Contraction of State Variables in Non-Equilibrium Open Systems. II

Terumitsu Morita,*) Hazime Mori and Kazuko T. Mashiyama

Department of Physics, Kyushu University 33, Fukuoka 812
(Received February 7, 1980)
A projector elimination and an adiabatic elimination of irrelevant degrees-of-freedom are developed for the contraction of state variables in stochastic equations of motion. For multiplicative stochastic equations, a master equation for the probability density of relevant variables $A(t) \equiv\left\{A_{i}(t)\right\}$ is derived by means of the projector method and is shown to reduce to a Fokker-Planck equation if the stochastic forces $S_{i}(a, t)$ are Gaussian processes with time correlations of the form $\left\langle S_{i}(a, t) S_{j}\left(a^{\prime}, t^{\prime}\right)\right\rangle=2\left[\xi_{i j}\left(a, a^{\prime}\right) \delta_{+}\left(t-t^{\prime}\right)+\xi_{j i}\left(a^{\prime}, a\right) \delta_{+}\left(t^{\prime}-t\right)\right]$, where $\delta_{+}(t)$ is the right half of the δ function $\delta(t)$, nonvanishing only at $t=0+$. If $\xi_{i j}\left(a, a^{\prime}\right)$ $=\xi_{j i}\left(a^{\prime}, a\right)$, then this reduces to the conventional form $2 \xi_{i j}\left(a, a^{\prime}\right) \delta\left(t-t^{\prime}\right)$.

With the aid of stochastic processes of this new type, an adiabatic elimination from the Langevin equations is proposed for a stochastic Haken-Zwanzig model for non-equilibrium phase transitions. A projector elimination from the Langevin equations and an adiabatic elimination from the Fokker-Planck equation are also explored. Calculation is carried out up to second order in the slowness parameter. Three different methods are thus developed with consistent results and are applied to a laser model for illustration.

§ 1. Introduction

Macroscopic properties are described by a relevant subset of macrovariables of the system, and it becomes necessary to obtain closed equations of motion for the subset by eliminating the rest. In a previous paper ${ }^{11}$ we have developed a projector elimination for such a contraction of state variables when the system is governed by deterministic equations of motion.

Many systems are, however, described by stochastic equations of motion; for example, in a one-variable case,

$$
d A(t) / d t=V(A(t))+S(A(t), t)
$$

where $S(a, t)$ is a stochastic force which depends on the value a of $A(t)$ explicitly. Conventional theories assume the form ${ }^{2) \sim 4}$

$$
S(a, t)=g_{k}(a) r_{k}(t)
$$

where $r_{k}(t)$ are Gaussian white noises and repeated indices k are to be summed up. Such a stochastic force appears in the magnetic resonance absorption when one observes the motion of a spin in a fluctuating magnetic field. ${ }^{2)}$ Multiplica-

[^0]tive stochastic forces of this type also appear when one replaces external parameters in equations of motion by fluctuating ones in order to take into account fluctuations of the surroundings, ${ }^{5}$) and also appear when one eliminates irrelevant variables in coupled Langevin equations by an adiabatic procedure. ${ }^{(6), 7}$

As will be shown later, however, an improved adiabatic procedure leads to a stochastic force of the memory form

$$
S(a, t)=h_{j}(a) \int_{0}^{\infty} d s\left[e^{-s r(a)}\right]_{j k} r_{k}(t-s)
$$

where $\gamma(a)$ is a relaxation-rate matrix which may depend on a. The conventional procedure replaces the time integral by $\left[\gamma^{-11}(a)\right]_{j k} r_{k}(t)$ in the coarse-graining limit $\tau_{B} \rightarrow 0$, where τ_{B} is the time scale of the relaxation $e^{-s_{\tau}(a)}$, thus leading to (1-2). This replacement, however, is incorrect since $\tau_{B} \geqslant \tau_{m}$ even in the limit, where τ_{m} is the microscopic time scale of $r_{k}(t)$. In fact, as will be shown in $\S 5$, (1-3) leads, in the limit $\tau_{B} \rightarrow 0$, to a time correlation of the form

$$
\left\langle S(a, t) S\left(a^{\prime}, t^{\prime}\right)\right\rangle=2\left[\xi\left(a, a^{\prime}\right) \delta_{+}\left(t-t^{\prime}\right)+\xi\left(a^{\prime}, a\right) \delta_{+}\left(t^{\prime}-t\right)\right]
$$

with asymmetric coefficients $\xi\left(a, a^{\prime}\right) \neq \bar{\xi}\left(a^{\prime}, a\right)$, where $\delta_{+}(t)$ is the right half of the δ function $\delta(t)$. This asymmetry comes from the memory effect due to $\tau_{B} \geqslant \tau_{m}$, and would be important when the degrees-of-freedom of the time scale τ_{B} are far from equilibrium.

In $\S 2$, we treat multiplicative stochastic processes, including the new type (1.4), and derive reduced equations of motion and a master equation with the aid of the projector method. In § 3, a projector elimination from the Langevin equations is also studied with the aid of Fujisaka and Mori's projector method. ${ }^{87}$ In $\S \S 4$ and 5 , we develope an adiabatic elimination from the Fokker-Planck equation and the Langevin equations. In $\S 6$, we treat a laser model. Section 7 is devoted to a summary and remarks.

§ 2. Projector elimination in multiplicative stochastic processes

Let us denote a relcvant subset of macrovariables by $A(t)=\left\{A_{i}(t)\right\}$ and assume, as a generalization of $(1 \cdot 1) \sim(1 \cdot 3)$, that they are governed by stochastic equations of motion

$$
d A_{i}(t) / d t=V_{i}(A(t), t)+S_{i}(A(t), t)
$$

where $V_{i}(a, t)$ are unique functions of $a=\left\{a_{i}\right\}$ and t, and $S_{i}(a, t)$ are stochastic processes whose statistical properties are supposed to be known. Let us introduce the generating functional

$$
\Pi_{a}(t) \equiv \hat{o}(A(t)-a)
$$

Its time evolution is governed by

$$
\partial \Pi_{a}(t) / \partial t=L^{+}(a, t) \Pi_{a}(t),
$$

where L^{+}is the linear operator

$$
L^{+}(a, t)=-\left(\partial / \partial a_{i}\right)\left[V_{i}(a, t)+S_{i}(a, t)\right]
$$

with repeated indices i being to be summed up. Integrating (2.3) formally leads to

$$
\Pi_{a}(t)=\exp +\left(\int_{0}^{t} L^{+}(a, s) d s\right) \delta(A(0)-a)
$$

where $\exp { }_{+}$denotes the time-ordered exponential ordered from left to right in decreasing order. In order to utilize the projector elimination, let us introduce the adjoint operator of $L^{+}(a, t)$,

$$
L(b, t) \equiv\left[V_{i}(b, t)+S_{i}(b, t)\right]\left(\partial / \partial b_{i}\right) .
$$

Then, since $\Pi_{a}(t)=\int d b \Pi_{b}(t) \delta(a-b)$, we can write (2-3) by partial integration as

$$
\begin{align*}
\partial \Pi_{a}(t) / \partial t= & \stackrel{\partial}{\partial a_{i}} \int d b \delta(A(0)-b) U(b, t) \\
& \times\left[V_{i}(b, t)+S_{i}(b, t)\right] \delta(a-b),
\end{align*}
$$

where

$$
U(b, t) \equiv \exp _{-}\left(\int_{0}^{t} L(b, s) d s\right)
$$

Our problem is now to eliminate the degrees-of-freedom Ω associated with the stochastic forces $S_{i}(b, t)$. Let us suppose that at $t=0$ the relevant set $A(0)$ is known to take a set of values $a_{0} \equiv\left\{a_{0 i}\right\}$. The average of a functional $G(b)$ of $\left\{S_{i}(b, s)\right\}$ over Ω with this initial condition is denoted by $\left\langle G(b) ; a_{0}\right\rangle$. The projection onto this conditional average is denoted by the projector P :

$$
P G(b)=\langle G(b) ; b\rangle .
$$

Let us assume that the mean value of $S_{i}(b, t)$ is zero:

$$
\left\langle S_{i}(b, t) ; a_{0}\right\rangle=0 .
$$

Then, as will be shown in Appendix A, the equations of motion (2.7) can be transformed into

$$
\begin{align*}
\frac{\partial}{\partial t} \Pi_{a}(t)= & -\frac{\partial}{\partial a_{i}}\left[V_{i}(a, t) \Pi_{a}(t)+F_{i a}(t)\right. \\
& \left.+\int_{0}^{t} d \tau \int d b \Pi_{b}(\tau)\left\langle S_{j}(b, \tau) \frac{\partial}{\partial b_{j}} F_{i a}(b, t, \tau) ; b\right\rangle\right]
\end{align*}
$$

where

$$
\begin{align*}
& F_{i a}(t) \equiv \int d b \delta(A(0)-b) F_{i a}(b, t, 0), \\
& F_{i a}(b, t, \tau) \equiv U_{Q}(b, t, \tau) S_{i}(b, t) \partial(a-b), \\
& U_{Q}(b, t, \tau) \equiv \exp -\left[\int_{\tau}^{t} Q L(b, s) d s\right]
\end{align*}
$$

with $Q \equiv 1-P$. Since $P Q=0$, we have

$$
\left\langle F_{i a}(t) ; a_{0}\right\rangle=\left\langle F_{i a}(b, t, \tau) ; a_{0}\right\rangle=0 .
$$

Namely, the $F_{i a}$'s are statistically independent of $A(0)$. Equation (2.11) is the fundamental equation corresponding to (3.3) of I.

