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Abstract
This paper studies a principal-agent relationship when both are risk-neutral and in the
presence of adverse selection and moral hazard. Contracts must satisfy the limited-
liability and monotonicity conditions. We provide sufficient conditions under which
the optimal contract is simple, in the sense that each type is offered the same contract.
These are: the action and the agent’s type are complements, and the output’s cumulative
distribution function is such that the marginal rate of substitution between the action
and the agent’s type is the same for eachpossible output realization. Furthermore, under
the average monotone likelihood ratio property, the optimal contract is a call-option
contract as in Innes (J Econ Theory 52(1):45–67, 1990). The results shed light on the
fact that sometimes contracts are not highly dependent on individual characteristics
as predicted in most pure moral hazard and pure adverse selection settings.
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1 Introduction

The theory of incentives shows that providing incentives to agents with different
characteristics calls for highly complex contracts. However, empirical and casual
observations (see, for instance, Baker et al. 1994; Bhattacharyya and Lafontaine 1995)
show that, in many circumstances, contracts are simple in the sense that they are not
tailored to agents’ characteristics. For instance, in markets that use franchising (for
details see Lafontaine and Slade 1997, 2001), instead of offering contracts tailored to
the characteristics of each franchisee, most of the franchisors employ a limited set of
contracts, often just two: a business-format franchising and an integrated contract.1

Within the first category, different franchisors choose different contract terms, as well
as different royalty rates and franchise fees, but any given franchisor offers the same
terms to all potential franchisees at a given point in time. Paarsch and Shearer (1999,
2000) study the British Columbia tree-planting industry and find that piece-rate con-
tracts are identical within each tract and, through a structural model that controls for
the endogeneity of the piece rate, that the elasticity of worker effort with respect to
changes in the piece rate across tracts is positive and large.Using data on young drivers,
Chiappori and Salanié (2002) cannot reject the hypothesis that coverage and accident
frequency are statistically independent. Finkelstein and Poterba (2004) test for adverse
selection in annuity markets in the UK, and do not find adverse selection in cover-
age, but they do find adverse selection in other dimensions. Finkelstein and McGarry
(2006) find little or no evidence of positive correlation between risk types and policy
choices. In fact, Salanié (2005, p 474) concludes: “The recent literature provides very
strong evidence that contractual forms have large effects on behavior. As the notion
that “incentive matters” is one of the central tenets of economists of every persua-
sion, this should be comforting to the community. On the other hand, it raises an old
puzzle: if contractual form matters so much, why do we observe such a prevalence of
fairly simple contracts?” Thus, the simplicity of real-life contracts in many situations
remains a challenge to incentive theory, despite the fact that important progress has
been made on the last decade or so based on the idea that contracts/mechanisms must
be robust (see, for instance, Lopomo 2001; Bergemann and Morris 2005; Chassang
2013; Carroll 2015).

Under a set of fairly natural assumptions, we show that we can rationalize simple
contracts such that payment schemes are not tailored to agents’ characteristics. In order
to study our notion of simplicity, this paper proposes a standard principal-agent model
where the agent must choose an action that determines, together with his type (e.g.
ability), the probability distribution of a contractible output that has more than two
realizations. The principal and the agent are risk neutral; the agent privately learns his
type before signing the contract and the principal observes neither the agent’s action
nor his type. The agent is subject to limited liability, which limits the principal’s ability
to punish the agent for bad performance. Limited liability is prevalent in financial and
labor market contracts; an employer is not free to punish poor performance with

1 Balmaceda (2009) provides a rationale for the emergence of pay-for-performance contracts and self-
selection in a competitive labor market setting, where workers are risk averse, while firms are risk neutral
and unaware of workers’ abilities. He shows that, under certain parameterizations, the second-best menu
has more than one contract, and under others, the menu contains only one contract.
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negative wages, and an entrepreneur cannot be asked to re-pay more than the returns
on his venture. Following Innes (1990), we restrict the contract space to monotone
contracts; that is, the payment to the agent is non-decreasing with realized output, and
the return to the principal is also non-decreasing with it.2

A full characterization of the optimal mechanism is difficult, yet we provide suf-
ficient conditions under which this consists of a single contract, and as a result the
optimal mechanism exhibits what we call the one-size-fits-all property. This result
requires that the action and the agent’s type improve the output distribution in the
sense of first-order stochastic dominance (FOSD), and that the agent’s payoff func-
tion satisfies the strict complementarity between the action and the agent’s type (SC),
as well as the weak-separability property (WSEP). This was first introduced in the
literature by Faynzilberg and Kumar (1997, 2000). Furthermore, if the output distribu-
tion satisfies the average (over types) monotone likelihood ratio property (EMLRP),
the optimal contract is a call-option contract; that is, the contract pays the limited lia-
bility for low output realizations, and it pays the output minus a positive face value for
high output realizations. This is the same contract as the one derived by Innes (1990).
Thus, under EMLRP, the contract is simple not only in the sense defined above, but
also in how payments vary with realized output.

WSEP imposes that the marginal rate of substitution between the action and the
agent’s type is the same for each possible output realization. In the case of pure moral
hazard, Grossman and Hart (1983) argue that a similar condition, known as the linear
distribution function, is sufficient for the validity of the first-order approach. Faynzil-
berg and Kumar (1997, 2000) extend this to the case of moral hazard and adverse
selection, and partially characterize the optimal contract with moral hazard, adverse
selection and risk averse agents. WSEP allows agents to order different contracts
according to the power of incentives in such a way that all types agree on which
contracts provide more powerful incentives. Thus, WSEP allows an ordering on the
contract space.

To better understand the intuition, assume for the time being that there are only
two outcomes, and that the contract offers a fixed payment and a bonus upon success.
In order to provide incentives for effort, the principal must provide high-powered
incentives. To induce information revelation, higher-power incentives are offered to
higher types, since, ceteris paribus, they have an incentive to understate their ability
level in order to convince the principal that success is unlikely. Because effort is unob-
servable, each type benefits from high-powered incentives, hence the fixed payment
must decrease with ability. But, under limited liability, the fixed payment has a lower
bound on how much it could be decreased. Because the principal wants to minimize
the informational and limited-liability rent without sacrificing efficiency too much,
she has incentives to lower the fixed payment as much as possible, but then the lower
bound forces the same fixed payment to everyone. Thismakes the contract with highest
incentive powermore attractive to everyone. Thus, the principal has to choose between
a pooling contract that leaves no rent to the least able type, and a menu that pays a
fixed payment decreasing in ability and a bonus increasing in it, which leaves positive

2 This is a revised version of Balmaceda (2011) where we study the same problem without imposing
monotonicity constraints. This makes the result more intuitive and plausible in real-world situations.
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rents to everyone and sacrifices efficiency. Because effort increases with ability, and
a dollar of fixed payment costs the principal more than a dollar in a higher bonus,
ultimately the principal prefers pooling types, since more able types choose higher
efforts. The presence of multiple outcomes expands the scope for profitable screening;
yet, under WSEP, each type evaluates each contract as consisting of a fixed payment
plus a bonus that aggregates all possible outcomes and is independent of the agent’s
action.

When there are multiple outcomes, the intuition for one-size-fits-all is based on the
fact that, for any incentive-compatible menu of contracts, there exists a degenerate
contract that is preferred by the principal and chosen by each possible agent’s type. To
see this, consider an incentive-compatible menu of contracts and a degenerate menu
that has one contract, namely the one with the most powerful incentives among the
incentive-compatible contracts, denoted by w∗. Because of WSEP, i.e. the cumula-
tive distribution function being such that the marginal rate of substitution between the
action and the agent’s type is the same for each possible output realization, everyone
agrees on which contract provides the most powerful incentives. Incentive compatibil-
ity implies that, conditional on the incentive-compatible action, all agents are weakly
better-off under the incentive-compatible contract than under w∗. Because the action
chosen is assumed to be constant and agents are risk neutral, this means that, for each
ability type, expected compensation is higher under the incentive-compatible contract.
However, when an agent chooses contract w∗, he chooses an action that is at least as
large as the incentive-compatible action, since actions and types are complements
(condition SC), and w∗ provides more powerful incentives. Because higher types and
higher actions improve the output distribution in the sense of FOSD, and the contract
is such that the return to the principal is non-decreasing with realized output, the fact
that agents choose a (weakly) higher action under w∗ implies that profits are higher
under the degenerate mechanism than under the incentive-compatible mechanism.
Furthermore, we show that the optimal action is identical to the one that maximizes
the virtual surplus, which entails a downward distortion for each possible type but the
highest. The limited-liability constraint impairs the principal’s ability to reduce the
informational rent any further. In its absence, the principal could lower the payments
in bad states so as to make contracts with different power of incentives more appealing
to agents with higher types. This will leave room for separation to be optimal for at
least a subset of types. Hence, under limited liability, SC andWSEP offering a degen-
erate mechanism achieves the dual role of reducing informational rents and increasing
efficiency; that is, each type chooses the action that maximizes the virtual surplus.

When we further impose EMLRP, the optimal mechanism offers a single call-
option contract to all types; that is, a contract that makes the principal the full residual
claimant when the output is low, by paying the agent the lowest possible value allowed
by the limited-liability constraint, and itmakes the agent the full residual claimantwhen
the output is high, by paying him the realized output minus a positive face value. The
face value is chosen so that the participation constraint of the lowest type binds and
therefore all other types get a positive informational rent. To reduce the informational
rent, the principal would like to set the payment in each state different from that for
which the average likelihood ratio is the highest equal to the limited liability and,
in order to stop agents from overstating their ability type, the principal is forced to
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offer the same wage profile to each ability type. However, the monotonicity constraint
imposing that the principal’s payoff does not decrease with realized output makes this
solution infeasible. Hence, the principal is forced to offer the steepest wage profile
satisfying the monotonicity constraints. Because of EMLRP and SC, this contract
induces higher types to choose higher actions and, therefore, minimizes informational
rents and maximizes efficiency.

These results highlight the fact that, underWSEP, themoral hazard problem ismore
important than the adverse selection problem, in the sense that the optimal mechanism
is such that contract terms are not customized to the agent’s type, yet they are designed
to provide incentives for effort. However, the action chosen is different from that under
pure moral hazard, since incentive compatibility with respect to ability types imposes
constraints on the contract through both the first- and second-order conditions of the
agent’s revelation of information problem.

Related Literature. A long-standing literature studies the question of how optimal
incentive contracts should look like in different situations. The literature on optimal
contracting under pure moral hazard is vast, and that under pure adverse selection is
also extensive. For the sake of brevity, wewill focus on themost closely related strands,
which are: the one dealing with contract simplicity and robustness, the one dealing
with moral hazard under limited liability with and without monotonicity constraints,
and that dealing with moral hazard and adverse selection.

The literature regarding contract simplicity and robustness has made considerable
progress in the last decade or so, and it has mainly focused on the optimality of linear
contracts and ex-post implementation. Carroll (2015) shows that the optimal contract
under risk neutrality and limited liability is linear when the principal’s objective is
to maximize the worst-case expected payoff in a setting where the principal knows
only a subset of the actions available to the agent. Under uncertainty about the agent’s
technology, the principal knows a lower bound on the agent’s expected payoff, based
on the fact that she knows a subset of the actions available to the agent. The way she
translates the agent’s lower bound into a lower bound for his payoff is by a linear shar-
ing relationship, since this is tight in each instance. Holmstrom and Milgrom (1987)
demonstrate that linear contracts are robust to aggregation over time–the optimal con-
tract is a linear function of the endpoint. Carroll and Meng (2016) show that if the
principal has knowledge of a lower bound, but not of an upper bound on the shocks,
linear contracts are reliable because they give the same incentives for effort at every
point along the contract. Balmaceda et al. (2016) also study robustness by quantifying
welfare loss as the ratio between the first-best social welfare and that arising from
the principal’s optimal pay-for-performance contract. They look at the performance
of linear contracts in terms of this metric and show that linear contracts attain the
lower bound, which is consistent with the Carroll’s (2015) result. Chassang (2013)
also studies a principal-agent model with limited liability, moral hazard and adverse
selection in a dynamic context. He calibrates the dynamic contract to a simple bench-
mark that satisfies three properties: the principal is guaranteed a positive expected
payoff, is renegotiation-proof, and the contract satisfies an efficiency bound which is
sufficiently tight to imply the max-min optimality of linear contracts. However, this
benchmark is not feasible because it does not satisfy limited liability. He then pro-
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vides a class of dynamic limited-liability contracts that satisfy efficiency properties for
a very broad class of stochastic environments and are free from details. By contrast,
in our setting, limited liability is crucial for the simplicity, since it is the lower bound
on payments that limited liability imposes that which makes pooling optimal under
either a two-outcome setting or the assumptions adopted in this paper. In a sense, this
robustness literature deals with a different kind of simplicity related to linearity, a
not type-independent contracts. Yet, it is related to the fact that we also find that the
optimal type-independent contract is simple when EMLRP is assumed. Namely, a
single call-option contract is optimal.

