concerning the state of the world.

An agent who must report the state of the world to a principal is faced with was is known as ex post

moral hazard : he may want to misreport the state to extract rents. The problem for the principal

is to design a contract that incorporates the agent’s reporting behavior.1

The goal of this paper is to characterize the optimal insurance contract when an agent2 can

misrepresent his loss when involved in an accident. I present the problem from an insurance fraud

point of view, although the extension to income-tax fraud and other ex post moral hazard situations

is straightforward. The focus is on what is known as insurance fraud build-up because it appears to

be the most costly type of insurance fraud.3 In this type of fraud, agents do not fake accidents, they

only fake injuries. This means that the occurrence of an accident is common knowledge. The agent

involved in an accident must decide whether to report his true loss, an information that is private

to him, to the insurer or whether to exaggerate it. The moral hazard problem occurs because the

agent may not want to tell the insurer the truth. The insurer must then decide whether or not to

audit the agent’s report. My approach di¤ers from the past literature in that the principal-agent

problem is not solved because of the insurer’s inability to commit to an auditing strategy. This

inability to commit is the main driving force of the results.

The results of this paper are three-fold. First, if the insurer cannot commit to an auditing

strategy, then there exists a Perfect Bayesian Nash Equilibrium of the so-called claiming game

which has the characteristic that only one type of agent (type ¸t¤ , say) ever plays a mixed strategy

involving telling the truth and exaggerating his loss. The solution also has the property that the

insurer 1- never audits reports less than or equal to ¸t¤ , and 2- plays a mixed strategy between

auditing and not auditing reported losses greater than ¸t¤ .

The second result is that the optimal contract is such that higher losses are over-compensated

while lower losses are on average under-compensated. The levels of under- and over-compensation

are such that the agent receives the same expected marginal utility whether he is involved in an

accident or not. This is not to say that he gets the same marginal utility in every state of the world;

rather, an agent involved in an accident expects his marginal utility to be equal to his marginal
1An ex post moral hazard approach has been used to study income-tax fraud, where the agent privately knows

what was his income in the last …scal year, and to insurance fraud, where the agent privately knows what loss he
su¤ered in a given accident.

2The terms policyholder and agent are used as synonyms in the paper, as are the terms insurer and principal.
The insurer/principal is a she, while the policyholder/agent is a he.

3There are four types of insurance fraud as reported by Hoyt (1989), including insurance fraud build-up. The
Insurance Research Council estimates that 90% of all excessive insurance payments are due to build-up
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utility when he is not involved in an accident. The third result is that the amount by which higher

losses are over-compensated decreases as the loss increases.

The optimal contract I …nd does not claim to eliminate fraud; there will still be fraud in

equilibrium. What the paper presents is a contract that mitigates the costs of insurance fraud.

In a sentence, this paper reexamines the contract design under costly state veri…cation with the

assumption that the insurer cannot commit credibly to an auditing strategy. A very interesting

aspect of the optimal contract I derive is that it may be represented as a combination of a deductible,

a lump-sum payment and a coinsurance provision. This contradicts the popular view that deductible

and coinsurance provisions are not optimal ways to control insurance fraud.

1.2 Past Literature

The literature on the design of optimal contracts is extensive. It is well known in a competitive

setting, given no asymmetric information and no insurance loading, that agents choose a contract

that gives them the same utility in all states of the world. This property is known as perfect

income smoothing. When information is asymmetric, then the optimal contract may no longer

provide perfect income smoothing.

In the case of the insurance market, the relationship between all parties to a contract is best

modeled as a principal-agent relationship where the agent has private information (see Ross, 1973,

and Holmstrom, 1979). The problem is then to design a contract that optimizes one player’s max-

imization function subject to every players’ incentives. There are three main types of asymmetric

information in this context: adverse selection, ex ante moral hazard and ex post moral hazard. Ex

post moral hazard is the proper way to model insurance fraud build-up.

Spence and Zeckhauser (1971) were the …rst to recognize the di¤erence between moral hazard ex

ante and ex post.4 They showed that if audits can be conducted at no cost, the principal will audit

every claim, while if audits are not feasible, then the insurer will never audit. Therefore, either

everyone is audited at no cost to the insurer, or no one is audited. The authors then concluded

that there was no di¤erence between ex ante and ex post moral hazard. They did not, however,

study the case of partial monitoring at a price. Townsend (1979) was the …rst to develop a formal

model that includes partial auditing at a cost.

Townsend sets up a world where the agent who has private information as to the state of

the world must reveal that information to the insurer. The insurer who does not know if the

information revealed by the agent is truthful can verify that information by paying a monitoring

fee. In Townsend’s world, the insurer can commit to a deterministic auditing strategy (either you

4See Arnott (1992) and Winter (1992) for a survey of the moral hazard literature.
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audit all losses of a given type with probability one or you never audit). The optimal auditing

strategy will then entail a cuto¤ rule where the insurer audits all losses above a cuto¤ point, and

does not audit losses below.5 In this economy there is no fraud since the contract is incentive

compatible and the insurer’s commitment to the audit strategy is complete. All the literature that

followed Townsend’s basic setup (i.e.: insurer’s ability to audit at a cost) is known as the costly

state veri…cation (CSV) literature.

Other authors such as Mookherjee and Png (1987), Scotchmer (1987), Sanchez and Sobel (1993),

and more recently Bond and Crocker (1997) developed Townsend’s basic approach in more details.

Using the same setup as Townsend, Mookherjee and Png showed that stochastic auditing was supe-

rior to deterministic auditing because truth-telling can still be achieved using stochastic auditing,

and because it was less costly than deterministic auditing. Bond and Crocker showed that the

optimal contract in the CSV literature with commitment was such that the agent is fully insured in

the audited states of the world (minus a deductible), but received a ‡at payment in the no-auditing

states of the world.

The drawback of all these papers, where the principal can commit, is that they do not seem to

describe reality. In the economy, we observe income-tax fraud and insurance fraud. This means

that truth-telling is not always the optimal strategy of the agents. Possible explanations are that

the principal is not sophisticated enough to apply the literature’s truth-telling contract, or that such

contracts are based on incorrect assumptions. One such assumption is the principal’s commitment

to an auditing strategy.

Picard (1996) and Boyer (1998) study this commitment problem. They construct a simple two-

state model where truth-telling is not always achieved because of the insurer’s inability to commit

credibly ex ante to an audit strategy ex post. This means that, in equilibrium, some agents commit

fraud and are successful at it. Similar models were derived by Graetz, Reinganum and Wilde (1986)

and Sanchez and Sobel (1993) in the income-tax literature. Both papers …nd that there are agents

who successfully defraud the government, and ultimately pay less taxes than they were supposed

to. Khalil (1997) approaches the same problem from the standpoint of a regulator who cannot

commit to an auditing strategy of a monopolist’s cost (basically the model of Baron and Myerson,

1981). Finally Persons (1997) and Khalil and Parigi (1998) study the problem of commitment in

debt contracts.

The remainder of the paper is organized as follows. The next section presents the model, with

its assumptions. In section 3 I develop the model by presenting the function to maximize, as well

5This contract resembles the debt contract obtained by Gale and Hellwig (1985) and Dionne and Viala (1992).
See also Holmstrom (1979), Baiman and Demski (1980) and Chang (1990).
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as the constraints faced by the maximizing player. The optimal contract is also found in section

3. The implications of this contract and the main results of the paper are presented in section 4.

Section 5 extends the model in a straightforward manner and discusses the main results. Section 6

concludes.

2 The Model

2.1 Assumptions and Notation

Before examining the basic model, let us …rst state the most relevant assumptions and present the

variables and parameters used.

A.1. The agent is risk averse with a thrice di¤erentiable von Neumann-Morgenstern utility

function over …nal wealth such that U 0(Y ) > 0, U 00(Y ) < 0 and U 000(Y ) > 0. The insurer is risk

neutral.

A.2. There are T +1 states of nature: No accident, and T possible losses if an accident occurs.

An accident occurs with probability ¼. Conditional on an accident, the probability that loss ¸t

occurs is given by ½t,
PT
t=1 ½t = 1. The distribution (¼, ¸t 2 f¸1,¸2,...,¸Tg, ½t 2 f½1,½2,...,½Tg) is

common knowledge. Without loss of generality, let ¸T > ¸T¡1 > ::: > ¸1 ¸ 0. Suppose also that
larger losses do not occur with greater frequency than smaller losses (i.e., ½t ¸ ½t+1).6

A.3. The occurrence of an accident is common knowledge.

A.4. If an accident occurs, the agent and the insurer play a game of asymmetric information

where the agent has private information on his loss. His possible actions are to report any loss

¸t 2 f¸1,¸2,...,¸Tg, while the possible actions for the insurer are to audit the claim (AC) or not to

audit (NA).

A.5. The number of insurers is large, and the number of agents is even larger.

A.6. The insurance market is perfectly competitive in that the premium (®) is equal to the

expected bene…t plus expenses due to fraud.

A.7. Auditing a claim is costly to the insurer. This cost is …xed and equal to c.

A.8. Being caught defrauding is costly to the agent. Let k be the …xed penalty imposed on the

agent found guilty of fraud.7;8 This penalty is a deadweight cost to society in that it is paid by the

6Assuming that ½t ¸ ½t+1 is not necessary; it just garantees that the probability of committing fraud will be
smaller than one (see equation 2).

7 In other words, the penalty imposed on those convicted of fraud is independent of the size of the lie, and set
exogenously. On this point, I disagree with Mookherjee and Png (1989), who argue that a contract could include a
provision for the penalty that is set at the same time as the other endogenous variables of the problem. In insurance,
however, a contract does not specify the penalty imposed on those who commit fraud. Rather, the legal system deals
with this crime in the same way as it deals with all other crimes.

8 It is often the case, however, for the penalty imposed on agents found guilty of fraud to be dependent on both
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agent, but not collected by the insurer. This means that if the agent is caught committing fraud,

then the insurer must still compensate him as if he had told the truth. Auditing is therefore not

used to extract money from the agent. Detection is perfect if an audit happens.

Other variables/parameters used in the paper are ®, ¯t, ´jt, ºt and A. ® represents the premium

paid. ¯t represents the compensation received by the agent when he reports ¸t. Although the pol-

icyholder su¤ers loss ¸t 2 f¸1,¸2,...,¸Tg, the compensation he gets is given by ¯t 2 f¯1,¯2,...,¯Tg.
´jt is the probability that an agent reports loss ¸t given that his true loss is ¸j. ºt is the probability

that reported loss ¸t is audited. Finally, A is the agent’s initial wealth.