As will be shown in Appendix A, $(2 \cdot 11)$ can be further transformed into

$$
\begin{align*}
\frac{\partial}{\partial t} \Pi_{a}(t)= & -\frac{\partial}{\partial a_{i}}\left[V_{i}(a, t) \Pi_{a}(t)+F_{i a}(t)\right] \\
& +\sum_{n=1}^{\infty}(-1)^{n-1} \partial a_{i_{1}} \ldots \partial a_{i_{n}} \int_{0}^{t} d \tau\left[-C_{i_{1} \ldots i_{n}}(a, t, \tau)\right. \\
& \left.\div \frac{\partial}{\partial a_{j}} E_{i_{1} \ldots i_{n} ; j}(a, t, \tau)\right] I I_{a}(\tau),
\end{align*}
$$

where we have defned

$$
\begin{align*}
& C_{i_{1} \cdots i_{n}}(a, t, \tau) \equiv\left\langle S_{j}(a, \tau)_{\partial a_{j}}^{\partial} \mathscr{S}\left(i_{1} \cdots i_{n}, a, t, \tau\right) ; a\right\rangle, \\
& E_{i_{1} \cdots i_{n} ; j}(a, t, \tau) \equiv\left\langle S_{j}(a, \tau) \mathscr{S}\left(i_{1} \cdots i_{n}, a, t, \tau\right) ; a\right\rangle
\end{align*}
$$

in terms of the generalized fluctuating forces

$$
\begin{align*}
& \mathscr{S}\left(i_{1} \cdots i_{n}, a, t, \tau\right)=\int_{\tau}^{t} d s_{2} \int_{s_{2}}^{t} d s_{3} \cdots \int_{s_{n-1}}^{t} d s_{n} U_{Q}\left(a, s_{2}, \tau\right) \\
& \quad \times Q\left[V_{i_{2}}\left(a, s_{2}\right)+S_{i_{2}}\left(a, s_{2}\right)\right] \\
& \quad \times \cdots U_{Q}\left(a, s_{n}, s_{n-1}\right) Q\left[V_{i_{n}}\left(a, s_{n}\right)+S_{i_{n}}\left(a, s_{n}\right)\right] R_{i_{1}}(a, t, \tau), \\
& R_{i}(a, t, \tau)=U_{Q}(a, t, \tau) S_{i}(a, t) .
\end{align*}
$$

Equation (2.16) is a generalization of the δ expansion (3.14) of I.
The probability distribution function that $\Lambda(i)$ takes a set of values a time t is given by

$$
P(a, t)=\left\langle\Pi_{a}(t) ; a_{0}\right\rangle,
$$

where $P(a, 0)=\delta\left(a-a_{0}\right)$. Therefore, (2•15) and (2.16) lead to

$$
\begin{align*}
& \frac{\partial}{\partial t} P(a, t)=-\frac{\partial}{\partial a_{i}}\left[V_{i}(a, t) P(a, t)\right]+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\partial}{\partial a_{i_{1}}} \cdots \partial_{\partial a_{i_{n}}}^{\partial} \\
& \quad \times \int_{0}^{t} d \tau\left[-C_{i_{1} \cdots i_{n}}(a, t, \tau)+\frac{\partial}{\partial a_{j}} E_{i_{1} \cdots i_{n} ; j}(a, t, \tau)\right] P(a, \tau) .
\end{align*}
$$

Since $A_{i}(t)=\int a_{i} \Pi_{a}(t) d a,(2 \cdot 16)$ also leads to

$$
d A_{i}(t) / d t=V_{i}(A(t), t)+\int_{0}^{t} d \tau C_{i}(A(\tau), t, \tau)+R_{i}(t)
$$

where

$$
R_{i}(t) \equiv \int F_{i a}(t) d a=R_{i}(A(0), t, 0)
$$

Equation (2.23) is a stochastic equation whose features differ from those of (2.1), and is called the generalized Langevin equation. Equation (2.22) is called the generalized master equation. It should be noted that these equations are all exact under the assumption (2.10).

Let us now assume that the stochastic forces $S_{i}(a, t)$ are Gaussian processes with

$$
\begin{align*}
& \left\langle S_{i}(a, t) ; a_{0}\right\rangle=0, \\
& \left\langle S_{i}(a, t) S_{j}\left(a^{\prime}, t^{\prime}\right) ; a_{0}\right\rangle=2\left[\xi_{i j}\left(a, a^{\prime}\right) \hat{\sigma}_{+}\left(t-t^{\prime}\right)+\xi_{j i}\left(a^{\prime}, a\right) \delta_{+}\left(t^{\prime}-t\right)\right]
\end{align*}
$$

where $\delta_{+}(t)$ is the right half of $\delta(t)$ and is defined by

$$
\delta_{+}(t)=\left\{\begin{array}{l}
\lim _{\tau \rightarrow 0^{+}}(1 / 2 \tau) e^{-t / \tau}, \quad \text { if } t \geq 0, \\
0, \text { otherwise },
\end{array}\right.
$$

and $\int_{0}^{\infty} f(t) \delta_{+}(t) d t=f(0+) / 2$. If $\xi_{i j}\left(a, a^{\prime}\right)=\xi_{j i}\left(a^{\prime}, a\right)$, then (2.25b) becomes the conventional form $2 \xi_{i j}\left(a, a^{\prime}\right) \delta\left(t-t^{\prime}\right)$. One important assumption involved here is that $S_{i}(a, t)$ are independent of the initial value $A(0)$ of the relevant variables. Then, as will be shown in Appendix $B,(2 \cdot 11)$ reduces to

$$
\frac{\partial}{\partial t} \Pi_{a}(t)=\left[-\frac{\partial}{\partial a_{i}} H_{i}(a, t)+\frac{\partial^{2}}{\partial a_{i} \partial a_{j}} E_{i j}(a)\right] \Pi_{a}(t)-\frac{\partial}{\partial a_{i}} F_{i a}(t),
$$

where

$$
\begin{align*}
& H_{i}(a, t)=V_{i}(a, t)+\left[\begin{array}{c}
\partial \\
\partial b_{j} \\
\xi_{i j} \\
(b, a)
\end{array}\right]_{b=a}, \\
& E_{i j}(a)=\hat{\xi}_{i j}(a, a)
\end{align*}
$$

Therefore, the master equation $(2 \cdot 22)$ reduces to the Fokker-Planck equation

$$
\frac{\partial}{\partial t} P(a, t)=\left[-\frac{\partial}{\partial a_{i}} H_{i}(a, t)+\frac{\partial^{2}}{\partial a_{i} \partial a_{j}} E_{i j}(a)\right] P(a, t),
$$

Contraction of State Variables in Non-Equitibrium Open Systems. II 505 and the generalized Langevin equation (2.23) reduces to the usual form

$$
d A_{i}(t) / d t=H_{i}(A(t), t)+R_{i}(t)
$$

where

$$
\begin{align*}
& \left\langle R_{i}(t) ; a_{0}\right\rangle=0, \\
& \left\langle R_{i}(t) R_{j}(0) ; a_{0}\right\rangle=2 E_{i j}\left(a_{0}\right) \delta(t) . \quad(t \geqq 0)
\end{align*}
$$

Equations (2.30) and (2.31) describe the mean values and fluctuations of the relevant variables $A_{i}(t)$ in the conventional way.

§3. Projector elimination from the Langevin equations

Let us consider the following model equations:

$$
\begin{align*}
& d A_{i}(t) / d t=v_{i}(A(t))-\alpha_{i j}(\Lambda(t)) B_{j}(t)+\gamma_{i}^{A}(t), \\
& d B_{j}(t) / d t=\beta_{j}(A(t))-\gamma_{j k}(A(t)) B_{k}(t)+r_{j}^{B}(t),
\end{align*}
$$

where $r_{i}^{A}(t), r_{j}^{B}(t)$ are Gaussian white noises with mean values zero and correlations

$$
\begin{array}{ll}
\left\langle r_{i}^{A}(t) r_{i}^{A}\left(t^{\prime}\right) ; a_{0} b_{0}\right\rangle=2 L_{i j}^{A A} \delta\left(t-t^{\prime}\right), & L_{i i}^{A d}=L_{i i}^{A A}, \\
\left\langle r_{i}^{A}(t) r_{j}^{B}\left(t^{\prime}\right) ; a_{0} b_{0}\right\rangle=2 L_{i j}^{A B} \delta\left(t-t^{\prime}\right), & L_{i j}^{A B}=L_{j i}^{B A}, \\
\left\langle r_{j}^{B}(t) r_{k}^{B}\left(t^{\prime}\right) ; a_{0} b_{0}\right\rangle=2 L_{j k}^{B E} \delta\left(t-t^{\prime}\right), & L_{j k}^{B B}=L_{k j}^{B E} .
\end{array}
$$

Here $\left\langle\cdots ; a_{0} b_{0}\right\rangle$ denotes the conditional average with the initial values $A(0)=a_{0}$ and $B(O)=b_{0}$. This is a generalization of the Haken-Zwanzig model for nonequilibrium phase transitions ${ }^{9}$, which has been treated in I. We assume that $A(t)$ and $B(t)$ are relevant and irrelevant variables, respectively, and the time scale τ_{d} of $A(t)$ is distinctly larger than the time scale τ_{B} of $B(t)$. Our problem is to eliminate $B(t)$ and to derive a reduced equation of motion for $A(t)$.

