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CONTRACTION OF HOROSPHERE-CONVEX

HYPERSURFACES BY POWERS OF THE MEAN

CURVATURE IN THE HYPERBOLIC SPACE

Shunzi Guo, Guanghan Li, and Chuanxi Wu

Abstract. This paper concerns the evolution of a closed hypersurface of
the hyperbolic space, convex by horospheres, in direction of its inner unit
normal vector, where the speed equals a positive power β of the positive
mean curvature. It is shown that the flow exists on a finite maximal inter-
val, convexity by horospheres is preserved and the hypersurfaces shrink
down to a single point as the final time is approached.

1. Introduction and main result

Let Mn be a smooth, compact oriented manifold of dimension n ≥ 2 without
boundary, (Nn+1, ḡ) be an (n+1)-dimensional complete Riemannian manifold,
and X0 : Mn → Nn+1 a smooth immersion. Consider a one-parameter family
of smooth immersions: Xt : Mn → Nn+1. The hypersurfaces Mt = Xt(M

n)
are said to move by powers of the mean curvature, if Xt = X(·, t) satisfies the
evolution equation

(1.1)

{ ∂
∂t
X(p, t) = −Hβ (p, t) · ν (p, t) , p ∈ Mn,

X(·, 0) = X0(·),
where β > 0, ν (p, t) is the outer unit normal to Mt at X (p, t) in the tangent
space TNn+1, and H (p, t) is the trace of the Weingarten map W−ν (p, t) =
−Wν (p, t) on the tangent space TMn induced by Xt. Throughout the paper,
we will call such a flow Hβ-flow.

For β = 1, this flow is the well-known mean curvature flow, Huisken [14]
showed that, when Nn+1 is the Euclidean space R

n+1, any closed convex hy-
persurface M0 evolving by mean curvature flow contracts to a point in finite
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time, becoming spherical in shape as the limit is approached. In [15], he ex-
tended this result to compact hypersurfaces in general Riemannian manifolds
with suitable bounds on curvature. In fact, the speed of the mean curvature
flow can be viewed as a symmetric function of the principal curvature with
homogeneous degree one, the results of [14] and [15] have been generalized to
a class of fully nonlinear parabolic equations of degree one in the Euclidean
space (or some Riemannian manifolds), see [1], [2], [8], [9], and [19]. If one
considers the flows for which the speed has other positive degrees of homogene-
ity in the principal curvature it is more difficult to prove corresponding results
for the flows. In some case it is known that if the initial hypersurface has an
appropriate pinching condition on the principal curvature (unless the case the
dimension of the hypersurface is two, see [3], [5] and [23]), then the evolving
hyersurfaces converge to a single point (see [4], [8] and [26]).

The present flow (1.1) has been considered by Schulze in [24] when Nn+1 is
the Euclidean space for M0 of strictly positive mean curvature hypersurface, he
proved that (1.1) has a unique, smooth solution on a finite time interval [0, T )
and Mt converges to a point as t → T if M0 is strictly convex for 0 < β < 1 or
M0 is weakly convex for β ≥ 1. Here “weakly convex” and “strictly convex”,
resp., are defined as all the eigenvalues of Weingarten map being positive and
nonnegative, resp.. But some counterexamples show that in general the evolv-
ing hypersurfaces may not become spherical in shape as the limit is approached.

However, the result of [24] does not closely relate to the ambient space,
we face the challenges of extending the above result to hypersurface to more
general ambient spaces. But not every Riemnnian manifold is well suited to
deal with the situation analogous to the setting in the Euclidean space. The
present paper wants to consider the case that the ambient space is a simply
connected Riemannian manifold of constant sectional curvature κ(< 0) whose
flow behaves quite differently compared to the Euclidean space to a certain
extent.

Set a =
√

|κ| and Nn+1
κ be isometric to the hyperbolic space Hn+1

κ of radius
1/a:

H
n+1
κ := {p ∈ Ln+2 : 〈p, p〉 = − 1

a2
}.

Here (Ln+2, 〈·, ·〉) denotes the (n + 2)-dimensional Lorentz-Minkowski space.
To consider the flow (1.1) in Nn+1

κ is then equivalent to considering the flow
(1.1) in H

n+1
κ . Indeed, in order to formulate the main result of this work, it is

necessary to provide some definitions as in [6, 7] as follows.

Definition 1.1. A horosphere H of Hn+1
κ is the limit of a geodesic sphere of

H
n+1
κ as its center goes to the infinity along a fixed geodesic ray.

Definition 1.2. An horoball H is the convex domain whose boundary is a
horosphere.

Definition 1.3. A hypersurfaceM of Hn+1
κ is said to be convex by horospheres

(h-convex for short) if it bounds a domain Ω satisfying that for every p ∈ M =
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∂Ω, there is a horosphere H of Hn+1
κ through p such that Ω is contained in H

of Hn+1
κ bounded by H.

Remark 1.4. In fact, Currier in [10] showed that h-convex immersions of smooth
compact hypersurfaces are embedded spheres, and Borisenko and Miquel in [6]
showed that horosphere H of Hn+1

κ is weakly (strictly) h-convex if and only
if all its principal curvatures are (strictly) bounded from below by a at each
point.

Now our main result which is an analogue of that on the flow (1.1) of convex
hypersurface of the Euclidean space in [24] can be stated by the following
theorem.

Theorem 1.5. Let X0 : Mn → H
n+1
κ be a smooth immersion with the mean

curvature strictly bounded from below by na, that is H(M0) > na. Then there
exists a unique, smooth solution to the flow (1.1) on a finite maximal time
interval [0, T ) and T is between 1

β+1 (Hmax(M0))
−(β+1) and n

β+1(Hmin(M0) −
na)−(β+1). In the case that

i) M0 is strictly h-convex for 0 < β < 1,
ii) M0 is weakly h-convex for β ≥ 1,

then the hypersurfaces Mt are strictly h-convex for all t > 0 and they contract
to a point in H

n+1
κ as t approaches T .

Remark 1.6. The hypothesis of the mean curvature on the initial hypersurface
M0 in H

n+1
κ is essential to ensure short-time existence like the Euclidean case

in [24], and the h-convexity we work with for M0 is the same as that of [7] in
order to ensure that the initial hypersurface is sufficiently positively curved to
overcome the obstructions from the negative curvature imposed by the ambient
spaces.