In stage zero, an insurance contract is chosen. This contract stipulates a premium (®) and a

coverage schedule f¯1;¯2; :::; ¯Tg. In the second stage of the game, Nature decides if an accident
occurs or not. If an accident occurs the agent privately learns of the loss su¤ered. In stage 3, he

makes a report to the insurer. Only reports of ¸t 2 f¸1,¸2,...,¸Tg are allowed and believable. Any
other report is certain to be fraudulent since it cannot occur. The last move belongs to the insurer,

who audits or does not audit the agent. Finally, the payo¤s are paid and the game ends. The

sequence of play is presented in Figure 1.

Figure 1: Sequence of play

2.2 Choice Variables

Without loss of generality, let the insurer be the maximizing player. In her design of contract, the

insurer is able to choose T + 1 variables: the coverage for T types of loss, ¯t, and the price of the

contract ®. If no accident occurs, there is no possibility for the agent to exaggerate his claim, and

the payo¤ to the agent and the insurer are U(A¡®) and ® respectively. If an accident does occur,
however, the players will play what I call the claiming game.

the reported and the true state of world (or on the extent of the fraud). This will not matter in our setting as long
as the penalty does not depend on any choice variable. Instead of having a …xed penalty for all agents who commit
fraud (k), we could let the penalty be dependent on both the true state of the world (¸t) and the reported state of
the world (¸j > ¸t). In this case, we would only need to let k = k (¸t; ¸j) in the paper. None of the results would be
altered since the penalty has no impact on the optimal contract, as we shall see in Section 3, lemma 3.
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The players know that if an accident occurs, the agent may wish to exaggerate his claim (commit

fraud). The insurer must then choose a payment schedule that anticipates rationally the behavior

of each player in the claiming game. Her problem is then to maximize the agent’s expected utility

over …nal wealth

EU(Y ) = (1¡ ¼)U (A¡ ®) + ¼
TX
t=1

½t´ttU (A¡ ®¡ ¸t + ¯t) (1)

+¼
TX
t=1

½t

TX
j>t

´jt (1¡ ºj)U
³
A¡ ®¡ ¸t + ¯j

´

+¼
TX
t=1

½t

TX
j>t

´jtºjU (A¡ ®¡ ¸t + ¯t ¡ k)

U (A¡ ®) is the utility the agent receives if no accident occurs. Since the occurrence of an
accident is common knowledge and the agent cannot cause an accident on purpose, the claiming

game is not played. With probability ¼ an accident occurs, and the severity of the accident is

revealed to the agent. An accident of severity ¸t occurs with conditional probability ½t. In this case,

the agent tells the truth with probability ´tt; in which case he receives utility U (A¡ ®¡ ¸t + ¯t).
With probability ´jt the agent who su¤ered loss ¸t reports to the insurer that he su¤ered loss ¸j ,

with ¸j > ¸t.9 If the agent reports loss ¸j, he is audited with probability ºj. Since audits are

perfect, an agent who commits fraud and who is audited is always caught. In this instance, his

utility is U (A¡ ®¡ ¸t + ¯t ¡ k). If he is not audited, then he receives utility U
³
A¡ ®¡ ¸t + ¯j

´
.

This maximization problem is subject to certain constraints, as presented below.

2.3 The Constraints

There are three types of constraints in this model: Perfect Bayesian Nash Equilibrium (PBNE),

Zero-pro…t (ZP) and Participation (PC). The PBNE constraints give us the equilibrium behavior

of the players in the claiming game. These constraints replace the incentive compatibility con-

straint found in traditional models with commitment. The ZP constraint says that the insurer,

in expectation, is making no pro…ts. Finally the PC constraint states that the agent is better o¤

participating in this economy than in autarchy. Let us start with the PBNE constraints.

2.3.1 Nash equilibrium constraints

In the claiming game between the policyholder and the insurer, there is only one possible type

of PBNE in mixed strategy. This PBNE is such that only one type of agent ever plays a mixed
9It does not make sense to under-report a loss in this model, since the game is only played once, and there is no

experience rating. Thus the agent has no strategic incentive to under-report his loss in order to potentially reduce
his future premium.
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strategy that involves truth telling. By de…nition, the PBNE of this game is

De…nition 1 A PBNE is de…ned in this game as

PBNE =

0B@ Agent’s strategy if Nature chose ¸ = ¸t
insurer’s strategy if the Agent reported ¸ = ¸t

Beliefs for the insurer in the information set resulting from ¸ = ¸t)

1CA
= (µ1; :::; µT ; ±1; :::; ±T ; °1; :::; °T )

We will denote this equilibrium as

µ : f¸1; :::; ¸Tg ! ¢f¸1; :::; ¸Tg
± : f¸1; :::; ¸Tg ! ¢fAC;NAg
° : f¸1; :::; ¸Tg ! [0; 1]

where the notation µ : f¸1; :::; ¸Tg ! ¢f¸1; :::; ¸Tg means that µ is a function of the observed signal
f¸1; :::; ¸Tg to a probability distribution ¢ of messages f¸1; :::; ¸Tg.

Before deriving the PBNE, let us simplify the analysis by using the following lemma.

Lemma 1 A …xed payment will be paid for all claimed losses that are never audited. Furthermore

the no-auditing region is always at the lower end of the distribution of losses.

Proof: See Townsend (1979), Gale and Hellwig (1985), or Bond and Crocker (1997).10²

Lemma 1 tells us that for all reported losses less than or equal to some cuto¤ point ¸t¤ , the

insurer never audits the agent’s report, and the agent receives a constant payment independent of

his real loss. The intuition behind this lemma is as follows. Suppose that some subset of claims is

not audited, and that the payments associated with the di¤erent claims are not equal. An agent

will then always claim for the loss associated with the highest payment, since he has no chance of

getting caught. Therefore, all claims that are not audited must receive the same compensation.

10 It is intuitively obvious that a …xed payment must be paid for all states that are never audited. Consider the
opposite, that one state ! in the set of non-audited states  pays ¯! > ¯w for all w 2 n!. Since no state in  is
ever audited, every rational agent will report the state where he has the most to gain, that is state !. This means
that any agent who su¤ered a loss ¸w, with w 2 , will receive payment ¯! since state ! is never audited.
As for the second part of the proof, although our setup is slightly di¤erent for Townsend’s and Gale and Hellwig’s,

the intuition is the same. In states where losses are smaller (or gains are greater in Townsend and in Gale and
Hellwig), the principal should not audit. In a debt contract context, the state where gains are greater (losses are
smaller) corresponds to states where agents can repay their debt; in an insurance context, the state where losses are
smaller (gains are greater) corresponds to states where agents can assume the loss without being indemni…ed.

7



The second part of the lemma is also intuitive. Suppose the no-auditing region is not at the

lower end of the distribution of losses. Since bene…ts do not decrease with loss size, an agent has

nothing to lose by reporting a higher loss that is never audited. This means that agents with

lower losses will always claim for a higher loss if that higher loss is never audited. Therefore, the

no-auditing region must be at the lower end of the loss distribution.

Using lemma 1, it is then possible to derive a PBNE of the claiming game. It is clear given the

T -point distribution of losses, that there is a plethora of equilibriums. Not all possible equilibriums

of this game are presented. Instead I shall concentrate on a subset of equilibriums that share the

same properties. One property is that a …xed payment shall be paid for all claimed losses that are

never audited, and that the losses that are never audites lie at the lower end of the distribution of

losses. In other words, I will suppose that lemma 1 holds. Furthermore, I will assume for those

losses that are audited with some probability that larger losses are compensated more than smaller

losses, but that the rate of increase is smaller than one (i.e., @¯t@¸t
2 (0; 1)). I will posit the conjecture

that an equilibrium of this type is played in the claiming game. It is quite possible that other types

of equilibriums exist in this game, but I will not examine them. These conjectured equilibriums

are presented in the following lemma.

Lemma 2 Assume that @¯t@¸t
2 (0; 1);11 there is then a set of PBNE of this game such that:

1-Only one agent plays a mixed strategy which involves telling the truth (say agent ¸t¤);

2-Agent t¤ is indi¤erent between telling the truth and reporting anything above;

3-All agents with loss ¸t > ¸t¤ tell the truth;

4-All agents with loss ¸t < ¸t¤ tell the truth.

With ´tt0 representing the probability that an agent who su¤ered real loss ¸t reports loss ¸t0, we

obtain that for all ¸t 6= ¸t¤, ´tt = 1. As for loss ¸t¤, the probability that loss ¸t0 > ¸t¤ is reported
is given by

´t¤t0 =

µ
c

¯t0 ¡ ¯t¤ ¡ c
¶
½t0

½t¤
(2)

Meanwhile ºt, which represents the probability that a loss of size ¸t is audited, is given by

ºt =
U (A¡ ®¡ ¸t¤ + ¯t)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)

U (A¡ ®¡ ¸t¤ + ¯t)¡ U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)
(3)

for all t > t¤, while ºt = 0 for all 1 · t · t¤. The beliefs supporting this equilibrium are displayed

in Table 1 in the appendix.

11Assuming that @¯
@¸

> 0 makes intuitive sense: an insurance contract should idemnify agents more the greater
their loss (i.e., ¯t < ¯t+1). The fact that we would want to bound the rate of increase is more of a technical condition
for the equilibrium to hold. This assumption is that same as saying that ¯t ¡¸t > ¯t+1 ¡ ¸t+1. Proposition 2 shows
that this condition does indeed hold for the optimal contract.
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Proof: See Appendix. All remaining proofs are in the appendix.²

This lemma gives us possible reporting and auditing strategies in equilibrium. The probability

of auditing a reported loss of size ¸t > ¸t¤ is such that the agent who su¤ered a loss equal to ¸t¤

is indi¤erent about telling the truth or reporting any loss above. For losses ¸t > ¸t¤ the agent is

better o¤ telling the truth. Finally, for all losses ¸t < ¸t¤ , the agent reports loss ¸t¤ because all

losses less than or equal to ¸t¤ are never audited. This equilibrium may not be unique. It only

displays characteristics which are encountered in easier problems.

For example, this conjectured type of equilibrium displays the same properties as the unique

equilibrium in a 2-point distribution (see Picard, 1996, and Boyer, 2000). If we look at the insurer’s

auditing strategy in this type of equilibrium, it is clear that there is no point in auditing at the

lower end of the distribution since the compensation is …xed. If we look at the upper end of the

distribution, we see that the insurer audits with some probability. This probability increases as

the payment increases ( @º@¯t > 0), just as in Mookherjee and Png (1989) and in Graetz, Reinganum

and Wilde (1986). This also makes intuitive sense: If the insurer has more to lose by paying

larger indemnity payments, then she will take extra precautions to make sure that such indemnity

payments are made to the right person for the right reason.

In the Townsend (1979) model, lower losses are never audited, as in the present model. This

means that a ‡at payment must be paid. As losses increase, the indemnity payment never decreases.

