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Terumitsu MORITA,*) Hazime MORI and Kazuko T. MASHIYAMA 

Department of Physics, Kyushu University 33, Fukuoka 812 
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A projector elimination and an adiabatic elimination of irrelevant degrees-of-freedom are 

developed for the contraction of state variables in stochastic equations of motion. For 

multiplicative stochastic equations, a master equation for the probability density of relevant 

variables A(t) ={A, (t)} is derived by means of the projector method and is shown to 

reduce to 'a Fokker-Planck equation if the stochastic forces S, (a, t) are Gaussian processes 

with time correlations of the form (S, (a, t) S 1 (a1, t 1)) =2[~, 1 (a, a')iJ+ (t-t') + ~ 1 , (a', a) iJ + (t'- t)], 

where iJ+(t) is the right half of the iJfunctioniJ(t),nonvanishingonlyatt=O+. I£~, 1 (a,a') 

=~J<(a',a), then this reduces to the conventional form 2~, 1 (a,a 1 )iJ(t-t'). · 

With the aid of stochastic processes of this new type, an adiabatic elimination from the 

Langevin equations is proposed for a stochastic Haken-Zwanzig model for non-equilibrium 

phase transitions. A projector elimination from the Langevin equations and an adiabatic 

elimination from the Fokker-Planck equation are also explored. Calculation is carried out up 

to second order in the slowness parameter. Three different methods are thus developed 

with consistent results and are applied to a laser model for illustration. 

§ I. Introduction 

Macroscopic properties are described by a relevant subset of macrovariables 

of the system, and it becomes necessary to obtain closed equations of motion for 

the subset by eliminating the rest. In a previous paper1l we have developed a 

projector elimination for such a contraction of state variables when the system 

is governed by deterministic equations of motion. 

Many systems are, however, described by stochastic equations of motion; for 

example, in a one-variable case, 

dA (t) jdt= V (A (t)) +S (A (t), t), (1·1) 

where S(a, t) is a stochastic force which depends on the value a of ~-l(t) ex­

plicitly. Conventional theories assume the form 2 l~ 4 l 

(1·2) 

where rk (t) are Gaussian white noises and repeated indices k are to be summed 

up. Such a stochastic force appears in the magnetic resonance absorption when 

one observes the motion of a spin in a fluctuating magnetic field. 2l Multiplica-

*l Present address: Sterling Chemistry Laboratory, Yale University, New Haven, Conn. 06520. 
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Contraction of State Variables in Non-Equilibriwn Open Systems. II 501 

tive stochastic forces of this type also appear when one replaces external param­

eters in equations of motion by fluctuating ones in order to take into account fluctu­

ations of the surroundings, 5J and also appear when one eliminates irrelevant vari­

ables in coupled Langevin equations by an adiabatic procedure.6l.n 

As will be shovvn later, however, an improved adiabatic procedure leads to 

a stochastic force of the memory form 

(1·3) 

where r(a) is a relaxation-rate nwtrix which may depend on a. The conven­

tional procedure replaces the time integral by [y- 1 (a) ]ikrk (t) in the coarse-graining 

limit rB~o, where rB is the time scale of the relaxation e--srcaJ, thus leading to 

(1· 2). This replacement, however, is incorrect since rB)/r m even in the limit, 

where rm is the microscopic time scale of rk (t). In fact, as will be shown 111 

§ 5, (1· 3) leads, in the limit rB~o, to a time correlation of the form 

<S (a, t) S (a', t')) = 2 [~(a, a') o+ (t- t') + Ha', a) 0 + (t'- t)] (1· 4) 

with asymmetric coefficients ~(a, a') =/=~(a', a), where o+ (t) is the right half of 

the o function iJ (t). This asymmetry comes from the memory effect due to 

and would be important when the degrees-of-freedom of the time scale !"n are 

far from equilibrium. 

In § 2, we treat multiplicative stochastic processes, including the new- type 

(1· 4), and derive reduced equations of motion and a master equation with the 

aid of the projector method. In § 3, a projector elimination from the Langevin 

equations is also studied with the aid of Fujisaka and Mori's projector method. 8J 

In §§ 4 and 5, we develope an adiabatic elimination from the Fokker-Planck 

equation and the Langevin equations. In § 6, we treat a laser model. Section 

7 is devoted to a summary and remarks. 

§ 2. Projector elimination in multiplicative stochastic processes 

Let us denote a relevant subset of macrovariables by Ll (t) = {c1i (t)} and 

assume, as a generalization of (1·1) ~ (1· 3), that they are governed by stochastic 

equations oi motion 

dAi (t) jdt = v, (A (t)' t) -l-Si C4 (t)' t)' (2 ·1) 

vV here Vi (a, t) are unique f lii1Ctions of a= {ai} and f, and Si (a, t) il re stochastic 

processes whose statistical properties are supposed to be known. Let us intro­

duce the generating functional 

IIa(t)-o(A(t) -a). (2 ·2) 

Its time evolution 1s governed by 
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502 T. Jliorita, II. illorz· and K. T. illashiyama 

a II a (t) jat = L +(a, t) II a (t), (2. 3) 

;vhere L+ IS the linear operator 

L+ (a, t) -(a faa;) [V; (a, t) -1- S;(a, t)] (2 ·4) 

with repeated indices i being to be summed up. Integrating (2 · 3) formally leads 

to 

II a (t) = exp+ ( i'L +(a, s) ds)o (A (0)- a), (2·5) 

where exp+ denotes the time-ordered exponential ordered from left to right in 

decreasing order. In order to utilize the projector elimination, let us introduce 

the adjoint operator of L + (a, t), 

L (b, t) ~ [V; (b, t) + S;(b, t)] (a jab;). (2 ·6) 