About techniques used to prove the above theorem, this paper perturbs the
second fundamental form by adding a suitable multiple of the induced metric
and follows the ideas introduced in the Euclidean case [24]. The organization
of the paper is as follows: Section 2 introduces the notation for the paper and
summarizes preliminary results employed in the rest of the paper. Section 3
gives the proof of short-time existence and uniqueness of solutions, and derives
the induced evolution equations for some geometric quantities and the corre-
sponding turbulent quantities. Using these, Section 4 deduces that solutions of
the flow (1.1) remain h-convex as long as it exists. Section 5 shows the lower
and upper bounds on the maximal time, and establishes the long time existence
for solutions of the flow (1.1). Section 6 proves that these hypersurfaces shrink
down to a single point in H

n+1
κ as the final time is approached.

2. Notation and preliminary results

From now on, we use the same notation as in [7, 14, 24] in local coordinates
{xi}, 1 ≤ i ≤ n, near p ∈ Mn and {yα}, 0 ≤ α, β ≤ n, near F (p) ∈ H

n+1
κ .
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Denote all quantities on H
n+1
κ by a bar, for example by ḡ = {ḡαβ} the met-

ric, by ḡ−1 = {ḡαβ} the inverse of the metric, by ∇̄ the covariant derivative,
by ∆̄ the rough Laplacian, and by R̄ = {R̄αβγδ} the Riemann curvature ten-
sor. Components are sometimes taken with respect to the tangent vector fields
∂α(=

∂
∂yα ) associated with a local coordinate {yα} and sometimes with respect

to a moving orthonormal frame eα, where ḡ(eα, eβ) = δαβ . The corresponding
geometric quantities on Mn will be denoted by g the induced metric, by g−1

the inverse of g, ∇, ∆, R, ∂i and ei the covariant derivative, the rough Lapla-
cian, the curvature tensor, the natural frame fields and a moving orthonormal
frame field, respectively. Then further important quantities are the second fun-
damental form A(p) = {hij} and the Weingarten map W = {gikhkj} = {hi

j} as
a symmetric operator and a self-adjoint operator respectively. The eigenvalues
λ1(p) ≤ · · · ≤ λn(p) of W are called the principal curvatures of X(Mn) at
X(p). The mean curvature is given by

H := trgW = hi
i =

n
∑

i=1

λi,

the squared norm of the second fundamental form by

∣

∣A
∣

∣

2
:= trg(W

t
W ) = hi

jh
j
i = hijhij =

n
∑

i=1

λ2
i ,

and the Gauß-Kronecker curvature by

K := det(W ) = det{hi
j} =

det{hij}
det{gij}

=

n
∏

i=1

λi.

More generally, the mixed mean curvatures Er , 1 ≤ r ≤ n, are given by the
elementary symmetric functions of the λi

Er(λ) =
∑

1≤i1<···<ir≤n

λi1 · · ·λir =
1

r!

∑

i1,...,ir

λi1 · · ·λir for λ=(λ1, . . . , λn) ∈ R
n,

and their quotients are

Qr(λ) =
Er(λ)

Er−1(λ)
for λ ∈ Γr−1,

where E0 ≡ 1, and El ≡ 0, if r > n, Γr := {λ ∈ R
n | Ei > 0, i = 1, . . . , r}.

Denote the sum of all terms in Er(λ) not containing the factor λi by Er;i(λ).
Then the following identities for Er and the properties on the quotients Qr

were proved by Huisken and Sinestrari in [16].

Lemma 2.1. For any r ∈ {1, . . . , n}, i ∈ {1, . . . , n}, and λ ∈ R
n,

∂Er+1

∂λi

(λ) = Er;i(λ),(2.1)

Er+1(λ) = Er+1;i(λ) + λiEr;i(λ),(2.2)
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n
∑

i=1

Er;i(λ) = (n− r)Er(λ),(2.3)

n
∑

i=1

λiEr;i(λ) = (r + 1)Er+1(λ),(2.4)

n
∑

i=1

λ2
iEr;i(λ) = E1(λ)Er+1(λ)− (r + 2)Er+2(λ).(2.5)

Lemma 2.2. i) Qr+1 is concave on Γr for r ∈ {0, . . . , n− 1}.
ii) ∂Qr

∂λi
(λ) > 0 on Γr for i ∈ {1, . . . , n− 1} and r ∈ {2, . . . , n− 1}.

Consider the functions:

sκ(x) =
sinh(

√

|κ|x)
√

|κ|
=

sinh(ax)

a
, cκ(r) = s′κ(x),

taκ(x) =
sκ(x)

cκ(x)
, coκ(x) =

1

taκ(x)
.

Denote rp the function “distance to p” in H
n+1
κ and use the notation ∂rp =

∇̄rp. and denote the component of ∂rp by ∂⊤
rp

tangent to Mt, which satisfies

∂rp = ∇(rp|Mn).
Hadamard’s theorem in the hyperbolic space implies that a hypersurface

bounds a strictly convex body makes it possible to represent it as a graph over
a geodesic sphere. In our case, Mn is a strictly convex hypersurface in H

n+1
κ ,

consider geodesic polar coordinates centered at p. Then the metric takes the
following representation:

(2.6) ḡ = dr2 + s2κ(r)σijdu
iduj ,

where σ := σijdu
iduj is the canonical metric of the unit sphere S

n in TpH
n+1
κ .

Consider this embedding

Xt : S
n → Mn →֒ H

n+1
κ , t ∈ [0, T ).

Let D be the Levi-Civita connection on S
n. For each t, regard rp as a function

on S
n. Then a local coordinate vector field of Mt has the following representa-

tion

(2.7) Xt∗(
∂

∂ui
) = Dir(u)∂rp + sκ(r(u))ei, 1 ≤ i ≤ n,

and the outward unit normal vector of Mt can be expressed as

(2.8) ν =
1

|ξ|
(

sκ(rt)∂rp −
n
∑

i=1

Dirtei

)

with

(2.9) |ξ| =
√

s2κ(rt) + |Drt|2.
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After a standard computation, the second fundamental form of Mt can be
expressed as

(2.10) hij = − 1

|ξ|
(

sκ(rt)DjDirt − s2κ(rt)cκ(rt)σij − 2cκ(rt)DirtDjrt

)

,

and the metric gij induced from H
n+1
κ is

(2.11) gij = DirDjr + s2κ(r)σij .

From this, the inverse metric can be expressed as

(2.12) gij =
1

s2κ(r)

(

σij − 1

|ξ|2
DirDjr

)

,

where (σij)=(σij)
−1 and Dir = σijDjr. Then equations (2.10) and (2.12)

imply that

(2.13) H = − 1

|ξ| sκ(r)
(

∆Sr −
1

|ξ|2
∇2

Sr(Dr,Dr)
)

+
cκ(r)

|ξ|
(

n+
|Dr|2

|ξ|2
)

.