Lopomo (1998, 2001) ask why is it that the English auction is often used to deter-
mine the terms of trade when the owner of a single object faces a number of potential
buyers. He argues in favor of it due to its simplicity and robustness. Lopomo (1998)
shows that the perfect Bayesian equilibriumwith undominated strategies of theEnglish
auction maximizes the seller’s expected revenue among all open bidding procedures
in which the buyers at any stage during the auction have only three options: they can
purchase the object at the current asking price, remain in the auction by declaring their
willingness to pay the current bid, or drop out irrevocably. Lopomo (2001) argues that
English auctions are optimal when considering all posterior-implementable outcome
functions among all equilibrium outcomes of selling procedures, which satisfy a no-
regret condition: each buyer has no incentive to revise his decision after observing
his opponents’ behavior. Bergemann and Morris (2005) study robust mechanisms in
the sense that ex-post implementation is equivalent to interim (or Bayesian) imple-
mentation for all possible types. The robustness here regards the fact that Bayesian
implementation requires too much common knowledge, while ex-post implementa-
tion does not. They show that this kind of robustness requires quasi-linear preferences
without restrictions on transfers, and that the principal implements a function and
not a correspondence. Because our model considers limited liability, their result does
not apply to our setting. By contrast, our simplicity is derived under Bayesian imple-
mentation and common knowledge, yet in order to do so, our problem needs more
structure than theirs, and as such it is less general. In addition, the notion of simplicity
in our setting is different and it relates to type-independencemore than implementation
issues.

With regard to the optimal contracting under moral hazard, adverse selection and
risk neutrality, the most closely related papers are: Demougin (1989), Guesnerie et al.
(1989), Caillaud et al. (1992), Guesnerie and Laffont (1984), McAfee and McMillan
(1986, 1987), Laffont and Tirole (1986) and Melumad and Reichelstein (1989). They
study the value of information in agency when there is unlimited liability. These
papers study under what conditions an incentive-compatible and individually-rational
allocation can be implemented by a contract that is type-independent and there is no
efficiency loss from adding noise to the production technology. The first three papers
consider the moving support case, while the fourth studies the case of fixed support.
The main assumption in these papers is that the noise in the production technology is
independent of the agent’s type; they study noisy hidden informationmodels. Themain
result of this literature is that, in most such models, the principal can reach the same
utility as in the absence of noise. Guesnerie and Laffont (1984) show that the optimal
mechanism is to offer the same contract to everyone when the first-best allocation is
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decreasing in the agent’s type, and incentive compatibility requires the opposite. This
is known as non-responsiveness. However, the reason why the optimal mechanism
exhibits the one-size-fits-all property here has nothing to do with non-responsiveness.
Laffont and Tirole (1986) also show that bunching may occur when contracts are not
restricted and the standard increasing hazard rate assumption is violated.

Escobar and Pulgar (2016) show, in the absence of limited-liability and when the
outcome space is binary, that given certain conditions, the optimal contract exhibits the
one-size-fits-all property for a subset of the agent’s type set. This stems from the fact
that their outcome space is binary and, therefore, all types agree that a contract which
pays a higher wage when the high outcome is realized and a lower wage when the
low outcome is observed provides stronger incentives for effort and truth-telling. This
must not be the case when the outcome space has more than two outcomes. Gottlieb
and Moreira (2013) study a principal-agent model with moral hazard and adverse
selection. They focus on the case in which types are multidimensional, and show that
a positive mass of types with low conditional probabilities of success gets a constant
payment and zero rents and there is distortion everywhere.3 They also find, under
certain assumptions, that the optimal mechanism offers only finitely many contracts.
They, as Balmaceda (2011) does, find that when the agent is risk neutral and has limited
liability, all agents are offered a single contract.4 The main difference stems from the
fact that they, like Escobar and Pulgar (2016), focus on the case in which there are
only two outcomes. Ollier and Thomas (2013) also study moral hazard and adverse
selection with ex-post constraints and, as in Escobar and Pulgar (2016), the outcome
space is binary. They, as we do, show that the optimal contract pool types, since there
are countervailing forces due to the ex-post constraints. However, considering several
outcomes increases the scope for profitable screening, which makes our result more
surprising. The countervailing forces in our setting arise from limited liability.

Lewis and Sappington (2000, 2001) study a principal-agent model with adverse
selection, moral hazard and limited liability. They use this setting to study how wealth
constraints affect the optimal mechanism for selling a project to different bidders.
Lewis and Sappington (2000) do so when wealth is publicly observed and Lewis and
Sappington (2001) consider the case of private wealth. In the Lewis and Sappington’s
(2001) model, which is closest to our setting, the outcome is dichotomic and they
allow the agent to post a bond before output is realized. Hence, the principal has two
instruments, which are: the payment after success (failure leads to zero outcome in
their model) and the bond posted by the agent that results from the agent’s announced
initial wealth. This payment cannot exceed the agent’swealth.When ability andwealth
are private information, they show that an agent requires both higher ability and greater
wealth to secure a more powerful compensation scheme: more of either of them does
not suffice. When wealth is observable they show that. for low-ability agents, the
payment after success rises with the ability level, while for high-ability agents, this is
independent on the ability level.

3 We just became aware that Gottlieb and Moreira (2017) extend their analysis to the case of a continuum
of outputs. Therefore, their result is like ours but for the continuous output case.
4 We became aware of this result just recently.
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Faynzilberg and Kumar (1997, 2000) show that, when the agent is risk averse and
there are neither monotonicity nor limited-liability constraints, WSEP is needed to
ensure the existence of an optimal mechanism. Furthermore, Faynzilberg and Kumar
(1997) show thatWSEP andMLRP together result in a monotone mechanism, while
Faynzilberg and Kumar (2000) propose a duality method in the spirit of Grossman and
Hart (1983) for finding the optimal mechanism and argue that this is type-independent
if the technology satisfies strong separability; that is, the marginal impact of the action
and the agent’s type are independent of each other, and these are independent of the
randomness in the production function. This stems from the fact that the action chosen
is type-independent and therefore all types agree on which contract provides stronger
incentives for effort. Hence they need a much stronger condition so that agents can
order the contract space.

Regarding the puremoral hazard literature, Innes (1990) andMatthews (2001) show
the optimality of debt contracts for the principal (call-option contract for the agent)
under the assumption ofmonotone likelihood ratio (MLRP) and contractmonotonicity
constraints. Poblete and Spulber (2012) show the optimality of the call-option contract
under a less stringent condition called monotonicity with respect to the state of the
critical ratio, defined as the product of the hazard rate of the state and the ratio of
the marginal product of effort to the marginal product of the state. There is another
strand that imposes limited liability but not monotonicity constraints. Kim (1997) and
Demougin and Fluet (1998) show that the optimal contract entails a bonus only when
the outcome is higher than a given threshold, and a fixed wage equal to the limited
liability for all outcomes lower than the threshold. Thus, in both cases, the principal
leaves a rent to the agent, known as the limited-liability rent. The effort required is
downward distorted with respect to the first-best effort in order to reduce the limited-
liability rent. We add to this literature the adverse selection dimension, and focus on
monotone contracts as defined by Innes (1990).5 Under the assumptions made here,
we obtain the Innes’s (1990) result in the case when both moral hazard and adverse
selection are taken into account.

The rest of the paper is organized as follows. Section 2 presents the model and the
main assumptions. Section 3 derives the optimal mechanism with adverse selection
and moral hazard. Section 4 discusses the robustness with regard to some of the
assumptions. Section 5 concludes with some remarks. All proofs can be found in the
Appendix.

2 Themodel

2.1 Setup

Consider a relationship between a risk-neutral principal and a risk-neutral agent. The
agent chooses an action a ∈ A ≡ [0, ā] and is characterized by a privately known type
(e.g., ability level) indexed by θ ∈ � ≡ [θ, θ ]. Type θ has a cumulative distribution

5 See, Balmaceda (2011) for the case in which monotonicity constraints are disregarded and there exist
multiple tasks with an aggregated across-tasks performance measure.
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function F(θ), which is common knowledge, twice continuously differentiable with
the associated density function f (θ) and full support. The inverse of the hazard func-
tion H(θ) ≡ 1−F(θ)

f (θ)
is assumed to be monotonically decreasing, as is the standard in

the literature.
The agent’s action and type jointly determine the output distribution, which can

take n + 1 possible realizations, 0 ≤ y0 < y1 < · · · < yn . Given action a and
type θ , output yi , i ∈ I ≡ {0, . . . , n}, occurs with probability pi (θ, a) ∈ [0, 1], with∑n

i=0 p
i (θ, a) = 1.

The agent’s cost of action a ∈ A is c(a), with: (i) c(a′) ≥ c(a) for all a′ ≥ a; (ii)
c(·) is a twice continuously differentiable and strictly convex function for all a ∈ A;
and (iii) ca(0) = c(0) = 0.6

A contract is given by the payment scheme: w ≡ (w0, . . . , wn), where wi is the
payment when yi is realized. Payments are restricted by a limited-liability constraint
that prevents the principal from paying the agent a wage lower than L ≥ 0 in any
state, with L ≤ y0. This constraint can be thought of as the case in which the agent
owns no assets at the time of contracting. Hence,

wi ≥ L ∀i ∈ I . (LL)

In addition, contracts are restricted to satisfy Innes’s (1990) monotonicity constraints,
as follows:

wi+1 ≥ wi , ∀i ∈ I \ {n} (MONA)

and

yi+1 − wi+1 ≥ yi − wi , ∀i ∈ I \ {n}. (MONP)

Restriction MONA must be satisfied if the agent can costlessly reduce the output or
if the principal can secretly borrow money from an outsider to inflate output.MONP
must be satisfied if the principal can costlessly reduce profits. In the case with two
possible outcomes MONP can be discarded since optimality requires this to be the
case. Otherwise, the principal will offer a flat contract that induces action zero. Finally,
contracts are restricted to be piecewise continuously differentiable in θ .

Define the contract space as:

C = {w ∈ 	n|w satisfies LL,MONA and MONP}.

Finally, the agent has a reservation utility equal to zero.

2.2 Main assumptions

[FOSD]
∑

i>i ′ p
i
a(θ, a) ≥ 0 and

∑
i>i ′ p

i
θ (θ, a) ≥ 0 for all i ′ ∈ I and all (a, θ) ∈

A × �.

6 The sub-index a denotes the partial derivative with respect to a. Similarly, with respect to θ .
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This implies that higher actions as well as higher types increase, ceteris paribus,
the agent’s expected output, his expected compensation when the mechanism satisfies
MONA, as well as his expected profits when the mechanism satisfiesMONP.

[CP] (i) The upper cumulative probability distributions
∑

i>i ′ p
i (θ, a) are strictly

concave in (a, θ) ∈ A × �, ∀i ′ ∈ I \ {n}; (ii) pi (θ, a) is thrice continu-
ously differentiable for all (a, θ) ∈ A × �, and pi (θ, a) > 0, ∀(a, θ) ∈
A × � and ∀i ∈ I ; and (iii) lima→0

∑
i p

i
a(θ, a)yi − ca(a) > 0 and

lima→ā
∑

i p
i
a(θ, a)yi − ca(a) < 0, ∀θ ∈ �.

