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A projector elimination and an adiabatic elimination of irrelevant degrees-of-freedom are
developed for the contraction of state variables in stochastic equations of motion. For
multiplicative stochastic equations, a master equation for the probability density of relevant
variables A@#)={A:;(#¥)} is derived by means of the projector method and is shown to
reduce to ‘a Fokker-Planck equation if the stochastic forces S;(a,#) are Gaussian processes
with time correlations of the form {S;(a, £) S;(a’, #') >=2[&:;(a,a) 0. @ —t') + &, (a’, ). (' —1)],
where 0. (2) is the right half of the 0 function d(#), nonvanishing only at ¢=0+. 1If &;(a, a’)
=¢&;(a’, a), then this reduces to the conventional form 2&;;(a,a’)d(z—1¢).

With the aid of stochastic processes of this new type, an adiabatic elimination from the
Langevin equations is proposed for a stochastic Haken-Zwanzig model for non-equilibrium
phase transitions. A projector elimination from the Langevin equations and an adiabatic
elimination from the Fokker-Planck equation are also explored. Calculation is carried out up
to second order in the slowness parameter. Three different methods are thus developed
with consistent results and are applied to a laser model for illustration.

§ 1. Imtroduction

Macroscopic properties are described by a relevant subset of macrovariables
of the system, and it becomes necessary to obtain closed equations of motion for
the subset by eliminating the rest. In a previous paper” we have developed a
projector elimination for such a contraction of state variables when the system
is governed by deterministic equations of motion.

Many systems are, however, described by stochastic equations of motion; for

example, in a one-variable case,
dA@)/dt=V (A@) +S(A@®),D), (1-D

where S(a, ) is a stochastic force which depends on the value a of A(z) ex-

plicitly. Conventional theories assume the form®™

S(a,t) =g (@)r (D), (1-2)

where 7 (#) are Gaussian white noises and repeated indices £ are to be summed
up. Such a stochastic force appears in the magnetic resonance absorption when

one observes the motion of a spin in a fluctuating magnetic field.” Multiplica-
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Contraction of State Variables in Non-Equilibrium Open Systems. II 501

five stochastic forces of this type also appear when one replaces external param-
eters in equations of motion by fluctuating ones in order to take into account fluctu-
ations of the surroundings,” and also appear when one eliminates irrelevant vari-
ables in coupled Langevin equations by an adiabatic procedure.”?

As will be shown later, however, an improved adiabatic procedure leads to

a stochastic force of the memory form
S(a, 0 =hs(@) | dsTe -9, 19
[

where 7(a) is a relaxationrate matrix which may depend on a. The conven-
tional procedure replaces the time integral by [y (@) ];7% (#) in the coarse-graining

@ thus leading to

limit t,—0, where ¢ is the time scale of the relaxation e
(1-2). This replacement, however, is incorrect since 75T, even in the limit,
where ¢, is the microscopic time scale of 7% (¢). In fact, as will be shown in

§5, (1-3) leads, in the limit t,—0, to a time correlation of the form
(S(a,0)S(a’,t)>=2[5(a,a)0, ¢—1t) +£(a,a)0. (¢ ~1)] 1-9

with asymmetric coefficients &(a, a’) #&(a’, a), where 0, (2) is the right half of
the ¢ function ¢(z). This asymmetry comes from the memory effect due to w5 >0y,
and would be important when the degrees-of-freedom of the time scale ©j are
far from equilibrium.

In §2, we treat multiplicative stochastic processes, including the new type
(1-4), and derive reduced equations of motion and a master equation with the
aid of the projector method. In §3, a projector elimination from the Langevin
equations is also studied with the aid of Fujisaka and Mori’s projector method.®
In §84 and 5, we develope an adiabatic elimination from the Folker-Planck
equation and the Langevin equations. In §6, we treat a laser model. Section

7 is devoted to a summary and remarks.

$ 2. Projector elimination in multiplicative stochastic processes
Let us denote a relevant subset of macrovariables by A(#) = {A;(#)} and

assume, as a generalization of (1:1)~ (1-3), that they are governed by stochastic

equations ol motion
dAD /dt =V (A@), D +S:(A®), D), @1

where V,(a.t) are unique functions of a= {a;} and 7, and 5;(a, £) are stochastic
processes whose statistical properties are supposed to be known. Let us intro-

duce the generating functional
I, (H=0(A0E) —a). (2-2)

Tts time evolution is governed by
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502 T. Morita, H. Mori and K. T. Mashivama

oI, (t) /0t =L" (a, ) . (¢), (2-3)
where LT is the linear operator
L*(a,t)=—(0/0a;) [Vi(a, 1) +S:(a,t)] 2-4

with repeated indices 7 being te be summed up. Integrating (2-3) formally leads

to
Q) = eXp+< f]j (@, s) cz5>o“ (A(0) —a), (2.5)

where exp, denotes the time-ordered exponential ordered from left to right in
decreasing order. In order to utilize the projector elimination, let us introduce

the adjoint operator of L*{(a, 1),

LG, t)=[V:(b,8) +S5:(,2)](0/00:). (2-6)
Then, since I1,(z) =fdbIl,(¢)0(a—b), we can write (2-3) by partial integra-
tion as