Then, smce IIa(t) =fdbiiu(t)o(a-b), we can write (2·3) by partial integra­

tion as 

ali a (t) fat= - a sdb o (A (0) -b) U (b, t) 
a a; 

X [V;(b, t) +S;(b, t)]o(a-b), (2·7) 

vvhere 

U (b, t) =exp_ ( i'L (b, s) ds). (2-8) 

Our problem is now to eliminate the degrees-of-freedom S2 associated with the 

stochastic forces S; (b, t). Let us suppose that at t = 0 the relevant set L'l (0) is 

known to take a set of values a 0= {a0;}. The average of a functional G(b) of 

{S; (b, s)} over S2 with this initial condition is denoted by ( G (b) ; a 0). The pro­

jection onto this conditional average is denoted by the projector P: 

PC (b) =(G (b); b). (2 -9) 

Let us assume that the mean value of S; (b, t) IS zero: 

(S;(b, t) ; a 0) = 0. (2 ·10) 

Then, as will be shown m Appendix A, the equations of motion (2 · 7) can be 

transformed into 

]_IIa(t) = __ a [v;(a, t)Ila(t) +F;a(t) 
at aa; 

+ l'dr S dbJib(r) (sj(b, r) a~-F;a(b, t, r); b) J, (2·11) 
J 
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Contraction of State Yariables m iVan-Equilibrium OjJen Systems. II 503 

where 

Fia (t) ~ s dbi5 (A (0) -b) Fia (b, t, 0), 

Fia (b, t, -:) ~UQ (b, t, -:)SJb, t) i5 (a -b), 

UQ (b, t, r) =exp_ [ rQL (b, s) ds J 

with Q-=1-P. Since PQ=O, we have 

(2 ·12) 

(2 ·13) 

(2 ·14) 

(Fia (t) ; a 0) = (Fia (b, t, r) ; a 0) = 0. (2 ·15) 

Namely, the Fia's are statistically independent of A (0). Equation (2 ·11) is the 

fundamental equation corresponding to (3 · 3) of I. 

As will be shovn1. in Appendix A, (2 ·11) can be further transformed into 

where we have defined 

Ci 1 ··in(a, t, r)::c=(sj(a, r) 3 Y(ir··in, a, t, r); a), 
aaj 

Ei 1 •• i";j (a, t, r) ~<Sj (a, r) .'7(i1 • · · a, t, r); a) 

m terms of the generalized fluctuating forces 

Equation (2 ·16) is a generalization of the o expanswn (3 ·14) of I. 

(2 ·16) 

(2·17) 

(2 ·18) 

(2 ·19) 

(2. 20) 

The probability cli.~tribution function that .!l(t) takes a set of v:llues a at lime 

t is given by 

P(a, t) =(IL(t); ao), (2. 21) 

where P(a,O) =o(a-a 0). Therefore, (2·15) and (2·16) lead to 
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504 T. l'vforita, H. l'dori and K. T. .L11ashiyama 

!}_P(a,t)=- () [Vi(a,t)P(a,t)J+f:(-1)n-l () ···_f)__ 
8t 8ai n~1 8ai, 8ain 

(2. 22) 

Since Ai (t) = f aJia (t) da, (2 ·16) also leads to 

dAJt) /dt =Vi (A (t), t) + fdr-Ci (A (r-), t, r-) +RJt), (2. 23) 

where 

Ri (t) == s Fia (t) da =Ri (A (0), t, 0). (2. 24) 

Equation (2·23) is a stochastic equation whose features differ from those of (2·1), 
and is called the generali:ced Langevin equation. Equation (2 · 22) is called the 
generali:ced master equation. It should be noted that these equations are all 
exact under the assumption (2 ·10). 

with 

Let us no\V assume that the stochastic forces si (a, t) are Gaussian processes 

<SJa, t); ao)=O, (2 -25a) 

<Si(a, t)Sj(a', t'); a 0)=2[s"'ij(a, a')o+(t-t') +(=ji(a', a)o+(t' -t)], 

(2·25b) 

where o, (t) is the right half of o(t) and is defined by 

llim (1/2-r) e-t;< , 
0+ (t) ~ t->O• 

0, otherwise , 

if t>O, 

(2· 26) 

and J'f:f(t)o+(t)dt=f(0+)/2. I:f (=u(a,a') =~j;(a',a), then (2·25b) becomes 
the conventional form 2~ij (a, a') o (t- t'). One important assumption involved 
here is that Si (a, t) are independent of the initial value A (0) of the relevant 
variables. Then, as will be shown in Appendix B, (2 ·11) reduces to 

(2· 27) 

where 

(2. 28) 

(2 ·29) 

Therefore, the master equation (2 · 22) reduces to the Fokkcr-Planck equation 

() [ () ()2 J -P(a, t) = - Hi(a, t) +'"' -- Eij(a) P(a, t), 
8t 8ai oai8a i 

(2. 30) 
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Contraction of State "Variables in ~Von-Equilibrium Ojxn Systems. II 505 

and the generalized Langevin equation (2·23) reduces to the usual form 

where 

(Ri (t) ; a 0) = 0 , 

(Ri (t) Rj (0) ; a 0) = 2Eij (au) 0 (t). (t:>o) 

(2. 31) 

(2. 32) 

(2. 33) 

Equations (2 · 30) and (2 · 31) describe the mean values and fluctuations of the 

relevant yariables A~; (t) in the conventional way. 