This is meant to ensure that the first-best action is unique and belongs to the interior.
This, together with the fact that contracts satisfy MONA, ensures that the locally
optimal action is unique and that this is globally optimal for all (θ, w) ∈ � × C.
[SC]

∑
i>i ′ p

i
θa(θ, a) ≥ 0 for all i ′ ∈ I and all (a, θ) ∈ A × �.7

This assumption implies that, when a increases, the marginal decrease in the cumu-
lative probability distribution increases with type. This assumption ensures that the
optimal action increases with ability; therefore, even when each type is offered the
same contract, the more able types choose a higher action.

Following Faynzilberg and Kumar (1997), we will also consider the possibility that
the technology satisfies weak separability between (θ, a) and the random component
of the output, as follows:

[WSEP] For any a, a′ ∈ A with a �= a′ and θ, θ ′ ∈ � with θ �= θ ′, the following
holds:

pi (θ, a′) − pi (θ, a)

pi (θ ′, a) − pi (θ, a)
is independent of i .

Faynzilberg and Kumar (1997) show that this implies that the probability that outcome
yi occurs can be written as follows:

pi (θ, a) = (qi − r i )g(θ, a) + r i

where qi ∈ [0, 1], r i ∈ [0, 1], ∑n
i r

i = 1 and
∑n

i=1 q
i = 1. This assumption and the

CP,SC andFOSDwill be sufficient for the optimalmechanism to be type-independent
or to satisfy the one-size-fits-all property.

[EMLRP] For any a′ > a,
∫
θ∈� pi (θ,a′)dF(θ)
∫
θ∈� pi (θ,a)dF(θ)

increases with i .

This assumption implies that any principal who has an aggregated-over-types payoff
function that is increasing in the project’s outcome prefers the stochastic distribution
of returns induced by higher actions. This ensures that the optimal type-independent
mechanism is option-like, as is the case in the pure moral hazard contract under
standard MLRP (see Appendix B for details).8

7 Athey (1996) call this property l-increasing differences.
8 See, Balmaceda (2009) for a use of theMLRP with respect to θ to derive the optimal contract under pure
adverse selection, risk aversion and labor market competition.
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2.3 The First Best

In this sub-section we study the case in which action a is contractible and the agent’s
type θ is common knowledge.

Let y ≡ (y0, . . . , yn) and p(θ, a) ≡ (p0(θ, a), . . . , pn(θ, a)). The total surplus
from a type-θ agent when he chooses action a as inner product is given by: S(θ, a) ≡
p(θ, a)y − c(a). Then, the first-best action, denoted by a∗∗(θ), is the solution to the
following problem:

max
a′∈A

S(θ, a′),

which entails the following first-order condition:

∑

i
pia(θ, a′)yi − ca(a

′) = 0.

Because of assumptions FOSD and CP, the first-order condition is necessary and
sufficient and the first-best action profile belongs to the interior. Thus, the first-best
surplus is given by: S(θ, a∗∗(θ)). Because y > 0, S(θ, a∗∗(θ)) ≥ 0.

Assumption SC implies that S(θ, a) is supermodular in (θ, a) and therefore it
readily follows from theorem 3 in Edlin and Shannon (1998) that for any θ ′ > θ ,
a∗∗(θ ′) > a∗∗(θ) and S(θ ′, a∗∗(θ ′)) > S(θ, a∗∗(θ)).9 Thus, the first-best action is
increasing with the agent’s type and total surplus rises with the agent’s type when
FOSD holds.

One contract that implements this action promises to pay the agent c(a∗∗(θ))+ L if
he delivers a∗∗(θ), and it pays L otherwise. The agent weakly prefers to deliver a∗∗(θ)

in this setting, and so the principal’s ideal outcome ensues. Because the reservation
utility is zero and L ≥ 0, this ensures that the agent is willing to participate.

This contract is not incentive compatible–every agent will choose to deliver zero
effort since this will ensure a payment equal to L ,and because compensation is not
contingent on realized output, the agent has neither incentive to exert effort nor to
truthfully reveal his type.

3 Moral hazard and adverse selection

The principal’s goal here is twofold: on the one hand, she has to provide the agent
with incentives to choose the desired action, and on the other, she has to induce the
agent to truthfully reveal his type. In short, any offer (w(θ), a(θ)) must be incentive
compatible; i.e. a θ -type agent prefers contract w(θ) to any other contract, and is
obedient in the sense that he chooses the action prescribed by the principal a(θ).

An agent of type θ ∈ �, when faced with contractw ∈ C and chooses action a ∈ A,
has an expected utility given by:

U (θ, w, a) ≡ p(θ, a)w − c(a), (1)

9 This requires differentiability and that S(θ, a) has an increasing marginal return to a as θ increases.
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and the principal has an expected utility given by:

V (θ, w, a) ≡ p(θ, a)(y − w).

By the revelation principle, a direct mechanism (w(θ), a(θ)) : � → C × A is
incentive-compatible if and only if, for all θ ∈ �,

(θ, a(θ)) ∈ argmax
(θ ′,a′)∈�×A

U (θ, w(θ ′), a′). (IC)

The mechanism satisfies individual rationality if and only if, for all θ ∈ �,

U (θ, w(θ), a(θ)) ≥ 0. (IR)

Constraint (IC) is the incentive-compatibility constraint. This states that a type-θ
agent is better off announcing his true type, receiving the allocationw(θ) and choosing
action a(θ), than announcing a different type θ ′, receiving the allocation w(θ ′) and
choosing any other action profile a′ ∈ A. Because the action and the type are not
observable, the agent can deviate by choosing any action/type he wishes and not be
detected. Constraint (IR) is the standard individual rationality constraint establishing
that, on the equilibrium path, each ability type prefers participating to staying out.

We say that action a is implementable if there exists a contract w ∈ C, such that
(w, a) is incentive-compatible. If w is such that w(θ) = w(¯θ) for all θ ∈ �, the
contract satisfies the one-size-fits-all property at �, and a is implementable by a one-
size-fits-all contract at �. Define α(θ, θ ′) ∈ argmaxa′∈A U (θ, w(θ ′), a′) and denote
α(θ, θ) by a(θ).

Proposition 1 Let (w(θ), a(θ)) : � → C × A with a(θ) > 0. Then (w(θ), a(θ)) is
incentive compatible if and only if:

(i) For all θ ∈ �, a(θ) is differentiable almost everywhere, and satisfies the follows
first-order condition:

Ua(θ, w(θ), a(θ)) = 0. (2)

(ii) For all θ, θ ′ ∈ �,

Uaa(θ, w(θ), a(θ)) ≤ 0. (3)

(iii) For almost all θ ∈ �,

∑

i
pi (θ, a(θ))

dwi (θ)

dθ
= 0 (4)
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(iv) For almost all θ ∈ �,

∑

i
piθ (θ, a(θ))

dwi (θ)

dθ

(∑

i
piaa(θ, a(θ))wi (θ) − caa(a(θ))

)

−
∑

i
piaθ (θ, a(θ))wi (θ)

∑

i
pia(θ, a(θ))

dwi (θ)

dθ
≤ 0. (5)

Equation (2) is the first-order condition for the action when the agent truthfully
reveals his type by choosing w(θ). Equation (3) ensures that the agent’s utility is
concave in a, for all θ ∈ �. Equation (4) is the first-order condition for the agent’s
revelation of information problem, taking into account that, upon a deviation, the
agent will choose the action that maximizes his expected utility. This is also evalu-
ated at the local optimal for (θ ′, a′). Equation (5) is the local second-order condition
to the agent’s revelation problem. This ensures the concavity of the agent’s utility
in (θ ′, w(θ ′), a′), evaluated at the local optimal. This, together with (2) and (3),
is sufficient for global incentive compatibility. This constraint restricts the kind of
incentive-compatible mechanisms that the principal can use, and is equivalent to what
the literature generally calls the monotonicity constraint. For instance, in the Laffont
and Tirole’s (1986) model, this entails a rising quantity and transfer with the agent’s
type. However, the condition here is weaker in general, since it allows decreasing as
well as increasing payments with the agent’s type. Thus, while imposing that pay-
ments are non-decreasing with respect to θ does yield sufficiency, it does so with loss
of generality.10 Observe that this holds when the contract is type-independent or satis-
fies the one-size-fits-all property. In addition, observe that conditionsMONA and CP
ensure that the agent’s utility function is strictly concave in a for all θ, θ ′ ∈ �, and
that α(θ, θ ′) belongs to the interior of A. This implies that the locally optimal action
for any θ, θ ′ ∈ � is globally optimal.

The key in the implementability result above is Eq. (4), which states that, in
any incentive-compatible mechanism, conditional on the incentive-compatible action
being chosen, the expected compensation could not vary with the agent’s reported
type. This stems from the fact that both the principal and the agent are risk-neutral.
Therefore, conditional on any given action, they both only care about the expected
compensation and, ceteris paribus, each agent type prefers the contract with the high-
est expected compensation, and the principal the contract with the lowest expected
compensation.11 However, this does not rule out menus where different contracts are
customized to intervals of different types, sincew(θ) is piecewise continuously differ-
entiable. For instance, the principal could offer two contracts, one with low-powered
incentives for an interval of low types, and one with high-powered incentives for an
interval of high types, where high-powered means that payments increase more with

10 If the outcome space were binary, that is, i ∈ {0, 1}, then what this second-order condition boils down
to is that the difference between a higher and lower payoff increases with the agent’s type, since in that case
p1θ (θ, a) > 0.
11 If the agent were to be risk averse, not only should he care about the expected compensation, but also
about the payment variation across outputs. Payment variation will entail losses, since it would result in
an inefficient risk allocation between the principal and the agent, but it will provide another instrument for
increasing efficiency at a lower cost.
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output realizations than in the low-powered contract. However, we will show that,
when the probability function satisfies WSEP, jumps in w(θ) cannot be optimal.

Before characterizing the optimal mechanism, it is worthwhile to briefly discuss
the dimensionality of the output space. If we were to restrict the output space to only
two outputs, the only way to provide incentives will be by means of paying a high
payment when the higher output is observed and a low payment when the lower output
is observed. When an increase in (θ, a) increases the probability that the high output
is observed, which is a very natural ordering, a greater high payment and a lower
low payment will, due to risk neutrality, be preferred by each possible type. Hence,
every possible type agrees on which contract provides stronger incentives. When the
output space is greater than two, this is not sufficient,since different (θ, a) give rise
to distribution functions in which the payment difference for different output levels
wi+1 − wi will provide more powerful incentives to different types and, therefore,
the types will evaluate the appeal of different contracts differently. We will show
that, together, FOSD and WSEP provide a natural ordering of the contracts such that
different types agree on which contracts provide stronger incentives, which is at the
crux of the one-size-fits-all property.

In what follows, we will denote dwi (θ)/dθ by ẇi (θ) and dU (θ)/dθ by U̇ (θ).
Using the necessary condition in Eq. (4) and the envelope theorem to obtain U̇ (θ),
while noting that U̇ (θ) ≥ 0, which means that only the lowest type’s participation
constraint matters, and integrating by parts, the principal’s problem can be written as
follows:

max
(w,a):�→C×A

∫

θ∈�

(
S(θ, a(θ)) − H(θ)

∑

i
piθ (θ, a(θ))wi (θ)

)
f (θ)dθ −U (θ)

subject to (6)
∑

i
piθ (θ, a(θ))ẇi (θ)

(∑

i
piaa(θ, a(θ))wi (θ) − caa(a(θ))

)
−

∑

i
piaθ (θ, a(θ))wi (θ)

∑

i
pia(θ, a(θ))ẇi (θ) ≤ 0, for almost all θ ∈ � (7)

∑

i
pia(θ, a(θ))wi (θ) − ca(a(θ)) = 0, ∀θ ∈ �, (8)

U (θ) ≥ 0, (9)

wi (θ) ≥ L, ∀θ ∈ � and ∀ i ∈ I . (10)

This optimization problem bears some resemblance to the standard mechanism
design problem (Myerson (1982)). The objective function is the virtual surplus; that is,
total welfare minus information rents, which are given by H(θ)

∑
i p

i (θ, a(θ))wi (θ).
However, constraint (7) is different from the standard monotonicity constraint due to
the multidimensionality of the contract space. This constraint does not entail mono-
tonicity of either the action or the payments. Nonetheless, this does not preclude us
from studying the problem of virtual surplus maximization ignoring constraint (7)
and then checking if the unconstrained solution satisfies this constraint. If the solution
to the relaxed problem satisfies constraint (7), then it is the solution to the principal-
agent problem. We will analyze this problem first and then will come back to the
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virtual surplus maximization, taking into account the local second-order constraint in
Eq. (7).