BIT, (£) /0t — — aa jdb (A —5) U, 0)

X [Vi(b,8) +5:(b,8)]0(a—D), 27

where
U@, ¢ Eexp4< th @, ) czs>, (2.8)
0

Our problem is now to eliminate the degrees-of-freedom £ associated with the
stochastic forces S;(b, ). Let us suppose that at £=0 the relevant set A(0) is
known to take a set of values ay={a,}. The average of a functional G (&) of
{S; (b, )} over £ with this initial condition is denoted by {G(&); a,»>. The pro-

jection onto this conditional average is denoted by the projector P:

PG ) =<G©b); 0). 2-9)
Let us assume that the mean value of S;(b,¢) is zero:

{S:(6,8) ;5 aey=0. (2-10)

Then, as will be shown in Appendix A, the equations of motion (2-7) can be

transformed into

0 __ 0y ~
2 @ - M[m O (D) + Fou ()

+ j;tdf jdb 1,6 (S, (0, ©) aab Fu(h,t,9): b>] 2-11)
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Contraciion of State Variables in Non-Iquilibrium Open Systems. II 503

where
Foo () = jczz)o“ (A0) —b) Fuu (b, 1, 0), (2-12)
Fou(b, 2, ) =Ua(b, 2,7 S: (b, )0 (a—1), 2-13)
U (b, 2, 7) ;expg[ fQL @, ) ds} (2:14)

with O=1—P. Since PQO=0, we have
(Fi(@®); amy=<{F:(,2,7);ap=0. (2-15)
Namely, the s are statistically independent of A(0). Equation (2-11) is the
fundamental equation corresponding to (3-3) of I
As will be shown in Appendix A, (2-11) can be further transformed into

Y HOEE AEVACDY AORSIHON
P oa;

—]—i (__1> n—1 a afj‘ dfl:—cil...in <d, t; f)
=l 0 dain 0

a;, 0
.0 P .
o i Eil"-i;ﬁf (a, 19 ") I[a <T>7 (21(3>
Oa;
where we have defined
Cires (0, 8,7) =8, (a, ) 03 F (i a, 1,95 ), (2-17)
@
Fiy s (a, £, 0 =4S (a, ©) S (yoin, @, 1, 7) 5 @) (2-18)

in terms of the generalized fluctuating forces

Fliyeein, a, b, ) = j ds, f sy j ds,Uq(a, 53, 7)

X Q[Vi2 (a, so) 55, (a, s9) ]

X Ugla, 5a, 50 ) Q[Vs, (a,s.) -+S;, (a,s.) | R, (a,t,7), (2-19)
R;(a,t,t)y=Uqla,t, )8 (a, ). (2-20)

Equation (2-16) is a generalization of the d expansion (3-14) of L
The probability distribution function that A (%) takes a set of values « at time

¢ is given by
Pla,t) =l () ; ay, (2-21)

where P(a,0) =0(a—a,). Therefore, (2-15) and (2-16) lead to
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504 T. Morita, H Mori and K. T. Mashivama

0 0 i 1 0 0
—P ) = — Vila,t) P(a,t -1 2 ..
Gk @n=— 1 Vi@,0P @]+ 3 (-~ 2 e

13
X j‘ dt[hchln ([l, t) f) +éﬁ Eix"‘in?f ((l, t; T>:|P<(l, T)' (222>
o aj
Since A;(2) = fa,II,(¥)da, (2-16) also leads to

dA, (D) Jdt =V (A, 1) + ﬁ deCi (A, 1,0 + RO, (2-23)

where

Ry () = j Fou(t)da =R, (A0, 2,0). (2-24)

Equation (2-23) is a stochastic equation whose features differ from those of (2-15,
and is called the generalized Langevin equation. FEquation (2-22) is called the
generalized master equation. It should be noted that these equations are all
exact under the assumption (2-10).