§ 3. Projector elimination fr01n the Langevin e11uatious 

Let us consider the folluwing model equations: 

dA;(t)/dt=vi(L1(t)) -aij(1'1(t))Bj(t) +r/(t), 

dBj (t) jdt =/3j (A (t)) -r jk (A (t)) Bk (t) + rjn (t), 

(3 ·1) 

(3 ·2) 

where r;'1 (t), r/ (t) are Gaussian white noises ~with me;m values zero and correlct­

tions 

(ri1 (t) r;1 (t') ; a 0b0) = 2Li\YJ (t- t'), Lf/1 = L;1;A, 

(rf(t)r~(t'); aubo)=2Lffo(t--t'), Lff=L~f, 

(r~ (t) rf (t') ; aobo) = 2LJfo (t- t'), L1f = L!J. 

(3. 3) 

(3 ·4) 

(3·5) 

Here ( · · · ;a0b0 ) denotes the conditional average vvith the initial values A (0) = a 0 

and B ( 0) = b0 • This is a generalization of the Haken-Zwanzig model for non­

equilibrium phase transitions 9l which has been treated in I. We assume that A~ (t) 

and B (t) are relevant and irrelevant variables, respectively, and the time seale c:-,1 

of .Ll (L) is distinctly larger than the time scale c:"n of B (t). Our problem is to 

eliminate B (t) and to deriye a reduced equation of motion for A (t). 

In this section >ve use the proj~ctor method developed by Fujisaka ancl11ori. 8) 

Statistical properties of fluctuating forces r/ (t), r/ (t) do not depend on the 

initial values of 1'1 (0), B (0). Therefore, (2 · 27) leads to 

31Iab (t)/3t=T+ (a, b)Ilao (t) +Fab (t), (3. 6) 

where IIa,, (t) =r) 

r (a, b), 

(t)-a)o(B(t)-b), and T' is the adjoint operator of 

T(a,b)=[·v;(a) -aij(a)bj] (3/uai) + [f}'j(a) -rjk(a)bk] (3/ubj) 

3' (}' (j2 

+ L~ 11 A 3aiua 
1 

-I- 2 L~ 1 : 3aiub~- -I- L Jf ab j3bk , (3 ·7) 

and Foo (t) 1s the master fluctuating force related to r/ (t), r/ (t) by 
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506 T. ;Jforita, II. .ilfori and K. T. },faslziyama 

Let q (b:a 0) be the conditional probability density that at t = 0 B (0) takes 

a value b ·when "4. (0) takes a value a 0, and let us introduce the projector P by 

PG(a, b) =(G(a, b); a)~ sdbG(a, b)q(b; a) (3-9) 

for an arbitrary function G(a,b). We have P'=P since Pg(a) =g(a) for an 

arbitrary function g (a). Then, as will be shown in Appendix C, we obtain the 

following reduced equation for II a (t) -t; (il (L) -a) ;8l 

_f)_Jia,(t) = fda(T'(a, b)o(a-a'); a)IIa(t) 
ut . 

+ fdr S da(T'(a, b)fa,(a, b, r); a)IIa(t-r) +Fa,(t), (3-10) 

where 

fa' (a, b, t) -c'Qrca,blQT (a, b) o (a- a'), (Q- c 1-P) (3 -ll) 

Fa,(t) ~fa,(A (0), B (0), t) + s db Fa'b (t) 

+ i'ds S fda db Fall (t-s) fa' (a, b, s). (3 -12) 

Since ~1i(t) =fa/IIa/(t)da', (3-10) leads to 

dAi(t)jdt=(T(a, b)ai; A.(t)) 

+ fdr(T(a, b)qJa, b, r); A(t-r))-i-lt(t), (3 -13) 

where 

(3 ·14) 

Ri(t) '=='qi(A(O), B(O), t) -1-r/(t) + i'ds S S dadbFab (t-s)qi(a, b, s). 

(3 -15) 

Since r (a, b) a,= vi (a)- a 1j (a) t\, (3 -13) is a transformation of (3 -1) which takes 

into account the renormalization clue to the mode couplings to the B modes. 

Since the time scale of .!li (t) is distinctly larger than that of Bj (t), we 

may expand the memory term of (3 -10) in pO\vers of the slowness parameter 

o=-rn/r, 1 ~1 similarly to § 4 of I. Then, as will be shown in Appendix D, (3-10) 

is reduced, to order iJ2, to 
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Contraction of State Variables in iVon-Equilibriunt Oj)en Systems. II 507 

where 

with 

Hi(a) =v;(a) -aij(a) [r- 1 (a)]jkPk(a) 

+aij(a) [y- 1 (a)]jk{ 3 [r-1 (a)] (a)} 
3az 

X {vz (a) -a:m(a) [r- 1 (a)] (a)} 

+ {-~ aij(a) [y-1 (a)Jjk} {azm(a)(bJ]m; a)-2Lf/:}, 
3a 1 

Eil (a) = LfzA + aij (a) [y- 1 (a)] jdazm (a) (bkbm; a)- 2Lf/:} 

bF bj-(bj; a), 

(bj; a)= [r-1 (a) J jkj)'k (a)+ 0 (o). 

Therefore, (3 ·13) reduces to the Langevin equation 

(3 ·16) 

(3 ·17) 

(3 ·18) 

(3 ·19) 

(3. 20) 

(3·21) 

Equations (3 ·17) and (3 ·18) agree with the previous results ( 4 ·13) and ( 4 ·17) 

of I if r (a) is a constant diagonal matrix and Lf/: are negligible. 