We first derive the optimal mechanism when the local second-order condition is
ignored and WSEP is not imposed. Define Pi (θ, a) ≡ ∑

j≥i+1 p
i (θ, a), ξ i (θ, a) ≡

Pi
a (θ,a)

Pi
θ (θ,a)

and �wi (θ) ≡ wi+1(θ) − wi (θ).

Proposition 2 Suppose that CP, FOSD and SC hold, and that Pi
aθ (θ, a)/Pi

a(θ, a) is
non-increasingwith a and non-decreasingwith θ . Then, themechanism thatmaximizes
the virtual surplus, denoted by (ŵ(θ), â(θ)), where ŵ(θ) satisfiesMONA,MONP and
LL, satisfies the following:

(i) There exists a threshold ξ(θ) ≥ 0, such that: �ŵ
i
(θ) = �yi if ξ i (θ, â(θ)) ≥

ξ(θ), and �ŵ
i
(θ) = 0 otherwise.

(ii) For all θ ∈ � \ θ̄ , â(θ) < a∗∗(θ) and â(θ̄) = a∗∗(θ̄)

(iii) â(θ) rises with θ .

This result establishes that the mechanism that maximizes the aggregated virtual
surplus is such that either �ŵ

i
(θ) = 0 or �ŵ

i
(θ) = �yi . This is due to the linearity

of the virtual surplus with respect to �wi (θ). However, characterizing the optimal
payment scheme is not possible without further assumptions. The reason stems from
the fact that different types value different payments differently. This means that a
certain type may prefer a higher ŵ

i
(θ) and a lower ŵ

i ′
(θ), while a different type may

prefer the opposite. Thus, not all types value increases in a given payment in the same
way and they do not agree on which contract provides more powerful incentives. In
fact, the condition that determines whether �ŵ

i
(θ) is zero or positive depends on

whether ξ i (θ, â(θ)) is greater or lower than the threshold ξ(θ) and both functions are
type-dependent.

This also establishes that the mechanism that maximizes the aggregated virtual
surplus is such that the optimal action is downward distorted for all types but the
highest one due to limited liability. In addition, the higher the type, the higher the
action. The reason for the inefficient action is that the principal’s cost of incentive
compatibility, which is given by H(θ)

∑
i p

i
θ (θ, a(θ))wi (θ), is an increasing function

of the action chosen due to: the complementarity between the action and the type, the
fact that MONA implies that wi (θ) is non-decreasing in i , as well as the increasing
hazard rate assumption. Thus, the principal faces a trade-off between efficiency and
informational rents, which is solved by a downward distortion of the optimal action
so as to reduce the informational rent. Because both the rent and the optimal action
are increasing in the agent’s type θ , the principal requires the first-best action from
the highest type.

The non-distortion at the top result seems counter-intuitive at first glance, since it
contradicts the fact that, under moral hazard and limited-liability, the effort is down-
ward distorted. This stems from the fact that here incentive compatibility with respect
to private information requires higher effort from higher types. Thus, if the principal
requires lower effort for the highest type, she has to lower the effort required to all
other types. In other words, the principal faces a decreasing marginal cost of effort that
trades off efficiency against the information rent; by lowering the effort requested to
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the highest type the principal lowers the information rent for that type, but also lowers
the efficiency of all other types.

Observe that if the mechanism that maximizes the aggregated virtual surplus when
constraint (7) is ignored is such that, for some θ :

∑

i

(
piθ (θ, â(θ))Uaa(θ, w(θ), â(θ))

−pia(θ, â(θ))
∑

i
piaθ (θ, â(θ))wi (θ)

)
ẇi (θ) ≥ 0, (11)

then constraint (7) must be binding when evaluated at the optimal mechanism for that
particular type, and therefore the pointwise optimal mechanism for that type cannot
be an optimum.

Observe that, assuming that p(θ, a) satisfies WSEP (i.e., pi (θ, a) = (qi −
r i )g(θ, a) + r i for all i), and after summation-by-parts, the local-second order condi-
tion can be written s follows:

(
Uaa(θ, w(θ), a(θ))gθ (θ, a(θ)) − ga(θ, a(θ))

∑n−1

i=0
Pi
aθ (θ, a(θ))�wi (θ)

)
×

∑n−1

i=0

∑

j≥i+1
(q j − r j )�ẇi (θ) ≤ 0.

The term in parenthesis is negative when we assume MONA, CP and SC. Hence,
the sufficient condition reduces to:

∑n−1

i=0

∑

j≥i+1
(q j − r j )�ẇi (θ) ≥ 0.

Observe that, in this case, the sufficient condition is independent of the action and
the agent’s type other than through the contract chosen. This greatly simplifies the
principal’s problem since all types rank the different contracts in the menu in terms of
the power of incentives exactly in the same way. This is exactly the same with what
happens when there are two outcomes.

Proposition 3 Suppose that gaaa(θ, a) ≤ 0, gaaθ (θ, a) ≥ 0, and CP, FOSD, SC
and WSEP hold. Then the optimal incentive compatible mechanism, denoted by
(w∗(θ), a∗(θ)), where w∗(θ) satisfies MONA, MONP and LL, is such that:

(i) For all θ ∈ �, ẇi∗(θ) = 0, ∀i ∈ I .
(ii) For all θ ∈ �, �wi (θ) = �wi ∈ [0,�yi ] for all θ ∈ �.
(iii) For all θ ∈ � \ θ̄ , a∗(θ) = â(θ) < a∗∗(θ) and a∗(θ̄) = â(θ̄) = a∗∗(θ̄).
(iv) For all θ ∈ � \ {θ}, U (θ) > L and U (θ) = L.

This result shows that, underWSEP, the optimal mechanism satisfies the one-size-fits
all property; that is, each type is offered the same contract.12 This is at odds with the
case in which there is either pure moral hazard or pure adverse selection.

12 Observe that separability makes the principal’s inference about the agent’s private information (θ, a)

harder since the informational content of each output is the same.
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To grasp the intuition, consider any incentive-compatible non-degenerate menu of
contracts {w(θ)}θ∈�, and assume that, instead, the principal offers the degenerate
menu with the contract that has the most powerful incentives among all incentive-
compatible contracts in the menu {w(θ)}θ∈�. Denote this contract by w∗. Because of
WSEP, all types rank contracts in terms of the power of incentives in the same way,
since the expected utility can be written as follows:

U (θ, w, a) = w0 + g(θ, a)
∑n−1

i=0
Qi�wi (θ) − c(a),

where Qi = ∑
j≥i+1(q

j − r j ).
Holding the incentive-compatible action constant, each type is at least weakly

better-off choosing the incentive-compatible contract over w∗. Due to risk neutral-
ity, this implies that the expected compensation for each type under the incentive
compatible contract is higher than, or equal to that under w∗. Thus, holding the action
constant, the principal’s payoff is higher under contract w∗ than under the corre-
sponding incentive-compatible contract. However, when a type-θ agent chooses w∗
instead of w(θ), he deviates and chooses an action accordingly. Due to the fact that
the power of incentives is higher under w∗ for each type and that p(θ, a) satisfies SC,
a type-θ agent chooses an action, under contract w∗, that is at least as large as the
one he would have chosen under w(θ). Because of this, the fact that MONP implies
that �wi ≤ �yi for all i ∈ I/{n} and FOSD, the principal’s payoff is higher under
w∗ than under w(θ). In order to minimize the informational rent, the optimal action
is downward distorted for everyone but the highest-ability agent. Thus, offering a
degenerate menu decreases informational rents and improves efficiency, since no one
chooses a strictly lower action than the one they would have chosen in the presence
of a non-degenerate incentive-compatible menu.13 In fact, the optimal action is iden-
tical to the one that maximizes the virtual surplus when WSEP is assumed, since a
degenerate menu satisfies the local second-order condition.

Faynzilberg and Kumar (2000) argue that a sufficient condition for a type-
independent mechanism in the case of risk aversion without limited liability is
that the distribution function satisfies Grossman and Hart’s (1983) linear cumula-
tive distribution (LDFC) in actions and types.14 The reason is that, in this case, the
incentive-compatible action is type-independent. Here, we show that we do not need
such an extreme form of separability in order to obtain that the optimal mechanism
satisfies the one-size-fits-all property. Also, as discussed at length by Faynzilberg and
Kumar (1997, 2000), the optimal contracting problem with moral hazard, adverse
selection and risk averse agents is extremely difficult when the technology is non-

13 It is interesting to note that, despite the fact that the moral hazard problem overcomes the adverse
selection problem, the action chosen by each type under both moral and adverse selection is different from
that under pure moral hazard. The reason stems from the incentive compatibility with regard to the agent’s
type. See Appendix B for the optimal action and contract under pure moral hazard.
14 Using the same notation as in assumptionWSEP, this means that pi (θ, a) = (qi − r i )(θ + g(a)) + r i .
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separable. In fact, the Faynzilberg and Kumar (1997, 2000) existence result requires
separability.15

As a last step, we derive the optimal type-independent contract when EMLRP is
imposed.

Proposition 4 Suppose that gaaa(θ, a) ≤ 0, gaaθ (θ, a) ≥ 0, and CP, FOSD, SC,
WSEP and EMLRP hold. Then, there exists an index i , denoted by i∗, such that:

(i) The optimal contract is an option-call contract of the form wi∗(θ) = L for all
i ≤ i∗ and wi∗(θ) = yi − y∗ for all i > i∗, where y∗ solves the following
equation:

g(¯θ, a∗(¯θ))
(
L

∑

i≤i∗
Qi +

∑

i>i∗
Qi (yi − y∗)

)
− c(a∗(¯θ)) = 0.

(ii) a∗(θ) is non-decreasing with θ .

This shows that the unique contract within the optimal mechanism is a call-option
contract that pays L if the output is lower than or equal to yi∗, and pays yi − ȳ∗
whenever the output exceeds yi∗. That is, the principal is the full residual claimant for
small outputs and the agent is the full residual claimant for high outputs. The value
of ȳ∗ is set to leave no informational rent to the lowest type; meaning that ȳ∗ is set
so that U (θ) = L and the rest receive a positive informational rent. The fact that the
optimal contract is type-independent does not imply that the expected output is the
same for each ability type. The second-best optimal action grows with the agent’s type
θ , and therefore the greater the type, the greater the expected output and the expected
compensation.

This result is due to EMLRP, since the largest output provides more information
in favor of a higher action. As a result, in the absence of constraint (7), the optimal
payment scheme would be to pay a bonus when the highest output is observed and the
limited liability otherwise.16 While this solution satisfies MONA, it does not satisfy
MONP. Hence, MONP makes this solution infeasible and forces the principal to
spread payments through outputs so as to satisfy this monotonicity constraint. Because
implementation requires offering the same contract to each type, condition SC ensures
that the incentives of all types are aligned in the sense that each type’s action increases
as any of the prizes (i.e., �wi ) rises and, conditional on any action, an increase in one
of the prizes makes the contract more attractive to each ability type. If this is lacking,
the principal could attempt sorting bymean of providing bigger prizes for intermediate
outputs, since these will provide agents with less powerful incentives.