Let us now assume that the stochastic forces S;(a, ) are Gaussian processes
with

{Si(a, ) ; an=0, (2-252)
Sila,0)S8;(@’, 1) ap=2[¢;(a,a) 0, t—t')+&;(a’,a)d, (¢ —1)],
(2-25b)
where ¢, (¢) is the right half of ¢(z) and is defined by
lim (1/2c)e""", if =0,
o (2-26)
0, otherwise,
and [&f ()0 (D de=f(0+)/2. I &,(a,a’) =&,(a’,a), then (2- 25b) becomes
the conventional form 2&;(a.a’)0(t—1¢’). One important assumption involved

here is that S;(a,?) are independent of the initial value A (0) of the relevant
variables. Then, as will be shown in Appendix B, (2-11) reduces to

6+ (t) =

Gr@=]= ) @+, OaaE @ |m.@ -7 Fu®, @20
where
Hi(a,2) =V.(a, 1) + [aijéij(b, 9], . (2-2)
Foy(@) =8 (a, ). (2:29)
Therefore, the master equation (2-22) reduces to the Fokker-Planclk equation

) [ ] o }
—Pla,t)=|— " H(a,t)+ ° E Pa, 1), 2-30
~ (a, ) ral (a,t) dada, (a) |P(a,t) ( )
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)

and the generalized Langevin equation (2-23) reduces to the usual form

dA; () /dt=H,(A@), ) +R; (@), (2-3D)

where
CR:(0) 5 a0p=0, (2-32)
(R R;(0); ay=2E; (a0 (). (£220) (2-33)

Equations (2-30) and (2-31) describe the mean values and fluctuations of the

relevant variables A;{#) in the conventional way.

§ 3. Projector elimination {from the Langevin equations

Let us consider the following model equations:

dA; (D) /dt=v,;(A@)) —ay,; (AE)B; (&) +7r@), (3-1)

dB; () /dt=5;(A D) 75 (AD) Bu (@) +7; (1), (3-2)
where 7 (2), 7,7(¢) are Gaussian white noises with mean values zero and correla-
tions

EOT ) s abey =2LE0 (¢ —¢"), Lit=Li, (3-3)

@) s @y =2LE0 (e—17), Lif =L, (3-4)

RO W) 5 ady =2L50 (2—1), LiE=LE. (3-5)

Here {---;asb,> denotes the conditional average with the initial values A(0) =a,
and B(0) =b, This is a generalization of the Haken-Zwanzig model for non-
equilibrium phase transitions” which has been treated in I.  We assume that A
and B(f) are relevant and irrelevant variables, respectively, and the time scale 74
of (#) is distinctly larger than the time scale tp of B(#). Our problem is to
eliminate B(Z) and to derive a reduced equation of motion for A{#).

In this section we use the projéctor method developed by Fujisaka and Mori.”
Statistical propertics of fluctuating forces #*(2), »7(¢) do not depend on the

initial values of A(0), B(0). Therelore, (2-27) leads to
OI . () J0t =1 (a,D)IF,, (t) + I (2), (3-6)

where o (D) =0(A@) —a)0(B(t)~D), and ['" is the adjoint operator of
I'(a, ),

I (a, by =[wvi(a) —c;;(a) b;1(0/0a:) -+ [8;(a) —7;5(a) bx] (8/00;)

09 02 (’)\2
+ Lt —— 4 2L5F LT 37
' da, @al 0a;00; 00 ;00, S

and F,,(¢) is the master fluctuating force related to 7" (1), () by
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506 1. Morita, . Mori and K. T. Mashiyvama

j j aiF oy (D) dadb—ri), j j b,F oy (D) dadb—r (5. (3-8)

Let g (b:a;) be the conditional probability density that at z=0 B(0) takes

a value & when A(0) takes a value a, and let us introduce the projector P by
PG(a,8) =(G (a, 1) @b [dbG (a, ) (b; ) 3-9)

for an arbitrary function G(a.b). We have P*=P since Pg(a) =¢(a) for an
arbitrary funection ¢{a). Then, as will be shown in Appendix C, we obtain the

following reduced equation for I, (£) =0(A() —a)®

0

2110 - fci(&(T (@, )0 (a—a) s adIl, ()

"+ rfz: jda<r(a, D) fur(a,b,0) s DI, (t—2) + Fo (D), (3-10)

where

Fur(a, b, ) =0T (a, Y3 (a—a’)y, (Q=1-P) (3-11)
Fo () =Fu (A(0), BQO),£) + J b Fo (8)

+ ﬁtds ”czaczb Foy(t—5) fur (@, 5, 5). (3-12)

Since A;(2) = [fa,/Il,. (£)da’, (3-10) leads to

dA @) /dt={T(a,b)a;; A@)>
+ ﬁtdr<F(a, By ai(a,b,7); A{t—)>+R, (), (3-13)

where

a: ((Z’ Z}s t) ECJQF(HJ)QT ((l, b) i, (3 ) 14)

Ro(d) —=as (A (0), B(O), ) +r4(0) + j:ds Hmdb Fas(t—9)a:(a, b, s).
(3-15)

Since I'(a,b)a;=v;(a) —a,;{a)b;, (3-13) is a transformation of (3-1) which takes
into account the renormalization due to the mode couplings to the B modes.