Using (2.11) and (2.12) the Christoffel symbols have the expression:

Γk
ij =

1

s2κ(r)

[

DiDjrDlr + sκ(r)cκ(r)
(

Dirσlj +Djrσil −Dlrσij

)

]

(2.14)

·
(

σkl − 1

|ξ|2
DkrDlr

)

.

Finally, define the inner radius ρ− by

ρ−(t) = sup{r : Br(q) is enclosed by Mt for some q ∈ H
n+1
κ },

where Br(q) is the geodesic ball of radius r with centered at q. The following
well-known result in H

n+1
κ will be applied in the later sections.

Lemma 2.3. Let Ω be a compact h-convex domain, o the center of an inball
of Ω (the largest ball enclosed by of Ω), ρ− its inner radius. Furthermore let
τ := taκ(

aρ
−

2 ), then

i) the maximal distance max d(o, ∂Ω) between o and the points in ∂Ω sat-
isfies the inequality

maxd(o, ∂Ω) ≤ ρ− + a
ln(1 +

√
τ )

1 + τ
< ρ− + a ln 2.

ii) For any interior point p of Ω,
〈

ν, ∂rp
〉

≥ ataκ(dist((p, ∂Ω)), where dist

denotes the distance in the ambient space H
n+1
κ .

Proof. See ([6], Theorem 3.1) for the proof. �
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3. Short time existence and evolution equations

This section first considers short time existence for the initial value problem
(1.1).

Theorem 3.1. Let X0 : Mn → H
n+1
κ be a smooth closed immersion with the

mean curvature strictly bounded from below by na everywhere. Then there exists
a unique smooth solution Xt of problem (1.1), defined on some time interval
[0, T ), with T > 0.

Proof. In fact, if f is any symmetric function of the curvatures λi, i ∈{1, . . . , n},
it is well-known (see e.g. Theorem 3.1 of [17]) that a flow of the form

(3.1)
∂

∂t
X(p, t) = −f (p, t) · ν (p, t)

is parabolic on a given hypersurface with the condition ∂f
∂λi

> 0 for all i holds
everywhere. Then, given any initial immersion X0 satisfying the parabolicity
assumption, standard techniques ensure the local existence and uniqueness of
a solution to (1.1) with initial value X0. In our case f = Hβ and the condition
reads

(3.2)
∂Hβ

∂λi

= βHβ−1 ∂H

∂λi

= βHβ−1 > 0,

which is satisfied the condition of Theorem 3.1 of [17]. �

The rest of this section is devoted to compute the induced evolution equa-
tions of geometric quantities under the flow (1.1). The derivation of some
induced evolution equations can follow the Theorem 3.15 in [1], for example,
using Simon’s identity for the rough Laplacian of the second fundamental form
(see [25]), the evolution equation for the second fundamental form of evolving
hypersurfaces by Hβ-flow in an arbitrary background space can be written as
a reaction-diffusion equation:

∂thij = βHβ−1∆hij + β(β − 1)Hβ−2∇iH∇jH − (β + 1)Hβhk
i hkj

+ βHβ−1
∣

∣A
∣

∣

2
hij + (1 − β)HβR̄0i0j + βHβ−1hijR̄0k0

k

− βHβ−1hjkR̄
k
li
l − βHβ−1hikR̄

k
lj
l + 2βHβ−1hklR̄

k
i
l
j

− βHβ−1∇̄jR̄0ki
k − βHβ−1∇̄kR̄0ij

k,

(3.3)

where ν is arranged to be e0. Also note that in our case where the background
space is a hyperbolic space, the ambient space is locally symmetric (∇̄R̄ = 0)
and the Riemann curvature tensor takes the form

(3.4) R̄αβγδ = −a2 (ḡαγ ḡβδ − ḡαδḡβγ) .

Then, compared with the Euclidean case [24], extra terms of following equations
involving the second fundament form are now due to the background curvature.
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Theorem 3.2. On any solution Mt of (1.1) the following hold:

∂tgij = −2Hβhij ,(3.5)

∂tν = βHβ−1∇H,(3.6)

∂t(dµt) = −Hβ+1dµt,(3.7)

∂thij = βHβ−1∆hij + β(β − 1)Hβ−2∇iH∇jH − (β + 1)Hβhk
i hkj(3.8)

+ β
(

∣

∣A
∣

∣

2
+ na2

)

Hβ−1hij − a2(β + 1)Hβgij ,

∂th
j
i = βHβ−1∆hj

i + β(β − 1)Hβ−2∇iH∇jH − (β − 1)Hβhk
i h

j
k(3.9)

+ β
(

∣

∣A
∣

∣

2
+ na2

)

Hβ−1hj
i − a2(β + 1)Hβδji ,

∂tH = βHβ−1∆H + β(β − 1)Hβ−2|∇H |2 +
(

∣

∣A
∣

∣

2 − na2
)

Hβ ,(3.10)

∂tH
l = βHβ−1∆H l + lβ(β − l)Hβ+l−3|∇H |2(3.11)

+ l
(

∣

∣A
∣

∣

2 − na2
)

Hβ+l−1, l ∈ R.

For the proof of the main theorem, as mentioned in the introduction, it is
convenient for us to define some suitable perturbations of the second funda-
mental form. Define the turbulent second fundamental form

(3.12) h̃ij = hij − agij .

Denote Ã (resp. W̃ ) the matrix whose entries are h̃ij (resp. h̃
i
j). Then λ̃i given

by

(3.13) λ̃i = λi − a, i ∈ 1, . . . , n,

are the eigenvalues of W̃ . Denote the elementary symmetric functions of the
λ̃i by Ẽr, 1 ≤ r ≤ n. From the definition it follows that

H̃ = trgW̃ = Ẽ1 =
n
∑

i=1

λ̃i = H − na,

∣

∣Ã
∣

∣

2
= trg(W̃

t
W̃ ) =

n
∑

i=1

λ̃2
i =

∣

∣A
∣

∣

2
+ na2 − 2Ha,

and their quotients

Q̃r(λ̃) =
Ẽr(λ̃)

Ẽr−1(λ̃)
for λ̃ ∈ Γ̃r−1,

where Γ̃r := {λ̃ ∈ R
n | Ẽi > 0, i = 1, . . . , r}, if Ẽr is considered to be a function

of λ̃. It is easy to check that

∇kh̃ij = ∇khij ,

and therefore the Codazzi equations hold for ∇kh̃ij .
The following theorem is easily obtained from Theorem 3.2.
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Theorem 3.3. On any solution Mt of (1.1) the following hold:

∂th̃ij = βHβ−1∆h̃ij + β(β − 1)Hβ−2∇iH̃∇jH̃ − (β + 1)Hβhk
i h̃kj(3.14)

+ βHβ−1
∣

∣Ã
∣

∣

2
hij + a(β + 1)Hβh̃ij ,

∂th̃
j
i = βHβ−1∆h̃j

i + β(β − 1)Hβ−2∇iH̃∇jH̃ − (β − 1)Hβhk
i h̃

j
k(3.15)

+ β
∣

∣Ã
∣

∣

2
Hβ−1hj

i + a(β + 1)Hβh̃j
i ,

∂tH̃ = βHβ−1∆H̃ + β(β − 1)Hβ−2|∇H̃ |2 +Hβ
∣

∣Ã
∣

∣

2
+ 2aHβH̃,(3.16)

∂tH̃
l = βHβ−1∆H̃ l + lβ

[

(β − 1)H̃ − (l − 1)H
]

H̃ l−2Hβ−2|∇H |2(3.17)

+ lHβH̃ l−1
∣

∣Ã
∣

∣

2
+ 2alHβH̃ l, l ∈ R.