The degrees-of-freedom involved in the fluctuating forces Fa (t) and Jt (t) 

are .11 (0), B (0) and external degrees-of-freedom Q associated with Fab (t). Let 

(- · ·; a 0) also denote the conditional average over il.. (0), B (0) and Q with 11 (0) 

being fixed so as to be a 0 • Then, as will be shown in Appendix C, we have 

Therefore (3 ·16) leads to the following Fokker-Planck equation: 

(3/3t)P(a, t) =- (3j3ai) [Ii(a)P(a, t)J 

+ (8/Dai) {aij(a) [y- 1 (a)Jjk(3j3az) [azm(a)(bkbm; a) 

- 2Lf/:J P (a, t)} + L1i4 (3~j3ai3az) P (a, t), 

where Ii (a) represents the first three term~ of (3 ·17). 

§ 4. Adiabatic reduction of the Fokkcr-Planck equation 

(3. 22) 

(3 ·23) 

The F okker-Planck equation corresponding to the Langevin equations (3 ·1) 

and (3 · 2) is given by 

DP (a, b, t) jut= T 1 (a, b) P (a, b, t). (4·1) 
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508 T. Morita, H. Mori and K. T. JJ1ashiyama 

The probability density P (a, t) is given by 

Let us put 

P (a, t) = J dbP (a, b, t). 

P(a,b,t) =P(a,t)q(b[a,t), 

J dbq(b[a, t) =1. 

Then, integrating ( 4 ·1) over b leads to 

where, for an arbitrary function G(b), 

(G(b) [a, t)= J dbG(b)q(b[a, t). 

From (4·1), (4·3) and (4·5), we obtain 

~q(b[a, t) = {- 0 [~j(a) -/j~o(a)bk] + 02 L1~}q(b[a, t) 
at ab j ab jabk 

(4 ·2) 

(4 ·3) 

(4·4) 

(4·6) 

+- 1 . {· 0-aij(a)obj(t) +2- 02 Ltf}P(a,t)q(b[a,t) 
P(a,t) aa; aa;abj 

(} 
- [v;(a) -a;j(a)(bj[a, t)] aa-q(b[a, t), (4·7) 

' 
where 

(4·8) 

In (4·7), each term is of order 0° oro, and, since Lf 1 A~O(o 2 ), we have neglected 

the terms with Lf{ Then ( 4 · 7) leads to 

a(bj[a, t)/at=~j(a) -rjk(a)(bk[a, t) 

- [vl(a) -alm(a)(bm[a, t)] {__il_-(bj[a, t)} 
aal 

+-1-- 0 {alm(a)xjn,(a, t) -2Lff}P(a, t), (4·9) 
p (a, t) aal 

where 

(4·10) 

Integrating (4·9) leads to 
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Contraction of State Variables in Non-Equilibrium Open Systems. II 509 

<bila, t)= [e-tr]ik<bkla, 0)+ Ids[e-•r]ik 

X [JJk(a)- {v1 (a) -azm(a)<bmla, t-s)} L~ 1 <bkla, t-s)} 

+ -- 1 - -~--{a 1 m(a)xkm(a,t-s)-2L1:'JP(a,t-s)J. 
P(a,t-s) aa 1 

For {'};>::B, we thus obtain, to order o, 

<bila, t)= [r- 1 (a)]ik[i3k(a)- {vz(a) -azm(a) [r1(a)]mni3n(a)} 

X h~z [y-1 (a)] kPJJP (a)} 

+--1- 0--{azm(a)xkm(a, oo) -2L1:'JP(a, t)J. 
p (a, t) aal 

From ( 4 · 7) and ( 4 · 9) we also obtain, to order 0°, 

a<bkbml a, t)/at = JJk (a) <bm I a, t) +!3m (a) <bk I a, t) 

-rkz (a) <bzbml a, t) -r ml (a) <bkbzl a, t) +2Lf!, 

axkm (a, t) jat= -rkz (a) Xzm -r mt (a) Xkz +2Lf!, 

which lead to the fluctuation-dissipation relation10> 

X (a oo) = 2 ioo [e-•r(a)J .Ll!I![e-•r(a)] -ds 
km , k1. tJ m; • 

0 

(4-11) 

(4-12) 

(4 -13) 

(4 -14) 

(4-15) 

Therefore, inserting ( 4 ·12) into ( 4 · 5), we obtain, to order 02, the Fokker-Planck 

equation (3·23) in which the variances (6Jjm;a) are given by (4-15). 

§ 5. Adiabatic elimination from the Langevin equations 

Let us consider the Langevin equations (3 ·1) and (3 · 2). The conventional 

elimination of Bi (t) assumes dBi/ dt = 0, which leads to 

Inserting this into (3 -1) leads to 

dAi (t) / dt =vi (A (t)) - aii (A (t)) [y-1 (A (t))] ikj3k (A (t)) 

- aij (A (t)) cr-1 (A (t)) J jkrk B (t) + r/ (t). (5·2) 

This approximation is unsatisfactory as follows. Since (5 · 2) has the form (2 ·1), 

we obtain the Fokker-Planck equation (2 · 30) with 
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510 T. 111orita, H. lvfori and K. T. Mashiyama 

Hi(a, t) =vi(a) -aij(a) [l- 1 (a)]jk~k(a) 

+ { 8 ~ 1 aij(a) [l- 1 (a)L"} {Lf~[r 1 (a)]mnazm(a) -Lff}, (5·3) 

Eiz(a) =L1zA+aij(a) [i- 1 (a)]jkLf~[l- 1 (a)]mnazm(a) 

-aij(a) [l- 1 (a)]j"Lff-azk(a) [r- 1 (a)]kjLtf. (5·4) 

This result differs from that of § 4, and implies that (5 ·1) does not treat the 

random motion of Bj (t) due to the fluctuating forces properly. This will be 

improved in the following. 