Since the time scale of A,;(z) is distinctly larger than that of B,(¢), we
may expand the memory term of (3-10) in powers of the slowness parameter
O0=rtp/c, &1 similarly to §4 of I. Then, as will be shown in Appendix D, (3-10)
is reduced, to order @°% to
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9 -9 10 " p o, . _
Sio-| o i@+, O Ea e +Fo, @6
where
H;(a) =vi(a) —a; (@) [77 (@) ] P (@)
0 T 8
4 (@ [ @] ) 1770 ufs (@]
X {v(a) — (@) [777(a) Tonba (@) }
+ { ai a;;(a) [r*l(a)]m} {n (@) bpbys ay—2LEY,  (3-17)
Eu(a) =L+ iy (@) [17(@) 135 Attn (@) {bibps; > —2Li7 (3-18)
with
by=b;—<bs:ay, (3-19)
Kby ay=1[r"(a)]Bx(@) +0O(0). (3-20)
Therefore, (3-13) reduces to the Langevin equation
dA; (D) /dt=H (A@®) + R, (). (3-21)

Equations (3-17) and (3-18) agree with the previous results (4-13) and (4-17)
of Tif 7(a) is a constant diagonal matrix and L{} are negligible.

The degrees-of-freedom involved in the f{luctuating forces F.(&) and B,
are A(0), B(0) and external degrees-of-freedom £ associated with Fy,(2). Let
{---;a,> also denote the conditional average over A(0), B(0) and £ with A(0)

being fixed so as to be a,. Then, as will be shown in Appendix C, we have
Fo(8) 5 any=<{Ri(0) 5 ay=0. (3-22)
Therefore (3-16) leads to the following IFokker-Planck equation:
©0/08) P (a, ) =~ (0/0ay) [I:(a) P (a, 1) ]

+ (0/0ay) (o (@) [17 (@) 1,0 (0/0a.) [tn (@) {bibn; @)
2L\ P (a, D)} - L0/ 0a:da) Pa,b), (5-23)

where I, () represents the first three terme of (3-17).

§ 4. Adiabatic reduction of the Fokker-Planck equation

The Fokker-Planck equation corresponding to the Langevin equations (3-1)

and (3-2) is given by
P (a,b,t)/0t=I"(a,b)P(a,b,?t). 4-1)
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508 T. Morita, H. Mori and K. T. Mashiyama

The probability density P(a,#) is given by

Pla,i) = jdbP (a,b,0). (4-2)

Let us put ’
P(a,b,8) =P(a,t)q(®la, D, 4-3)
[avala, 0 =1. (4-4)

Then, integrating (4-1) over & leads to

0 =0 [0,() —a, . O pm :
sE@o=]= ) @ -a@alanls O 18]Pen, @)
where, for an arbitrary function G(b),
GD)|a,ty== JdbG bygbla,r). (4-6)
From (4-1), (4-3) and (4-5), we obtain
o I R R _ 0w
510180 == 5 8@ —7u@bl+ 5,0 Lia@la, o
1 qo "
P ot lon @00 @+2, 0 L8 P(a, ala, 0
~[o:(@) @iy @) <Bila, 1 ) q(tla,2), @7
where
00, &) =b;—<b;la,t). 4-8)

In (4-7), each term is of order §° or &, and, since L&*~0 (5%), we have neglected

the terms with L& Then (4-7) leads to
0<b;la, £5/0t=8;(a) —7;.(a){bila, t>
~[0:@) ~aun (@) Bala, 6110 <0 1a, 5]

' ’ 7 —2L7F a .
-+ P(a,?) @al{QWL((Z) 2ina,t) 2L P(a, t), 4-9)
where
Lin(a,t) E<6Z?j(t)6bm(t>[a,z>' (4-10)

Integrating (4-9) leads to
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(bila, =Te] ucbrla, 0+ [ dsle1,s

% [Bk (@) — {0,(a) — ctun (@) <ula, £—55) {%L@Ha, z—s>}

1 9 , oy 9IAm P g

ety o, (@ en(ar 0= 2L P a0 9]
4-11)

For £>»tp we thus obtain, to order §,
ila, =17 (@12 B (@) = (00(@) = (@) [17 (@) Tmaba (@)
—
< 7@ b @

1 0 . 4. o) — O AF 4 '

Py o, @n (@ en (e, o) 2L P ) R CEE

From (4-7) and (4-9) we also obtain, to order §°
0 bibula, t>/0t =5 (a){bnla, t)+Bn(a){b:la,t)
— 7w (@) bibula, t)—1m(a)bibla,ty+2L7,, (4-13)
Oim (@, £) /0t = =712 (@) Yun— Tmi (@) Y+ 2157, (4-19

which lead to the fluctuation-dissipation relation'
ka(a, oo) =2 J; [e—sr(a)] kiL?f[e‘”(“)] m]ds . (4.15)

Therefore, inserting (4-12) into (4-5), we obtain, to order ¢°, the Fokker-Planck
equation (3-23) in which the variances {bpby; a> are given by (4-15).
§ 5. Adiabatie elimination from the Langevin equations