In this section we use the projector method developed by Fujisaka and Mori.s" Statistical properties of fluctuating forces $r_{i}^{A}(t), r_{j}^{B}(t)$ do not depend on the initial values of $A(0), B(0)$. Therefore, (2.27) leads to

$$
\partial \Pi_{a b}(t) / \partial t=I^{+}(a, b) \Pi_{a b}(t)+F_{a b}(t)
$$

where $\Pi_{a, b}(t) \equiv \delta(A(t)-a) \delta(B(t)-b)$, and Γ^{*} is the adjoint operator of $I^{\prime}(a, b)$,

$$
\begin{align*}
\Gamma(a, b)=[& \left.v_{i}(a)-\alpha_{i j}(a) b_{j}\right]\left(\partial / \partial a_{i}\right)+\left[\beta_{j}(a)-\gamma_{j k}(a) b_{k}\right]\left(\partial / \partial b_{j}\right) \\
& +L_{i l}^{A A} \frac{\partial^{2}}{\partial a_{i} \partial a_{i}}+2 L_{i j}^{A B} \partial a_{i} \partial b_{j} \tag{3.7}
\end{align*}+L_{j k}^{B B} \frac{\partial^{2}}{\partial b_{j} \partial b_{k}},
$$

and $F_{c b}(t)$ is the master fluctuating force related to $r_{i}^{A}(t), r_{j}^{B}(t)$ by

$$
\iint a_{i} F_{a b}(t) d a d b=r_{i}^{A}(t), \quad \iint b_{j} F_{a b}(t) d a d b=r_{j}^{B}(t)
$$

Let $q\left(b ; a_{0}\right)$ be the conditional probability density that at $t=0 \quad B(0)$ takes a value b when $\Lambda(0)$ takes a value a_{0}, and let us introduce the projector P by

$$
P G(a, b)=\langle G(a, b) ; a\rangle=\int d b G(a, b) q(b ; a)
$$

for an arbitrary function $G(a, b)$. We have $P^{2}=P$ since $P g(a)=g(a)$ for an arbitrary function $g(a)$. Then, as will be shown in Appendix C, we obtain the following reduced equation for $\Pi_{a}(t) \equiv \delta(A(t)-a) .^{8)}$

$$
\begin{align*}
\frac{\partial}{\partial t} \Pi_{a^{\prime}}(t)= & \int d a\left\langle\Gamma(a, b) \delta\left(a-a^{\prime}\right) ; a\right\rangle \Pi_{a}(t) \\
& +\int_{0}^{t} d \tau \int d a\left\langle\Gamma(a, b) f_{a^{\prime}}(a, b, \tau) ; a\right\rangle \Pi_{a}(t-\tau)+\widetilde{F}_{a^{\prime}}(t)
\end{align*}
$$

where

$$
\begin{align*}
& f_{a^{\prime}}(a, b, t) \equiv e^{t Q \Gamma(a, b)} Q \Gamma(a, b) \delta\left(a-a^{\prime}\right), \quad(Q=1-P) \\
& \widetilde{F}_{a^{\prime}}(t) \equiv f_{a^{\prime}}(\Lambda(0), B(0), t)+\int d b F_{a^{\prime} b}(t) \\
&+\int_{0}^{t} d s \iint d a d b F_{a b}(t-s) f_{a^{\prime}}(a, b, s) .
\end{align*}
$$

Since $A_{i}(t)=\int a_{i}{ }^{\prime} \Pi_{w^{\prime}}(t) d a^{\prime},(3 \cdot 10)$ leads to

$$
\begin{align*}
d \Lambda_{i}(t) / d t= & \left\langle\Gamma(a, b) a_{i} ; A(t)\right\rangle \\
& +\int_{0}^{t} d \tau\left\langle\Gamma(a, b) q_{i}(a, b, \tau) ; A(t-\tau)\right\rangle+\tilde{R}_{i}(t),
\end{align*}
$$

where

$$
\begin{align*}
& q_{i}(a, b, t) \equiv e^{t Q \Gamma(a, b)} Q \Gamma(a, b) a_{i} \\
& \widetilde{R}_{i}(t)=q_{i}(A(0), B(0), t)+r_{i}^{A}(t)+\int_{0}^{t} d s \iint d a d b F_{a b}(t-s) q_{i}(a, b, s)
\end{align*}
$$

Since $\Gamma(a, b) a_{i}=v_{i}(a)-\alpha_{i j}(a) b_{j}$, (3.13) is a transformation of (3•1) which takes into account the renormalization due to the mode couplings to the B modes.

Since the time scale of $A_{i}(t)$ is distinctly larger than that of $B_{j}(t)$, we may expand the memory term of $(3 \cdot 10)$ in powers of the slowness parameter $\delta \equiv \tau_{B} / \tau_{\Lambda} \ll 1$ similarly to $\S 4$ of I. Then, as will be shown in Appendix D, (3•10) is reduced, to order δ^{2}, to

Contraction of State Variables in Non-Equilibrium Open Systems. II 507

$$
\frac{\partial}{\partial t} \Pi_{a}(t)=\left[-\frac{\partial}{\partial a_{i}} H_{i}(a)+\underset{\partial a_{i} \partial a_{l}}{\partial^{2}} E_{i l}(a)\right] \Pi_{a}(t)+\widetilde{F}_{a}(t),
$$

where

$$
\begin{align*}
H_{i}(a)= & v_{i}(a)-\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k} \beta_{k}(a) \\
& +\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k}\left\{\frac{\partial}{\partial a_{l}}\left[\gamma^{-1}(a)\right]_{k p} \beta_{p}(a)\right\} \\
& \times\left\{v_{l}(a)-\alpha_{i m}(a)\left[\gamma^{-1}(a)\right]_{m n} \beta_{n}(a)\right\} \\
& +\left\{\begin{array}{c}
\partial \\
\partial a_{l}
\end{array} \alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k}\right\}\left\{\alpha_{l m}(a)\left\langle\hat{b}_{k} \hat{b}_{m} ; a\right\rangle-2 L_{l k}^{A B}\right\}, \tag{3.17}\\
E_{i l}(a)= & L_{i l}^{A A}+\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k}\left\{\alpha_{i m}(a)\left\langle\hat{b}_{k} \hat{b}_{m} ; a\right\rangle-2 L_{l k}^{A B\}}\right\} \tag{3.18}
\end{align*}
$$

with

$$
\begin{gather*}
\hat{b}_{j}=b_{j}-\left\langle b_{j} ; a\right\rangle, \\
\left\langle b_{j} ; a\right\rangle=\left[\gamma^{-1}(a)\right]_{j k} \beta_{k}(a)+O(\hat{c}) .
\end{gather*}
$$

Therefore, (3.13) reduces to the Langevin equation

$$
d A_{i}(t) / d t=H_{i}(A(t))+\widetilde{R}_{i}(t) .
$$

Equations (3.17) and (3.18) agree with the previous results (4.13) and (4.17) of I if $\gamma(a)$ is a constant diagonal matrix and $L_{i k}^{A B}$ are negligible.

The degrees-of-freedom involved in the fluctuating forces $\widetilde{F}_{a}(t)$ and $\widetilde{R}_{i}(t)$ are $A(0), B(0)$ and external degrees-of-freedom Ω associated with $F_{a b}(t)$. Let $\left\langle\cdots ; a_{0}\right\rangle$ also denote the conditional average over $A(0), B(0)$ and Ω with $A(0)$ being fixed so as to be a_{0}. Then, as will be shown in Appendix C, we have

$$
\left\langle\widetilde{F}_{a}(t) ; a_{0}\right\rangle=\left\langle\widetilde{R}_{i}(t) ; a_{0}\right\rangle=0 .
$$

Therefore $(3 \cdot 16)$ leads to the following Fokker-Planck equation:

$$
\begin{align*}
&(\partial / \partial t) P(a, t)=-\left(\partial / \partial a_{i}\right)\left[I_{i}(a) P(a, t)\right] \\
&+\left(\hat{\partial} / \partial a_{i}\right)\left\{\alpha _ { i j } (a) [\gamma ^ { - 1 } (a)] _ { j k } (\partial / \partial a _ { i }) \left[\alpha_{l m}(a)\left\langle\hat{b}_{k} \hat{b}_{m} ; a\right\rangle\right.\right. \\
&\left.\left.-2 L_{i k}^{A B}\right] P(a, t)\right\}+L_{i t}^{A A}\left(\partial^{2} / \partial a_{i} \partial a_{i}\right) P(a, t),
\end{align*}
$$

where $I_{i}(a)$ represents the first three terms of $(3 \cdot 17)$.

§4. Adiabatic reduction of the Fokker-Planck equation

The Fokker-Planck equation corresponding to the Langevin equations (3.1) and (3.2) is given by

$$
\partial P(a, b, t) / \partial t=\Gamma^{+}(a, b) P(a, b, t) .
$$

The probability density $P(a, t)$ is given by

$$
P(a, t)=\int d b P(a, b, t)
$$

Let us put

$$
\begin{gather*}
P(a, b, t)=P(a, t) q(b \mid a, t) \\
\int d b q(b \mid a, t)=1
\end{gather*}
$$

Then, integrating (4.1) over b leads to

$$
\frac{\partial}{\partial t} P(a, t)=\left[-\frac{\partial}{\partial a_{i}}\left[v_{i}(a)-\alpha_{i j}(a)\left\langle b_{j} \mid a, t\right\rangle\right]+\frac{\partial^{2}}{\partial a_{i} \partial a_{i}} L_{i L}^{A A}\right] P(a, t)
$$

where, for an arbitrary function $G(b)$,

$$
\langle G(b) \mid a, t\rangle=\int d b G(b) q(b \mid a, t)
$$

From $(4 \cdot 1),(4 \cdot 3)$ and $(4 \cdot 5)$, we obtain

$$
\begin{align*}
\frac{\partial}{\partial t} q(b \mid a, t)= & \left\{-\frac{\partial}{\partial b_{j}}\left[\beta_{j}(a)-\gamma_{j k}(a) b_{k}\right]+\frac{\partial^{2}}{\partial b_{j} \partial b_{k}} L_{j k}^{B B}\right\} q(b \mid a, t) \\
& +\frac{1}{P(a, t)\left\{\begin{array}{c}
\partial \\
\partial a_{i}
\end{array} \alpha_{i j}(a) \delta b_{j}(t)+2 \frac{\partial^{2}}{\partial a_{i} \partial b_{j}} L_{i j}^{A B}\right\} P(a, t) q(b \mid a, t)} \\
& -\left[v_{i}(a)-\alpha_{i j}(a)\left\langle b_{j} \mid a, t\right\rangle\right] \frac{\partial}{\partial a_{i}} q(b \mid a, t)
\end{align*}
$$