15 Separability in each dimension was also assumed by McAfee and McMillan (1986, 1987), Baron and
Besanko (1984, 1987) and Laffont and Tirole (1986) to name a few, and separability with respect to the
uncertainty was assumed byMelumad and Reichelstein (1989). Awell-knownweakly separable technology
satisfying SC and CP used in most papers is given by pi (θ, a) = g(θ, a)qi + (1 − g(θ, a))r i , where
g(θ, a) = θβaα . This formulation was used by Lewis and Sappington (2000, 2001) to obtain their results
for the particular case in which β = 0 and n = 1. Separability always holds in the case of two outcomes as
well as for the standard additively separable technology.
16 See Balmaceda (2011) for a formal proof of this claim.
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4 Discussion

This section briefly discusses the consequences of considering different assumptions.
First, consider the case of type-dependent outside utility. The most plausible case is

the one in whichU increases with θ , since the opportunity cost of working elsewhere
should be higher for an agent with a higher type, despite the fact that this is not
observable. It can be easily shown that this would not change the result as long as the
growth rate ofU with respect to θ does not exceed the informational rent increase with
θ (i.e., U̇ (θ)). The reason stems from the fact that the optimal contract provides each
type with a utility higher than their outside option. Otherwise, the principal may not
be able to offer higher types a contract that promises, conditional on a given action,
a higher expected compensation so as to satisfy his participation constraint without
inducing lower types to claim they are a higher type. Hence, incentive compatibility
may require to shut down a subset of types. The subset that will be shut down depends
on the details of the model and it is hard to predict what would happen. However,
complementarity between the action and the type suggests that there is a force towards
shutting down low types. However, as shown by Lewis and Sappington (1989), this
would also depend on whether the outside option is convex or concave in θ . In other
words, it would also depend on how strong the countervailing forces coming from the
outside option are.

Second, consider the case ofmoving support.We know from themoral hazard litera-
ture without limited liability that moving support facilitates implementation. However,
under limited liability it is hard to see how this would help, since, as shown byMirrlees
(1975), the moving support assumption together with unbounded utility almost solve
the implementation problem. With limited liability, the principal is restricted in her
capacity to punish the agent for outputs that cannot come from a combination of a
given type with a given action. Hence, despite the fact that there are outputs that are
observable only if certain actions are chosen, which facilitates the inference problem,
the principal would not be able to punish the agent in such a way that would deter
the agent’s misbehavior when outcomes not consistent with the desired actions are
observed.

Third, in the absence of monotonicity constraints, as shown in Balmaceda (2011),
WSEP is not needed. The reason is thatMLRPwith respect to both the action and the
type, SC , and limited liability imply that it is optimal to pay a bonus only when the
highest output is observed. Given that limited liability precludes negative payments,
it is optimal to set all other payments equal to the limited liability. Because there is
only one optimal instrument that provides incentives –the payment when the highest
outcome is observed– all types prefer the contract with the highest payment. This
implies that, provided it is optimal to pay a bonus only when the highest outcome is
observed, it is not incentive-compatible to offer a menu with more than one contract.
In other words, the model behaves as if there were only two outcomes.

Finally, observe that moral hazard is crucial for the one-size-fits-all result. To see
this, lets discuss the local implementability conditions when there is adverse selection
and no moral hazard; that is, actions are contractible.
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Proposition 5 Let (w(θ), a(θ)) : � → C × A with a(θ) > 0 and w(θ) piecewise
continuously differentiable for all θ ∈ �. Then (w(θ), a(θ)) is incentive compatible
only if:

∑

i
pi (θ, a(θ))

dwi (θ)

dθ
+ da(θ)

dθ

( ∑

i
pia(θ, a(θ))wi (θ) − ca(a(θ))

)
= 0 (12)

and

∑

i
piθ (θ, a(θ))

dwi (θ)

dθ
+ da(θ)

dθ

∑

i
piaθ (θ, a(θ))wi (θ) ≥ 0. (13)

In contrast to the necessary condition in Eq. (4) in proposition (1), the necessary
condition in Eq. (12) does not require that:

∑

i
pi (θ, a(θ))

dwi (θ)

dθ
= 0.

This results from the fact that the principal can use the action profile a(θ) as another
instrument to induce truth-telling at a lower informational rent, and to deter low types
from claiming to be high types when the power of incentives is higher for contracts
tailored to high-ability types. In fact, given that the cost of the action is independent
of the agent’s type, the principal can implement the first-best action by offering a
compensation contract that pays the cost of effort in each state. The agent would be
indifferent between all actions and will choose the principal’s preferred action profile.
If the cost of the action profile were to depend on the agent’s type, this solution would
no longer be possible since, if she were to compensate each type according to the cost
of the action taken, each type would claim to be the one with the highest cost.

5 Conclusions

This paper shows that the optimal menu of contracts in the presence of limited liability,
monotonicity constraints, risk neutrality, moral hazard and adverse selection has three
highly empirically observed properties: (i) when WSEP is satisfied, the menu of
contracts exhibits the one-size-fits-all property; that is, contracts are not customized
to the agent’s privately know ability; (ii) better agents choose higher actions, are more
productive, and have a higher expected compensation (see, for instance, Lazear 2000;
Paarsch and Shearer 2000; Seiler 1984 for empirical evidence backing this result); and
(ii) when EMLRP is imposed, the unique contract is a call-option contract that makes
the agent the residual claimant when output is high, and the principal the residual
claimant when output is low.

The fact that the optimal mechanism is such that only one contract is offered has an
important practical consequence. Namely, it unburdens an econometrician studying
the consequence of optimal contracting from controlling for unobserved heterogene-
ity. In fact, Chiappori and Salanié (2002) argue that the main concern about testing
contract theory is the necessity of adequately controlling for unobserved heterogeneity.
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Mainly, they argue that if this “is not done properly, then the combination of unob-
served heterogeneity and of endogenous matching of agents to contracts is bound to
create selection biases on the parameters of interest.” While this concern is valid in
many settings, especially in those where risk-aversion plays a role, the result here
shows that this is not necessarily the main concern in a setting with risk-neutrality
and limited liability, such as financial contracting, procurement, and regulation. Thus,
when studying whether observed contracts have the properties predicted by contract
theory in a setting likely to satisfy the assumptions above, the need of estimating fixed
effectmodels is of a lesser importance than suggested byChiappori and Salanié (2002).
Furthermore, the one-size-fits-all property provides some theoretical justification for
studies concerned with the consequences of optimal contracting on performance that
use aggregated data.

Finally, the results presented in this paper provide a rationale forwhymanyfinancial
institutions offer one-size-fits-all credit card interest rates and payday loans, why
tax systems do not offer menus of tax schedules where agents are free to choose
the schedule that best suits them, and why regulatory agencies do not use menus of
contracts that adopt the form predicted by the optimal regulation theory as developed
by Laffont and Tirole (1986). In addition, it offers a rationale for taxi-driver contracts
when EMLRP is imposed, since taxicab owners are full residual claimants up to a
certain amount, which is the same for most taxis, and after that amount is reached, the
drivers become full residual claimants.

Appendix

A Proofs of moral hazard, adverse selection and limited liability

Observe that, after summation by parts, a type-θ agent’s utility rewrites as follows:

U (θ, w, a) = w0 +
∑n−1

i=0
�wi Pi (θ, a) − c(a)

where �wi ≡ wi+1 − wi ≥ 0 and Pi (θ, a) ≡ ∑n
j≥i+1 p

j (θ, a) and the Principal’s
payoff from type θ is given by:

V (θ, w, a) = y0 − w0 +
∑n−1

i=0
(�yi − �wi )Pi (θ, a)

where �yi ≡ yi+1 − yi .
Observe that FOSD with respect to a implies that, for any a′ ≥ a, V (θ, w, a′) ≥

V (θ, w, a), since �yi ≥ �wi for all i ∈ I/{n} by MONP and U (θ, w, a′) ≥
U (θ, w, a) since �wi ≥ for all i ∈ I/{n}.
Lemma 1 U (θ, w, a) is supermodular in (θ,�w, a).

Proof Recall that P(θ, a) ≡ (P1(θ, a), . . . , PI (θ, a)) and Pi (θ, a) ≡ ∑
h′≥h pi (θ, a).

Suppose that a
′
> a, then lets define h(i) as the lowest h such that Pi (θ, a

′
, a−i ) −
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Pi (θ, a, a−i ) ≥ 0; the existence of h(i) is ensured by the fact that condition SC
implies Pi (θ, a′) − Pi (θ, a) rises with h whenever a′ ≥ a. Suppose that θ

′
> θ , then

lets define h(θ) as the lowest h such that Pi (θ ′, a) − Pi (θ, a) ≥ 0; the existence of
h(θ) is ensured by the fact that condition SC implies that Pi (θ ′, a) − Pi (θ, a) rises
with h whenever a′ ≥ a.

Suppose that θ ′ > θ anda′ ≥ a, then supermodularity requires thatU (θ ′, a′,�w)−
U (θ ′, a,�w) ≥ U (θ, a′,�w) −U (θ, a,�w). Observe that:

U (θ ′, a′,�w) −U (θ ′, a,�w) ≥ U (θ, a′,�w) −U (θ, a,�w)

= �wP(θ ′, a′) − c(a′) − (�wP(θ ′, a) − c(a)) − (�wP(θ, a′) − c(a′)
− (�wP(θ, a) − c(a)))

= �w(P(θ ′, a′) − P(θ ′, a)) − �w(P(θ, a′) − P(θ, a))

=
∑

i
�wi (Pi (θ ′, a′) − Pi (θ ′, a) − (Pi (θ, a′) − Pi (θ, a))

)

≥ 0,

where the inequality follows from the fact that condition SC ensures that Pi (θ, a′) −
Pi (θ, a) rises with θ for all h, and the fact that the monotonicity constraint MONA
implies that �wi ≥ 0.

Suppose that θ ′ > θ and �wi ′ > �wi . Then supermodularity requires
that U (θ ′, a,�wi ′ ,�w−h) − U (θ ′, a,�wi ,�w−h) ≥ U (θ, a,�wi ′ ,�w−h) −
U (θ, a,�wi ,�w−h). Observe that this inequality is equal to:

(�wi ′ − �wi )Pi (θ ′, a) ≥ (�wi ′ − �wi )Pi (θ, a).

Because Pi (θ ′, a) ≥ Pi (θ, a) and �wi ′ > �wi , this holds for all i ∈ I . This proves
the claim.

The proof for a is identical to that for θ and therefore omitted for the sake of brevity.
Suppose that �w

′
h′ > �wh′ and �wi ′ > �wi . Then supermodularity requires:

U (θ, a,�w
′
h′ ,�wi ′ ,�w−hh′) −U (θ ′, a,�w

′
h′ ,�wi ,�w−hh′) ≥

U (θ, a,�wh′ ,�wi ′ ,�w−hh′) −U (θ, a,�wh′ ,�wi ,�w−hh′).

Observe that this inequality is equal to:

(�w
′
h′ − �wh′)Pi (θ, a) ≥ (�w

′
h′ − �wh′)Pi (θ, a).

Because Pi (θ, a) > 0 and �wi ′ > �wi , this holds for all i ∈ I . This proves the
claim. �
Proof of Proposition 1 We restrict attention to actions and contracts that are piecewise
continuously differentiable. The agent’s problem in terms of his revelation of type θ ′
and choice of action profile a′, or the equivalent in terms of his choice from the menu
of contracts offered by the principal, is:
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max
θ ′∈�,a′∈A

U (θ, w(θ ′), a′).

For any reported type θ ′ ∈ �, the first-order condition for a for any type-θ is given
by:

∑

i
pia(θ, a′)wi (θ ′) − ca(a

′) ≤ 0, a′ ≥ 0 ∀θ ∈ � and
(∑

i
pia(θ, a′)wi (θ ′) − ca(a

′)
)
a = 0. (A.1)

Let the solution to this problem be α(θ, θ ′), andwhen θ ′ = θ the solution is denoted by
a(θ). Supermodularity ofU (θ, w, a) in (θ, w, a) ensures its existence. Ifα(θ, θ ′) > 0,
because the objective function is jointly continuous in (θ, a), this implies that α(θ, θ ′)
is continuous in (θ, θ ′). Conditions MONA and CP ensure that, for any contract for
which �wi (θ ′) > 0 for some i , U (θ, w, a) is strictly concave in a and α(θ, θ ′) > 0
for all θ, θ ′ ∈ �. Thus, local conditions are necessary and sufficient for α(θ, θ ′) to be
the optimal effort for all θ, θ ′ ∈ �. To see this result, observe that:

U (θ, w(θ ′), a) = w0 +
∑n−1

i=0
�wi (θ ′)Pi (θ, a) − c(a)

Thus,

Ua(θ, w(θ ′), a) =
∑n−1

i=0
�wi (θ ′)Pi

a(θ, a) − ca(a)

and

Uaa(θ, w(θ ′), a) =
∑n−1

i=0
�wi (θ ′)Pi

aa(θ, a) − caa(a)

Because assumptionCP ensures that Pi (θ, a) is strictly concave ina and c(a) is convex
in a, this, together with MONA, implies that U (θ, w(θ ′), a) is strictly concave in a
for all θ, θ ′ ∈ �. Together with the Inada’s type conditions assumed in assumption
CP, this ensures that α(θ, θ ′) > 0 for all θ, θ ′ ∈ �.