Furthermore, the quotients Q̃r(λ̃) satisfy the following evolution equation
which is an extension of ([24] Lemma 2.4) to hypersurfaces of (1.1) in H

n+1
κ :

Lemma 3.4. For β ≥ 1 let X : Mn × [0, T ) → H
n+1
κ be an Hβ-flow with

Ẽr−1 (p, t) > 0, Ẽr+1 (p, t) ≥ 0 for all (p, t) ∈ Mn × [0, T ).

Then

(3.18) ∂tQ̃r ≥ βHβ−1∆Q̃r +Hβ−1
[

β
∣

∣Ã
∣

∣

2 − r(β − 1)HQ̃r + 2aH
]

Q̃r.

Proof. As in [24], from the evolving equation (3.15) of h̃j
i , using

∂tQ̃r =
∂Q̃r

∂h̃j
i

(

∂th̃
j
i

)

and ∆Q̃r =
∂Q̃r

∂h̃j
i

∆h̃j
i +

∂2Q̃r

∂h̃j
i∂h̃

q
p

∇kh̃j
i∇kh̃

q
p

it is easy to calculate the derivative of Q̃r:

∂tQ̃r = βHβ−1∆Q̃r − βHβ−1 ∂2Q̃r

∂h̃j
i∂h̃

q
p

∇kh̃j
i∇kh̃

q
p

+ β(β − 1)Hβ−2 ∂Q̃r

∂h̃j
i

∇iH̃∇jH̃ − (β − 1)Hβ ∂Q̃r

∂h̃j
i

hk
i h̃

j
k

+ a(β + 1)Hβ ∂Q̃r

∂h̃j
i

h̃j
i + βHβ−1

∣

∣Ã
∣

∣

2 ∂Q̃r

∂h̃j
i

hj
i .

Choosing a frame {ei} which diagonalises W̃ , the fifth and the sixth term
appearing here can be simplified using the following simple calculation with
the aid of Lemma 2.1:

∂Q̃r

∂h̃j
i

hk
i h̃

j
k =

∂Q̃r

∂h̃j
i

(

h̃k
i + aδki

)

h̃j
k

=

n
∑

i=1

∂Q̃r

∂λ̃i

λ̃2
i + a

∂Q̃r

∂h̃j
i

h̃j
i
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=
1

Ẽ2
r−1

(

Ẽr−1

n
∑

i=1

Ẽr−1,iλ̃
2
i − Ẽr

n
∑

i=1

Ẽr−2,iλ̃
2
i

)

+ aQ̃r

= −(r + 1)
Ẽr+1

Ẽr−1

+ rQ̃r + aQ̃r

and

∂Q̃r

∂h̃j
i

h̃j
i =

n
∑

i=1

∂Q̃r

∂λ̃i

λ̃i

=
1

Ẽ2
r−1

(

Ẽr−1

n
∑

i=1

Ẽr−1,iλ̃i − Ẽr

n
∑

i=1

Ẽr−2,iλ̃i

)

= Q̃r.

In view of the Lemma 2.2, the second, the third and the last term in the
right hand side (RHS for short) of the evolution equation of Qr are positive

by monotonicity and concavity of the Q̃r. So the desired inequality can be
obtained with the hypotheses. �

If the hypersurfaces Mt are strictly h-convex, consider the inverse W̃ −1
p of

W̃p at a given point p ∈ Mn, set W̃ −1
p = {b̃ji}, where b̃ji is given by b̃ki h̃

j
k = δji .

The evolution equation of b̃ji is similar to the Euclidean case:

Lemma 3.5. For β > 0, let Mt be an Hβ-flow of strictly h-convex hypersur-
faces in H

n+1
κ . Then

∂tb̃
j
i = βHβ−1∆b̃ji − 2βHβ−1

(

∇k b̃pi

)

h̃q
p

(

∇k b̃
j
q

)

− β(β − 1)Hβ−2
(

b̃pi∇pH̃
)(

∇qH̃b̃jq

)

+ (β − 1)Hβδji − βHβ−1
∣

∣Ã
∣

∣

2
b̃ji − 2aHβ b̃ji − aβHβ−1

∣

∣Ã
∣

∣

2
b̃pi b̃

j
p

≤ βHβ−1∆b̃ji + (β − 1)Hβδji − βHβ−1
∣

∣Ã
∣

∣

2
b̃ji

− 2aHβ b̃ji − aβHβ−1
∣

∣Ã
∣

∣

2
b̃pi b̃

j
p.

Proof. Compute from b̃ki h̃
j
k = δji ,

∂tb̃
j
i = −b̃pi

(

∂th̃
q
p

)

b̃jq

and

∇k b̃
j
i = −b̃pi

(

∇kh̃
q
p

)

b̃jq

which implies

∆b̃ji = −b̃pi

(

∆h̃q
p

)

b̃jq + 2∇k b̃pi h̃
q
p∇k b̃

j
q.

Together with Theorem 3.3, this gives the equality. For β ≥ 1, the inequality
follows immediately. To show that also for 0 < β < 1, the two gradient terms
in the RHS of the equality in Lemma 3.5 have the desired sign, we have to work
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a bit more. As in ([24], Lemma 2.5), note that H̃β(λ̃) = (Q̃β
n(θ))

−1, where the

θi are the principle radii, i.e., θi = 1/λ̃i. For general functions f, g satisfying

f(h̃j
i ) = 1/g(b̃ji) one can compute that

(3.19)
∂2f

∂h̃j
i∂h̃

q
p

=
2

f

∂f

∂h̃j
i

∂f

∂h̃q
p

− f2 ∂2g

∂b̃nm∂b̃lk
b̃nib̃mj b̃

kpb̃lq −
∂f

∂h̃jq
b̃ip − ∂f

∂h̃ip

b̃jq .