where

$$
\delta b_{j}(t) \equiv b_{j}-\left\langle b_{j} \mid a, t\right\rangle
$$

In (4.7), each term is of order δ^{0} or $\hat{0}$, and, since $L_{i l}^{A A} \sim O\left(\delta^{2}\right)$, we have neglected the terms with $L_{i l}^{A A}$. Then $(4 \cdot 7)$ leads to

$$
\begin{align*}
\partial\left\langle b_{j} \mid a, t\right\rangle / \partial t= & \beta_{j}(a)-\gamma_{j k}(a)\left\langle b_{k} \mid a, t\right\rangle \\
& -\left[v_{l}(a)-\alpha_{l m}(a)\left\langle b_{m} \mid a, t\right\rangle\right]\left\{\frac{\partial}{\partial a_{b}}\left\langle b_{j} \mid a, t\right\rangle\right\} \\
& \left.+\quad \begin{array}{r}
1 \\
\\
\end{array}\right) \frac{\partial}{\partial(a, t)} \frac{\partial a_{l}}{}\left\{\alpha_{l m}(a) \chi_{j m}(a, t)-2 L_{i j}^{A B}\right\} P(a, t) \tag{4.9}
\end{align*}
$$

where

$$
\chi_{j m}(a, t) \equiv\left\langle\delta b_{j}(t) \delta b_{m}(t) \mid a, t\right\rangle
$$

Integrating (4.9) leads to

Contraction of State Variables in Non-Equilibrium Open Systems. II 509

$$
\begin{align*}
\left\langle b_{j} \mid a, t\right\rangle= & {\left[e^{-t_{r}}\right]_{j k}\left\langle b_{k} \mid a, 0\right\rangle+\int_{0}^{t} d s\left[e^{-s \gamma}\right]_{j k} } \\
& \times\left[\beta_{k}(a)-\left\{v_{l}(a)-\alpha_{l m}(a)\left\langle b_{m} \mid a, t-s\right\rangle\right\}\left\{\frac{\partial}{\partial a_{l}}\left\langle b_{k} \mid a, t-s\right\rangle\right\}\right. \\
& \left.\left.+\begin{array}{c}
1 \\
\\
P(a, t-s) \\
\partial a_{l}
\end{array} \alpha_{l m}(a) \chi_{k m}(a, t-s)-2 L_{i k}^{A B}\right\} P(a, t-s)\right] .
\end{align*}
$$

For $t \gg \tau_{B}$, we thus obtain, to order δ,

$$
\begin{align*}
\left\langle b_{j} \mid a, t\right\rangle= & {\left[\gamma^{-1}(a)\right]_{j k}\left[\beta_{k}(a)-\left\{v_{l}(a)-\alpha_{l m}(a)\left[\gamma^{-1}(a)\right]_{m n} \beta_{n}(a)\right\}\right.} \\
& \left.\times\left\{\begin{array}{c}
\partial \\
\partial a_{l}
\end{array} \gamma^{-1}(a)\right]_{k p} \beta_{p}(a)\right\} \\
& \left.+\frac{1}{P(a, t)} \frac{\partial}{\partial a_{l}}\left\{\alpha_{l m}(a) \psi_{k m}(a, \infty)-2 L_{l k}^{A B}\right\} P(a, t)\right] .
\end{align*}
$$

From (4.7) and (4.9) we also obtain, to order δ^{0},

$$
\begin{align*}
\partial\left\langle b_{k} b_{m} \mid a, t\right\rangle / \partial t= & \beta_{k}(a)\left\langle b_{m} \mid a, t\right\rangle+\beta_{m}(a)\left\langle b_{k} \mid a, t\right\rangle \\
& -\gamma_{k l}(a)\left\langle b_{l} b_{m} \mid a, t\right\rangle-\gamma_{m i}(a)\left\langle b_{k} b_{l} \mid a, t\right\rangle+2 L_{k m}^{B B}, \\
\partial \chi_{k m}(a, t) / \partial t= & -\gamma_{k l}(a) \chi_{l m}-\gamma_{m i}(a) \chi_{k l}+2 L_{k m}^{B B}
\end{align*}
$$

which lead to the fluctuation-dissipation relation ${ }^{10)}$

$$
\chi_{k m}(a, \infty)=2 \int_{0}^{\infty}\left[e^{-s_{r}(a)}\right]_{k i} L_{i j}^{B B}\left[e^{-s_{\tau}(a)}\right]_{m j} d s
$$

Therefore, inserting (4.12) into (4-5), we obtain, to order δ^{2}, the Fokker-Planck equation (3.23) in which the variances $\left\langle\hat{b}_{k} \hat{b}_{m} ; a\right\rangle$ are given by (4.15).

§ 5. Adiabatic elimination from the Langevin equations

Let us consider the Langevin equations (3•1) and (3•2). The conventional elimination of $B_{j}(t)$ assumes $d B_{j} / d t=0$, which leads to

$$
B_{j}(t)=\left[\gamma^{-1}(A(t))\right]_{j k}\left\{\beta_{k}(A(t))+r_{k}{ }^{B}(t)\right\} .
$$

Inserting this into (3.1) leads to

$$
\begin{align*}
d A_{i}(t) / d t= & v_{i}(A(t))-\alpha_{i j}(A(t))\left[\gamma^{-1}(A(t))\right]_{j k} \beta_{k}(A(t)) \\
& -\alpha_{i j}(A(t))\left[\gamma^{-1}(A(t))\right]_{j k} r_{k}{ }^{B}(t)+r_{i}^{A}(t) .
\end{align*}
$$

This approximation is unsatisfactory as follows. Since (5.2) has the form (2.1), we obtain the Fokker-Planck equation (2•30) with

$$
\begin{align*}
& H_{i}(a, t)= v_{i}(a)-\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k} \beta_{k}(a) \\
&+\left\{\begin{array}{l}
\left.\frac{\partial}{\partial a_{i}} \alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k}\right\}\left\{L_{k n}^{B B}\left[\gamma^{-1}(a)\right]_{m n} \alpha_{l m}(a)-L_{k i j}^{B A}\right\}, \\
E_{i l}(a)= \\
\\
\\
\\
\\
\quad-L_{i l}^{A A}+\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k} L_{k n}^{B B}\left[\gamma^{-1}(a)\right]_{j k} L_{k i}^{B A}-\alpha_{l k}(a)\left[\gamma_{m}^{-1}(a)\right]_{l m}(a)
\end{array}\right. \\
& L_{i j}^{A B}
\end{align*}
$$

This result differs from that of $\S 4$, and implies that (5.1) does not treat the random motion of $B_{j}(t)$ due to the fluctuating forces properly. This will be improved in the following.

Integrating (3.2) formally leads to

$$
\begin{align*}
B_{j}(t)= & {\left[\exp _{+}\left\{-\int_{0}^{t} \gamma(A(s)) d s\right\}\right]_{j k} B_{k}(0) } \\
& +\int_{0}^{t} d \tau\left[\exp _{-}\left\{-\int_{0}^{\tau} \gamma(A(t-s)) d s\right\}\right]_{j k}\left\{B_{k}(A(t-\tau))+r_{k}^{B}(t-\tau)\right\} .
\end{align*}
$$

Since, up to order δ,

$$
\begin{aligned}
& {\left[\exp _{-}\left\{-\int_{0}^{\tau} \gamma(A(t-s)) d s\right\}\right]_{j k}} \\
& \quad=\left[\exp _{-}\left\{-\int_{0}^{\tau}\left[\gamma(a)-\int_{0}^{s} \partial \gamma(a) / \partial a_{l} \dot{A}_{l}\left(t-s^{\prime}\right) d s^{\prime}\right] d s+O\left(\delta^{2}\right)\right\}\right]_{j k} \\
& \quad=\left[e^{-\tau \gamma(a)}\right]_{j k}+\int_{0}^{\tau} d s \int_{0}^{s} d s^{\prime}\left[e^{-s \gamma(a)}\right]_{j m} \partial \gamma_{m n}(a) / \partial a_{l}\left[e^{-(\tau-s) \tau(a)}\right]_{n k} \dot{A}_{l}\left(t-s^{\prime}\right), \\
& \beta_{k}(A(t-\tau))=\beta_{k}(a)-\int_{0}^{\tau} d s \partial \beta_{k}(a) / \partial a_{l} \dot{A}_{l}(t-s)
\end{aligned}
$$

with $a \equiv A(t)$, we have for $t \gg \tau_{B}$

$$
\begin{align*}
B_{j}(t)= & \int_{0}^{\infty} d \tau\left[e^{-\tau \tau(a)}\right]_{j k}\left\{\beta_{k}(a)+r_{k}^{B}(\tau-\tau)-\partial \beta_{k}(a) / \partial a_{l} \int_{0}^{\tau} d s \dot{A}_{l}(t-s)\right\} \\
& +\int_{0}^{\infty} d \tau \int_{0}^{\tau} d s \int_{0}^{s} d s^{\prime}\left[e^{-s \gamma(a)}\right]_{j m} \partial \gamma_{m n}(a) / \partial a_{l}\left[e^{-(\tau-s) \gamma(a)}\right]_{n k} \dot{A}_{l}\left(t-s^{\prime}\right) \\
& \times\left\{\beta_{k}(a)+r_{k}^{B}(t-\tau)\right\}+O\left(\dot{o}^{2}\right) .
\end{align*}
$$

Then we also have, from (3•1),

$$
\begin{align*}
& \dot{A}_{l}(t-s)=v_{l}(a)-\alpha_{l m}(a)\left[\gamma^{-1}(a)\right]_{m n} \beta_{n}(a) \\
& \quad-\alpha_{l m}(a) \int_{0}^{\infty} d \sigma\left[e^{-\sigma \gamma(a)}\right]_{m n} r_{n}^{B}(t-s-\sigma)+r_{l}^{A}(t-s)+O\left(\delta^{2}\right) .
\end{align*}
$$

Inserting (5.6) with (5.7) into (3•1), we obtain an equation of the form (2.1).