Equation (A.1) is a necessary condition for optimality of α(θ, θ ′). We also need
the following to hold for all θ ∈ �,

Uaa(θ, w(θ ′), α(θ, θ ′))|θ ′=θ ≤ 0. (A.2)

It follows from the above that:

Uaa(θ, w(θ ′), α(θ, θ ′))∂α(θ, θ ′)
∂θ

+
∑

i
piaθ (θ, α(θ, θ ′))wi (θ ′) = 0 (A.3)

and

Uaa(θ, w(θ ′), α(θ, θ ′))∂α(θ, θ ′)
∂θ ′ +

∑

i
pia(θ, α(θ, θ ′))dwi (θ ′)

dθ ′ = 0 (A.4)
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Maximizing at a point of differentiability yields the first-order condition with
respect to θ ′; for almost all θ ∈ �,

∑

i
pi (θ, α(θ, θ ′))dwi (θ ′)

dθ ′

+
( ∑

i
pia(θ, α(θ, θ ′))wi (θ ′) − ca(α(θ, θ ′))

)∂α(θ, θ ′)
∂θ ′

∣
∣
∣
θ ′=θ

= 0 (A.5)

Using the first-order condition for the action profile, and assuming that α(θ, θ ′) > 0,
this can be re-written as follows: for almost all θ ∈ �,

∑

i
pi (θ, α(θ, θ ′))dwi (θ ′)

dθ ′
∣
∣
∣
θ ′=θ

= 0. (A.6)

This shows that Eq. (A.6) is necessary for implementability.
Next, we need to show that the indirect utility is concave in θ ′ when evaluated at

θ ′ = θ . That is,

∂2

∂θ ′∂θ ′U (θ, w(θ ′), α(θ, θ ′))
∣
∣
∣
θ ′=θ

≤ 0.

Because Eq. (A.6) holds as an identity in θ when evaluated at the optimal action
α(θ, θ ′), one can total differentiate (A.6) to find:

∂2

∂θ ′∂θ ′U (θ, w(θ ′), α(θ, θ ′)) + ∂2

∂θ ′∂θ
U (θ, w(θ ′), α(θ, θ ′))

∣
∣
∣
θ ′=θ

= 0. (A.7)

This implies that, for almost all θ ∈ �, the local second-order condition can be written
as:

∂2

∂θ ′∂θ
U (θ, w(θ ′), α(θ, θ ′))

∣
∣
∣
θ ′=θ

≥ 0 (A.8)

Its derivative is given by:

( ∑

i
piθ (θ, α(θ, θ ′))dwi (θ ′)

dθ ′ +
∑

i
piaθ (θ, α(θ, θ ′))wi (θ ′)∂α(θ, θ ′)

∂θ ′

+
(
Uaa(θ, w(θ ′), α(θ, θ ′))∂α(θ, θ ′)

∂θ ′ +
∑

i
pia(θ, a′)dwi (θ ′)

dθ ′
)∂α(θ, θ ′)

∂θ

+Ua(θ, w(θ ′), α(θ, θ ′))∂
2α(θ, θ ′)
∂θ ′∂θ

)∣
∣
∣
θ ′=θ

≥ 0.

Noticing thatUa(θ, w(θ ′), α(θ, θ ′)) = 0, and that the second termmultiplying ∂α(θ,θ ′)
∂θ

is zero due to Eq. (A.4) and substituting Eq. (A.3) into this, we deduce that the local
second-order condition is as follows:
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1

Uaa(θ, w(θ ′), α(θ, θ ′))

( ∑

i
piθ (θ, α(θ, θ ′))dwi (θ ′)

dθ ′ Uaa(θ, w(θ ′), α(θ, θ ′))

−
∑

i
piaθ (θ, α(θ, θ ′))wi (θ ′)

∑

i
pia(θ, α(θ, θ ′))dwi (θ ′)

dθ ′

)∣
∣
∣
θ ′=θ

≥ 0. (A.9)

Because Uaa(θ, w(θ ′), α(θ, θ ′)) ≤ 0, a necessary condition for implementability is
that the term inside the parenthesis in Eq. (A.9) is negative. This gives rise to the
equation in the main text.

Global Incentive Constraints: Suppose next that (A.1), (A.2) (A.6) and (A.9) hold.
Then, itmust be the case that all agent’s incentive-compatibility conditions hold. To see
this result, suppose by contradiction that for at least one type θ the agent’s incentive
compatibility is violated. Then there exists a type θ ′ �= θ , such that the following
holds:

∑

i
pi (θ, α(θ, θ ′))wi (θ ′) − c(α(θ, θ ′)) >

∑

i
pi (θ, a(θ))wi (θ) − c(a(θ)).

Integrating this re-writes as follows:

∫ θ

θ ′

(∑

i
pi (θ, a(s))

dwi (s)

ds
+

(∑

i
pia(θ, a(s))wi (s) − ca(a(s))

) da(s)

ds

)

ds < 0.

The local incentive constraints, together with (A.9), implies that, if θ > θ ′:
∫ θ

θ ′

( ∑

i
pi (θ, a(s))

dwi (s)

ds
+

( ∑

i
pia(θ, a(s))wi (s) − ca(a(s))

)da(s)

ds

)
ds ≥ 0,

which leads to a contradiction. If θ < θ ′, the same reasoning leads us to a similar
contradiction. This shows that Eqs. (A.1), (A.6), (A.9) are sufficient conditions for
incentive compatibility. �
Proof of Proposition 2 It readily follows from Theorem 2 inMilgrom and Segal (2002)
that:

U̇ (θ) = U (¯θ) +
∫ θ

¯θ
Pi

θ (x, a(x))�wi (x) f (x)dx,

where Pi
θ (θ, a) ≡ ∑

j≥i+1 p
j
θ (θ, a) ≥ 0, ∀i ∈ I \ {n} and the inequality is due to

FOSD.
After summation by parts the virtual surplus can be re-written as follows:

�(θ,w(θ), a(θ)) = (S(θ, a(θ)) − H(θ)
∑

i �=n
Pi

θ (θ, a(θ))�wi (θ)) f (θ) −U (¯θ).

Observe also that the agent’s first-order condition for the action re-writes as follows:

∑

i �=n
Pi
a(θ, a(θ))�wi (θ) − ca(a(θ)) = 0,
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where Pi
a(θ, a) ≡ ∑

j≥i+1 p
j
a (θ, a) ≥ 0, ∀i ∈ I \ {n} due to FOSD.

Let γ (θ) be the Lagrangemultiplier for the first-order condition for the action, δi (θ)

be the multiplier corresponding toMONA, and ηi (θ) be the multiplier corresponding
to MONP. Then, for each θ ∈ �, the first-order condition with respect to �wi

evaluated at the optimal mechanism, denoted by (ŵ(θ), â(θ)), is as follows:

− H(θ)Pi
θ (θ, â(θ)) f (θ) + γ (θ)Pi

a(θ, â(θ)) + δi (θ) − ηi (θ) = 0, (A.10)

δi (θ) ≥ 0, δi (θ)�ŵ
i
(θ) = 0, �ŵ

i
(θ) ≥ 0,∀ i ∈ I \ {n}, (A.11)

ηi (θ) ≥ 0, ηi (θ)(�yi − �ŵ
i
(θ)) = 0, �ŵ

i
(θ) ≤ �yi ,∀ i ∈ I \ {n}, (A.12)

and the one with respect to a is given by:

(
Sa(θ, â(θ)) − H(θ)

∑

i �=n
Pi

θa(θ, â(θ))�ŵ
i
(θ)

)
f (θ)

+ γ (θ)
(∑n−1

i=0
Pi
aa(θ, â(θ))�ŵ

i
(θ) − caa(â(θ))

)
= 0. (A.13)

It readily follows from Eq. (A.10) that, for all θ ∈ �, �ŵ
i
(θ) = �yi if

γ (θ)
Pi
a(θ, â(θ))

Pi
θ (θ, â(θ))

≥ H(θ) f (θ),

and �ŵ
i
(θ) = 0 otherwise. To save on notation, define ξ i (θ, a) ≡ γ (θ)

Pi
a (θ,a)

Pi
θ (θ,a)

and

ξ(θ) = H(θ) f (θ). Then, �ŵ
i
(θ) = �yi if ξ i (θ, a) ≥ ξ(θ) and �ŵ

i
(θ) = 0

otherwise.
It readily follows from (A.13) that:

γ (θ) = − Sa(θ, â(θ)) − H(θ)
∑

i �=n Pi
θa(θ, â(θ))�ŵ

i
(θ)

∑
i �=n P

i
aa(θ, â(θ))�ŵ

i
(θ) − caa(â(θ))

f (θ). (A.14)

Multiplying the first-order condition in Eq. (A.10) by �ŵ
i
(θ), summing over all i

and substituting into the first-order condition for the action, one gets that:

γ (θ)ca(â(θ)) = H(θ)
∑n−1

i=0
Pi

θ (θ, â(θ))�ŵ
i
(θ) f (θ) +

∑n−1

i=0
ηi (θ)�ŵ

i
(θ) ≥ 0.

It readily follows from this that γ (θ) > 0 for all θ ∈ � \ θ̄ , since there exists an
i ∈ I \ {n}, such that �ŵ

i
(θ) > 0; otherwise â(θ) = 0. We deduce from the FOC in

Eq. (A.13), that Sa(θ, a(θ)) > 0 for all θ ∈ � \ θ̄ and, therefore, â(θ) < a∗∗(θ) for
all θ ∈ � \ θ̄ .

Setting H(θ̄) = 0 in Eq. (A.10), we get that: γ (θ̄)Pi
a(θ̄ , â(θ̄)) + δi (θ̄) = ηi (θ̄).

Suppose that γ (θ̄) > 0, then because Pi
a(θ̄ , â(θ̄)) > 0, ηi (θ̄) > 0 for all i ∈ I \ {n}

and therefore �ŵ
i
(θ̄) = �yi for all i ∈ I \ {n}. We deduce from the FOC in Eq.
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(A.13) that â(θ̄) = a∗∗(θ̄) and, therefore, Sa(θ̄ , a(θ̄ )) = 0. It follows from Eq. (A.14),
that this implies that γ (θ̄) = 0, which is a contradiction. Suppose that γ (θ̄) = 0, then
δi (θ̄) = ηi (θ̄) = 0 for all i ∈ I \ {n}. It follows from Eq. (A.14) that Sa(θ̄ , a(θ̄ )) = 0,
and therefore â(θ̄) = a∗∗(θ̄).

Observe that condition CP, together with the following assumption that
Pi
aθ (θ,a(θ))

Pi
a (θ,a(θ))

is non-decreasing with a, ensures concavity of �(·) with respect to a. A sufficient
condition for this is that Pi

aaθ (θ, a) ≥ 0 for all i ∈ I \ {n}. In addition, notice that
the optimal action increases with θ only if conditions SC and CP, together with

the following assumption that
Pi
aθ (θ,a(θ))

Pi
a (θ,a(θ))

is non-increasing with θ hold. A sufficient

condition for this is that Pi
aθθ (θ, a) ≤ 0 for all i ∈ I \{n}, since H(θ) is non-increasing

with θ . Also, observe that the determinant of the Hessian regarding�(θ,w, a) is equal
to zero due to the linearity of the objective function with respect to �wi . �
Proof of Proposition 3 Assume that p(θ, a) satisfies WSEP, and define Qi =∑

j≥i+1(q
j − r j ). Then, it is easy to see that the principal’s problem can be writ-

ten as follows:

max
(w,a):�→C×A

∫

θ∈�

(
S(θ, a(θ))−H(θ)gθ (θ, a(θ))

∑

i �=n
Qi�wi (θ)

)
f (θ)dθ−U (θ)

subject to
∑

i �=n
Qi�ẇi (θ) ≥ 0,

ga(θ, a(θ))
∑

i �=n
Qi�wi (θ) − ca(a(θ)) = 0,

�wi (θ) ∈ [0,�yi ], ∀ i ∈ I \ {n},
U (¯θ) ≥ L.