Integrating (3 · 2) formally leads to 

Bj (t) = [ exp+ {- itr (A (s) )ds} l" B"(O) 

+ fdr[ exp_ {- fr (A (t-s)) ds} l" W" (A (t- r)) + rf(t-r)}. 

(5 ·5) 

Since, up to order o, 

[exp_{- fr(A(t-s))ds}l" 

=[exp_{- f[r(a)- far(a)jaa 1A1(t-s')ds']ds+OW)}l" 

= [ e-cr(a)] jk + i" ds i' ds' [ e-srca)] jmar mn (a) jaaz [ e-cc-s)r(a)] n~,Az (t- s'), 

with a=A(t), we have for t~rB 

Bj(t) = ioo dr[e-cr(a)]jk{~"(a) +rf(t-r) -fJ~"(a)jfJaz fdsAz(t-s)} 

+ ioodr fds i'ds'[e-'r(a)]jmi)Jmn(a)jaaz[e-Cc-s)r(a)]n 1,Az(t-s') 

X {~ 1 c(a) +rf(t-r)} +0(rJ2). (5·6) 

Then we also have, from (3 ·1), 

Az(t-s) =vz(a) -azm(a) [l-1 (a)J (a) 

-a1m(a) .rdu[e-67 caJ]ncnrnB(t-s-cr) +r/(t-s) -1-0(0'2). (5·7) 

Inserting (5 · 6) with (5 · 7) into (3 ·1), we obtain an equation of the form (2 ·1). 
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Contraction of State VaTiables in Non-EquilibTium Open Systems. II 511 

Taking its conditional average and using (3 · 4) and (3 · 5), we have, to order o2, 

V;(a, t) =vi(a) -aij(a) l=dr[e-cr("l]jk[lS'k(a) -ra(]k(a)jaat 

X {v!(a) -a!m(a) [r-1 (a)]mnf3n(a)}] 

+aij(a) l=dr fds l'ds'[e-srcal]jn,armn(a)jaa 1[e-<"-s)r(a)]nk 

X [(3k(a) {v 1 (a) -atp(a) [r- 1 (a)]pq(3q(a)} 

-2a1p(a) 1= du[e-•rcaJ]pqL:fo(r-s'-u) +2Lfc1o(r-s')]. 

This turns out to be 

where 

Vi(a, t) =vi(a) -aij(a) [r-1 (a)]jk 

X [f3k(a)- {vt(a) -atm(a) [r- 1 (a)]mnf3n(a)} 

X h~~ [r-1 (a)] kP(]P (a)} J- aij (a) [r-1 (a)] jkalm (a) 

X [a Xkm(a, a')] +0(o 3
), 

aal a'~a 

X ~ (a a') =2 i= dr [e-rr(a)J .LBB[e-rr(a')J . 
km , - k~ '~-J m; ' 

0 

(5·8) 

(5·9) 

We may retain terms up to order o in the fluctuating forces because they already 

giye the second-order contribution to the Fokker-Planck equation for A (t). Then 

we obtain 

(5 ·11) 

Since si (a, t) are the linear transformation of Gaussian processes T/ (t) and T/ (t)' 

Si (a, t) are also Gaussian processes. Their time correlation functions are g1ven, 

from (5 ·11) and (3 · 3) ~ (3 · 5), by 

(Si(a, t)S1 (a', t'); ao)=2L;'/o(t-t') -2au(a) [e-(t-t')rcaJ]jkL:t 

(5 ·12) 

for t>t'. On the time scale of order rA (yrB), 
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512 T. Morita, H. ]}fori and K. T. iVIashiyama 

(5 ·13) 

Then (5 ·12) leads to (2 · 25) with 

~il(a, a') =LfzA-2aij(a) [r 1 (a)JjkL~1 

+ aii (a) [r-1 (a)] idkm (a, a') azm (a'). (5 ·14) 

Although Xkm (a, a') = Xmk (a', a), the third term of (5 ·14) as well as the second 
term gives an asymmetric part of ~il (a, a'). Therefore, from (2 · 28) ~ (2 · 30), 
we obtain th~ Fokker-Planck equation (2 · 30) with 

Hi (a, t) = [oi,d- aij (a) [r- 1 (a)] jk {c 1 ~-z [r- 1 (a)] kp.Bp (a)} J 

X {vz(a) -azm(a) [r-1 (a)]mn.8n(a)} 

+ { f!_aii(a) [r-1(a)Jik} {Xkm(a, a)azm(a) -2L~1} 
Oaz 

(5 ·15) 

and Eu (a) = ~iL (a, a). Since x (a, a) =X (a, oo), this result agrees with that of 
§ 4. It is worth noting that, since (4·15) satisfies the matrix equation 

(5 ·16) 

With rT denoting the transpose of r, the symmetric part of ~il (a, a) agrees with 

(5 · 4) so that the conventional procedure gives the correct diffusion term though 
it gives an incorrect drift term. 