Contraction of State Variables in Non-Equilibrium Open Systems. II 511
Taking its conditional average and using (3.4) and (3.5), we have, to order δ^{2},

$$
\begin{aligned}
V_{i}(a, t)= & v_{i}(a)-\alpha_{i j}(a) \int_{0}^{\infty} d \tau\left[e^{-\tau \gamma(a)}\right]_{j k}\left[\beta_{k}(a)-\tau \partial \beta_{k}(a) / \partial a_{l}\right. \\
& \left.\times\left\{v_{l}(a)-\alpha_{l m}(a)\left[\gamma^{-1}(a)\right]_{m n} \beta_{n}(a)\right\}\right] \\
& +\alpha_{i j}(a) \int_{0}^{\infty} d \tau \int_{0}^{\tau} d s \int_{0}^{s} d s^{\prime}\left[e^{-s \tau(a)}\right]_{j m} \partial \gamma_{m n}(a) / \partial a_{l}\left[e^{-(\tau-s) \tau(a)}\right]_{n k} \\
& \times\left[\beta_{k k}(a)\left\{v_{l}(a)-\alpha_{l p}(a)\left[\gamma^{-1}(a)\right]_{p q} \beta_{q}(a)\right\}\right. \\
& \left.-2 \alpha_{l p}(a) \int_{0}^{\infty} d \sigma\left[e^{-\sigma \tau(a)}\right]_{p q} L_{q k}^{B B} \delta\left(\tau-s^{\prime}-\sigma\right)+2 L_{k l}^{B \lambda} \delta\left(\tau-s^{\prime}\right)\right]
\end{aligned}
$$

This turns out to be

$$
\begin{align*}
V_{i}(a, t)= & v_{i}(a)-\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j l k} \\
& \times\left[\beta_{k}(a)-\left\{v_{l}(a)-\alpha_{l m}(a)\left[\gamma^{-1}(a)\right]_{m n} \beta_{n}(a)\right\}\right. \\
& \times\left\{\frac{\partial}{\left.\left.\partial a_{l}-\left[\gamma^{-1}(a)\right]_{k p} \beta_{p}(a)\right\}\right]-\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k} \alpha_{l m}(a)}\right. \\
& \times\left[{ }_{\partial}^{\partial} \tilde{\chi}_{k m}\left(a, a^{\prime}\right)\right]_{\alpha^{\prime}=a}+O\left(\hat{o}^{3}\right),
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{\chi}_{k m}\left(a, a^{\prime}\right) \equiv 2 \int_{0}^{\infty} d \tau\left[e^{-\tau \tau(a)}\right]_{k i} L_{i j}^{B B}\left[e^{-\tau \gamma\left(a^{\prime}\right)}\right]_{m j} \\
& {\left[\begin{array}{c}
\partial \\
\partial a_{l} \\
\left.\tilde{\chi}_{k m}\left(a, a^{\prime}\right)\right]_{a^{\prime}=a}=-\int_{0}^{\infty} d u\left[e^{-u \gamma(a)}\right]_{k i} \partial \gamma_{i j^{(a)}}^{\partial a_{l}}-\tilde{\chi}_{j n}(a, a)\left[e^{-u \gamma(a)}\right]_{m n} .
\end{array}\right.}
\end{align*}
$$

We may retain terms up to order \hat{o} in the fluctuating forces because they already give the second-order contribution to the Fokker-Planck equation for $A(t)$. Then we obtain

$$
S_{i}(a, t)=r_{i}^{A}(t)-\alpha_{i j}(a) \int_{0}^{\infty} d \tau\left[e^{-\tau \gamma(a)}\right]_{j k} r_{k}^{B}(t-\tau)
$$

Since $S_{i}(\mathrm{a}, \mathrm{t})$ are the linear transformation of Gaussian processes $r_{i}{ }^{A}(t)$ and $r_{k}{ }^{B}(t)$, $S_{i}(a, t)$ are also Gaussian processes. Their time correlation functions are given, from $(5 \cdot 11)$ and $(3 \cdot 3) \sim(3 \cdot 5)$, by

$$
\begin{align*}
\left\langle S_{i}(a, t) S_{l}\left(a^{\prime}, t^{\prime}\right) ; a_{0}\right\rangle & =2 L_{i l}^{A \lambda} \partial\left(t-t^{\prime}\right)-2 \alpha_{i j}(a)\left[e^{-\left(t-t^{\prime}\right) r(a)}\right]_{j k} L_{k i}^{B A} \\
& +\alpha_{i j}(a)\left[e^{-\left(t-t^{\prime}\right) r(a)}\right]_{j k} \tilde{\gamma}_{k m}\left(a, a^{\prime}\right) \alpha_{i m}\left(a^{\prime}\right)
\end{align*}
$$

for $t>t^{\prime}$. On the time scale of order $\tau_{A}\left(\geqslant \tau_{B}\right)$,

$$
e^{-\left(t-t^{\prime}\right) \gamma(a)} \doteqdot 2 \gamma^{-1}(a) \delta_{+}\left(t-t^{\prime}\right)
$$

Then (5.12) leads to (2.25) with

$$
\begin{align*}
\xi_{i l}\left(a, a^{\prime}\right)= & L_{i l}^{A A}-2 \alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k} L_{k h}^{B A} \\
& +\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k} \tilde{\chi}_{k m}\left(a, a^{\prime}\right) \alpha_{l m}\left(a^{\prime}\right)
\end{align*}
$$

Although $\tilde{\chi}_{k m}\left(a, a^{\prime}\right)=\tilde{\chi}_{m k}\left(a^{\prime}, a\right)$, the third term of $(5 \cdot 14)$ as well as the second term gives an asymmetric part of $\xi_{i l}\left(a, a^{\prime}\right)$. Therefore, from (2.28) $\sim(2 \cdot 30)$, we obtain the Fokker-Planck equation (2.30) with

$$
\begin{align*}
H_{i}(a, t)= & {\left.\left[\delta_{i, l}+\alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k}\left\{\begin{array}{c}
\partial \\
\partial a_{l}
\end{array} \gamma^{-1}(a)\right]_{k j p} \beta_{p}(a)\right\}\right] } \\
& \times\left\{v_{l}(a)-\alpha_{l m}(a)\left[\gamma^{-1}(a)\right]_{m n} \beta_{n}(a)\right\} \\
& +\left\{\frac{\partial}{\partial a_{l}} \alpha_{i j}(a)\left[\gamma^{-1}(a)\right]_{j k k}\right\}\left\{\tilde{\chi}_{k m}(a, a) \alpha_{l m}(a)-2 L_{k l}^{B A}\right\}
\end{align*}
$$

and $E_{i l}(a)=\xi_{i l}(a, a)$. Since $\tilde{\chi}(a, a)=\chi(a, \infty)$, this result agrees with that of $\S 4$. It is worth noting that, since $(4 \cdot 15)$ satisfies the matrix equation

$$
\gamma^{-1} \cdot \chi+\chi \cdot\left(\gamma^{T}\right)^{-1}=2 \gamma^{-1} \cdot L^{B B} \cdot\left(\gamma^{T}\right)^{-1}
$$

with γ^{r} denoting the transpose of γ, the symmetric part of $\xi_{i i}(a, a)$ agrees with $(5 \cdot 4)$ so that the conventional procedure gives the correct diffusion term though it gives an incorrect drift term.

§ 6. A single-mode laser model

In this section we consider a single mode laser interacting with two-level atoms, and discuss its stochastic equations by applying the foregoing results. If we assume exact resonance, then we have the following five equations for the complex slowly varying amplitude of the electromagnetic field b, the total atomic dipole moment R and the total inversion $Z i^{(3),(), 9)}$

$$
\begin{align*}
& d b / d t=-\kappa b-i g R+F(t), \\
& d R / d t=-\gamma_{\perp} R+2 i g b Z+\Gamma(t), \\
& d Z / d t=-\gamma_{l}\left(Z-Z_{0}\right)+i g\left(b^{*} R-b R^{*}\right)+\Gamma_{z}(t),
\end{align*}
$$

and the conjugates of $(6 \cdot 1 \mathrm{a})$ and $(6 \cdot 1 \mathrm{~b})$, where $\kappa, \gamma_{\perp}, \gamma_{l}$ are relaxation rates, g is a coupling constant, Z_{0} is a pumping parameter and asterisks indicate the complex conjugate. Fluctuating forces F, Γ and Γ_{z} are assumed to be Gaussian white noises with $\langle F(t)\rangle=\langle\Gamma(t)\rangle=\left\langle\Gamma_{z}(t)\right\rangle=0$ and

$$
\left\langle F(t) F^{*}\left(t^{\prime}\right)\right\rangle=2 \kappa \bar{n} \delta\left(t-t^{\prime}\right),
$$