By the chain rule

(3.20)
∂H̃β

∂h̃q
p

(λ̃) = βH̃β−1(λ̃)
∂H̃

∂h̃q
p

(λ̃) = βH̃β−1(λ̃)δpq

and

(3.21)
∂2H̃β

∂h̃n
m∂h̃q

p

(λ̃) = β(β − 1)H̃β−2(λ̃)δmn δpq .

From (3.19) (with f = H̃β) and (3.20), it follows

∂2H̃β

∂h̃n
m∂h̃q

p

= 2β2H̃β−2δmn δpq − H̃2β ∂2Q̃β
n

∂b̃sr∂b̃
u
t

b̃spb̃rqb̃
umb̃tn(3.22)

− βH̃β−1δnq b̃
mp − βH̃β−1δmpb̃nq.

Replacing (3.22) into (3.21), by multiplication with∇vh̃n
m∇wh̃

q
p and summation

β(β − 1)H̃β−2∇vH̃∇wH̃ = 2β2H̃β−2∇vH̃∇wH̃ − H̃2β ∂2Q̃β
n

∂b̃sr∂b̃
u
t

∇v b̃sr∇w b̃
u
t

− 2βH̃β−1b̃mq∇vh̃p
m∇wh̃pq,

which is

β(β + 1)∇vH̃∇wH̃ − H̃β+2 ∂2Q̃β
n

∂b̃sr∂b̃
u
t

∇v b̃sr∇w b̃
u
t − 2βH̃b̃mq∇vh̃p

m∇wh̃pq = 0.

Using the Codazzi equations for ∇kh̃ij and the concavity of Q̃β
n(θ) for 0 < β <

1, it follows that

β(β + 1)∇vH̃∇wH̃ − 2βH̃b̃mq∇vh̃p
m∇wh̃pq ≤ 0.

Using H̃ < H , this leads to

β(β + 1)Hβ−2
(

b̃vi∇vH̃
)(

∇wH̃b̃jw

)

− 2βHβ−1
(

∇k b̃pi

)

h̃q
p

(

∇k b̃
j
q

)

≤ 0.

which implies that the sum of the two gradient terms in the RHS of the equality
in Lemma 3.5 is non-positive for 0 < β < 1. Then this shows the desired
inequality for 0 < β < 1. �
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4. Preserving h-convexity

With the notation of Theorem 1.5, this section shall show that h-convex
hypersurface remains so under the Hβ-flow, while in the case β ≥ 1 they
immediately become strictly h-convex.

As a first step the maximum principle applied to the evolution equation of
H̃ guarantee that the minimum Hmin of H is increasing under the flow (1.1).

Proposition 4.1. Under the assumptions of Theorem 1.5,

Hmin(t) ≥ na+ (Hmin(0)− na)

(

1− β + 1

n
(Hmin(0)− na)β+1 t

)− 1
β+1

which gives an upper bound on the maximal existence time T :

T ≤ n

β + 1
(Hmin(0)− na)

−(β+1)
.

Proof. A direct calculation using
∣

∣A
∣

∣

2 ≥ 1
n
H2 gives an estimate

∣

∣Ã
∣

∣

2
=
∣

∣A
∣

∣

2 − 2aH + na2 ≥ 1

n
H2 − 2aH + na2 =

1

n
H̃2,

which implies that from the evolution equation (3.16) of H̃

∂tH̃min ≥ 1

n
Hβ

minH̃
2
min + 2aHβ

minH̃min ≥ 1

n
H̃β+2

min .

Now let φ be the solution of the ODE






dφ
dt = 1

n
φβ+2,

φ(0) = H̃min(0),

then by the maximum principle

H̃ ≥ φ on 0 ≤ t ≤ T.

On the other hand φ is explicitly given by

φ(t) = φ(0)

(

1− β + 1

n
(φ(0))

β+1
t

)− 1
β+1

,

which implies

H̃min(t) ≥ H̃min(0)

(

1− β + 1

n

(

H̃min(0)
)β+1

t

)− 1
β+1

.

Thus,

H̃min(t) → ∞ as 1− β + 1

n

(

H̃min(0)
)β+1

t → 0+,

which proves Proposition 4.1. �
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To show that h-convexity of Mt is preserved, next consider the evolution
of λmin := minMt

λi as in Chap. 3 of [13]. In order to do so, define a smooth
approximation A to max(x1, . . . , xn) as follows: for δ > 0 let

A2(x1, x2) =
x1 + x2

2
+

√

(x1 − x2

2

)2

+ δ2,(4.1)

An+1(x1, . . . , xn+1) =
1

n+ 1

n+1
∑

i=1

A2(xi,An(x1, . . . , x̂i, . . . , xn+1), n ≥ 2.

The approximation has the following properties, for a proof see ([13], Lemma
3.3).

Lemma 4.2. For n ≥ 2 and δ > 0,

i) An(x1, . . . , xn) is smooth, symmetric, monotonically increasing and
convex,

ii) max{x1, . . . , xn} ≤ An(x1, . . . , . . . , xn) ≤ max{x1, . . . , xn}+ (n− 1)δ,

iii) ∂An(x1,...,xn)
∂xi

≤ 1,

iv) An(x1, . . . , xn)− (n− 1)δ ≤
∑n

i=1
∂An(x1,...,xn)

∂xi
xi ≤ An(x1, . . . , xn),

v)
∑n

i=1
∂An(x1,...,xn)

∂xi
= 1.

Schulze in [24] proved that the minimal principal curvatures of the hypersur-
faces under the Hβ-flow is increasing by applying the properties of An, which
is also valid in the context of Hn+1

κ .

Lemma 4.3. Let Mt be a solution of the flow (1.1) in H
n+1
κ . Suppose the initial

hypersurface M0 is strictly h-convex. Then all Mt are also strictly h-convex
and λmin(t) is monotonically increasing for t > 0.

Proof. Note that the monotonicity of λ̃min(t) in time is the same as that of

λmin(t), so it is sufficient to prove that λ̃min(t) is monotonically increasing.
Firstly, Proposition 4.1 ensures that H preserves positivity in time.

For β ≥ 1, using a frame which diagonalises W̃ , consider the evolution of
λ̃min(t) in the evolution equation (3.15) of W̃ . Then

∂tλ̃min (p, t) ≥ βHβ−1∆λ̃min (p, t)− (β − 1)Hβ λ̃2
min (p, t)(4.2)

+ 2aHβλ̃min (p, t) + β
∣

∣Ã
∣

∣

2
Hβ−1

(

a+ λ̃min (p, t)
)

= βHβ−1∆λ̃min (p, t) + 2aHβλ̃min (p, t) +Hβ λ̃2
min (p, t)

+ βHβ−1
[

∣

∣Ã
∣

∣

2
(a+ λ̃min (p, t))−Hλ̃2

min (p, t)
]

.