In fact, the indemnity payment must increase. The indemnity increase is smaller than the loss

increase, which means, as in here, that @¯t@¸t
2 (0; 1).12

This equilibrium predicts that only one type of agent will ever commit fraud in this economy (the

agent who su¤ered loss ¸t¤). This means that fraud is committed in this economy with probability

½t¤ at most. This does not necessarily mean that the probability of observing fraud goes to zero as

the number of possible states goes to in…nity (unless of course losses are continuous). For example,

we could have a very large number of states with probability arbitrarily close to zero, except for

loss ¸t¤ that occurs with probability ½t¤ much larger than zero.

This equilibrium rests on the assumptions that @¯t@¸t
2 (0; 1) and on lemma 1. In other words, the

only assumption we made regarding the shape of the contract is that: 1- indemnity payment does

not decrease as the reported loss increases; 2- for all states that are not audited by the principal the

indemnity payment is constant; and 3- the no-auditing region is at the lower end of the distribution

of losses. I do not take into account the maximization over the indemnity payment yet, although

some conditions on the shape of the contract are made.
12The empirical …ndings of Crocker and Tennyson (1999) support the view that indemnity payments increase slower

than losses. I discuss this later in the paper.
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2.3.2 Zero-pro…t constraint

The next constraint presented is the zero-pro…t constraint for the insurer. The premium paid by the

policyholder must include the fact that some fraudulent claims go undetected, and that auditing a

claim is costly whether it is fraudulent or not. The price of the policy is then given by the following

implicit function.

® = ¼
TX
t=1

½t´tt¯t + ¼
TX
t=1

½t

TX
j>t

´jt

h
(1¡ ºj)¯j + ºj¯t

i
+ ¼c

0@ TX
t=1

½t´ttºt +
TX
t=1

½t

TX
j>t

´jtºj

1A (4)

The …rst term represents the principal’s payment if the agent tells the truth, where ´tt is the

probability that the agent tells the truth if his loss is equal to ¸t. This …rst term does not depend

on whether the principal audits the claim, by assumption; the amount paid is then ¯t. The second

term represents the principal’s expected payment, given that the agent exaggerates his claim; an

agent who su¤ered loss ¸t with probability ½t reports loss ¸j with probability ´jt. When an agent

report loss ¸j , he is audited with probability ºj. Since audits are perfect, the principal need only

pay ¯t, by assumption. With probability 1 ¡ ºj the agent is not audited, which means that the
principal must pay ¯j. The third term represents the expected cost of the auditing strategy. All

audits cost the same (c) whether a truthful report is …led (with probability
PT
t=1 ½t´tt) or not (with

probability
PT
t=1 ½t

PT
j>t ´jt).

2.3.3 Participation constraint

The last condition to consider is the participation constraint of the agent:

EU¤(Y ) ¸ (1¡ ¼)U(A) + ¼
TX
t=1

½tU (A¡ ¸t) (5)

where EU¤(Y ) is the agent’s expected utility at equilibrium when he purchased the contract. This

constraint states that the agent must be better o¤ in this economy than in autarchy.

3 Contract

The problem for the insurer is to choose a coverage schedule and a premium that maximizes the

agent’s expected von Neumann-Morgenstern utility function over …nal wealth. Mathematically,

max
¯1;¯2;:::;¯T ;®

EU(Y ) = (1¡ ¼)U (A¡ ®) + ¼
TX
t=1

½t´ttU (A¡ ®¡ ¸t + ¯t) (6)

+¼
TX
t=1

½t

TX
j>t

´jt (1¡ ºj)U
³
A¡ ®¡ ¸t + ¯j

´
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+¼
TX
t=1

½t

TX
j>t

´jtºjU (A¡ ®¡ ¸t + ¯t ¡ k)

subject to the PBNE strategy constraint of the agent

´tt = 1 if ¸t < ¸t¤

´t¤t0 =
³

c
¯t0¡¯t¤¡c

´
½t0
½t¤

if ¸t = ¸t¤

´tt = 1 if ¸t > ¸t¤
(7)

the PBNE strategy constraint of the insurer

ºt = 0 if 1 · t · t¤
ºt =

U(A¡®¡¸t¤+¯t)¡U(A¡®¡¸t¤+¯t¤)
U(A¡®¡¸t¤+¯t)¡U(A¡®¡¸t¤+¯t¤¡k) if t > t¤ (8)

the zero pro…t constraint

® = ¼
TX
t=1

½t´tt¯t + ¼
TX
t=1

½t

TX
j>t

´jt

h
(1¡ ºj)¯j + ºj¯t

i
+ ¼c

0@ TX
t=1

½t´ttºt +
TX
t=1

½t

TX
j>t

´jtºj

1A (9)

and the participation constraint

EU¤(Y ) ¸ (1¡ ¼)U(A) + ¼
TX
t=1

½tU (A¡ ¸t) (10)

This maximization problem is quite complicated. There are T + 1 decision variables and 3T ¡
t¤+2 constraints. Fortunately, by substituting (7), (8) and (9) into (6) the problem can be simpli…ed

as shown in the following lemma.

Lemma 3 The maximization problem may be simpli…ed to

max
¯t¤ ;¯t¤+1;:::;¯T

EU(:) = (1¡ ¼)U
0@A¡ ¼

24¯t¤ + TX
t=t¤+1

½t
(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

351A (11)

+
t¤X
t=1

¼½tU

0@A¡ ¼
24¯t¤ + TX

t=t¤+1
½t

(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35¡ ¸t + ¯t¤
1A

+
TX

t=t¤+1
¼½tU

0@A¡ ¼
24¯t¤ + TX

t=t¤+1
½t

(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35¡ ¸t + ¯t
1A

subject to

EU¤(Y ) ¸ (1¡ ¼)U(A) + ¼
TX
t=1

½tU (A¡ ¸t) (12)
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Suppose the participation constraint does not bind - I discuss why this is so in section 4. The

problem then becomes a standard unconstrained problem with T ¡ t¤+1 variables. It is interesting
to note that the penalty (k) is nowhere to be found in (11). This means that the optimal contract

will be independent of the penalty the agent may pay if he is caught cheating his insurer. The

reason this occurs is precisely because of the impossibility for the insurer to commit to an auditing

strategy. Since the decision to audit comes last in the sequence of play, the insurer will adjust her

auditing strategy to re‡ect the penalty. It is clear from (8) that the greater the penalty, the lower

the probability of audit. The relationship between ºt, for t > t¤, and k is such that, whatever

the penalty may be, the principal sets her auditing strategy in such a way as to make the agent

indi¤erent as to whether he cheats or does not cheat. This implies that in the end, the penalty is

irrelevant since the auditing strategy is chosen to ensure that this is so. This is true even if the size

of the penalty depends on the reported state (¸j) and/or the true state of the world (¸t); in other

words, if the penalty can be written as k = k (¸t; ¸j).

The necessary conditions for an optimum are13

¼
Pt¤
t=1 ½tU

0 (A¡ ®¡ ¸t + ¯t¤)
EU 0(:)

= ¼ ¡
TX

t=t¤+1

@®

@¯t
(13)

and
¼½jU

0
³
A¡ ®¡ ¸j + ¯j

´
EU 0(:)

=
@®

@¯j
8 j ¸ t¤ + 1 (14)

where, for simplicity, the following changes of variables have been made.

EU 0(:) = (1¡ ¼)U 0 (A¡ ®) +
t¤X
t=1

¼½tU
0 (A¡ ®¡ ¸t + ¯t¤) +

TX
t=t¤+1

¼½tU
0 (A¡ ®¡ ¸t + ¯t) (15)

13The …rst order conditions are

@

@¯t¤
= 0 = ¡ (1¡ ¼)U 0 (A¡ ®) @®

@¯t¤
¡

TX
t=t¤+1

¼½tU (A¡ ®¡ ¸t + ¯t)
@®

@¯t¤

+

t¤X
t=1

¼½tU
0 (A¡ ®¡ ¸t + ¯t¤)

µ
1¡ @®

@¯t¤

¶
and, 8 j ¸ t¤ + 1

@

@¯j
= 0 = ¡ (1¡ ¼)U 0 (A¡ ®) @®

@¯j
¡

t¤X
t=1

¼½tU
0 (A¡ ®¡ ¸t + ¯t¤)

@®

@¯j

+¼½jU
0 ¡A¡ ®¡ ¸j + ¯j¢¡ TX

t=t¤+1

¼½tU (A¡ ®¡ ¸t + ¯t)
@®

@¯j
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and

@®

@¯j
= ¼½j

"
1¡

µ
c

¯t ¡ ¯t¤ ¡ c
¶2#

= ¼½j

³
¯j ¡ ¯t¤

´³
¯j ¡ ¯t¤ ¡ 2c

´
³
¯j ¡ ¯t¤ ¡ c

´2 8 j ¸ t¤ + 1 (16)

@®

@¯t¤
= ¼

t¤X
t=1

½t + ¼
TX

t=t¤+1
½t

µ
c

¯t ¡ ¯t¤ ¡ c
¶2
= ¼ ¡

TX
j=t¤+1

@®

@¯j
(17)

What do these equations tell us? The denominator on the left-hand side of each equation can be

seen as the expected marginal utility of wealth given the coverage schedule chosen. These necessary

conditions do not tell us much more, however. Fortunately, the most interesting implications will

come to light in the coming section.

4 Results and Implications

Equations (13) and (14) give us the necessary conditions for an optimal contract. In this section

I present the implications and the predictions of such a contract. The …rst implication is that the

agent does not choose a contract where he gets the same wealth ex post in every state.

Proposition 1 There exist a ¸j such that ¯j 6= ¸j :

When the agent buys a contract where he has more wealth in one state than in another, this

means he does not receive the same marginal utility in every state. Stated di¤erently, the contract

does not provide perfect income smoothing. Proposition 1 does not tell us, however, in which state

the agent has relatively more wealth. Also, it does not tell us whether the agent is under-insured

and/or over-insured, and in what state either occurs. This result is in accordance with other results

in the literature. When information is not symmetric, perfect income smoothing does not occur.

This result has nothing to do with whether the insurer is able to commit or not. For example,

the contracts of Townsend (1979) and Mookherjee and Png (1989) do not display perfect income

smoothing even though the insurer is able to commit to an auditing strategy.

Proposition 2 The payment schedule has a slope of less than one for losses strictly greater than

¸t¤.

Proposition 2 tells us that as the real loss increases, the di¤erence between the bene…t paid and

the real loss decreases. What it does not say is whether the agent is over- or under-compensated,

and when. This means that either the amount by which a loss is over-paid decreases, or the amount
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by which it is under-paid increases. The reason why the slope is less than one is that the insurer

places more weight on the auditing part of her strategy as the loss increases (i.e., @º
@¯t

> 0 for all

t > t¤). Therefore, she has to over-pay large losses less (under-pay large losses more) to maintain

agent indi¤erence between cheating and not cheating.