Suppose that there exists an incentive-compatiblemechanism (w(θ), a(θ)); wewill
then show that there is another mechanism that pays the same to everyone, denoted
by w∗, and asks each agent to exert the effort a∗(θ) ≡ argmaxa∈A U (θ, w∗, a) which
increases the principal’s payoff pointwise and is incentive compatible.

Let (w(θ), a(θ)) be an incentive-compatible mechanism and let contract w∗
be the contract with w0∗ = inf{w(θ̂) : θ̂ ∈ �} and

∑
i �=n Q

i�wi∗ =
sup

{∑
i �=n Q

i�wi∗(θ̂) : θ̂ ∈ �
}
. If w0∗ > L , reducing all payments uniformly

will keep all constraints satisfied and will increase the principal’s expected payoff.
Thus, we can assume that w0∗ = L . In addition, either there is a contract in the menu
such that the sup and inf are attained, or w∗ is a limit point of {w(θ̂) : θ̂ ∈ �} due to
the piecewise continuity of w(θ̂).

Because w(θ) is incentive compatible, holding the chosen effort constant, the fol-
lowing holds:

w0(θ) +
∑n−1

i=0
�wi (θ)g(θ, a(θ)))Qi − c(a(θ))

≥ L +
∑n−1

i=0
�wi∗g(θ, a(θ))Qi − c(a(θ)), ∀θ ∈ �.
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It readily follows from this that, for all θ ∈ �,

w0(θ) − L +
∑n−1

i=0
(�wi (θ) − �wi∗)g(θ, a(θ)))Qi ≥ 0 (A.15)

We deduce from the above that expected compensation is higher under the incentive-
compatiblemechanism that under the alternativemenuw∗ whenever the agent chooses
the incentive-compatible action a(θ) . When the agent chooses the action a∗(θ) ∈
argmaxa∈A U (θ, w∗, a), we have the following: for all θ ∈ �,

y0 − w0(θ) +
∑n−1

i=0
(�y − �wi (θ))g(θ, a(θ)))Qi

−
(
y0 − L +

∑n−1

i=0
(�y − �wi∗)g(θ, a∗(θ))Qi

)

= L − w0(θ) +
∑n−1

i=0
(�y − �wi∗)(g(θ, a(θ)) − g(θ, a∗(θ)))Qi

+ g(θ, a(θ))
∑n−1

i=0
(�wi∗ − �wi (θ))Qi

≤ 0,

where the inequality follows from Eq. (A.15), the fact that FOSD, CP and SC imply
that a∗(θ) exists and a∗(θ) ≥ a(θ) and MONP implies that �y − �wi∗ ≥ 0 for all
i ∈ I . Thus, the principal’s payoff is higher when menu w∗ is offered than when any
other incentive-compatible menu is offered.

Taking into account the fact that the incentive-compatible contract that yields the
largest payoff to the principal is type-independent, the principal’s problem becomes
the following:

max
(w,a):�→C×A

∫

θ∈�

(
S(θ, a(θ)) − H(θ)gθ (θ, a(θ))

∑

i �=n
Qi�wi

)
f (θ)dθ −U (θ)

subject to

ga(θ, a(θ))
∑

i �=n
Qi�wi − ca(a(θ)) = 0,

�wi ∈ [0,�yi ], ∀ i ∈ I \ {n},
U (¯θ) ≥ L,

since for a type-independent contract trivially satisfies the ignored constraint:∑
i �=n Q

i�ẇi (θ) ≥ 0.
It is easy to see that it is optimal to set U (θ) = L .
The first-order condition for wi is given by:

( − H(θ)gθ (θ, a(θ)) + γ (θ)ga(θ, a(θ))
)
Qi + δi (θ) − ηi (θ) = 0 (A.16)

and that for a is given by
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Sa(θ, a) f (θ) − H(θ)gaθ (θ, a(θ)) f (θ)
∑

i �=n
Qi�wi

+ γ (θ)
(
gaa(θ, a(θ))

∑

i �=n
Qi�wi − caa(a(θ))

) = 0. (A.17)

It readily follows fromEq. (A.16) that, ifH(θ)gθ (θ, a(θ)) f (θ)−γ (θ)ga(θ, a(θ)) >

0, then δi (θ) > 0 for all i ∈ I \ {n}. Therefore, �wi = 0 for all i ∈ I \ {n},
which implies that a(θ) = 0 for all θ ∈ �. This can never be optimal. Thus,
H(θ)gθ (θ, a(θ)) f (θ) − γ (θ)ga(θ, a(θ)) ≤ 0. This requires that γ (θ) ≥ 0 for all
θ ∈ �.

It readily follows from this and Eq. (A.17) that:

γ (θ) = − Sa(θ, a(θ)) − H(θ)gaθ (θ, a(θ))
∑

i �=n Q
i�wi

gaa(θ, a(θ))
∑

i �=n Q
i�wi − caa(a(θ))

f (θ), ∀θ ∈ �,

(A.18)

since gaa(θ, a(θ))
∑

i �=n Q
i�wi − caa(a(θ)) < 0.

This implies that Sa(θ, a(θ)) > 0, ∀θ ∈ � \ {θ̄}. Hence, the optimal action,
denoted by a∗(θ), satisfies the following: a∗(θ) < a∗∗(θ), ∀θ ∈ � \ {θ̄}.

Suppose that H(θ)gθ (θ, a(θ)) f (θ)− γ (θ)ga(θ, a(θ)) < 0, then it readily follows
from Eq. (A.16) that ηi (θ) > 0 for all i ∈ \{n}, which implies that �wi = �yi

for all i ∈ I \ {n}. This, together with the agent’s first-order condition in Eq. (A.17),
implies that a∗(θ) = a∗∗(θ), ∀θ ∈ �. This contradicts the fact that if γ (θ) > 0, then
a∗(θ) < a∗∗(θ).

Thus, H(θ)gθ (θ, a(θ)) f (θ) − γ (θ)ga(θ, a(θ)) = 0, then ηi (θ) = δi (θ) = 0 and
�wi ∈ [0,�yi ]. This implies that γ (θ) > 0 for all θ ∈ � \ {θ̄} and γ (θ̄) = 0. Thus,
a∗(θ) < a∗∗(θ), ∀θ ∈ � \ {θ̄} and a∗(θ̄) = a∗∗(θ̄).

Observe that condition CP, together with the following assumption that gaθ (θ,a(θ))
ga(θ,a(θ))

is non-decreasing with a, ensures concavity of �(·) with respect to a. A sufficient
condition for this is that gaaθ (θ, a) ≥ 0 for all i ∈ I \ {n}. In addition, notice that
the optimal action increases with θ only if conditions SC and CP, together with the

following assumption that
Pi
aθ (θ,a(θ))

Pi
a (θ,a(θ))

is non-increasing with θ hold.

A sufficient condition for this is that Pi
aθθ (θ, a) ≤ 0 for all i ∈ I \ {n}, since H(θ)

is non-increasing with θ . Also, observe that the determinant of the Hessian regarding
�(θ,w, a) is equal to zero due to the linearity of the objective function with respect
to �wi . �
Proof of Proposition 4 Let a(θ) be the incentive-compatible action and w be a type-
independent mechanism that implements a(θ). Because under WSEP the agent’s
incentive-compatible action satisfies the following:

−ga(θ, a(θ))
∑n−1

i=0

∑i

j=0
(q j − r j )�wi − ca(a(θ)) = 0,

then, any other type-independent mechanism w̃ that satisfies the following:

∑n−1

i=0

∑i

j=0
(q j − r j )�w̃i = W ≡

∑n−1

i=0

∑i

j=0
(q j − r j )�wi (A.19)
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is also incentive-compatible. Hence, any incentive-compatible, type-independent
mechanism must solve the following:

max
w∈C

∫

θ∈�

V (θ, a(θ), w)dθ subject to (A.19).

Let λ be the Lagrange multiplier for constraint (A.19), δi the Lagrange multiplier for
MONA, and ηi the Lagrange multiplier for MONP. Then, the first-order condition is
given by:

−
∫

θ∈�

(1 − Pi (θ, a(θ))dF(θ) + λ
∑i

j=0
(q j − r j ) + δi − ηi = 0 (A.20)

Because λ is independent of i , and the first-order condition is independent of w, the
solution is bang-bang. Observe that, if δi ≥ 0, then ηi = 0 and vice versa. It is easy
to see that FOSD implies that:

δi ≥ 0 ⇔
∫
θ∈�

(1 − Pi (θ, a(θ))dF(θ)
∑i

j=0(q
j − r j )

− λ ≤ 0,

and ηi > 0 otherwise. Hence, if the ratio on the RHS is increasing in i , the optimal
contract is option-like. Observe that, for any h,

∫
θ∈�

(1 − Pi+1(θ, a(θ))dF(θ)
∑i+1

j=0(q
j − r j )

≥
∫
θ∈�

(1 − Pi (θ, a(θ))dF(θ)
∑i

j=0(q
j − r j )

.

After a few steps of simple algebra, it can be easily shown that this is equivalent to:

(qi+1 − ri+1)(1 −
∑i

j=0
r j ) + ri+1

∑i

j=0
(q j − r j ) ≤ 0.

Define li ≡ qi/r i . Notice that EMLRP implies that, for any i ∈ I \ {n}, li+1 ≥ li .
Using this notation, the last equation re-writes as follows:

r i+1((li+1 − 1)(1 −
∑i

j=0
r j ) +

∑i

j=0
r j (l j − 1)

) ≤ 0

⇔ li+1 ≤ 1 +
∑i

j=0
r j (li+1 − l j )

Because of EMLRP, the RHS and the LHS increase with i . In addition, it is easy to
check that, at i = n − 1, the RHS is equal to the LHS and is lower than the RHS at
i = 0, and the LHS increases at a rate li+2 − li+1, while the RHS does so at a rate
r i+1(li+2 − li+1). Hence, putting this together we get that the inequality above holds
for all i ∈ I \ {n}. �
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Proof of Proposition 5 The agent’s problem in terms of his revelation of type θ ′, or the
equivalent in terms of his choice from the menu of contracts offered by the principal,
is:

max
θ ′∈�

U (w(θ ′), a(θ ′), θ).

The first-order condition is given by:

(∑

i
pi (θ, a(θ ′))dwi (θ ′)

dθ ′ +
( ∑

i
pia(θ, a(θ ′))wi (θ ′)

− ca(a(θ ′))
)da(θ ′)

dθ ′
)∣
∣
∣
θ ′=θ

= 0, ∀θ ∈ �. (A.21)

Because this holds as an identity in θ , we can do a total diferentiation to find:

(∂U (θ, w(θ ′), a(θ ′))
∂θ ′∂θ ′ + ∂U (θ, w(θ ′), a(θ ′))

∂θ ′∂θ

)∣
∣
∣
θ ′=θ

= 0 (A.22)

Because the second-order condition requires the first term to be non-positive, this
implies that:

(∑

i
piθ (θ, a(θ ′))dwi (θ ′)

dθ ′ +
∑

i
piaθ (θ, e(θ ′))wi (θ ′)da(θ ′)

dθ ′
)∣
∣
∣
θ ′=θ

≥ 0. (A.23)

The missing details of the proof resemble that of proposition 1 and, for the sake of
brevity, are omitted. �

B Puremoral hazard case: not to be published

In this subsection, we analyze the case in which the agent’s ability is known to both
the principal and the agent before signing the contract, but the action is not observed
by the principal.17

Let the likelihood ratio be pi (θ,a′)
pi (θ,a)

for any a′ > a. In this section we assume the
following:

[MLRP] pi (θ,a′)
pi (θ,a)

increases with i for all θ ∈ �.

This ensures that any principal who has a payoff function increasing in output prefers
the stochastic distribution of returns induced by higher actions. We will show here

17 There is another possible benchmark in which there is no moral hazard but there is adverse selection.
However, this case has a trivial solution, which is to offer a fixed wage contract that payswi (θ) = c(a∗(θ))

in each state, where a∗(θ) is the first-best efficient action. It is easy to check that this contract implements
the first-best and induces truthful revelation of information (each type is indifferent between revealing his
true type or any other type). The reason stems from the fact that neither the cost function nor the outside
utility depends on the agent’s type θ .
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that the optimal contract under this assumption is option-like, as in Innes (1990) and
Matthews (2001).