The part in the square brackets is nonnegative by the identity H = H̃ + na,

the estimates
∣

∣Ã
∣

∣

2 ≥ H̃λ̃2
min and

∣

∣Ã
∣

∣

2 ≥ nλ̃2
min. Then the maximum principle

shows the desired result.
For 0 < β < 1, observe that the gradient terms have the wrong sign, we

have to work a little bit more as in [24]. For a fixed δ > 0 now choose a smooth
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approximation A (b̃ji ) := An(θ1, . . . , θn) to max(θ1, . . . , θn), as defined in (4.1),

where the θi are the eigenvalues of b̃ji , i.e., θi = 1/λ̃i. By the chain rule

∂tA =
∂A

∂b̃ji

∂b̃ji
∂t

and ∆A =
∂A

∂b̃ji
∆b̃ji +

∂2A

∂b̃sr∂b̃
u
t

∇v b̃sr∇v b̃
u
t ,

grouping the two identities and applying Lemma 3.5 A satisfies the following
evolution inequality:

∂tA ≤ βHβ−1∆A − βHβ−1 ∂2A

∂b̃sr∂b̃
u
t

∇v b̃sr∇v b̃
u
t + (β − 1)Hβtr

(

∂A

∂b̃ji

)

− βHβ−1
∣

∣Ã
∣

∣

2 ∂A

∂b̃ji
b̃ji − 2aHβ ∂A

∂b̃ji
b̃ji − aβHβ−1

∣

∣Ã
∣

∣

2 ∂A

∂b̃ji
b̃pi b̃

j
p.

The various terms on the RHS of this inequality can be easily estimated: First,
in view of Lemma 4.2 i) convexity of A implies convexity of A , then the second
term can be estimated by

−βHβ−1 ∂2A

∂b̃sr∂b̃
u
t

∇v b̃sr∇v b̃
u
t ≤ 0.

Using Lemma 4.2 v), 0 < β < 1, and H̃ ≤ H the third term can be estimated
by

(β − 1)Hβ−1H̃.

Lemma 4.2 iv) implies that the next term can be estimated by

−βHβ−1
∣

∣Ã
∣

∣

2
(A − (n− 1)δ)

and the fifth term can be dropped. The last term also can be dropped since
∂A

∂b̃
j
i

b̃pi b̃
j
p is positive. The following estimate is obtained:

∂tA ≤ βHβ−1∆A + (β−1)Hβ−1
( H̃

A
−
∣

∣Ã
∣

∣

2
)

A −Hβ−1
∣

∣Ã
∣

∣

2
(A − (n− 1)βδ).

At a point (p, t) with A − (n− 1)βδ > 0, since

H̃

A
≤ H̃

θmax
= H̃λ̃min ≤

∣

∣Ã
∣

∣

2
,

this gives an estimate of the form

∂tA ≤ βHβ−1∆A ,

which gives a contradiction if A attains a first maximum larger than (n−1)βδ.
The limit as δ is approached to 0 then implies the conclusion of Lemma 4.3. �

Corollary 4.4. Let X : Mn×[0, T ) → H
n+1
κ be an Hβ-flow of strictly h-convex

hypersurfaces. Then
∣

∣A
∣

∣ (p, t) ≤ H (p, t) ≤
(

Hmax(0)
−(β+1) − (β + 1)t

)− 1
(β+1) .
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Proof. Lemma 4.3 implies that if M0 is strictly h-convex, under the flow (1.1),
Mt is strictly h-convex as long as it exists, then

∣

∣A
∣

∣ ≤ H , which implies that
from the evolution equation (3.10) of H

∂tHmax ≤ Hβ+2
max − a2Hβ

max ≤ Hβ+2
max .

Now let φ be the solution of the ODE






dφ
dt = φβ+2,

φ(0) = H̃max(0),

then by the maximum principle

H ≤ φ on 0 ≤ t ≤ T.

On the other hand φ is explicitly given by

φ(t) =
(

φ(0)−(β+1) − (β + 1)t
)− 1

(β+1) .

Thus, this gives the desired estimate. �

Corollary 4.5. Let X : Mn× [0, T ) → H
n+1
κ be an Hβ-flow of weakly h-convex

hypersurfaces. Then Mt is weakly h-convex for all t ∈ [0, T ).

Proof. The initial surface M0 can be smoothly approximated by strictly h-
convex hypersurfaces M i

0. Let these hypersurfaces move by Hβ-flow, which by
Lemma 4.3 remain strictly h-convex. For any t ∈ [0, T ), Corollary 4.4 implies
the uniform C2-estimates for these hypersurfaces. For α > 0 the uniform C2,α-
estimates can be obtained for these hypersurfaces as follows: For 0 < β ≤ 1
the speed Hβ is concave in hj

i and in this case with the uniform C2,α-bounds
are known in general for concave operators (see [20], Theorem 2, Chapter 5.5,
or also see [18]). For β > 1, M i

t can be locally reparameterized as graphs
over the unit sphere S

n with center p in TpH
n+1
κ . From (1.1) and (2.8), a

short computation yields that the distance function on S
n satisfies the following

parabolic PDE

(4.3) ∂tr = −s−1
κ (r)Hβ |ξ| ,

where the mean curvature H and the outward normal vector length |ξ| are
given by the expressions (2.13) and (2.9), respectively. The function Hβ in
the coordinate system under consideration is a function of D2r and Dr. Since
H(·, t) is larger than na and bounded above by Corollary 4.4 this implies that
Hβ−1 are also uniformly Hölder continuous functions. Then this ensures that
(4.3) is a linear, strictly parabolic partial differential equation

(4.4) ∂tr = aijDiDjr + bijDirDjr + cijσij ,

with coefficients given by

aij = gijHβ−1, bij = −gijHβ−1coκ(r) and cij = −gijHβ−1sκ(r)cκ(r)
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in space and time. The interior Schauder estimates by the general theory
of Krylov and Safonov [18], [20] lead to C2,α-estimates. In both cases, i.e.,
0 < β ≤ 1 and β > 1, such a property implies all the higher order estimates
by using standard linearization and bootstrap techniques (see [18], [20]). By
extracting a convergent subsequence of strictly h-convex flows it follows that
the original flow also had to be h-convex. �

For β ≥ 1, the following Proposition shows that weakly h-convex hypersur-
faces immediately become strictly h-convex under the Hβ-flow in H

n+1
κ .