§ 6. A single-mode laser model 

In this section we consider a single mode laser interacting with two-level 
atoms, and discuss its stochastic equations by applying the foregoing results. If 
we assume exact resonance, then we have the following five equations for the 
complex slowly varying amplitude of the electromagnetic field b, the total atomic 
dipole moment R and the total inversion Z: 6),7),g} 

dbjdt= -tcb-igR+F(t), 

dR/dt= -r j_R+2igbZ +T (t), 

dZjdt= -r 11 (Z -Zo) +ig(b*R-bR*) +Tz(t), 

(6 ·1a) 

(6·1b) 

(6 ·lc) 

and the conjugates of (6·1a) and (6·1b), where IC, rj_, r 11 are relaxation rates, g 
is a coupling constant, Z0 is a pumping parameter and asterisks indicate the 

complex conjugate. Fluctuating forces F, r and rz are assumed to be Gaussian 

white noises with (F(t))=(F(t))=(Fz(t))=O and 

(F (t) F* (t')) = 2tcno (t---- t'), (6 ·2a) 
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Contraction of State Yariables in ~Non-Equilibrium Open Systems. II ;)13 

(T (t) T* (t')) = 2y l.M iJ (t- t'), 

(L (t) T, (t')) = r11M iJ (t- t') 

a ncl all other correlations vanishing, where 

n = (b*b)cq' l'vf = (R* R)cq 

with ( · · )eq denoting the equilibrium average. 

(6·2b) 

(6 · 2c) 

(6. 3) 

Then (6 ·1) has the form o£ (3 ·1) and (3 · 2). I£ we set "'4_ =Col (b, b*), 

B=Col(R,R*,Z), then we have 

(
-Kb ) 

vi= -!cb* ' 
(6 · 4a) 

rjk=( ~~l. 
-igb* 

0 -2igb ) 

r l. 2~-gb* , 

igb I il 

(6·4b) 

AA_ ( 0 /Cn) 
Lu- , 

Kn o 
(6· 5) 

and LAB= 0. Then we have 

(6· 6) 

where 

JZ=b*b. (6·7) 

Equation (6·6) gives the main drift term of dbjdt clue to the mode couplings 

to R. Therefore, assuming that 

we eliminate (R, R*, Z) and derive reduced equations for (b, b*) to 

denoting the order of magnitude of the small parameters (6 · 8). 

According to § 4, ( 4 ·15) and (6 · 5) lead to 

( 
0 l'vf 0 )' 

(bJ],n;a)=x(a,co)= M 0 _? . 
·. 0 0 J1.1j2 

Therefore (3 · 23) leads to 

~P(b b* t)=-~{-/c-1- h>Zo +J(n))bP 

at ' ' ab 2 (1 + sn) 2n [ 

(6·8) 

order o\ iJ 

(6· 9) 
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514 T. lvforita, H. lvfori and K. T. Nfashiyama 

_l_1rsM!!_{ sb2 _a _ 2+sn _Jj }P 
8 1 ab 1 + SJZ ab 1 + SJZ ab* 

_ a'P 
+ten - +c. c., 

abab* 
(6 ·10) 

where 

J(n)= rlisZo [tc-_Iii_sZo ·] n[1- {1-f::_2(r~/r 11 )}sn]. 
r~ 2(1+sn) (1+sn) 3 

(6 ·11) 

The J(n) term comes from the third term of (3 ·17), and is of order rF. The 
Langevin equation for b is given by (3·21): 

d b= { _ /C + _I_If!_Zo + [_(n)} b 
dt 2(1+sn) 2n 

1 n 1.3+sn b R~() 
-- I;;S 1V" - - + b t ' 

8 (l+sn) 2 
(6 ·12) 

where Ru (t) 1s a fluctuating force of the type (3 ·15). 

Using 

(6 ·13) 

we can transform (6 ·10) and (6 ·12) into the equations for the photon number 
n=b*b and the phase ¢=(1/2i)log(b/b*). Since a(n,¢)/a(b,b*) =i, we have 
P (n, ¢) dnd¢ = P (b, b*) d 2b. Thus we obtain 

a P(n, ¢, t) =- a {-2tcn+ rilsZo n+J(n)}P 
at an 1+sn 

1 71 , a n aP + 2 ,.77_ a naP + -! 11snlf '" 
2 an 1+sn an an an 

- - 1 a2P + (rpsM +4tcn)- . . 
. 8n a¢2 

(6 ·14) 

The Langevin equation for n takes the form 

d n=-2tc[n-n]+ _l;;s [zon+l_ ]\J__ ]+J(n)+it(t), 
dt 1-1-sn 2 1+sn 

(6 ·15) 

where Rn (t) is a fluctuating force of the type (:) ·15). 

These reduced equations differ from those which are obtained by the con­
ventional adiabatic elimination (5 · 3) and (5 · 4). For example, in the Fokker­
Planck equation for P(b, b*,t), though the diffusion terms are identical, the drift 
term in the conventional one does not have the J(n) term in (6 ·10) but has 
an additional term (r11 sM /8) [ sb / (1-1- sn) 2

]. In the Langevin equation for n, 
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Contraction of State Variables in Non-Equilibrium O,oen Systems. II 515 

the conventional one does not produce the J (n) term in (6 ·15) but produces 

an additional term (y 11 sM / 4) [sn/ (1 + sn) 2]. 

§ 7. Summary and remarks 

We have formulated a projector elimination of irrelevant degrees-of-freedom 

111 multiplicative stochastic process (2 ·1), and derived reduced equations of mo­

tion (2·23) and the corresponding master equation (2·22). Multiplicative stochas­

tic processes of a new type are given by (5 ·11) which takes the memory 

form 

(7 ·1) 

with r/ (t) and rk B (t) being Gaussian white noises. On the time scale of order 

rA ()>rB), this leads to the form (2 · 25) with (5 ·14). Then (2 · 23) and (2 · 22) 

reduce to the Langevin equation (2 · 31) and the Fokker-Planck equation (2 · 30). 