Using propositions 1 and 2, the following theorem shows that the agent chooses a contract that

provides full insurance across the two accident states. This is not to say that the agent receives a

payment equal to his loss in every state, which never happens, as proposition 1 showed. Instead,

full insurance across the two accident states simply means that the agent obtains the same expected

marginal utility in the accident state as in the no-accident state.

Theorem 1 The agent’s expected marginal utility is equal in the accident state and in the no-

accident state.

The di¤erence between receiving the same expected marginal utility in the accident state as

in the no accident state, and receiving the same marginal utility in every state is the di¤erence

between full insurance and perfect income smoothing. Theorem 1 shows that the contract allows

the policyholder to receive full insurance, although it does not perfectly smooth his income.

Even if the agent over-reports his loss with some probability, he chooses a contract that provides

him with the same expected utility in the accident and no-accident states. The only welfare cost to

agents of ex post moral hazard comes from a general lowering of their utility possibility frontier. If

the expected utilities are the same, will the expected wealth also be the same? The answer depends

on the third derivative of the utility function. If U 000(:) > 0, then the marginal utility function is

convex. This means that the average of the marginal utilities of wealth is greater than the marginal

utility of the average wealth. Thus, the expected wealth in the accident state must be greater

than in the no-accident state. The reasoning is reversed for U 000(:) < 0. Thus, at least one loss is

under-compensated. The question becomes which one.

The following corollary answers that question. Corollary 1 also provides an answer to where

the compensation associated with losses greater than ¸t¤ is located vis-à-vis the loss itself.

Corollary 1 ¯t > ¸t 8t > t¤, whereas ¯t¤ < ¸t¤.

In other words, losses greater than the cuto¤ point are over-compensated, and a …xed payment

of ¯t¤ < ¸t¤ is made to the agents with a loss less than or equal to ¸t¤ . Corollary 1 implies that

policyholders receive greater utility in the states where they su¤er a loss greater than ¸t¤ than in

the no-accident state. It also means that they receive smaller expected utility in the states where
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they su¤er a loss equal to ¸t¤ than in the no-accident state. We can see what is happening more

clearly by looking at Figure 2, where the optimal contract is displayed.

Figure 2: Optimal contract

The real loss su¤ered by the policyholder is on the horizontal axis, while the payment received

in the event of an accident is on the vertical axis. From lemma 1, the coverage chosen by the

policyholder for losses less than or equal to ¸t¤ is a constant, ¯t¤ ; with ¯t¤ < ¸t¤ from corollary 1.

This means that for some ranges of losses (less than ¸t¤ and relatively close to ¸t¤) the policyholder

receives a payment that is less than his loss. Unfortunately it is impossible to say whether all losses

of less than ¸t¤ will be under-paid. What can be said, however, is that if there exists a ¸t such that

¸t = ¯t¤ , then for all losses ¸ < ¸t , the policyholder will be over-compensated, while for all losses

¸ 2 (¸t; ¸t¤ ], the policyholder will be under-compensated.
Finally, for all losses greater than ¸t¤ the agent receives a payment that is greater than his loss.

Furthermore, the di¤erence between the payment received and the real loss decreases as the real

loss increases (proposition 2). This is represented by the payment schedule for losses greater than

¸t¤ , which has a slope less than one. The over-payment of a loss greater than ¸t¤ is true even for

very high losses. In the limit, for the highest loss the di¤erence between the payment and the loss

can be arbitrarily close to zero.
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The main reason why an agent is over-compensated for higher losses is that his probability of

…ling a fraudulent claim decreases when the di¤erence between the coverage in the reported loss

state and the real loss state increases: i.e., @´tt¤
@(¯t¡¯t¤ ) < 0. The reduction in the probability of fraud

is a result of the insurer’s implicit partial commitment to more frequent audits; since she has more

to lose by not auditing (¯t ¡ ¯t¤ > ¸t ¡ ¸t¤), the agent should expect her to audit more, and
therefore he should not be so inclined to commit fraud. In other words, the agent needs to increase

the weight he puts on telling the truth in his optimal reporting strategy.

Another reason why over-compensating higher losses is optimal is that it reduces deadweight

losses in the economy. In the model, there are two types of deadweight losses: the cost of auditing (c)

and the penalty for getting caught (k). Fraudulent claims that are not detected are not deadweight

losses; they are only transfers from the insurer to the agent. It is clear that agents pay the

deadweight penalty less often when there are fewer fraud attempts. Also, the resources devoted to

auditing may diminish. This occurs because the total number of reported losses greater than ¸t¤

is reduced, which means that the total number of audits may be reduced.

The last element of the contract to be discussed is the fact that the participation constraint

does not bind. Let us suppose it does. This gives the same expected utility to the agent as choosing

a contract where the payment schedule is such that ¯t = 0 8t 2 f1; 2; :::; Tg. If we let ¯t = 0 8t, it
is clear that ® = 0. Thus, the agent’s expected utility is

EU(:) = (1¡ ¼)U (A) +
TX
t=1

¼½tU (A¡ ¸t) (18)

It is easy to show that this is not optimal. Using (13) and (14), we get

¼
Pt¤
t=1 ½tU

0 (A¡ ¸t)
(1¡ ¼)U 0 (A) +PT

t=1 ¼½tU
0 (A¡ ¸t)

= ¼ ¡
TX

t=t¤+1

@®

@¯t
(19)

and
¼½jU

0 (A¡ ¸j)
(1¡ ¼)U 0 (A) +PT

t=1 ¼½tU
0 (A¡ ¸t)

=
@®

@¯j
8 j ¸ t¤ + 1 (20)

Substituting the second equality in the …rst yields

¼
Pt¤
t=1 ½tU

0 (A¡ ¸t)
(1¡ ¼)U 0 (A) +PT

t=1 ¼½tU
0 (A¡ ¸t)

= ¼ ¡
TX

t=t¤+1

¼½jU
0 (A¡ ¸j)

(1¡ ¼)U 0 (A) +PT
t=1 ¼½tU

0 (A¡ ¸t)
(21)

Equation (21) holds if and only if

TX
t=1

½tU
0 (A¡ ¸t) = U 0 (A) (22)

which is not possible. Therefore ¯t = 0 8t 2 f1; 2; :::; Tg cannot be optimal.
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The next section of the paper compares my contract with other contracts derived in the literature

and discusses the …ndings. Although a large number of models and insurance contracts have been

developed over the years, I will limit my comparison to the two models which most closely resemble

the one described here.

5 Extension and Discussion

5.1 Extension

A major concern regarding this contract is that there does not seem to be any empirical evidence

to support the view that high losses should be over-compensated. Quite the contrary. Crocker

and Tennyson (1997) …nd that higher losses are typically underpaid, and that losses are underpaid

even more as they increase in size. This second result supports my contract’s speci…cation that

the payo¤ schedule of higher losses has a slope of less than one (see proposition 2). The question

is then: how can the …rst empirical result of Crocker and Tennyson - higher losses underpaid -

be reconciled with my contract’s provisions. One possible way, suggested by Boyer (1997), is to

include expenses in the form of a proportional premium loading factor.

In my model, I assumed there were no expenses other than those incurred to pay for audits.

Other expenses such as underwriting costs, marketing costs and commissions were assumed away.

If we were to represent these expenses by a proportional load (1 +m) on the premium, then the

optimal bene…ts received by the policyholder would be reduced: the higher the load, the lower the

bene…ts. Eventually, the load may be so large that no over-payment of higher losses would ever be

chosen, just as Crocker and Tennyson (1997) contend.

The Crocker and Tennyson paper is basically a test of the costly state veri…cation contract

versus the costly state falsi…cation contract (CSF). The CSF approach, pioneered by Lacker and

Weinberg (1989) and used by Crocker and Morgan (1998), is based on the premise that agents can

incur a falsi…cation cost in order to hide their actual loss from the insurer forever. This approach

means that the insurer is never capable of detecting whether the agent has committed fraud or not,

since the actual state of the world is impossible to detect. The optimal contract in a CSF world is

such that lower losses are over-compensated, while higher losses are over-compensated.

A CSF contract has the property that the slope of the contract line is less than one, just as in

the model presented in this paper. The di¤erence is that Crocker and Morgan’s contract cuts the

forty-…ve degree line, whereas my contract does not. This situation may be resolved by including
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a proportional premium loading factor. The maximization problem would then become

max
¯t¤ ;¯t¤+1;:::;¯T ;®

V = (1¡ ¼)U (A¡ (1 +m)®) +
t¤X
t=1

¼½tU (A¡ (1 +m)®¡ ¸t + ¯t¤) (23)

+
TX

t=t¤+1
¼½tU (A¡ (1 +m)®¡ ¸t + ¯t)

subject to

® = ¼

24¯t¤ + TX
t=t¤+1

½t
(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35 (24)

It is then straightforward to show that the loading factor (1 +m) can be chosen at a high

enough level for the CSF contract to be obtained; that is, larger losses are under-compensated

while smaller losses are over-compensated. This is proven as the following proposition.

Proposition 3 There exists a loading factor (1 +m) > 1 such that the optimal contract crosses

the forty-…ve degree line at some t > t¤.

This means that the form of the contract is basically the same whether we use a CSF frame-

work or a CSV framework where the insurer cannot commit to an auditing strategy, and where a

proportional premium loading factor exists. The advantage of my model is that it accounts for the

observance of agents who are caught committing fraud. In the CSF literature, agents cannot be

caught committing fraud since they can hide the true state of the world from the insurer forever.

There is still the problem of over-compensation of some losses. This is not hard to resolve. We

can set the loading factor high enough so that no over-compensation is ever obtained.

Corollary 2 There exists an m such that ¯t¤+1 · ¸t¤+1.

Corollary 2 means that it is possible to …nd a loading factor high enough to ensure that no over-

compensation ever occurs. To see why that is, we need only recall that the slope of the contract

line for losses greater than ¸t¤ is less than 1. If the lower end of the contract line is below the

45-degree line, then all the line must also be below it too. Finally, corollary 3 shows the impact of

the loading factor on the ‡at payment.

Corollary 3 As m increases, ¯t¤ decreases.

Corollary 3 stipulates that the ‡at payment decreases as the loss increases. Obviously, this

reduction occurs in a parallel fashion since the payment is ‡at. These last three results are intuitive.
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As the deadweight cost of buying insurance (loading) increases, agents want to buy less of it.

Consequently, the bene…t schedule must decrease. This is exactly what is happening. This optimal

contract is displayed in Figure 3. The contract has the familiar feature of a deductible, a lump-sum

payment and coinsurance.

Figure 3: Optimal contract with high proportional loading factor

For all losses less than ¸t¤ , the …xed bene…t paid by the insurer can be set arbitrarily close to

¯t¤ = 0. This is similar to a deductible. At loss ¸t¤+1, a lump-sum payment of ¯t¤+1 is made. This

payment is less than the actual loss. Although the compensation increases as the loss increases, it

does so at a slower rate than the loss. This means that the di¤erence between the actual loss and

the indemnity payment increases. This is similar to a coinsurance provision.