Contraction of State Variables in Non-Equilibrium Open Systems. II 513

$$
\begin{align*}
& \left\langle\Gamma(t) \Gamma^{*}\left(t^{\prime}\right)\right\rangle=2 \gamma_{\perp} \bar{M} \delta\left(t-t^{\prime}\right), \\
& \left\langle\Gamma_{z}(t) \Gamma_{z}\left(t^{\prime}\right)\right\rangle=\gamma_{\|} \bar{M} \delta\left(t-t^{\prime}\right)
\end{align*}
$$

and all other correlations vanishing, where

$$
\bar{n}=\left\langle b^{*} b\right\rangle_{\mathrm{cq}}, \quad \bar{M}=\left\langle R^{*} R\right\rangle_{\mathrm{eq}}
$$

with $\langle\cdots\rangle_{e q}$ denoting the equilibrium average.
Then (6.1) has the form of $(3 \cdot 1)$ and $(3 \cdot 2)$. If we set $A=\operatorname{Col}\left(b, b^{*}\right)$, $B=\operatorname{Col}\left(R, R^{*}, Z\right)$, then we have

$$
\begin{array}{ll}
v_{i}=\binom{-\kappa b}{-\kappa b^{*}}, & \alpha_{i j}=\left(\begin{array}{ccc}
i g & 0 & 0 \\
0 & -i g & 0
\end{array}\right), \\
\beta_{j}=\left(\begin{array}{c}
0 \\
0 \\
\gamma_{\|} Z_{0}
\end{array}\right), & \gamma_{j k}=\left(\begin{array}{ccc}
\gamma_{\perp} & 0 & -2 i g b \\
0 & \gamma_{\perp} & 2 i g b^{*} \\
-i g b^{*} & i g b & \gamma_{\|}
\end{array}\right), \\
L_{i l}^{A A}=\left(\begin{array}{cc}
0 & \kappa \bar{n} \\
\kappa \bar{n} & 0
\end{array}\right), & L_{j k}^{\beta B}=\left(\begin{array}{ccc}
0 & \gamma_{\perp} \bar{M} & 0 \\
\gamma_{\perp} \bar{M} & 0 & 0 \\
0 & 0 & \gamma_{i 1} \bar{M} / 2
\end{array}\right),
\end{array}
$$

and $L^{A B}=O$. Then we have

$$
\alpha_{i j}\left[\gamma^{-1}(a)\right]_{j k} \beta_{k}=-\frac{\gamma_{1} s Z_{0}}{2(1+s n)}\binom{b}{b^{*}},
$$

where

$$
s \equiv 4 g^{2} / \gamma_{1} \gamma_{n}, \quad n \equiv b^{*} b .
$$

Equation (6.6) gives the main drift term of $d b / d t$ due to the mode couplings to R. Therefore, assuming that

$$
\kappa / \gamma_{\perp}, \quad \kappa / \gamma_{\|}, \quad\left|\gamma_{i} s Z_{0} / \gamma_{\perp}\right|, \quad\left|s Z_{0}\right| \ll 1
$$

we eliminate $\left(R, R^{*}, Z\right)$ and derive reduced equations for $\left(b, b^{*}\right)$ to order δ^{2}, δ denoting the order of magnitude of the small parameters (6.8).

According to $\S 4,(4 \cdot 15)$ and $(6 \cdot 5)$ lead to

$$
\left\langle\hat{b}_{k} \hat{b}_{m} ; a\right\rangle=\chi(a, \infty)=\left(\begin{array}{ccc}
0 & \bar{M} & 0 \\
\bar{M} & 0 & 0 \\
0 & 0 & \bar{M} / 2
\end{array}\right) .
$$

Therefore (3.23) leads to

$$
\frac{\partial}{\partial t} P\left(b, b^{*}, t\right)=-\frac{\partial}{\partial b}\left\{-\kappa+\begin{array}{c}
r_{1} s Z_{0} \\
2(1+s n)
\end{array}+\begin{array}{c}
J(n) \\
2 n
\end{array}\right\} b P
$$

$$
\begin{align*}
& -\frac{1}{8} \Upsilon_{l} s \bar{M} \frac{\partial}{\partial b}\left\{\begin{array}{cc}
s b^{2} & \partial \\
1+s n & \partial b
\end{array}-\begin{array}{cc}
2+s n & \partial \\
1+s n & \partial b^{*}
\end{array}\right\} P \\
& +\kappa \bar{n} \frac{\partial^{2} P}{\partial b \partial b^{*}}+\text { c.c., }
\end{align*}
$$

where

$$
J(n) \equiv \gamma_{\|} s Z_{0}\left[\kappa-\frac{\gamma_{\|} s Z_{0}}{\gamma_{\perp}} \frac{1(s n)}{2\left(1+s\left[1+2\left(\gamma_{\perp} / \gamma_{\|}\right)\right\} s n\right]}(1+s n)^{3} .\right.
$$

The $J(n)$ term comes from the third term of (3-17), and is of order δ^{2}. The Langevin equation for b is given by (3.21):

$$
\begin{align*}
\frac{d}{d t} b= & \left\{-\kappa+\frac{\gamma_{\|} Z_{0}}{2(1+s n)}+\frac{J(n)}{2 n}\right\}_{b} b \\
& -\frac{1}{8} \gamma_{\|} s^{2} \bar{M} \frac{3+s n}{(1+s n)^{2}} b+\widetilde{R}_{b}(t)
\end{align*}
$$

where $\widetilde{R}_{b}(t)$ is a fluctuating force of the type (3.15).
Using

$$
b=\sqrt{ } n e^{i \phi}, \quad b^{*}=\sqrt{ } n e^{-i \phi},
$$

we can transform (6.10) and (6.12) into the equations for the photon number $n \equiv b^{*} b$ and the phase $\phi \equiv(1 / 2 i) \log \left(b / b^{*}\right)$. Since $\partial(n, \phi) / \partial\left(b, b^{*}\right)=i$, we have $P(n, \phi) d n d \phi=P\left(b, b^{*}\right) d^{2} b$. Thus we obtain

$$
\begin{align*}
\frac{\partial t}{\partial t} P(n, \phi, t)= & -\frac{\partial}{\partial n}\left\{-2 \kappa n+\frac{\gamma_{1} s Z_{0}}{1+s n} n+J(n)\right\} P \\
& +\frac{1}{2} \gamma_{\|} s \bar{M}_{\partial n}^{\partial} \frac{n}{1+s n} \frac{\partial P}{\partial n}+2 \kappa \bar{n}^{\partial} \frac{\partial n}{\partial n} n \frac{\partial P}{\partial n} \\
& +\left(\gamma_{\|} \bar{M}+4 \kappa \bar{n}\right) \frac{1}{8 n} \partial^{2} P
\end{align*}
$$

The Langevin equation for n takes the form

$$
\frac{d}{d t} n=-2 \kappa[n-\bar{n}]+\begin{gather*}
\gamma_{\|} s \\
1+s n
\end{gather*}\left[Z_{0} n+\frac{1}{2} \begin{array}{c}
\bar{M} \\
1+s n
\end{array}\right]+J(n)+\widetilde{R}_{n}(t)
$$

where $\widetilde{R}_{n}(t)$ is a fluctuating force of the type (3•15).
These reduced equations differ from those which are obtained by the conventional adiabatic elimination $(5 \cdot 3)$ and $(5 \cdot 4)$. For example, in the FokkerPlanck equation for $P\left(b, b^{*}, t\right)$, though the diffusion terms are identical, the drift term in the conventional one does not have the $J(n)$ term in (6.10) but has an additional term $\left(\gamma_{\|} s \bar{M} / 8\right)\left[s b /(1+s n)^{2}\right]$. In the Langevin equation for n,

Contraction of State Variables in Non-Equilibrium Open Systems. II 515
the conventional one does not produce the $J(n)$ term in (6.15) but produces an additional term $\left(\gamma_{n} s \bar{M} / 4\right)\left[s n /(1+s n)^{2}\right]$.

§ 7. Summary and remarks

We have formulated a projector elimination of irrelevant degrees-of-freedom in multiplicative stochastic process (2.1), and derived reduced equations of motion (2.23) and the corresponding master equation (2•22). Multiplicative stochastic processes of a new type are given by (5.11) which takes the memory form

$$
S_{i}(a, t)=r_{i}^{A}(t)-\alpha_{i j}(a) \int_{-\infty}^{t} d s\left[e^{-(t-s) r(a)}\right]_{j k} r_{k}^{B}(s)
$$

with $r_{i}^{A}(t)$ and $r_{k}^{B}(t)$ being Gaussian white noises. On the time scale of order $\tau_{A}\left(\geqslant \tau_{B}\right)$, this leads to the form $(2 \cdot 25)$ with (5.14). Then (2.23) and (2.22) reduce to the Langevin equation (2.31) and the Fokker-Planck equation (2.30).

The asymmetric form $(2 \cdot 25)$ is a generalization of the conventional form $2 \xi_{i j}\left(a, a^{\prime}\right) \delta\left(t-t^{\prime}\right)$. This generalization is indispensable since $\xi_{i j}\left(a, a^{\prime}\right) \neq \xi_{j i}\left(a^{\prime}, a\right)$. The asymmetry of the spectral density matrix arises from the memory effect due to $\tau_{B} \geqslant \tau_{m}, \tau_{m}$ being the time scale of $r_{i}^{A}(t)$ and $r_{k}^{B}(t)$. Consider (7.1). Then, in $\left\langle S_{i}(a, t) S_{j}\left(a^{\prime}, t^{\prime}\right) ; a_{0}\right\rangle$ with $\left.t\right\rangle t^{\prime}$, contribution comes from $r_{k}^{B}(s)$ with $s \leqq t^{\prime}$, whereas, if $t^{\prime}>t$, contribution comes from $r_{k}^{B}\left(s^{\prime}\right)$ of $S_{j}\left(a^{\prime}, t^{\prime}\right)$ with $s^{\prime} \leqq t$. The difference between the two contributions leads to the asymmetry. Here it is essential to distinguish three different time scales τ_{A}, τ_{B} and τ_{m} with $\tau_{A} \gg \tau_{B} \geqslant \tau_{m}$, and then to take the limit $\tau_{B} \rightarrow 0$ with $\tau_{B} \geqslant \tau_{m}$ being kept. The conventional adiabatic elimination simply replaces the time integral of (7-1) by $\left[\gamma^{-1}(a)\right]_{j k} r_{k}^{B}(t)$ without distinguishing τ_{B} and τ_{m}. In $\S 5$, we have proposed its improvement.

In $\S 3$ we have developed a projector elimination from coupled Langevin equations and obtained the drift term $(3 \cdot 17)$ and the spectral density (3•18). This is a generalization of the previous results derived in I with the aid of the projector elimination in dissipative dynamical systems.