The asymmetric form (2 · 25) is a generalization of the conventional form 

2~ii (a, a') o (t- t'). This generalization is indispensable since ~ii (a, a') =/=~ii (a', a). 

The asymmetry of the spectral density matrix arises from the memory effect due 

to rn'Yr"" r"' being the time scale of r/ (t) and r/ (t). Consider (7 ·1). Then, 

in (Si(a, t)Si(a', t'); a 0) with t>t', contribution comes from r/(s) with s<t', 

whereas, if t' >t, contribution comes from r/ (s') of Sj (a', t') with s' <t. The 

difference between the two contributions leads to the asymmetry. Here it is essen­

tial to distinguish three different time scales rA, rB and r"' with rA)>rB'Yrm, and 

then to take the limit rB->0 with rn'Yrm being kept. The conventional adiabatic 

elimination simply replaces the time integral of (7 ·1) by [y- 1 (a) ]ikrkB (t) with­

out distinguishing rn and rm- In § 5, we have proposed its improvement. 

In § 3 we have developed a projector elimination from coupled Langevin equa­

tions and obtained the drift term (3 ·17) and the spectral density (3 ·18). This 

is a generalization of the previous results derived in I with the aid of the projec­

tor elimination in dissipative dynamical systems. 

The adiabatic elimination in deterministic equations 9l retains the first-order 

terms in the slowness parameter r). In §§ 4 and 5 we have retained up to order 

o2 in order to take fluctuations into account. One of the most important fea­

tures of the adiabatic elimination is to give Hi (a) and Ea (a) in terms of LJ~ 

completely through the variance equations (4·15). This is different from the 

projector elimination which gives IIi (a) and Ea (a) in terms of the initial vari­

ances (6j)m; a). Since the variance equations ( 4 ·15) are the fluctuation-dissipa­

tion relations characteristic of the steady Gaussian distribution generated by the 

noise sources LJ~, this means that the adiabatic elimination assumes the local 

equilibrium for the initial distribution of irrelevant variables. 

The multiplicative stochastic equations with white noises have a mathematical 
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516 T. ldorita, H. Mori and K. T. lvfashiyam.a 

ambiguity. The ItO interpretation and the Stratonovich interpretation are often 

usecl.6J,JoJ Our results in § 2 agree with the Stratonovich interpretation. This 

is clue to the fact that we have replaced the time correlation functions of the 

stochastic forces by those of white noises after transforming the stochastic equa­

tions into the master equation by means of the ordinary calculus. 10l Thus (2·1) 

can be interpretatecl as the Stratonovich type stochastic differential equation, where­

as the resulting Langevin equation (2 · 31) should be interpretatecl as the Ito 

type. 
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Appendix A 

--Derivation of (2 · 11) and (2 · 16) --

Using the operator identity 

U(b, t) =UQ(b, t, 0) + l'drU(b, r)PL(b, r)UQ(b, t, -r), (A·1) 

we can rewrite (2 · 7) as 

.§_II a (t) =- .~. sdb o (A (0)- b) [u (b, t) P 
at aai 

+ UQ(b, t, O)Q-1- l'dr U(b, r)PL (b, -r) UQ(b, t, r)Q J 

x [Vi(b, t) +S;(b, t)]o(a-b). (A·2) 

Since PSi(b, t) =QVi(b, t) =0, QSi(b, t) =Si(b, t), 

s dbo (A (0) -b) U (b, t) PF (b, t, -c) = s db lib (t) (F (b, t, -c); b), (A·3) 

PL(b,-r)Q=PSj(b,r) (8/abj)Q, (A·2) leads to (2·11). 

In order to derive (2 ·16), let us rewrite (2 ·13) as 

Fia (b, t, -c) = 0 (a- b) Ri (b, t, r) + Yia (b, t, r), (A·4) 

where (2 · 20) has been used. Differentiating (A· 4) with respect to -r leads to 

aXia (b, t, -r) =-QL (b, -c) Fia (b, t, -c) + o (a- b) QL (b, -r) Ri (b, t, -c) 

=-QLa (b, 'C) Fia (b, t, 'C) - QM a (b, 'C) Yia (b, t, 'C), (A-5) 
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Contraction of State Variables in Non-Equilibrium Open Systems. II 517 

where 

() 
La(b, r)=- [Vj(b, r) -1-Sj(b, r)], 

aaj 
(A·6) 

(A·7) 

Since Yia(b, t, t) =0, integrating (A·5) and inserting the Yia(b, t, :) thus ob­

tained into (A· 4), we obtain 

F;a (b, t, r) = o (a- b)R; (b, t, r) + fds exp_[ rQM a (b, u) du J 

xQLa(b, s)F;a(b, t, s). 

Iterating this, we obtain 

(A·8) 

Fia(b, t, r) = ~ 0 fdsl fds2· .. f_ 1dSn exp_[ f 1
QMa(b, u) JQLa(b, s1) 

X ···exp_[ fnpMa(b, u)du JQLa(b, sn)o(a-b)R;(b, t, r). 

(A·9) 

Here each QLa(b, s) gives ajaab and we have 

QM a ( b, s) [f ()_ · · · 0 0 (a - b) J 
aak1 aakn 

= [ 0 - · · · a_ o (a - b) J QL ( b, s) f , (A· 10) 
aak1 aakn 

where f is an arbitrary quantity which does not depend on a. Hence \i\Fe obtain 

Inserting this into (2 ·11), we obtain (2 ·16). 