It is very interesting to see that by introducing a simple proportional loading factor to the

premium, the optimal contract that will mitigate ex post moral hazard problems is one where

traditional insurance instruments are found. A deductible provision in an insurance contract has

been derived as optimal in two instances. First, when information is symmetric and there is a

proportional loading factor, the optimal contract stipulates a deductible and full insurance above

the deductible. Second, when there is adverse selection in the loss probability, the low risk agent

would purchase a contract that has a deductible to signal that he is a low risk. Here, the deductible

is obtained not only because there is a proportional loading of the premium, but also because there
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is ex post moral hazard. Coinsurance is typically used to control ex ante moral hazard: it increases

the e¤ort of the agent to avoid an accident. It is interesting to see that coinsurance is also useful

to control ex post moral hazard.

Deductible and coinsurance provisions have been dismissed in the literature as ine¤ective against

insurance fraud (see Dionne and Gagné, 1997). I show here such a conclusion may have been

premature. It is true, however, that fraud is still committed and that some frauds remain undetected

in the economy, but these are inevitable when the insurer cannot commit to an auditing strategy.

5.2 Discussion

There is no other contract in the literature where a systematic over-compensation of high losses

is prescribed. Some existing contracts do, however, resemble the contract presented here. Two

of these (Mookherjee and Png, 1989, and Bond and Crocker, 1997) predict some kind of over-

payment. Although they use basically the same insurance fraud build-up model as is used here, the

over-compensation schemes are quite di¤erent. In Bond and Crocker for example, it is the agent

who su¤ers a very small loss who is over-compensated. The contract (shown in Figure 4) does not

allow for overpayment of larger losses.

Figure 4: Bond and Crocker’s optimal contract.

This contract has the same ‡avor as mine, shown in Figure 2. The two contracts stipulate
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that there is a distribution of losses (the smallest possible losses), where the agent receives a …xed

payment, regardless of his actual loss. The insurer never audits losses in this range. Although the

contracts are similar, they are not the same; Bond and Crocker show that the expected marginal

utility in the no-auditing region is equal to the marginal utility in the no-accident state. I …nd

that the expected marginal utility in the no-auditing region is greater than the marginal utility in

the no-accident state. This means that ceteris paribus, Bond and Crocker’s …xed payment must

be greater than mine. On the other part of the distribution, the di¤erence are somewhat greater.

Bond and Crocker …nd that the agent must be perfectly compensated. This is not the case in my

contract, where agents must be over-compensated for their loss.

This brings us to the paper by Mookherjee and Png (1989). They …nd that some agents who

su¤er higher losses can be over-compensated. Their …ndings appears to be very similar to my

results. The di¤erence is that Mookherjee and Png obtain over-compensation only if the agent is

audited and tells the truth. In my contract, over-compensation is obtained as long as an agent

su¤ers a high loss or commits fraud and is not caught.

Another major di¤erence between the contract obtained in the literature and the one I derive

here concerns the ability for the insurer to commit. Most contracts in the literature are derived

assuming that the insurer is able to commit to an auditing strategy that ensures agent indi¤erence

between telling the truth and over-reporting his loss (normative approach). Using the epsilon-

truthfulness assumption (see Rasmussen, 1989, and Harrison, 1989), agents never commit fraud

since they have nothing to gain by doing so. Unfortunately, the commitment assumption does

not consider the fact that the players may wish to renegotiate the contract when time comes to

implement some of its provisions.

The contracts found by Townsend (1979), and Bond and Crocker (1997) are not renegotiation

proof. This means that, when the time comes for the insurer to audit a report from the agent,

she may wish to inform the agent - who always tells the truth - that they should split the cost of

auditing between them so that both would be better o¤. The contract I …nd, on the other hand, is

renegotiation proof; there is no way that both players can be better o¤. This occurs mainly because

each player implements a strategy that is a best response to the other’s strategy.

Empirically, one may wonder whether the contract derived in the present paper is observed in

reality. Crocker and Tennyson (1999) reach the conclusion that costly state falsi…cation models,

such as those of Lacker and Weinberg (1989) and Crocker and Morgan (1998), explain better the

data than costly state veri…cation models. They reach this conclusion based on the empirical …nding

that indemnity payments are increasing the claim, but at a decreasing rate (see Figure 5).

This distribution of indemnity payments as a function of losses is in opposition to costly state
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Figure 5: Indemnity Payments as a Function of Claimed Losses (Crocker and Tennyson, 1999).

veri…cation models under full commitment where indemnity payments increase at the exact same

rate as claims (see Figure 4). This in no longer true, however, when insurers cannot commit

to an auditing strategy. Without commitment, the payment schedule is ‡atter than under full

commitment (see Figure 2).

One aspect of the optimal contract which I present that does not seem to be observed empirically

is over-compensation. Over-compensation is not observed only because the contract displayed in

Figure 2 does not take into account loading factors. We see in Figure 3 when a loading factor is

included that over-payment of losses no longer occurs. In fact the optimal costly state veri…cation

contract under non-commitment with ¸t¤ = 0 and a relatively large loading factor seem to match

the empirical properties found by Crocker and Tennyson.

6 Conclusion

The purpose of this paper was to model a principal-agent relationship under a set of assumptions

that were never made in the literature: costly state veri…cation, ex post moral hazard, insurer

non-commitment and a T -point distribution of losses. Focusing on the case of insurance claims

build-up, the optimal contract for the agent that yields zero expected pro…ts to the insurer has

the property that losses greater than some cuto¤ point are over-compensated, while smaller losses

are, on average, under-compensated. The amount of over- and under-compensation is such that
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the expected marginal utility in the accident state is exactly equal to the marginal utility of the

policyholder in the no-accident state. This also means that the expected wealth in the accident

state is less than the wealth in the no-accident state. Figure 2 displays the optimal contract.

A very interesting result of the paper is that the optimal contract may be represented as a

combination of a deductible, a lump-sum payment and a coinsurance provision. This was made

clearer in Figure 3 where a simple proportional premium loading factor is included in the model.

An important assumption that was made in this paper is that insurers were unable to commit

to an auditing strategy. It is clear that if insurers could commit to an auditing strategy everybody

would be better o¤ (at least not worse o¤ since one could commit not to commit). Whether insurers

can commit to auditing strategies in reality is not clear. In reality, insurance contracts are renewed

every year; which means that there exist reputation issues associated with such repeated games.

These reputation issues may increase an insurer’s ability to commit to an auditing strategy in the

real world. Another tool available to insurers to increase their commitment to audit is to delegate

auditing responsibilities to an outside body (such as Insurance Fraud Bureaus). This does not, how-

ever, solve entirely the problem since the outside body is faced with the same commitment problems

as insurers themselves. Moreover, insurers must also verify the behavior of the outside body (the

classic who watches the watcher problem), which includes a potential commitment problem as well.

As is the case for most models, the model developed here is a simpli…cation of reality. One of

the main aspects to be simpli…ed is that all policyholders were assumed to have the same attitude

toward crime. This does not seem to represent reality. Many people would never commit insurance

fraud. Gordon (1990) and Cummins and Tennyson (1994) explain this, saying that it would bring

about some intrinsic disutility which they called mental anguish. Other policyholders, on the other

hand, would have no problem in engaging in such behavior. The question becomes: how do insurers

di¤erentiate between the two types of policyholders? Would there still be over-compensation for

all? Will the more honest policyholder signal his honesty by accepting a compensation scheme

that pays less in the low loss states (higher deductible), or less in the high loss states (less over-

compensation)?

Another logical step would be to introduce ex ante moral hazard into the model in the same way

as Dionne and Viala (1992). If agents can in‡uence the state of the world by their actions, perhaps

the optimal contract would be modi…ed in such a way that no over-compensation ever occurs.
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8 Appendix

Proof of lemma 2. The way I will proceed is to show that no player has an incentive to deviate

from the conjectured equilibrium. Let us start by showing that the agent has nothing to gain by

deviating, and then proceed to show the same for the insurer.

Agent

Three cases are possible for the agent: He su¤ered loss ¸t > ¸t¤ , loss ¸t < ¸t¤ and loss ¸t = ¸t¤ .

CASE 1. Let us …rst look at the agent who su¤ers loss ¸t < ¸t¤ . The conjectured equilibrium

states that such an agent always tells the truth, that he is never audited and that he receives bene…t

¯t¤ . His utility is then U (A¡ ®¡ ¸t + ¯t¤). Suppose he does not tell the truth and reports loss
¸t0 < ¸t¤ instead. In that case, his expected utility is the same as if he tells the truth, since he

receives a ‡at payment (¯t¤) for any report of a loss less than the cuto¤ point. Suppose now that

he reports loss ¸t0 > ¸t¤ . His expected utility from reporting loss ¸t0 is

ºt0U (A¡ ®¡ ¸t + ¯t¤ ¡ k) + (1¡ ºt0)U (A¡ ®¡ ¸t + ¯t0) (25)

The agent has no reason to deviate if

U (A¡ ®¡ ¸t + ¯t¤) ¸ ºt0U (A¡ ®¡ ¸t + ¯t¤ ¡ k) + (1¡ ºt0)U (A¡ ®¡ ¸t + ¯t0) (26)

This can be rewritten as

ºt0 ¸ U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t¤)
U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t¤ ¡ k)

(27)

We know what the insurer’s auditing strategy is from the conjectured equilibrium (equation 8).

Telling the truth is then optimal if and only if

U (A¡ ®¡ ¸t¤ + ¯t0)¡U (A¡ ®¡ ¸t¤ + ¯t¤)
U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)

¸ U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t¤)
U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t¤ ¡ k)

(28)

We see that the only parameter that changes is the loss. Since ¸t < ¸t¤ (28) holds if
@ºt0
@¸ · 0. We

know that ¸t¤ 2 [0; ¸t0). It is easy to show that @ºt0@¸ · 0 over ¸t¤ 2 [0; ¸t0) if and only if RA · PA,
where RA and PA are the coe¢cients of absolute risk aversion and absolute prudence respectively.

First, we can show that


@ºt0

@¸
= U 0 (A¡ ®¡ ¸t¤ + ¯t0) [U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)] (29)

+U 0 (A¡ ®¡ ¸t¤ + ¯t¤) [U (A¡ ®¡ ¸t¤ + ¯t0)¡U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)]
¡U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]
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where

 = [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)]2 (30)

it is clear that @ºt0@¸ · 0 when k = 0. All that is left to show is that @ºt0@¸ is negative for all k > 0.