Suppose that an agent of type θ ∈ � is faced with contract w ∈ C and chooses
action a ∈ A; his expected utility is then given by:

U (θ, w, a) ≡ p(θ, a)w − c(a). (B.1)

Observe that the linearity of the agent’s payoff function in Eq. (B.1) with respect
to payments implies that if the principal could offer a contract in which payments are
unbounded, the first-best action could be implemented by offering a contract that pays
the output minus a face value after each output realization. However, this is prevented
by the limited-liability constraint.

Contract w induces an agent of type θ to choose action a ∈ A if and only if the
following incentive-compatibility constraint holds:

U (θ, w, a) ≥ U (θ, w, a′), ∀a′ ∈ A, (B.2)

and induces him to participate if the following individually-rationality constraint
holds:

U (θ, w, a) ≥ 0. (B.3)

Let the principal’s expected utility be V (θ, w, a) ≡ p(θ, a)(y − w). Then, the
principal’s problem when faced with an agent of type θ ∈ � is the following:

max
(w,a)∈C×A

V (θ, w, a) subject to (B.2) and (B.3)

Let a(θ, w) be largest element satisfying a(θ, w) ∈ argmaxa∈A U (θ, w, a). Then,
the principal’s problem is given by:

max
w∈C

V (θ, w, a(θ, w)) subject to U (θ, w, a(θ, w)) ≥ 0. P-MH

Proposition 6 (Pure Moral Hazard) Suppose CP and MLRP hold. Then,

(i) The optimal contract is a call-option contract of the form wi (θ) = max{0, yi −
ȳ(θ)}, and the optimal action satisfies am(θ) ≤ a∗(θ); and

(ii) If SC holds, am(θ) rises with θ and ȳ(θ) falls with θ .

Proof Define the call-option contract with face value ȳ by oi (ȳ) = max{yi −
ȳ, 0}, ∀i ∈ I . Under this contract, the principal’s payoff is given by di (ȳ) =
yi − oi (ȳ) = min{yi , ȳ}. In addition, consider any other contract w inducing a return
to the principal equal to zi = yi − wi . Then, the following lemma, which is closely
related to Lemma 1 in Matthews (2001), shows that p(θ, a)d ′ and p(θ, a)z′ single-
cross at the action a satisfying dp(θ, a) = zp(θ, a), because the payments specified
by d are at a maximum for low-output realizations and at a minimum for high-output
realizations, given monotonicity constraints.
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Lemma 2 Suppose that MLRP holds. Then, for any (θ, a) ∈ � × A and w ∈ C, and
a call-option contract o �= w, if p(θ, a)o = p(θ, a)w, then:

p(θ, a′)o ≶ p(θ, a′)w for a′ ≷ a

Proof Let v = z − d. Routine algebra proves the result if, for all a′ ∈ A, the equality
vp(θ, a) = 0 implies that v(p(θ, a′) − p(θ, a)) > 0,∀a′ > a, and v(p(θ, a′) −
p(θ, a)) < 0,∀a′ < a.18 Let vp(θ, a) = 0. Since v �= 0 and p(θ, a) has full support,
v takes positive and negative values. Let k be the largest i such that vi < 0. Because
o is a call-option contract and w satisfies LL, MONA and MONP, vi ≤ 0 for all
i ≤ k and vi > 0 for all i > k. Thus, because v has a positive component (since
vp(θ, a) = 0), MLRP and vp(θ, a) = 0 implies the following for all a′ > a:

v(p(θ, a′) − p(θ, a)) =
∑n

i=0

( pi (θ, a′)
pi (θ, a)

− 1
)
pi (θ, a)vi

>
∑k

i=0

( pk(θ, a′)
pk(θ, a)

− 1
)
pi (θ, a)vi

+
∑n

i=k+1

( pk(θ, a′)
pk(θ, a)

− 1
)
pi (θ, a)vi

=
( pk(θ, a′)
pk(θ, a)

− 1
) ∑n

i=0
pi (θ, a)vi

=
( pk(θ, a′)
pk(θ, a)

− 1
)
vp(θ, a) = 0.

The argument is identical for all a′ < a. �
Lemma 3 Suppose that a(θ, w) ∈ argmaxa∈A U (θ, w, a), and that a(θ ′, w) ∈
argmaxa∈A U (θ ′, w, a), with a(θ, w) in the interior of A. Then, (i) a(θ ′, w) > a(θ, w)

if θ ′ > θ , and a(θ ′, w) < a(θ, w) if θ ′ < θ ; and (ii) a(θ, w) > a(θ, w) if
�wi ′ > �wi , and a(θ, w) < a(θ, w) if �wi ′ < �wi .

Proof The proof follows directly from Lemma 1 and theorem 3 in Edlin and Shannon
(1998). �
This lemma establishes that the agent’s chosen action rises with the agent’s type as
well as with any bonus �wi .

Lemma 4 A non-trivial optimal contract exists.

Proof The proof here follows closely the one in Poblete and Spulber (2012). Let
a(o) ∈ argmaxa∈A U (θ, a, o), a(w) ∈ argmaxa∈A U (θ, w, a), and the call-option
contract o be such that U (θ, a(w), o) = U (θ, a(w),w). Then, the single-crossing

18 As z ∈ C, zp(θ, a) ≤ yp(θ, a). In addition, dp(θ, a) increases continuously with ȳ from −∞ to
yp(θ, a) as ȳ ranges from −∞ to yI . Thus, for each (w, a) ∈ C × A, a unique debt contract is defined by
vp(θ, a) = 0.
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property of U (θ, w, a) in Lemma 2 implies that: (i) a(o) > a(w); (ii) Let-
ting U (θ, a(w),w) = maxa∈A U (θ, w, a′), single-crossing at a(w) implies that
U (θ, a(o), o) ≥ U (θ, a(w),w); and (iii) V (θ, a(o), o) > V (θ, a(w),w). This fol-
lows from the fact that a(o) > a(w) implies that V (θ, a(w),w) = V (θ, a(w), o) <

V (θ, a(o), o), where the last inequality follows from MLRP and the fact that yi − oi

is increasing with h. From (ii) and (iii) contract o yields greater net benefits to the
principal than contract w, and it satisfies the agent’s participation constraint. Hence,
if an optimal contract exists, it must be a call-option contract.

Observe that the agent’s utility under a call-option contract U (θ, a(ȳ), o(ȳ)) is
continuous and decreasing in ȳ and supermodular in (θ, a,−ȳ), as shown in Lemma 1.
Let A(ȳ) = {a ∈ A|a ∈ argmaxx∈A U (θ, x, o(ȳ))}. It is easy to check that the set
A(ȳ) is closed and bounded. Furthermore, let a(ȳ) be the largest element in A(ȳ).
Then monotone comparative statics show that a(ȳ) is decreasing with ȳ, because
boundedness and monotonicity a(ȳ) is continuous except at countable number points.

The expected payoff of the principal is given by V (θ, a, o(ȳ)) = ∑
i p

i (θ, a)

min{yi , ȳ}. Observe that V (θ, a(ȳ), o(ȳ)) is discontinuous only if a(ȳ) is discontin-
uous. Because a(ȳ) is decreasing, V (θ, a(ȳ), o(ȳ)) is decreasing at any discontinuity
point. Let Ṽ (θ, a(ȳ), o(ȳ)) = supȳ′≤ȳ V (θ, a(ȳ′), o(ȳ)). Hence, Ṽ (θ, a(ȳ), o(ȳ)) is
non-decreasing and continuous in ȳ because V (θ, a(ȳ), o(ȳ)) is decreasing at any
discontinuity point. Consider now the following problem:

max
ȳ

Ṽ (θ, a(ȳ), o(ȳ)) subject to U (θ, a(ȳ), o(ȳ)) ≥ 0

Clearly, this has a solution, since we are maximizing a continuous function on a closed
set and we can restrict ȳ to be lower than a finite number which makes the set compact,
since U (θ, a(ȳ), o(ȳ)) converges to 0 as ȳ grows. Let the solution to this problem be
Ṽ

∗
, and ȳ∗ the lowest value ȳ such that Ṽ (θ, a(ȳ), o(ȳ)) = Ṽ

∗
(θ, a(ȳ), o(ȳ)). Notice

that ȳ∗ is well defined since Ṽ (θ, a(ȳ), o(ȳ)) is continuous in ȳ.
The claim to be proven is that a call-option contract with face value ȳ∗ implements

Ṽ
∗
. This means that there exists a sequence an ∈ A(ȳn) with limn→∞ ȳn → y∗ and

limn→∞ an → a∗, such that limn→∞ Ṽ (θ, an, o) → Ṽ
∗
. If ȳ∗ cannot implement Ṽ

∗
,

then a∗ /∈ A(ȳ∗). This means that there exists ã ∈ A(ȳ∗), such that U (θ, ã, o(ȳ∗)) >

U (θ, a∗, o(ȳ∗)). SinceU (θ, a, o(ȳ)) is continuous in both arguments (a, ȳ); by pick-
ing n sufficiently large this also means that U (θ, ã, o(ȳn)) > U (θ, an, o(ȳn)), which
is contradiction. Finally, suppose that the contract with face value ȳ∗ is not optimal.
Then, there exists ȳ such that V (θ, a(ȳ), o(ȳ)) > Ṽ

∗
and U (θ, a(ȳ), o(ȳ)) ≥ 0. But

this implies that Ṽ (θ, a(ȳ), o(ȳ)) ≥ V (θ, a(ȳ), o(ȳ)) > Ṽ (θ, a(ȳ∗), o(ȳ∗)), which
contradicts the optimality of ȳ∗ in the modified problem. �

�
The optimal contract is a call-option contract that makes the principal the full

residual claimant for output realizations lower than the face value ȳ(θ) by paying
the agent nothing, and makes the agent the full residual claimant for high output
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realizations by paying him the output minus the face value equal to ȳ(θ).19 This
yields the result in Innes (1990).

Because the agent is risk neutral, a call-option contract solves the standard principal-
agent problem in equation (P-MH). The reason has to dowith the fact that a risk-neutral
principal and agent only care about the expected payment. Because conditional on a
given action a, a call-option contract always yields to the principal a lower expected
cost than a non-call-option contract for action a, a call-option contract either yields a
greater expected payoff conditional on action a being chosen, or it induces an action
a′ ≥ a at the same expected cost for the principal as a, which rises his expected
payoff due to that MLRP implies FOSD. Hence, a call-option contract is optimal for
the principal.

The optimal contract is different for each type and better types are offered more
powerful incentives and therefore choose higher actions. However, the optimal action
is downward distorted with respect to the first-best, since the principal wants to lower
the agent’s limited-liability rent bymeans ofmaking an efficient use of the information
or monitoring system.

It is interesting to study how the limited-liability rent changes with the agent’s
ability type. Using the Envelope theorem one can show that the limited-liability rent
varies with θ as follows:

∑

i
piθ (θ, am(θ))max{yi − ȳ(θ), 0} −

∑

i
pi (θ, am(θ))

∂ max{yi − ȳ(θ), 0}
∂θ

.

The first term comprises the increase in the limited-liability rent due to an increase
in the agent’s type when the contract is held constant. This is due to the fact that the
return distribution satisfiesMLRP with respect to the agent’s ability parameter θ , and
the contract satisfiesMONA. The second term consists of the increase in the limited-
liability rent due to the effect that a change in θ has on the optimal face value of the
call-option contract. Supermodularity in (θ, a) implies that ȳ(θ) decreases with θ . The
reason stems from the following: on the one hand, an increase in θ improves the output
distribution in the sense of FOSD, which, ceteris paribus, rises the principal’s payoff;
on the other hand, an increase in the face value ȳ reduces the optimal action and, since
the marginal return to the action increases with the agent’s type, the principal chooses
a lower ȳ as θ rises. Hence, the limited-liability rent rises with θ . This implies that if
types were unobservable, then every type will claim to be the highest type. Thus, the
optimal contracts under pure moral hazard are not implementable under moral hazard
and adverse selection.
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