Let us consider the Langevin equations (3-1) and (3-2). The conventional
elimination of B;(#) assumes dB;/dt=0, which leads to

B;@®) =[r"(A®) ] 6. (A®) +7." @} (G-1)
Inserting this into (3-1) leads to
dA; (@) /dt=v,(A@) —a,; (AW [r7 (A®) 116 (A D)
—ay; (AW) r (A@) 15w @) +72 (). (5-2)

This approximation is unsatisfactory as follows. Since (5-2) has the form (2-1),
we obtain the Fokker-Planck equation (2-30) with
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H;(a,t)=uv, (@) —a;;(a) [r7'(a) 1568 (2)
1.0 s (@) [ (@) 1] LD (@) Tmttin(a) ~ LB, (5-3)
Ey(a) =Lt +ag; (@) [y (@) ] L7 (@) TnaClim (@)

—a;;(a) [r7 (@) 156 L3 — e (@) [77" (@) T, 137 (5-4)

This result differs from that of § 4, and implies that (5-1) does not treat the
random motion of B;(#) due to the fluctuating forces properly. This will be
improved in the following.

Integrating (3-2) formally leads to

B0 =[ew |- [Tamas | B.©)

+ [laefex |- [reac-9yas | @A) wrte-o}.

(5-5)
Since, up to order 4,
[exp_{— j::r (A (t~s))ds”jk
_ [exp_{~ Hr (a) — Vﬁs@”r(a)/O(LLAZ(t~s/)ds’]d8+0(52)}}jk

= e et [ (a5 T 1m0 fPasTem T A=,
B(A =) =Be(@) — | ds 08.(@) /00 Ae(t=9)
with a=A(¢), we have for > 7y
B, = f dr[c’”“’]ik{ﬁ,ﬂ (@) + 72 (t—1) —08.(a) /da, ersAl(t~S)}

+ rdf f "ds f A [T, 870 (@) fBai[e= =TT, A, (2 —s7)
1} [} Q
X B (@) +ri(t—o)} +O@0%). (5-6)
Then we also have, from (3-1),
At —3) =vi(a) — i (@) [17(a) Tusln (@)

— (@) L”da [T, ra? (L—s—0) 41t (1—s) +O0D.  (5-7)

Inserting (5-6) with (5-7) into (3-1), we obtain an equation of the form (2.1).
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Contraction of State Variables in Non-Equilibrium Open Systems. II 511
Taking its conditional average and using (3-4) and (3-5), we have, to order &%,
Vila, ) =vi(a) ~ (@) [ dele 7@ ul6(a) 208, (a) /a
X {01 (@) = Qn(@) [17(a) TnubBa ()} ]
(@ [[ae [[as [ a5 @100 @) aile
%[, () {010 =@y (@) [ (@ L@}
2y (@) [ a0Te 1, LD (25— 0) + 2LED =]

This turns out to be

Vila,t) =v;(a) —dy (a) [r7"(a) ]«
% [ﬁk (@) — f01(a) — Qi (@) [77(2) Tnabn (@)}

X { a’i 7@ Juas <a>}] — 35 (a) [77 (@) 1 jeton (@)

[0 tenta,an ], 0@, (5-8)
a(l; a’=a
where
%km (CZ, LZ’) =92 J‘md’f [e—ri’(a)] kiL?J{?[GArT(a’)]mj R (59)
0
o v, (@)
|: a ka ((l, d,>] = jv du [ciur(a)] ki 0[1"]' ’Zjn (‘Z, CZ) [e_ur(a>]mn .
0(11 a’=a 0 a[ll

(5-10)

We may retain terms up to order ¢ in the fluctuating forces because they already
give the second-order contribution to the Fokker-Planck equation for A(z). Then

we obtain
Si(a, ) =rd ) —as (@) | dele™ ) (-9, (5-11)
[

Since S;(a, t) are the linear transformation of Gaussian processes 7 (£) and 7" (¢),
S;(a, t) are also Gaussian processes. Their time correlation functions are given,

from (5-11) and (3-3)~(3:5), by
(Si(a,0)Si(a’,t') ;s ayp=2L"0@~1t") —2a;;(a) [e-tmtor@] L
ey (@) [e™ 7] s (@, @”) Aim (@) (5-12)

for £>>#. On the time scale of order T, (s,
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e CTITO =2y (g) 8, (t—1'). (5-13)
Then (5-12) leads to (2-25) with
Sula, a”) =Ly —2a;;(a) [17 (@) ] L2}
+ai; (@) [17 (@) 1 kam (@, a”) i (@) . (5-14)

Although Fin (@, @”) =% (a’, @), the third term of (5-14) as well as the second
term gives an asymmetric part of &,;(a,a’). Therefore, from (2-28) ~ (2-30),
we obtain the Fokker-Planck equation (2-30) with

Hia, ) =t as @ @ L @us @} |

X {vi(@) —tin (@) [17'(a) Jnaba (@)}

ALy (@ [ @1 (@, @ @) 2281 (5:15)
A

and E; (a) =§;(a,a). Since %(a,a) =y (a, o0), this result agrees with that of

§4. It is worth noting that, since (4-15) satisfies the matrix equation

T ) =2 LB () (5-16)

with y7 denoting the transpose of 7, the symmetric part of §;(a,a) agrees with
(5-4) so that the conventional procedure gives the correct diffusion term though
it gives an incorrect drift term.