To do so, we need to show that @ºt0@¸ is decreasing in k. This occurs when

@
³

@ºt0
@¸

´
@k

= U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)
£
U 0 (A¡ ®¡ ¸t¤ + ¯t¤)¡ U 0 (A¡ ®¡ ¸t¤ + ¯t0)

¤
(31)

+U 00 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]

is negative. We then have that
@

³

@º
t0

@¸

´
@k · 0 if and only if

¡U
0 (A¡ ®¡ ¸t¤ + ¯t¤)¡ U 0 (A¡ ®¡ ¸t¤ + ¯t0)
U (A¡ ®¡ ¸t¤ + ¯t¤)¡ U (A¡ ®¡ ¸t¤ + ¯t0)

· ¡U
00 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)
U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)

(32)

Using a Taylor expansion of the left hand side term, this inequality holds if U 000(:) > 0, which is

true by assumption.

CASE 2. The equilibrium also stipulates that the agent who su¤ers loss superior to ¸t >

¸t¤ always tells the truth. Suppose not. It is clear that he will not under-report. His utility from

under-reporting is U (A¡ ®¡ ¸t + ¯t0) while his utility from telling the truth is U (A¡ ®¡ ¸t + ¯t).
Since ¯t0 < ¯t, it is clear that the agent is better o¤ telling the truth than under-reporting. Suppose

the agent decides to over-report loss ¸t as loss ¸t0 , ¸t¤ < ¸t < ¸t0 . This is not optimal if and only if

U (A¡ ®¡ ¸t + ¯t) ¸ ºt0U (A¡ ®¡ ¸t + ¯t ¡ k) + (1¡ ºt0)U (A¡ ®¡ ¸t + ¯t0) (33)

This occurs if and only if

ºt0 ¸ U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t)
U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t ¡ k)

(34)

We know what the insurer’s auditing strategy is from the conjectured equilibrium (equation 8).

Telling the truth is then optimal if and only if

U (A¡ ®¡ ¸t¤ + ¯t0)¡U (A¡ ®¡ ¸t¤ + ¯t¤)
U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)

¸ U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t)
U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t ¡ k)

(35)

which is equivalent to saying that

0 · U (A¡ ®¡ ¸t + ¯t) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)] (36)

+U (A¡ ®¡ ¸t + ¯t0) [U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]
+U (A¡ ®¡ ¸t + ¯t ¡ k) [U (A¡ ®¡ ¸t¤ + ¯t¤)¡ U (A¡ ®¡ ¸t¤ + ¯t0)]
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Note that at k = 0, the minimum value this parameter can take, this inequality holds with equality.

Equation (36) is increasing in k if and only if

0 · ¡U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k) [U (A¡ ®¡ ¸t + ¯t0)¡ U (A¡ ®¡ ¸t + ¯t)] (37)

+U 0 (A¡ ®¡ ¸t + ¯t ¡ k) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]

Since ¸t¤ < ¸t < ¸t0 , and since (37) holds when ¸t = ¸t¤ and when ¸t = ¸t0 , it follows that (36) is

increasing in k if and only if (37) is increasing in ¸t. This occurs only if

0 · U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)
·
U 0 (A¡ ®¡ ¸t + ¯t0) +

µ
@¯t
@¸t

¡ 1
¶
U 0 (A¡ ®¡ ¸t + ¯t)

¸
(38)

+

µ
@¯t
@¸t

¡ 1
¶
U 00 (A¡ ®¡ ¸t + ¯t ¡ k) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]

which we may rewrite asµ
@¯t
@¸t

¡ 1
¶
¡ ¸ ¡U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)U 0 (A¡ ®¡ ¸t + ¯t0) (39)

where

¡ = U 0 (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)U 0 (A¡ ®¡ ¸t + ¯t) (40)

+U 00 (A¡ ®¡ ¸t + ¯t ¡ k) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]

Suppose …rst that ¡ > 0. It can then be shown that (39) holds if and only if @¯t@¸t
> 0. On the other

hand, suppose that ¡ < 0. It can then be shown that (39) holds if and only if @¯t@¸t
< 1. Since we

assumed @¯t
@¸t

2 (0; 1) to be true, (37) is increasing in ¸t for any ¸t 2 (¸t¤ ; ¸t0). It follows that (36)
is de…ned and positive for any value of k; which means that (36) increases monotonically in k.

CASE 3. The …nal step for the agent is to show that he has nothing to gain by deviating if his

loss is equal to ¸t = ¸t¤ . For him to be better o¤ not deviating, it has to be that

0 · ´t¤t0

"
ºt0U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)

+ (1¡ ºt0)U (A¡ ®¡ ¸t¤ + ¯t0)

#
+ (1¡ ´t¤t0)U (A¡ ®¡ ¸t¤ + ¯t¤) (41)

¡ ǵt¤t0
"

ºt0U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k)
+ (1¡ ºt0)U (A¡ ®¡ ¸t¤ + ¯t0)

#
¡ (1¡ ǵt¤t0)U (A¡ ®¡ ¸t¤ + ¯t¤)

where ´t¤t0 is the conjectured equilibrium probability that the agent with loss ¸t¤ reports loss

¸t0 > ¸t¤ , and ǵt¤t0 is some other probability. What I want to show is that there is nothing to gain
from using a probability of lying other than ´t¤t0 . If we combine the terms in the previous equation,

we obtain that the agent has nothing to gain by deviating if and only if

0 · (´t¤t0 ¡ ǵt¤t0) [ºt0U (A¡ ®¡ ¸t¤ + ¯t¤ ¡ k) + (1¡ ºt0)U (A¡ ®¡ ¸t¤ + ¯t0)] (42)

¡ (´t¤t0 ¡ ǵt¤t0)U (A¡ ®¡ ¸t¤ + ¯t¤)
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We know from (8) what the insurer’s auditing strategy is, ºt0 . Substituting that value in (42) and

simplifying gives us

0 · ¡ (´t¤t0 ¡ ǵt¤t0) [U (A¡ ®¡ ¸t¤ + ¯t)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)] (43)

+(´t¤t0 ¡ ǵt¤t0) [U (A¡ ®¡ ¸t¤ + ¯t0)¡ U (A¡ ®¡ ¸t¤ + ¯t¤)]
which always holds with equality. Therefore the agent who su¤ered ¸t¤ has no reason to deviate

from his conjectured strategy since he has nothing to gain from it. I have thus shown that the

agent has nothing to gain by deviating from his conjectured equilibrium strategy.

Insurer

I will use the same approach to show that the insurer has no incentive to deviate from the

conjectured equilibrium. For the insurer there are two possibilities that need be considered: 1-

auditing a reported loss less than or equal to ¸t¤ ; and 2- auditing a reported loss greater than ¸t¤ .

The conjectured equilibrium stipulates that the probability of auditing a reported loss less than

or equal to ¸t¤ is equal to zero. Suppose not. Suppose the insurer audits some of those reports with

some probability. By not auditing the insurer is guaranteed to pay ¯t¤ . By auditing, the insurer

still pays ¯t¤ , since the agent always tells the truth if his loss is less than ¸t¤ , but she also incurs

an auditing cost c. It is therefore clear that she is better never to audit.

In the second case, suppose the insurer audits reported loss ¸t0 with probability fºt0 instead of
ºt0 . This is not pro…table to the insurer if and only if

0 · ºt0 (¡c¡ °t0¯t0 ¡ (1¡ °t0)¯t¤) + (1¡ ºt0) (¡¯t0) (44)

¡fºt0 (¡c¡ °t0¯t0 ¡ (1¡ °t0)¯t¤)¡ (1¡ fºt0) (¡¯t0)
where °t0 is the ex post belief that the insurer assigns to the fact that a reported loss of ¸t0 is

truthful. Combining terms yields

0 · (ºt0 ¡ fºt0) (¡c+ (1¡ °t0) (¯t0 ¡ ¯t¤)) (45)

From Table 1 we know what °t0 is in the conjectured equilibrium for t0 > t¤. Substituting in (45)

yields

0 · (ºt0 ¡ fºt0)µ¡c+ µ1¡ ¯t ¡ ¯t¤ ¡ c
¯t ¡ ¯t¤

¶
(¯t0 ¡ ¯t¤)

¶
(46)

If we simplify all the terms, we obtain that the statement is correct. Therefore, there is nothing to

gain for the insurer by deviating from her conjectured strategy. Since it is never pro…table for the

insurer to deviate, her strategy is therefore a best response to the agent’s strategy.
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Since neither the agent nor the insurer have any reason to deviate, it has to be that the

conjectured equilibrium is indeed a Perfect Bayesian Nash equilibrium. This completes the proof

that the conjectured equilibrium is indeed a Nash equilibrium.²
Proof of lemma 3. Let us rewrite (9) as

® =

0B@ Payment if the agent is not caught committing fraud (NCD)
+ Payment if the agent is caught committing fraud (CD)

+ cost of the auditing strategy (CAS)

1CA (47)

We know from (7) that all agents who su¤er loss ¸t > ¸t¤ always tell the truth. Also, all those

who su¤er loss ¸t < ¸t¤ always report ¸t¤ . We also know that a report of loss of size ¸t¤ is never

audited from (8). We then can write each of the three terms in (47). NCD can be written as

NCD = ¼

24 TX
t=t¤+1

½t¯t + ½t¤
TX
t=t¤

´tt¤ (1¡ ºt)¯t +
t¤¡1X
t=1

½t¯t¤

35 (48)

The …rst term of (48) is the sum of the payments made to those who su¤ered a loss greater

than the cuto¤ point. We know that those agents report their loss truthfully. The second term is

the sum of the payments made to the agent who plays a mixed strategy between telling the truth

and over-reporting. Those payments are made as if the report is truthful, since the over-reporting

agent is not audited. Finally the last term is the sum of the payments made to those agents who

su¤ered loss less than the cuto¤ point, and who always report the loss value associated with the

cuto¤ point. Those reports are never audited since the PBNE requires that a report equal to the

cuto¤ point is never audited.