The adiabatic elimination in deterministic equations ${ }^{9}$ retains the first-order terms in the slowness parameter δ. In $\S \S 4$ and 5 we have retained up to order δ^{2} in order to take fluctuations into account. One of the most important features of the adiabatic elimination is to give $H_{i}(a)$ and $E_{i l}(a)$ in terms of $L_{j k}^{B B}$ completely through the variance equations (4.15). This is different from the projector elimination which gives $H_{i}(a)$ and $E_{i l}(a)$ in terms of the initial variances $\left\langle\hat{b}_{k} \hat{b}_{m} ; a\right\rangle$. Since the variance equations (4.15) are the fluctuation-dissipation relations characteristic of the steady Gaussian distribution generated by the noise sources $L_{j k}^{B B}$, this means that the adiabatic elimination assumes the local equilibrium for the initial distribution of irrelevant variables.

The multiplicative stochastic equations with white noises have a mathematical
ambiguity. The Ito interpretation and the Stratonovich interpretation are often used. ${ }^{6), 10)}$ Our results in $\S 2$ agree with the Stratonovich interpretation. This is due to the fact that we have replaced the time correlation functions of the stochastic forces by those of white noises after transforming the stochastic equations into the master equation by means of the ordinary calculus. ${ }^{10)}$ Thus (2•1) can be interpretated as the Stratonovich type stochastic differential equation, whereas the resulting Langevin equation $(2 \cdot 31)$ should be interpretated as the Itô type.

Acknowledgements

We thank Professor H. Hasegawa of Kyoto University for valuable discussions about the laser model. This study was partially financed by the Scientific Research Fund of the Ministry of Education, Science and Culture.

Appendix A

——Derivation of (2.11) and (2.16) _-_
Using the operator identity

$$
U(b, t)=U_{Q}(b, t, 0)+\int_{0}^{\iota} d \tau U(b, \tau) P L(b, \tau) U_{Q}(b, t, \tau)
$$

we can rewrite (2.7) as

$$
\begin{align*}
\frac{\partial}{\partial t} \Pi_{a}(t)= & -\frac{\partial}{\partial a_{i}} \int d b \delta(A(0)-b)[U(b, t) P \\
& \left.+U_{Q}(b, t, 0) Q+\int_{0}^{t} d \tau U(b, \tau) P L(b, \tau) U_{Q}(b, t, \tau) Q\right] \\
& \times\left[V_{i}(b, t)+S_{i}(b, t)\right] \delta(a-b)
\end{align*}
$$

Since $P S_{i}(b, t)=Q V_{i}(b, t)=0, Q S_{i}(b, t)=S_{i}(b, t)$,

$$
\int d b \delta(A(0)-b) U(b, t) P F(b, t, \tau)=\int d b \Pi_{b}(t)\langle F(b, t, \tau) ; b\rangle
$$

$P L(b, \tau) Q=P S_{j}(b, \tau)\left(\partial / \partial b_{j}\right) Q,(\mathrm{~A} \cdot 2)$ leads to $(2 \cdot 11)$.
In order to derive (2.16), let us rewrite $(2 \cdot 13)$ as

$$
F_{i a}(b, t, \tau)=\grave{\delta}(a-b) R_{i}(b, t, \tau)+Y_{i a}(b, t, \tau)
$$

where $(2 \cdot 20)$ has been used. Differentiating (A-4) with respect to τ leads to

$$
\begin{align*}
\partial_{\tau} Y_{i a}(b, t, \tau) & =-Q L(b, \tau) F_{i a}(b, t, \tau)+\delta(a-b) Q L(b, \tau) R_{i}(b, t, \tau) \\
& =-Q L_{a}(b, \tau) F_{i a}(b, t, \tau)-Q M_{a}(b, \tau) Y_{i a}(b, t, \tau),
\end{align*}
$$

where

$$
\begin{gather*}
L_{a}(b, \tau) \equiv-\frac{\partial}{\partial a_{j}}\left[V_{j}(b, \tau)+S_{j}(b, \tau)\right] \\
M_{a}(b, \tau) \equiv L(b, \tau)-L_{a}(b, \tau)
\end{gather*}
$$

Since $Y_{i a}(b, t, t)=0$, integrating (A•5) and inserting the $Y_{i a}(b, t, \sigma)$ thus obtained into (A.4), we obtain

$$
\begin{align*}
F_{i a}(b, t, \tau)= & \delta(a-b) R_{i}(b, t, \tau)+\int_{\tau}^{t} d s \exp _{-}\left[\int_{\tau}^{s} Q M_{a}(b, u) d u\right] \\
& \times Q L_{a}(b, s) F_{i a}(b, t, s)
\end{align*}
$$

Iterating this, we obtain

$$
\begin{align*}
F_{i a}(b, t, \tau)= & \sum_{n=0}^{\infty} \int_{\tau}^{t} d s_{1} \int_{s_{1}}^{t} d s_{2} \cdots \int_{s_{n-1}}^{t} d s_{n} \exp -\left[\int_{\tau}^{s_{t}} Q M_{a}(b, u)\right] Q L_{a}\left(b, s_{1}\right) \\
& \times \cdots \exp -\left[\int_{s_{n-1}}^{s_{n}} Q M_{a}(b, u) d u\right] Q L_{a}\left(b, s_{n}\right) \delta(a-b) R_{i}(b, t, \tau)
\end{align*}
$$

Here each $Q L_{a}(b, s)$ gives $\partial / \partial a_{k}$, and we have

$$
\begin{align*}
& Q M_{a}(b, s)\left[f \frac{\partial}{\partial a_{k_{1}}} \ldots \frac{\partial}{\partial a_{k_{n}}} \delta(a-b)\right] \\
& \quad=\left[\frac{\partial}{\partial a_{k_{1}}} \ldots \frac{\partial}{\partial a_{k_{n}}} \delta(a-b)\right] Q L(b, s) f,
\end{align*}
$$

where f is an arbitrary quantity which does not depend on a. Hence we obtain

$$
F_{i a}(b, t, \tau)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\partial}{\partial a_{k_{1}}} \cdots \frac{\partial}{\partial a_{k_{n}}} \delta(a-b) \mathscr{P}\left(i, k_{1}, \cdots, k_{n}, b, t, \tau\right) .
$$

Inserting this into $(2 \cdot 11)$, we obtain $(2 \cdot 16)$.

Appendix B

——Derivation of (2.27) -_
Using the interaction picture, we have

$$
U_{Q}(b, t, \tau) Q=U_{0}^{-1}(b, \tau) \widetilde{U}_{Q}(b, t, \tau) U_{0}(b, t) Q
$$

where

$$
\begin{align*}
& U_{0}(b, t) \equiv \exp _{-}\left[\int_{0}^{t} V_{j}(b, s) \frac{\partial}{\partial b_{j}} d s\right], \\
& \widetilde{U}_{Q}(b, t, \tau)=\exp _{-}\left[\int_{\tau}^{t} Q \mathcal{L}(b, s) d s\right],
\end{align*}
$$

$$
\mathcal{L}(b, s) \equiv U_{0}(b, s) S_{j}(b, s) \frac{\partial}{\partial b_{j}} U_{0}^{-1}(b, s),
$$

and we have used the fact that

$$
V_{j}(b, s)\left(\partial / \partial b_{j}\right) Q=Q V_{j}(b, s)\left(\partial / \partial b_{j}\right) .
$$

Then the integrand of the second term of $(2 \cdot 11)$ becomes

$$
\begin{align*}
\left\langle S_{j}(b, \tau)\right. & \left.\frac{\partial}{\partial b_{j}} F_{i a}(b, t, \tau) ; b\right\rangle \\
= & \left\langle S_{j}(b, \tau) \frac{\partial}{\partial b_{j}} U_{0}^{-1}(b, \tau) \widetilde{U}_{Q}(b, t, \tau) U_{0}(b, t) S_{i}(a, t) ; b\right\rangle \delta(a-b) \\
= & \sum_{n=0}^{\infty} \int_{\tau}^{t} d s_{1} \int_{\tau}^{s_{1}} d s_{2} \cdots \int_{\tau}^{s_{n-1}} d s_{n}\left\langle S_{j}(b, \tau) \frac{\partial}{\partial b_{j}} U_{0}{ }^{-1}(b, \tau) Q \mathcal{L}\left(b, s_{n}\right)\right. \\
& \times \cdots Q \mathcal{L}\left(b, s_{1}\right) U_{0}(b, t) S_{i}(a, t) ; b>\delta(a-b) \\
= & \sum_{m=1}^{\infty} \int_{\tau}^{t} d s_{1} \int_{\tau}^{s_{1}} d s_{2} \cdots \int_{\tau}^{s_{2 m-1}} d s_{2 m}\left\langle S_{j}(b, \tau) \frac{\partial}{\partial b_{j}} U_{0}^{-1}(b, \tau) \mathcal{L}\left(b, s_{2 m}\right)\right. \\
& \times Q \mathcal{L}\left(b, s_{2 m-1}\right) \mathcal{L}\left(b, s_{2 m-2}\right) Q \mathcal{L}\left(b, s_{2 m-3}\right) \cdots \\
& \left.\times \mathcal{L}\left(b, s_{2}\right) Q \mathcal{L}\left(b, s_{1}\right) U_{0}(b, t) S_{i}(a, t) ; b\right\rangle \delta(a-b),
\end{align*}
$$

where we have used the fact that the odd order correlations of $S_{i}(b, t)$ vanish. The integrands of (B.6) are written in terms of products of the double correlations of $S_{i}(b, t)$ and are proportional to products of $(m+1)$ delta functions, but do not include the terms proportional to

$$
\delta\left(t-s_{1}\right) \delta\left(s_{2}-s_{3}\right) \cdots \delta\left(s_{2 m}-\tau\right)
$$