§ 6. A single-mode laser model

In this section we consider a single mode laser interacting with two-level
atoms, and discuss its stochastic equations by applying the foregoing results. If
we assume exact resonance, then we have the following five equations for the
complex slowly varying amplitude of the electromagnetic field b, the total atomic
dipole moment R and the total inversion Z:&7?

db/dt=—tb—igR+F (), (6-1a)
dR/dt=—1, R+2igbZ + T (2), (6-1b)
dZ/dt=—7,(Z~Zs) +ig (b*R—bR*) + T, (¢), (6-1c)

and the conjugates of (6-1a) and (6-1b), where &, 7,, 7y are relaxation rates, ¢
is a coupling constant, Z; is a pumping parameter and asterisks indicate the
complex conjugate. Fluctuating forces F, " and [, are assumed to be Gaussian

white noises with {F (&) >={J () >=<U"{#)>=0 and

(FOF* () =2670(t—1'), (6-2a)
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r@Or*@)y=2r Mi@—1t), (6-2b)
@O y=7,Mot—t) (6-20)
and all other correlations vanishing, where

ﬁ:<b*b>cq s M-:<RyR>eq (63>

with <{--+>,, denoting the equilibrium average.
Then (6-1) has the form of (3-1) and (3-2). If we set A=Col (b, %),
B=Col (R, R*, Z), then we have

<—/cb > <ig 0 0>
U= s ;= , 6-4a
—b* 7\N0 —dg 0O (6-4a)
0 7. 0 —2igd
Bi=| 0 | Tiw= 0 L 2i90% |, (6-4b)
Vil —1gb* 19b T
_ 0 7. M 0
ad fn 2B . . -
i = 7 0 s ij: IJ_M 0 0 » <b O)
0 0o 7, M/2
and L*?=0. Then we have
- A b
[ (@) ]l = —, 7 < > 6-6
sLr—( ) 1B 2(1-£sn) \b¥ ( )
where
s=49*/1.7y, n=0%b . (6-7)

Equation (6-6) gives the main drift term of db/dt due to the mode couplings

to R. Therefore, assuming that

If/T.L; IC/TII, ’T"iSZU/T_LI ’ |SZU|<1’ (6'8)

©

<

we eliminate (R, R*, Z) and derive reduced equations for (b, 6%*) to order 07,
denoting the order of magnitude of the small parameters (6-8).
According to §$4, (4-15) and (6-5) lead to

0 M O
<gkgm; LZ>:Z<(Z’ OO) _= M 0 O . (6,9)
0 0 M2

Therefore (3-23) leads to

——O—P(b’ b*, Z) = —_0_{__/;.}_ 7’,//‘5‘20 _i_‘]<n)] bP
ot 0b 2(1+4sn) Z2n
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o 2
—ir”sMg{ sb 0 2+4sn 0 }P
8 06\ 14sn 0b 1+sn 0b*
_ 9P
K7 —- .C., 6-10
T b T (6-10)
where
J(n)zT”SZ“ [E_JU;ZOV }n[1~7{1 +2(7 /1) sn] . (6-11)
7. 2(1+sn) (1+sn)?

The J(n) term comes from the third term of (3-17), and is of order 6. The
Langevin equation for & is given by (3-21):

d { A J(n)}
b=4—x O e
dt +2(1—{—5%) 2n
1 o577 O-lsn o~
T AT b+ R, (D), 6-12
3 7S A+sn)? » (2) ( )

where R,(z) is a fluctuating force of the type (3-15).
Using
b=y/n e b¥=./ne ", (6-13)
we can transform (6-10) and (6-12) into the equations for the photon number
n=0*b and the phase ¢=(1/2i)log(b/b*). Since 0 (n, ¢) /0 (b, b*) =i, we have
P(n, ¢) dndp =P (b, b*)d?6. Thus we obtain

0 P(n, ¢,t)=— 0 {~2I€n+ 7520 n—l—J(?z)}P
ot on 1

+sn
1 w7 0 n 0P _ 0 0P
—r,sM — - 2K s
+ 2 7S On 1+sn 0n ek on n@n
1 o°P

+ (7,5 M + 4k7) (6-14)

8n o

The Langevin equation for 2 takes the form

;; n=—28[n—7]+ 1:_”'55” [20714—% 1%]—\4571 ] +J () + R, (1), (6-15)
where R,(z) is a fluctuating force of the type (3-15).