CD is equal to

CD = ¼½t¤
TX
j=t¤

´jt¤ºj¯t¤ (49)

Here, only the agent who plays a mixed strategy that involves telling the truth and over-reporting

can ever be caught. All other agents either always tell the truth, or report a loss that is never

audited. Finally, CAS is equal to

CAS = ¼c
TX

t=t¤+1
ºt (½t + ½t¤´tt¤) (50)

The insurer must pay the audit cost only for those reports that are audited. Two kinds of report

can be audited. There is the truthful report of a loss greater than ¸t¤ , and the exaggerated report

of the agent who su¤ered loss ¸t¤ . Since the insurer cannot a priori establish a di¤erence between

a truthful report of loss ¸t > ¸t¤ and an exaggerated report of true loss ¸t¤ , she will need to audit

each report with the same probability.
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If we put (48), (49) and (50) together, and combine the terms, we obtain

®

¼
=

TX
t=t¤+1

½t¯t + ½t¤
TX
t=t¤

´tt¤ (1¡ ºt)¯t +
t¤¡1X
t=1

½t¯t¤ (51)

+½t¤
TX
j=t¤

´jt¤ºj¯t¤ + c
TX

t=t¤+1
ºt (½t + ½t¤´tt¤)

We can simplify (51) by substituting for ´ij given in (7). This yields

®

¼
=

TX
t=t¤+1

½t¯t +
t¤X
t=1

½t¯t¤ +
TX

t=t¤+1
½t¤

µ
c

¯t ¡ ¯t¤ ¡ c
¶
½t
½t¤
(¯t ¡ ¯t¤) (52)

+
TX

t=t¤+1
½tºtc¡

TX
t=t¤+1

½t¤ºt

µ
c

¯t ¡ ¯t¤ ¡ c
¶
½t
½t¤
(¯t ¡ ¯t¤ ¡ c)

It is clear that the last two terms sum to zero. We are then able to rewrite (52) as14

® = ¼

24¯t¤ + TX
t=t¤+1

½t
(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35 (53)

It is interesting to note that the agent’s wealth, his risk aversion and the possible penalty do not

a¤ect the price directly.

From lemma 1, all payments to those policyholders who su¤ered a loss less than ¸t¤ receive the

same payment, ¯t¤ . They gain nothing by engaging in insurance fraud. We can then restrict the

analysis to the T ¡ t¤ + 1 larger ¯’s. The number of decision variables is thus reduced from T + 1

to T ¡ t¤ + 2. By substituting (7) and (8) in (6), the problem becomes

max
¯t¤ ;¯t¤+1;:::;¯T ;®

EU(:) = (1¡ ¼)U (A¡ ®) +
t¤¡1X
t=1

¼½tU (A¡ ®¡ ¸t + ¯t¤) (54)

14We can rewrite (52) as

® =

TX
t=t¤+1

¼½t

·
¯t +

c (¯t ¡ ¯t¤)
(¯t ¡ ¯t¤ ¡ c)

¸
+

t¤X
t=1

¼½t¯t¤

which is independent of the auditing strategy of the insurer. Note that

t¤X
t=1

¼½t¯t¤ = ¼

Ã
1¡

TX
t=t¤+1

½t

!
¯t¤

Substituting in the previous equation yields

® =

TX
t=t¤+1

¼½t

·
¯t +

c (¯t ¡ ¯t¤)
(¯t ¡ ¯t¤ ¡ c)

¸
+ ¼¯t¤ ¡

TX
t=t¤+1

¼½t¯t¤

Combining the summation terms and simplifying gives us (53).
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+
TX

t=t¤+1
¼½tU (A¡ ®¡ ¸t + ¯t) + ¼½t¤U (A¡ ®¡ ¸t¤ + ¯t¤)

+¼½t¤
TX

t=t¤+1

µ
c

¯t ¡ ¯t¤ ¡ c
¶µ

½t
½t¤

¶
(1¡ ºt)U (A¡ ®¡ ¸t¤ + ¯t)

+¼½t¤
TX

t=t¤+1

µ
c

¯t ¡ ¯t¤ ¡ c
¶µ

½t
½t¤

¶
ºtU (A¡ ®¡ ¸t¤ + ¯t ¡ k)

¡¼½t¤
TX

t=t¤+1

µ
c

¯t ¡ ¯t¤ ¡ c
¶µ

½t
½t¤

¶
U (A¡ ®¡ ¸t¤ + ¯t¤)

Note that the last three lines sum to zero. The entire problem can then be written as

max
¯t¤ ;¯t¤+1;:::;¯T ;®

EU(:) = (1¡ ¼)U (A¡ ®) +
t¤X
t=1

¼½tU (A¡ ®¡ ¸t + ¯t¤) (55)

+
TX

t=t¤+1
¼½tU (A¡ ®¡ ¸t + ¯t)

subject to

® = ¼

24¯t¤ + TX
t=t¤+1

½t
(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35 (56)

and

EU¤(Y ) ¸ (1¡ ¼)U(A) + ¼
TX
t=1

½tU (A¡ ¸t) (57)

Substituting (56) in (55) completes the proof.²
Proof of proposition 1 In the general case where ¸1 < ¸t0 = ¸t¤ , this is obvious since all

agents with loss ¸t < ¸t¤ report the truth, are never audited, and receive a ‡at payment of ¯t¤ . By

de…nition, this contradicts the perfect income smoothing premise. In the case of ¸1 = ¸t0 = ¸t¤ ,

however, this is less obvious. When ¸1 = ¸t0 = ¸t¤ , (13) and (14) become

¼½1U
0 (A¡ ®¡ ¸1 + ¯1)

EU 0(:)
= ¼ ¡

TX
j=2

@®

@¯j
(58)

and
¼½jU

0
³
A¡ ®¡ ¸j + ¯j

´
EU 0(:)

=
@®

@¯j
8 j ¸ 2 (59)

where ½1 = 1¡
PT
j=2 ½j. To continue the proof, I need to show that

@®

@¯j

Ã
1

¼½j

!
=

³
¯j ¡ ¯1

´³
¯j ¡ ¯1 ¡ 2c

´
³
¯j ¡ ¯1 ¡ c

´2 < 1 (60)
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where the inequality is strict. Expanding terms yields³
¯j ¡ ¯1

´2 ¡ 2c ³¯j ¡ ¯1´+ c2 > ³¯j ¡ ¯1´2 ¡ 2c ³¯j ¡ ¯1´ (61)

Which is true by the assumption that c > 0 (strictly). This means that (59) is such that

U 0
³
A¡ ®¡ ¸j + ¯j

´
EU 0(:)

< 1 8 j ¸ 2 (62)

I also need to show that
1

¼½1

Ã
¼ ¡

TX
t=2

@®

@¯t

!
> 1 (63)

where the inequality is strict. By rearranging the terms and substituting in for @®
@¯t

yields

¼ (1¡ ½1) >
TX
t=2

¼½t

³
¯j ¡ ¯1

´³
¯j ¡ ¯1 ¡ 2c

´
³
¯j ¡ ¯1 ¡ c

´2 (64)

Since ½1 = 1¡
PT
t=2 ½t. We can then rewrite (64) as

TX
t=2

½t >
TX
t=2

½t

³
¯j ¡ ¯1

´³
¯j ¡ ¯1 ¡ 2c

´
³
¯j ¡ ¯1 ¡ c

´2 (65)

and
TX
t=2

½t

2641¡
³
¯j ¡ ¯1

´³
¯j ¡ ¯1 ¡ 2c

´
³
¯j ¡ ¯1 ¡ c

´2
375 > 0 (66)

which is obviously true since the term in bracket is positive whenever c is positive. This means

that
U 0 (A¡ ®¡ ¸1 + ¯1)

EU 0(:)
=

1

¼½1

0@¼ ¡ TX
j=2

@®

@¯j

1A > 1 (67)

By combining equations (67) and (62), it is clear that

U 0 (A¡ ®¡ ¸1 + ¯1)
EU 0(:)

> 1 >
U 0
³
A¡ ®¡ ¸j + ¯j

´
EU 0(:)

(68)

which leads to

U 0 (A¡ ®¡ ¸1 + ¯1) > U 0
³
A¡ ®¡ ¸j + ¯j

´
(69)

and

¯1 ¡ ¸1 < ¯j ¡ ¸j (70)
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where the inequality is strict. It must therefore be that ¯j cannot equal ¸i if ¯1 equals ¸1, and vice

versa.²
Proof of proposition 2What I want to show is that @¯@¸ < 1 for all ¸t > ¸t¤ . This is equivalent

to

U 0
³
A¡ ®¡ ¸j + ¯j

´
> U 0

³
A¡ ®¡ ¸j+1 + ¯j+1

´
(71)

Using the necessary conditions displayed in (13) and (14), (71) holds if and only if

EU 0(:)
¼½j

@®

@¯j
<
EU 0(:)
¼½j+1

@®

@¯j+1
(72)

Substituting for @®
@¯j

and @®
@¯j+1

, and simplifying yields³
¯j ¡ ¯t¤

´³
¯j ¡ ¯t¤ ¡ 2c

´
³
¯j ¡ ¯t¤ ¡ c

´2 <

³
¯j+1 ¡ ¯t¤

´³
¯j+1 ¡ ¯t¤ ¡ 2c

´
³
¯j+1 ¡ ¯t¤ ¡ c

´2 (73)

Equation (73) holds if and only if

@

@¯j

264
³
¯j ¡ ¯t¤

´³
¯j ¡ ¯t¤ ¡ 2c

´
³
¯j ¡ ¯t¤ ¡ c

´2
375 > 0 (74)

which occurs if and only if @®@¯j < ¼½j , which we know to be true from proposition 1 (equation 60).²
Proof of theorem 2 Substituting (14) in (13) yields

¼
Pt¤
t=1 ½tU

0 (A¡ ®¡ ¸t + ¯t¤)
EU 0(:)

= ¼ ¡
TX

t=t¤+1

¼½tU
0 (A¡ ®¡ ¸t + ¯t)
EU 0(:)

(75)

Expanding EU 0(:) given in (15) and simplifying the terms generate

U 0 (A¡ ®) =
t¤X
t=1

½tU
0 (A¡ ®¡ ¸t + ¯t¤) +

TX
t=t¤+1

½tU
0 (A¡ ®¡ ¸t + ¯t) (76)

The marginal utility in the no-accident state (left-hand side) is thus equal to the expected marginal

utility in the accident state (right-hand side).²
Proof of corollary 1 From (14) we obtained that for all t > t¤,

¼½tU
0 (A¡ ®¡ ¸t + ¯t) = EU 0 (:)

@®

@¯t
(77)

From theorem 2, we can rewrite EU 0(:) as U 0 (A¡ ®). This yields

¼½tU
0 (A¡ ®¡ ¸t + ¯t) = U 0 (A¡ ®)

@®

@¯t
(78)
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We know from (60) that @®
@¯j

< ¼½j . Thus

U 0 (A¡ ®¡ ¸t + ¯t) = U 0 (A¡ ®)
µ
1

¼½t

¶
@®

@¯t
< U 0 (A¡ ®) (79)

which means that ¯t > ¸t 8¸t > ¸t¤ . This completes the …rst part of the proof. In the second part,
we have that

U 0 (A¡ ®) =
t¤X
t=1

½tU
0 (A¡ ®¡ ¸t + ¯t¤) +

TX
t=t¤+1

½jU
0 ³A¡ ®¡ ¸j + ¯j´ (80)

which can also be written asPT
t=t¤+1 ½tU

0 (A¡ ®)
¡PT

t=t¤+1 ½tU
0 (A¡ ®¡ ¸t + ¯t)