This can be shown by the mathematical induction. It can be shown, however, that products of $(m+1)$ delta functions except ($\mathrm{B} \cdot 7$) vanish by the integration over time. ${ }^{11}$

Hence the only non-vanishing term of ($\mathrm{B} \cdot 6$) is the term with $m=0$. Then we obtain

$$
\begin{aligned}
\int_{0}^{t} d \tau & \int d b \Pi_{b}(\tau)\left\langle S_{j}(b, \tau) \frac{\partial}{\partial b_{j}} F_{i a}(b, t, \tau) ; b\right\rangle \\
= & \int_{0}^{t} d \tau \int d b \Pi_{b}(\tau)\left\langle S_{j}(b, \tau) \frac{\partial}{\partial b_{j}} S_{i}(a, t) ; b\right\rangle \\
& \times U_{0}^{-1}(b, \tau) U_{0}(b, t) \delta(a-b) \\
= & \int d b \Pi_{b}(t) \xi_{i j}(a, b) \frac{\partial}{\partial b_{j}} \delta(a-b)
\end{aligned}
$$

Contraction of State Variables in Non-Equilibrium Open Systems. II 519

$$
=-\partial_{\partial a_{j}}^{\partial \xi_{i j}(a, a) \Pi_{a}(t)+\Pi_{a}(t)}\left[\begin{array}{c}
\partial \xi_{i j}(a, b) \\
\partial a_{j}
\end{array}\right]_{b=a}
$$

Inserting this into (2•11), we obtain (2.27). Similarly we can show (2.33).

Appendix C

__Derivation of $(3 \cdot 10)$ and (3.22) __
From (3.6) we obtain

$$
\Pi_{a b}(t)=e^{i T^{t}(a, b)} \Pi_{a b}(0)+\int_{0}^{t} e^{s l^{T}+(a, b\rangle} F_{a b}(t-s) d s
$$

Then, for any functional $X(A(t), B(t))$, we have

$$
\begin{align*}
X(A(t), B(t))= & \int d a \int d b X(a, b) \Pi_{a b}(t) \\
= & \int d a \int d b\left\{\Pi_{a b}(0) e^{t r(a, b)}+\int_{0}^{t} d s F_{a b}(t-s) e^{s \Gamma(a, b)}\right\} \\
& \times X(a, b), \\
\frac{d}{d t} X(A(t), B(t))= & \int d a \int d b\left\{\Pi_{a b}(0) e^{t r(\alpha, b)}+\int_{0}^{t} d s F_{a b}(t-s) e^{s \Gamma(a, b)}\right\} \\
\times & \Gamma(a, b) X(a, b)+\int d a \int d b X(a, b) F_{a b}(t)
\end{align*}
$$

Putting $X(a, b)=\delta\left(a-a^{\prime}\right)$, we obtain (3.10).

In order to derive $(3 \cdot 22)$, let $F(t) \equiv F(A(0), B(0), \Omega, t)$ be an arbitrary function of $A(0), B(0)$ and Ω. Then we have

$$
\left\langle F(t) ; a_{0}\right\rangle=\int d a \int d b\left\langle\Pi_{a b}(0) ; a_{0}\right\rangle f(a, b, t)
$$

where $f(a, b, t)$ is the average of $F(a, b, \Omega, t)$ over Ω and have been assumed to be independent of a_{0}. Since

$$
\begin{align*}
\left\langle\Pi_{a b}(0) ; a_{0}\right\rangle & =\int d b_{0}\left\langle\Pi_{a b}(0) ; a_{0} b_{0}\right\rangle q\left(b_{0} ; a_{0}\right) \\
& =\delta\left(a-a_{0}\right) q(b ; a)
\end{align*}
$$

(C.6) leads to

$$
\begin{align*}
\langle F(t) ; a\rangle & =\int d b f(a, b, t) q(b ; a) \\
& =\operatorname{Pf}(a, b, t)
\end{align*}
$$

$\widetilde{F}_{a}(t)$ and $\widetilde{R}_{i}(t)$ have the form $Q F(t)$ so that we have $Q f$ instead of f in (C.8). Therefore $P Q=0$ leads to (3•22).

Appendix D

_-Derivation of $(3 \cdot 16)$ ___
Since (3.7) leads to

$$
\begin{align*}
\Gamma(a, b) \delta\left(a-a^{\prime}\right)= & -\frac{\partial}{\partial a_{i}^{\prime}}\left[v_{i}\left(a^{\prime}\right)-\alpha_{i j}\left(a^{\prime}\right) b_{j}\right] \delta\left(a-a^{\prime}\right) \\
& +\frac{\partial^{2}}{\partial a_{i}^{\prime}} \boldsymbol{\partial} a_{j}^{\prime}
\end{align*} L_{i j}^{A A} \delta\left(a-a^{\prime}\right), ~(\mathrm{D}), ~(\mathrm{D})
$$

we obtain

$$
f_{a^{\prime}}(a, b, 0)=Q \Gamma(a, b) \delta\left(a-a^{\prime}\right)=\frac{\partial}{\partial a_{i}^{\prime}} \alpha_{i j}\left(a^{\prime}\right) \hat{b}_{j} \delta\left(a-a^{\prime}\right) .
$$

In the propagator of the memory term of $(3 \cdot 10)$, we treat $Q T$ similarly to (4.10) of I:

$$
Q \Gamma \cong Q \widehat{\Gamma} \equiv Q\left\{\left[\beta_{j}(a)-\gamma_{j k}(a) b_{k}\right] \frac{\partial}{\partial b_{j}}+2 L_{i j}^{A B} \frac{\partial^{2}}{\partial a_{i} \partial b_{j}}+L_{i j}^{B B} \frac{\partial^{2}}{\partial b_{i} \partial b_{j}^{-}}\right\} .
$$

Then we have

$$
\begin{align*}
& \int_{0}^{\infty} d s\left\langle\Gamma(a, b) e^{s \otimes \hat{\Gamma}(a, b)} f_{a^{\prime}}(a, b, 0) ; a\right\rangle \\
& =\stackrel{\partial}{\partial a_{i}^{\prime}} \alpha_{i j}\left(a^{\prime}\right)\left[\gamma^{-1}\left(a^{\prime}\right)\right]_{j k}\left[\beta_{k}\left(a^{\prime}\right)-\gamma_{k l}\left(a^{\prime}\right)\left\langle b_{i} ; a\right\rangle\right] \delta\left(a-a^{\prime}\right) \\
& +\frac{\partial}{\partial a_{i}^{\prime}}, \alpha_{i j}\left(a^{\prime}\right)\left[\gamma^{-1}\left(a^{\prime}\right)\right]_{j k} \frac{\partial}{\partial a_{l}^{\prime}},\left\{\alpha_{l m}\left(a^{\prime}\right)\left\langle\hat{b}_{m} \hat{b}_{k} ; a\right\rangle-2 L_{l k}^{A B}\right\} \partial\left(a-a^{\prime}\right) \\
& { }^{\partial}{ }^{\prime}{ }^{\prime} \alpha_{i j}\left(a^{\prime}\right)\left[\gamma^{-1}\left(a^{\prime}\right)\right]_{j k} \frac{\partial\left\langle b_{k} ; a^{\prime}\right\rangle}{\partial a_{l}{ }^{\prime}}\left[v_{l}\left(a^{\prime}\right)-\alpha_{i m}\left(a^{\prime}\right)\left\langle b_{m} ; a^{\prime}\right\rangle\right] \\
& \times \hat{0}\left(a-a^{\prime}\right)+{ }_{\partial a_{i}^{\prime}}^{\partial}, \alpha_{i j}\left(a^{\prime}\right)\left[\gamma^{-1}\left(a^{\prime}\right)\right]_{j k} L_{l m}^{A A} \\
& \times\left[2 \frac{\partial\left\langle b_{k} ; a^{\prime}\right\rangle}{\partial a_{l}^{\prime}} \frac{\partial}{\partial a_{m}{ }^{\prime}}+\frac{\partial^{2}\left\langle b_{k} ; a^{\prime}\right\rangle}{\partial a_{\imath}^{\prime} \partial a_{m}^{\prime}}\right] \delta\left(a-a^{\prime}\right) . \tag{D.5}
\end{align*}
$$

Since $L_{l_{m}}^{A A} \sim O\left(\delta^{2}\right)$, the last term of (D.5) is of order δ^{3}, but other terms are of order $\ddot{\delta}^{2}$. Hence we neglect the last term. Using the Markov approximation and inserting (D.2) and (D.5) into (3.10), we obtain (3.16).

References

1) H. Mori, T. Morita and K. T. Mashiyama, Prog. Theor. Phys. 63 (1980), 1865. This will be referred to as I.
2) R. Kubo, in Fluctuations, Relaxations and Resonance in Magnetic Systems, ed. D. ter Haar (Oliver \& Boyd, Edinburgh, 1962).
3) R. L. Stratonovich, Topics in the Theory of Random Noise, vol. 1 (Gordon and Breach, New York, 1963), pp. 100~103.
4) N. G. van Kampen, Phys. Reports C24 (1976), 171.
5) K. Kitahara, W. Horsthemke and R. Lefever, Phys. Letters A70 (1979), 377, and references cited therein.
6) H. Hasegawa and T. Nakagomi, J. Stat. Phys. 21 (1979), 191, and references cited therein.
7) A. Schenzle and H. Brand, Phys. Rev. A20 (1979), 1628.
8) H. Fujisaka and II. Mori, Prog. Theor. Phys. 56 (1976), 754.
9) H. Haken, Rev. Mod. Phys. 47 (1975), 67.
10) R. F. Fox, Phys. Reports 48 (1978), 179.
11) R. F. Fox, J. Math. Phys. 13 (1972), 1196.

[^0]: *) Present address: Sterling Chemistry Laboratory, Yale University, New Haven, Conn. 06520.