These reduced equations differ from those which are obtained by the con-
ventional adiabatic elimination (5-3) and (5-4). For example, in the Fokker-
Planck equation for P (b, b*.t), though the diffusion terms are identical, the drift
term in the conventional one does not have the J(n) term in (6-10) but has
an additional term (y;sM/8) [sb/(1+s17)?]. In the Langevin equation for 7,
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the conventional one does not produce the J(xn) term in (6-15) but produces

an additional term (T”s]—\Z/él) [s12/ (1 +sm)7].

§7. Summary and remarks

We have formulated a projector elimination of irrelevant degrees-of-freedom
in multiplicative stochastic process (2-1), and derived reduced equations of mo-
tion (2-23) and the corresponding master equation (2-22). Multiplicative stochas-
tic processes of a new type are given by (5-11) which takes the memory

form
S,(a, ) =ri(0) —ay (@) J ds[e= @ o () 71

with 7, (z) and #,°(z) being Gaussian white noises. On the time scale of order
74>y, this leads to the form (2-25) with (5-14). Then (2-23) and (2-22)
reduce to the Langevin equation (2-31) and the Fokker-Planck equation (2-30).

The asymmetric form (2-25) is a generalization of the conventional form
28, (a,a’)6(t—1t"). This generalization is indispensable since &; (a, a’) #£,:(a’, a).
The asymmetry of the spectral density matrix arises from the memory effect due
to 537, Tn being the time scale of r;*(¢£) and r,°(#). Consider (7-1). Then,
in <S;(a, 0)S;(a’, t") ; a> with ¢>¢’, contribution comes from 7,%(s) with s<¢/,
whereas, if #/>>¢, contribution comes from 7,%(s") of S;(a’,#’) with s"={z. The
difference between the two contributions leads to the asymmetry. Here it is essen-
tial to distinguish three different time scales 74, vz and v, with 4 >tz >7,, and
then to take the limit t,—0 with t; »7, being kept. The conventional adiabatic
elimination simply replaces the time integral of (7-1) by [r '(a)]um>(¢) with-
out distinguishing 7z and t,. In §5, we have proposed its improvement.

In §3 we have developed a projector elimination from coupled Langevin equa-
tions and obtained the drift term (3-17) and the spectral density (3-18). This
is a generalization of the previous results derived in I with the aid of the projec-
tor elimination in dissipative dynamical systems.

The adiabatic elimination in deterministic equations” retains the first-order
terms in the slowness parameter . In §§4 and 5 we have retained up to order
6% in order to take fluctuations into account. One of the most important fea-
tures of the adiabatic elimination is to give H;(a) and E;(a) in terms of L%%
completely through the variance equations (4-15). This is different from the
projector elimination which gives H;(a) and L, (a) in terms of the initial vari-
ances <Z;,‘.,gm; a>. Since the varlance equations (4-15) are the fluctuation-dissipa-
tion relations characteristic of the steady Gaussian distribution generated by the
noise sources L%, this means that the adiabatic elimination assumes the local
equilibrium for the initial distribution of irrelevant variables.

The multiplicative stochastic equations with white noises have a mathematical
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ambiguity. The Ité interpretation and the Stratonovich interpretation are often
used.”™®  Our results in §2 agree with the Stratonovich interpretation. This
is due to the fact that we have replaced the time correlation functions of the
stochastic forces by those of white noises after transforming the stochastic equa-
tions into the master equation by means of the ordinary calculus.”” Thus (2-1)
can be interpretated as the Stratonovich type stochastic differential equation, where-
as the resulting Langevin equation (2-31) should be interpretated as the Itd

type.
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Appendix A
——Derivation of (2-11) and (2-16)——

Using the operator identity
U, ) =Ue(d, £,0) + J deU (b, Y PL (b, ) Ug(b, 2,7, (A-1)
[t}

we can rewrite (2-7) as

0 __ 0 _
SH@ =~ fdb 5 (A (0) —2) [U (b, )P

UG, 2,000+ ﬁ‘dr U (b, 0)PL (b, ) Uq(b, £, ) Q]
V(5,8 +8: (b, £)]0 (a—b). (A-2)
Since PS, (5, 2) =QV (b, £) =0, OS,(b, 1) =S, (b, £),

fdz;a (A(0) —B)U (b, ) PF (b, 1, 7) = jdbm (OCF b, 1,7); b5, (A-3)

PLb,0)Q=PS;(b,0) (0/0b;)Q, (A-2) leads to (2-11).
In order to derive (2-16), let us rewrite (2-13) as
Fi.(b,t, ) =0(a—b) R, (b,¢,7) + Y. (D, 8, T), (A9
where (2-20) has been used. Differentiating (A-4) with respect to 7 leads to
0. (b,t,1) =—0L G, 1) Fiu(b,2,0) +0(a—0)QL(b, )R (D, £, T)
= —QL,(0,7) F1a(8,1,7) ~QM, (5, 0) Y3, (b, £,7), (A-5)
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where
Lo, == [V,6,9) +5,6,9], (A-6)