=

Pt¤
t=1 ½tU

0 (A¡ ®¡ ¸t + ¯t¤)
¡Pt¤

t=1 ½tU
0 (A¡ ®) (81)

We know from (79) that ¯t > ¸t 8¸t > ¸t¤ . Thus the left hand side of (81) is positive. This means
that

t¤X
t=1

½tU
0 (A¡ ®¡ ¸t + ¯t¤)¡

t¤X
t=1

U 0 (A¡ ®) > 0 (82)

This equation tells us that the expected marginal utility in the non-audited states is greater than

the marginal utility in the no-loss state. This means that there is at least one loss whose coverage

is smaller than the loss itself. The …nal step is to show that loss ¸t¤ …lls that requirement. Since

U 00(:) < 0, it follows that U 0 (A¡ ®¡ ¸t + ¯t¤) < U 0 (A¡ ®¡ ¸t+1 + ¯t¤). The greatest possible
reported loss that is not audited is ¸t¤ . This means that ultimately, ¯t¤ < ¸t¤ .²

Proof of proposition 3. Substituting (24) into (23), yields an unconstrained problem with

T ¡ t¤ + 1 variables.

max
¯t¤ ;¯t¤+1;:::;¯T

EU(:) = (1¡ ¼)U
0@A¡ (1 +m)¼

24¯t¤ + TX
t=t¤+1

½t
(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

351A (83)

+
t¤X
t=1

¼½tU

0@A¡ (1 +m)¼
24¯t¤ + TX

t=t¤+1
½t

(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35¡ ¸t + ¯t¤
1A

+
TX

t=t¤+1
¼½tU

0@A¡ (1 +m)¼
24¯t¤ + TX

t=t¤+1
½t

(¯t ¡ ¯t¤)2
(¯t ¡ ¯t¤ ¡ c)

35¡ ¸t + ¯t
1A

Recall that all payments to those agents who su¤ered a loss smaller than ¸t¤ receive the same

payment, ¯t¤ . The …rst order conditions of (83) are
@

@¯t¤
= 0 = ¡ (1¡ ¼)U 0 (A¡ (1 +m)®) (1 +m) @®

@¯t¤
(84)

¡
TX

t=t¤+1
¼½tU (A¡ (1 +m)®¡ ¸t + ¯t) (1 +m)

@®

@¯t¤

+
t¤X
t=1

¼½tU
0 (A¡ (1 +m)®¡ ¸t + ¯t¤)

µ
1¡ (1 +m) @®

@¯t¤

¶
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and, 8 j ¸ t¤ + 1
@

@¯j
= 0 = ¼½jU

0 ³A¡ ®¡ ¸j + ¯j´¡ (1¡ ¼)U 0 (A¡ ®) (1 +m) @®@¯j (85)

¡
t¤X
t=1

¼½tU
0 (A¡ ®¡ ¸t + ¯t¤) (1 +m)

@®

@¯j

¡
TX

t=t¤+1
¼½tU (A¡ ®¡ ¸t + ¯t) (1 +m)

@®

@¯j

where the partial derivatives of the premium with respect to coverage are given by

@®

@¯t¤
= ¼

t¤X
t=1

½t + ¼
TX

t=t¤+1
½t

µ
c

¯t ¡ ¯t¤ ¡ c
¶2

(86)

@®

@¯j
= ¼½j

"
1¡

µ
c

¯t ¡ ¯t¤ ¡ c
¶2#

= ¼½j

³
¯j ¡ ¯t¤

´³
¯j ¡ ¯t¤ ¡ 2c

´
³
¯j ¡ ¯t¤ ¡ c

´2 8 j ¸ t¤ + 1 (87)

We can rewrite the partial derivative of the premium with respect to ¯t¤ as a function of the T ¡ t¤
other partial derivatives of the premium

@®

@¯t¤
= ¼ ¡

TX
j=t¤+1

@®

@¯j
(88)

For simplicity, let

EU 0m(:) = (1¡ ¼)U 0 (A¡ (1 +m)®) +
t¤X
t=1

¼½tU
0 (A¡ (1 +m)®¡ ¸t + ¯t¤) (89)

+
TX

t=t¤+1
¼½tU

0 (A¡ (1 +m)®¡ ¸t + ¯t)

Making some substitutions and transformations of variables, (84) may be rewritten as

¼
Pt¤
t=1 ½tU

0 (A¡ (1 +m)®¡ ¸t + ¯t¤)
(1 +m)EU 0m(:)

= ¼ ¡
TX

t=t¤+1

@®

@¯t
(90)

while (85) may be written as

¼½jU
0
³
A¡ (1 +m)®¡ ¸j + ¯j

´
(1 +m)EU 0m(:)

=
@®

@¯j
8 j ¸ t¤ + 1 (91)

Combining these two equations yields" Pt¤
t=1 ½tU

0 (A¡ (1 +m)®¡ ¸t + ¯t¤)
+
PT
t=t¤+1 ½jU

0 (A¡ (1 +m)®¡ ¸t + ¯t)

#
=
(1 +m) (1¡ ¼)
1¡ ¼ (1 +m) U

0 (A¡ (1 +m)®) (92)
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What I want to show is that there exists a m such that ¯T = ¸T . The way I will proceed

is to show that for some m¡, ¯T > ¸T , for some other m+, ¯T < ¸T , and that
d¯T
dm < 0 over

m 2 (m¡;m+). At m¡ = 0, I showed in corollary 1 that ¯T > ¸T . From (92) it is clear for

m+ ! 1¡¼
¼ that ¯T ! 0. All that now need to be shown is that d¯Tdm is continuous in m 2 [0; 1¡¼¼ ).

Let us rewrite (92) as

© =
t¤X
t=1

½tU
0 (A¡ (1 +m)®¡ ¸t + ¯t¤) +

TX
t=t¤+1

½jU
0 (A¡ (1 +m)®¡ ¸t + ¯t) (93)

¡(1 +m) (1¡ ¼)
1¡ ¼ (1 +m) U

0 (A¡ (1 +m)®)

Using total derivatives, d¯Tdm = ¡
@©
@m
@©
@¯T

. Let us …nd @©
@m and @©

@¯T
. It is straightforward to show

that

@©

@m
= ¡®

264
Pt¤
t=1 ½tU

00 (A¡ (1 +m)®¡ ¸t + ¯t¤)
+
PT
t=t¤+1 ½jU

00 (A¡ (1 +m)®¡ ¸t + ¯t)
¡ (1+m)(1¡¼)

1¡¼(1+m) U
00 (A¡ (1 +m)®)

375 (94)

¡ (1¡ ¼)
[1¡ ¼(1 +m)]2U

0 (A¡ (1 +m)®)

and that

@©

@¯T
= ¡ (1 +m) @®

@¯T

264
Pt¤
t=1 ½tU

00 (A¡ (1 +m)®¡ ¸t + ¯t¤)
+
PT
t=t¤+1 ½jU

00 (A¡ (1 +m)®¡ ¸t + ¯t)
¡ (1+m)(1¡¼)1¡¼(1+m) U

00 (A¡ (1 +m)®)

375 (95)

+½TU
00 (A¡ (1 +m)®¡ ¸T + ¯T )

Clearly both @©
@m and @©

@¯T
are negative since

0 <
t¤X
t=1

½tU
00 (A¡ (1 +m)®¡ ¸t + ¯t¤) +

TX
t=t¤+1

½jU
00 (A¡ (1 +m)®¡ ¸t + ¯t) (96)

¡(1 +m) (1¡ ¼)
1¡ ¼ (1 +m) U

00 (A¡ (1 +m)®)

if (93) holds and U 000(:) > 0. Therefore d¯T
dm < 0 for all m 2 [0; 1¡¼¼ ). This completes the proof.²

Proof of corollary 2 The proof is similar to that of theorem 3. What I want to show is that

there exists a m such that ¯t¤+1 = ¸t¤+1. As before, I shall proceed by showing that for some m
¡,

¯t¤+1 > ¸t¤+1, for some other m+, ¯t¤+1 < ¸t¤+1, and that
d¯t¤+1
dm < 0 over m 2 (m¡;m+). At

m¡ = 0, I showed in corollary 1 that ¯t¤+1 > ¸t¤+1. From (92) it is clear for m+ ! 1¡¼
¼ that

¯t¤+1 ! 0. All that now needs to be shown is that d¯t¤+1
dm is continuous in m 2 [0; 1¡¼¼ ). I shall
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use (93) again. From theorem 3 we know that @©
@m < 0. It remains to be shown is that

@©
@¯t¤+1

< 0.
@©

@¯t¤+1
is given by

@©

@¯t¤+1
= ¡ (1 +m) @®

@¯t¤+1

264
Pt¤
t=1 ½tU

00 (A¡ (1 +m)®¡ ¸t + ¯t¤)
+
PT
t=t¤+1 ½jU

00 (A¡ (1 +m)®¡ ¸t + ¯t)
¡ (1+m)(1¡¼)

1¡¼(1+m) U
00 (A¡ (1 +m)®)

375 (97)

+½TU
00 ¡A¡ (1 +m)®¡ ¸t¤+1 + ¯t¤+1¢

which is clearly negative if (93) holds and U 000(:) > 0. Therefore d¯t¤+1
dm < 0 for all m 2 [0; 1¡¼¼ ).

This completes the proof.²
Proof of corollary 3 The same as those of corollary 2 and theorem 3.

@©

@¯t¤
= ¡ (1 +m) @®

@¯t¤

264
Pt¤
t=1 ½tU

00 (A¡ (1 +m)®¡ ¸t + ¯t¤)
+
PT
t=t¤+1 ½jU

00 (A¡ (1 +m)®¡ ¸t + ¯t)
¡ (1+m)(1¡¼)

1¡¼(1+m) U
00 (A¡ (1 +m)®)

375 (98)

+
t¤X
t=1

U 00 (A¡ (1 +m)®¡ ¸t¤ + ¯t¤)

This is negative if (93) holds and U 000(:) > 0. Therefore d¯t¤
dm < 0. This completes the proof.²

TABLE 1

Beliefs of the insurer in equilibrium.

Belief the real
loss is equal to

Reported loss

¸1 ¸2 ::: ¸t¤¡1 ¸t¤ ¸t¤+1 ::: ¸T

¸
0
1 1 0 0 0 0 0 0 0

¸
0
2 0 1 0 0 0 0 0 0

::: 0 0 1 0 0 0 0 0

¸
0
t¤¡1 0 0 0 1 0 0 0 0

¸
0
t¤ 0 0 0 0 1 0 0 0

¸
0
t¤+1 0 0 0 0 1¡ °t¤+1 °t¤+1 0 0

::: 0 0 0 0 1¡ °::: 0 °::: 0

¸
0
T 0 0 0 0 1¡ °T 0 0 °T

where °t =
¯t¡¯t¤¡c
¯t¡¯t¤ 8t > t¤
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