Appendix B 

--Derivation of (2 · 27) --

Using the interaction picture, we have 

where 

(A·ll) 

(B·1) 

(B·2) 

(B· 3) 
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518 T. lvforita, I-I. JYfori and K. T. lvfashiyama 

(B·4) 

and we have used the fact that 

(B·5) 

Then the integrand of the second term of (2 ·11) becomes 

I sj (b, r) f) Fia (b, t, r); b) 
\ f)bj 

= lsj(b, r)_}_-U0 - 1 (b, r)fJQ(b, t, r)Ua(b, t)Si(a, t); b)o(a-b) 
\ abj 

X .. ·QJ: (b, St) Uo (b, t) si (a, t) ; b>o (a- b) 

X QJ: (b, S2m-1) ~[ (b, S2m-2) QJ: (b, S2m-s) · · · 

xJ:(b,s2)QJ:(b,s1)U0 (b,t)Si(a,t); b)o(a-b), (B·6) 

where we have used the fact that the odd order correlations of si (b, t) vanish. 

The integrands of (B · 6) are written in terms of products of the double correla­

tions of Si(b, t) and are proportional to products of (m+1) delta functions, but 

do not include the terms proportional to 

(B·7) 

This can be shown by the mathematical induction. It can be shown, however, 

that products of (m + 1) delta functions except (B · 7) vanish by the integration 

over ti1ne.w 

Hence the only non-vanishing term of (B · 6) is the term with m = 0. Then 

we obtain 

X Uo- 1 (b, r) U 0 (b, t) o (a- b) 

= s dbJib(t)t;ij(a, b) ~- o(a-b) 
abj 
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(B·8) 

Inserting this into (2 ·11), we obtain (2 · 27). Similarly vve can show (2 · 33). 

Appendix C 

--Derivation of (3·10) and (3·22)--

From (3 · 6) we obtain 

(C ·1) 

Then, for any functional X("4 (t), B (t)), we have 

X(A(t), B(t)) = s da s dbX(a, b)Ilau(t) 

= S da S db {IT al> (0) c'l"(a,b) --1- f ds F au (t- s) c'r(a,b)} 

xX(a, b), (C·2) 

:tX(A(t), B(t)) = S da S db{llab(O) c'r(a,b)+ fdsFau(t-s)c'I(a,b)} 

xT(a, b)X(a, b)+ s da s dbX(a, b)Fab(t). (C·3) 

Using the operator identity 

(C·4) 

and inserting 1=P+Q in front of TX in (C·3), we obtain8l 

!£x(A(t), B(i)) =fda fdbllab(t)PT(a, b)X(a, b) 

dt . 

+ Jda S db IIab(O)ctQr(a,cJQT(a, b)X(a, b) 

bJQT(a, b)X(a, b) 

(C·5) 

Putting X(a, b) =o(a-a'), we obtain (3·10). 
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In order to derive (3 · 22), let F (t) ~F (~1 (0), B (O), Q, t) be an arbitrary 
function of A (0), B (0) and Q. Then we have 

(F(t); a 0)= S da S db(IIab(O); a 0)f(a, b, t), (C·6) 

where f(a, b, t) is the average of F (a, b, Q, t) over Q and have been assumed 
to be independent of a 0• Since 

(C · 6) leads to 

(IIab(O); ao)= S dbo(IIab(O); a 0bo)q(b0 ; a 0) 

= o (a - a 0) q ( b; a) , 

(F(t);a)= sdbf(a,b,t)q(b;a), 

=P f(a, b, t). 

(C-7) 

(C-8) 

Fa(t) and Jt(t) have the form QF(t) so that we have Qf instead of fin 
(C · 8). Therefore PQ = 0 leads to (3 · 22). 

Appendix D 

~-Derivation of ( 3 · 16) ~-

Since (3 · 7) leads to 

+- _az_ -LAAo (a -a') 
aa;'aa/ LJ ' 

(D-1) 

(T (a, b) o (a - a') ; a) = - __ !!___ [vi (a') - ai j (a') ( b j ; a) J o (a - a ') a a/ 

+--!t __ LAAO(a -a') 
aa;'aa/ LJ ' 

(D-2) 

we obtain 

fa,(a, b, 0) =QT(a, b)o(a-a') =;/ ,aij(a')bjo(a-a'). 
uai 

(D·3) 

In the propagator of the memory term of (3 ·10), we treat QT similarly to 
(4·10) of I: 

or~Qf _Q {[!3 ·(a)- r "k (a) hk] y + 2LAB_ 02-+ LBB __ Q2 - } 
- - J J . (Jb · LJ aa.(Jb • LJ (Jb.()b • • 

J t J t J 

(D-4) 
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Then we have 

I'ds(T (a, b) e'(tf'(a,b)fa' (a, b, 0); a) 

8 -
=- aij(a') [r 1(a')]jk[Pk(a') -r~c~(a')(bz; a)]o(a-a') 

Da/ 

a c ')[ -lc ')J 8(b~c;a'>c c ') c ')(b ')J --- aij a T a jlc -- Vz a -alm a m; a 
Da/ 8a/ 

~ ( ') 8 ( ') [ -1 ( ') J LAA X 0 a- a +- aij a T a jk zm 
Da/ 

(D·5) 

Since Lf:}."-'0 (o2), the last term of (D · 5) is of order 03, but other terms are of 

order 02• Hence we neglect the last term. Using the Markov approximation and 

inserting (D · 2) and (D · 5) into (3 ·10), we obtain (3 ·16). 
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