Proposition 4.6. For β ≥ 1, let Mt be a solution of the Hβ-flow in H
n+1
κ .

Suppose the initial hypersurface M0 is a weakly h-convex hypersurface with
H(0) > na. Then Mt is strictly h-convex for all [0, T ).

Proof. It is sufficient to prove that λ̃i > 0. Since H(t) > na, i.e., H̃(t) > 0,

for all [0, T ), Q̃2 is well-defined and Corollary 4.5 implies that Mt is weakly
h-convex. Then an immediate consequence is

Q̃2 =
|H̃|2 −

∣

∣Ã
∣

∣

2

2H̃
≥ 0.

For t ∈ [0, ε], ε < T , the bounds on
∣

∣A
∣

∣

2
imply the bounds on

∣

∣Ã
∣

∣

2
, |H |, and

Q̃2 which imply

Hβ−1
[

β
∣

∣Ã
∣

∣

2 − r(β − 1)HQ̃2 + 2aH
]

≤ C

on this interval. An application of Lemma 3.4 for ω := eCtQ̃2 shows the
following estimate:

∂tω ≥ βHβ−1∆ω.

Suppose that there exists (p0, t0) ∈ Mn × (0, ε) with Q̃2(p0, t0) = 0, then also
ω(p0, t0) = 0. The Harnack’s inequality in the parabolic case (see i.e., [20])

applied to the above equation shows that ω ≡ 0 for all t ∈ (0, t0), i.e., Q̃2 ≡ 0,
which is in contradiction to the existence of strictly convex points on Mt, and
so Q̃2 > 0 on Mn × (0, T ). An iterative application of this yields that Q̃r > 0
on Mn × (0, T ). This concludes the proposition. �

5. The long time existence

The third section has shown that the equation (1.1) has a (unique) smooth
solution on a short time if the initial hypersurface in H

n+1
κ is h-convex. This

section considers the long time behavior of (1.1) and establishes the existence
of a solution on a finite maximal interval.

Theorem 5.1. Let [0, T ) be the maximal existence interval of the flow (1.1)
Mt with H(·, 0) > na in H

n+1
κ . Then

1

β + 1
(Hmax(0))

−(β+1) ≤ T ≤ n

β + 1
(Hmin(0)− na)

−(β+1)
.
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Moreover, maxMt

∣

∣A
∣

∣

2 → +∞ as t → T .

Proof. The estimates on the maximal time T of existence can be easily derived
from Proposition 4.1, Corollary 4.4 and the proof of Corollary 4.5. To complete

the proof of the theorem, assume that
∣

∣A
∣

∣

2
remains bounded on the interval

[0, T ), and derive a contradiction. Then the evolution equation (1.1) implies
that

|X(p, σ) −X(p, τ)| ≤
∫ σ

τ

H (p, t) dt

for 0 ≤ τ ≤ σ < T . Since H is bounded, X(·, t) tends to a unique continuous
limit X(·, T ) as t → T . In order to conclude that X(·, T ) represents a hyper-
surface MT , next under this assumption and in view of the evolution equation
(3.5) the induced metric g remains comparable to a fix smooth metric g̃ on
Mn:

∣

∣

∣

∣

∂

∂t

(

g(u, u)

g̃(u, u)

)∣

∣

∣

∣

=

∣

∣

∣

∣

∂tg(u, u)

g(u, u)

g(u, u)

g̃(u, u)

∣

∣

∣

∣

≤ 2|H ||h|g
g(u, u)

g̃(u, u)
,

for any non-zero vector u ∈ TMn, so that ratio of lengths is controlled above
and below by exponential functions of time, and hence since the time interval
is bounded, there exists a positive constant C such that

1

C
g̃ ≤ g ≤ Cg̃.

Then the metrics g(t) for all different times are equivalent, and they converge
as t → T uniformly to a positive definite metric tensor g(T ) which is continuous
and also equivalent by following Hamilton’s ideas in [12]. Using the uniform
C2,α-estimates from the proof of Corollary 4.5 it is enough to imply bounds
on all derivatives of X. Therefore the hypersurfaces Mt converge to a smooth
limit hypersurface MT . Finally, applying the local existence result with initial
data X(·, t), the solution can be continued to a later times, contradicting the
maximality of T . This completes the proof of Theorem 5.1. �

Example 5.2. For the evolution of a geodesic sphere S0 with radius R0 and
the origin point of Hn+1

κ its center under the flow (1.1), we get






dR(t)
dt = − (ncoκ(R (t)))

β
,

R(0) = R0.

A straightforward analysis for the existence of solution of the above ODE im-
plies that the evolving geodesic spheres St with radii R(t) contract to the center
of the S0 on a finite maximal existence time T satisfying

1

(an)β
(R0 + fβ(R0)) ≤ T ≤ 1

(an)β

(

1

a
ln(cosh(aR0)) + fβ(R0)

)

,

where the function fβ(x) on [0,+∞) is given by
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fβ(x) =































1

a

[β]
2
∑

m=0

1

β + 1− 2m
(tanh(ax))β+1−2m, if [β] is even,

1

a

[β]−1
2
∑

m=0

1

β + 1− 2m
(tanh(ax))β+1−2m, if [β] is odd.

In the following, we wants to show that the flow exists as long as it bounds
a non-vanishing volume. In order to achieve this, using a trick of Tso [26] for
the Gauß curvature flow, see also [1], [7] and [21], we study the evolution under
(1.1) of the function

(5.1) Zt =
Hβ

Φ− ǫ
.

Here Φ = sκ(rp)〈ν, ∂rp〉, which could be seen as “support function” of Mn in

H
n+1
κ , and ǫ is a constant to be chosen later.

Corollary 5.3. For t ∈ [0, T ) and any constant ǫ,

∂tZ = βHβ−1∆Z +
2βHβ−1

Φ− ǫ
〈∇Z,∇Φ〉+ (β + 1)cκ(r)Z

2

− ǫβ

∣

∣A
∣

∣

2

H
Z2 − nβa2Hβ−1Z.

Proof. For every X , Y tangent to Mt, the following formulas is well-known (see
[22] page 46 or [11]):

(5.2) ∇̄X∂rp = coκ(rp)
(

X − 〈∂rp , X〉∂rp
)

.

This implies that

(5.3) ∆̄rp = ncoκ(rp).

On the other hand,

∇̄2rp(X,Y ) =
〈

∇̄X∂rp , Y
〉

=
〈

∇X∂⊤
rp
, Y
〉

−
〈

∂rp , ∇̄XY
〉

= ∇2rp(X,Y ) + h(X,Y )
〈

∂rp , ν
〉

.

(5.4)

This implies that

(5.5) ∆rp = coκ(rp)

(

n−
∣

∣

∣
∂⊤
rp

∣

∣

∣

2
)

−H〈∂rp , ν〉.

Using (1.1) and (5.2) a direct calculation gives

(5.6) ∇̄t(sκ(rp)∂rp) = −cκ(rp)H
βν,

which implies that

(5.7) ∂tΦ = βHβ−1sκ(rp)〈∂rp ,∇H〉 − cκ(rp)H
β .
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On the other hand, straightforward computations having into account (5.2)
and (5.5) as in (Section 4 of [7]) give

∆Φ = 〈ν, ∂rp〉∆sκ(rp) + 2
〈

∇sκ(rp),∇〈ν, ∂rp〉〉+ sκ(rp)∆〈ν, ∂rp
〉

= cκ(rp)H + sκ(rp)〈∂rp ,∇H〉 − Φ
∣

∣A
∣

∣

2
.

(5.8)

Combining this with (5.7) yields

(5.9) ∂tΦ = βHβ−1∆Φ− (β + 1)cκ(rp)H
β + βHβ−1Φ

∣

∣A
∣

∣

2
.

From (5.1), (3.11) with l = β and (5.9), it follows

∂tZ =
1

Φ− ǫ

(

βHβ−1∆Hβ + βH2β−1
(

∣

∣A
∣

∣

2 − na2
))

(5.10)

− Hβ

(Φ− ǫ)2

(

βHβ−1∆Φ− (β + 1)cκ(rp)H
β + βHβ−1Φ

∣

∣A
∣

∣

2
)

.

Another computation leads to

βHβ−1∆Z =
βHβ−1∆Hβ

Φ− ǫ
− βH2β−1∆Φ

(Φ− ǫ)2
− 2

βHβ−1

Φ− ǫ
〈∇Z,∇Φ〉(5.11)

by combining (5.11) with (5.10), then the desired equation follows easily. �

To get an upper upper bound for Z which is finite and independenat of t,
applying the maximum principle, first it is necessary to get an upper bound
for rp.

Lemma 5.4. Let A(Mt) be the total area of Mt, A0 = A(M0), A(Sn) the
total area of the unit sphere S

n in R
n+1, ϕ the inverse of the function s 7→

A(Sn)snκ(s), and ρ−(t) the inner radius of Ωt whose boundary is Mt. Then

ρ−(t) ≤ ϕ(A0)

for all t ∈ [0, T ).

Proof. Since the total area A(Mt) under the flow (1.1) is decreasing from the
evolution equation (3.7), then A(Mt) ≤ A0 for all t ∈ [0, T ). In view of Lemma
2.3 ii) h-convexity of the initial hypersurface in H

n+1
κ implies that 〈∂rp , ν〉 > 0

for all t ∈ [0, T ). Now choosing geodesic polar coordinates in H
n+1
κ around a

center pt of an inball of Ωt as mentioned in Section 2, the total area of Mt is
given by

A(Mt) =

∫

Sn

snκ(s(u))

〈∂rp , ν〉
du,

where du is the volume form of the unit sphere S
n in R

n+1. But the facts
ρ−(t) ≤ s(u) and A(Mt) ≤ A0, thus the conclusion of the lemma follows having
into account that 0 < 〈∂rp , ν〉 ≤ 1, snκ and ϕ−1 are increasing function. �

A direct consequence of the above lemma and Lemma 2.3 i) is:
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Corollary 5.5. For any t ∈ [0, T ), if p, q ∈ Ωt, then

dist(p, q) ≤ 2(ϕ(A0) + a ln 2).

Theorem 5.6. Let Mt be a solution of the Hβ-flow in H
n+1
κ . Suppose the

initial hypersurface M0 is a h-convex hypersurface, δ > 0, q0 ∈ H
n+1
κ and

Bδ(q0) ⊂ Ωt for all t ∈ [0, τ), whose boundary is Mt. Then

H (p, t) ≤ C(M0, δ, β, n, a) for all (p, t) ∈ Mn × [0, τ).

Proof. Since it is proved previously that Mt is h-convex along the flow (1.1),
Lemma 2.3 ii) gives

Φ = sκ(rq0 )
〈

ν, ∂rq0
〉

≥ asκ(δ)taκ(δ).

Then taking the constant ǫ in the definition (5.1) of Z as

ǫ =
a

2
sκ(δ)taκ(δ)

implies

Φ− ǫ ≥ ǫ > 0.

Combining this, h-convexity of Mt implies that

(5.12) Z ≥ 0 and
∣

∣A
∣

∣

2 ≥ 1

n
H2.

On the other hand, by taking D := 2(ϕ(A0) + a ln 2) a direct consequence of
Corollary 5.5 is that rq0 on Mt satisfies:

(5.13) rq0 ≤ D.

From Corollary 5.3, (5.12) and (5.13) the following inequality can be obtained:

∂tZ ≤ βHβ−1∆Z +
2β

H
Z〈∇Z,∇Φ〉+

(

(β + 1)cκ(D)− ǫβ

n
H

)

Z2.

Assume that in (p0, t0), Z attains a big maximum C ≫ 0 for the first time.
Then

Hβ(p0, t0) ≥ C(Φ− ǫ)(p0, t0) ≥ ǫC,

which gives a contradiction if

C ≥ max
p∈Mn

{

Z(p, 0),
1

ǫ

(

n(β + 1)cκ(D)

ǫβ

)β
}

.
�

6. Contraction to a point

Now proceeding exactly as in [24], this section shows that Mt shrink down
to a single point as the final time is approached.
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Proof of Theorem 1.5. Theorem 5.1 and Theorem 5.6 ensure that the flow ex-
ists as long as it bounds a non-vanishing domain. Lemma 4.3 and Proposi-
tion 4.6 show that all hypersurfaces are strictly h-convex for t ∈ [0, τ), thus
limt→T λmin(t) ≥ a+ δ > a. Suppose for all t ∈ [0, τ) there exist two distinct
points q1, q2 in Ωt ⊂ H

n+1
κ , whose boundary is Mt. Let P be any 2-dimensional

plane through q1 and q2, then P intersects Mt transversally in regular curves
γP
t . Since λmin(t) > a + δ

2 , then the curvature of the curves γP
t has a lower

bound a+δ′ > a. Let It := P ∩Ωt. The fact the n-dimensional Hausdorff mea-
sure Hn(Ωt) → 0 implies that there is a P such that H2(It) → 0, contradicting
that q1, q2 ∈ It and that the curvature of the curves γP

t is uniformly bounded
from below by a. �
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