M (b, o)=L ®,7)—L.(,7). (A7)

Since Y (b, t, ) =0, integrating (A-5) and inserting the Y (0, t,7) thus ob-
tained into (A-4), we obtain

Fob,t,©) =0 (a—b)Ri(D,£,T) + f ds exp_[ rQMa b, ) du]
$OL. (b, $) Fuu (b, 1, ). (A-8)
Tterating this, we obtain

- ¢ ¢ t 5,
Foh e, 0 =3 | as J sy j ds, exp_H OM..(b, zz)]QLa(b, 5

n=0

. xp[j " OM. (b, u)du}QLa(b, 58 (a—B)Ri(b, £, 7).

(A-9)
Here each QL,(b,5) gives 0/0as, and we have
oM. (0, 9| D sa-n)]
0a,, Oay,
T o 0
—[ 3(a—5>}QL<b,s)f, (A-10)
fay,, Oag,

where f is an arbitrary quantity which does not depend on a. Hence we obtain

Fulht. )=~ 2 o 0 5 at) PG by oy by b, 8,0). (ACID)
2= 0a,, Oax,

Inserting this into (2-11), we obtain (2-16).

Appendix B

Derivation of (2-27) ——

Using the interaction picture, we have
UQ (by ta T) Q = U071 (Z)’ T) UQ (ba t; T) UO (b, t) Q E) (B ) 1)
where

Us(b, 1) = exp{ Jx o, 5) 005 | dsil, (B-2)

7

Tob, 1, ) — exp_[ LtQI . 5) ds], (B-3)
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LG, =Uub,8,6,9) UG5, (B-4)

7

and we have used the fact that
V(6,5 (0/0b;)Q=0V,(b,5) (0/00;). (B-5)

Then the integrand of the second term of (2-11) becomes
(8,0, 2 Fuut,0,9)58)
00;

T

S; (8,7 ’é%U“;l(b’ DT, 1, UG, DSi(a, ) b3 (a—b)

7

o £ 5 Sp-1 P . B
| ﬁdsli czsz---i dsn<Sj(b, 9 5, U0 DL (B0
X QL (B, ) Us(b, ) Si(a, 1) s 60 (a—b)

=3 | as j s j s (8,00, 0) 0@ U (b, ©) L (B, 50)

=
m ¥

X Qof (]), Szm-‘l) I (69 527ﬂ*2> QI (éy ng,g) Tt
X L (b, s)OL (B, s)Us(b, £)Si(a, £); ﬁ> 8(a—b), (B-6)

where we have used the fact that the odd order correlations of S;(b,z) vanish.
The integrands of (B-6) are written in terms of products of the double correla-
tions of S;(,2) and are proportional to products of (m-1) delta functions, but

do not include the terms proportional to
O0(—s5)0(ss—55) -0 (Sem—7T). (B-7)

This can be shown by the mathematical induction. It can be shown, however,
that products of (m+1) delta functions except (B-7) vanish by the integration

over time."
Hence the only non-vanishing term of (B-6) is the term with m=0. Then

we obtain

t , o . N
Ldr jdbn,,(f) <5j<b, 90 Fut, L),z)>

t P _’\
_ ﬁdr Jdb]],, ) <S,.(b, D oy Si( 03 0)
Uy (5, ) Us (b, )8 (a—)

- fdb T, (6) & (a, ) 0627;5 (a—b)
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I 02, (a, b) .
— P tuta, I IO | (5-8)

7

Inserting this into (2-11), we obtain (2-27). Similarly we can show (2-33).

Appendix C

Derivation of (8-10) and (3-22)——

From (3-6) we obtain
.y (£) = &P, (0) + Jf:e“”WFab (t—s5)ds . (C-1)
Then, for any functional X (A(5), B(£)), we have
X(AQ), B(D) = jda jdb X(a, 5 ay (O)
- jda j b {nu,,@)c“wu j:cl’s Fan(£—5) cww}

% X (a,0), (C-2)

6%X(A @), B(0)) = dea J(db {Hab (0) ¢ 1 ug:dsFab(zf—s) emam}
«I'(a,b) X (a, b) + jda, J(de@, B) Fu (£ (C-3)

Using the operator identity

e = goren o {'dee T @OPT (a, 8 (C-4)
:
and inserting 1=P+O in front of I'X in (C-3), we obtain®
C%X(A @), B() = fcza jdmw (&) PT (a, 8) X (a, b)
+ { da jrdb 1., (0) ¢ @PQI (a, b) X (e, )
+ fda fczz; chzs Fuu(1—5) ¥ @O0 (a, b) X (a, b)
+ j:czc j da ya’b [Ty (6 — 0PI (a, B e PQT (a, ) X (a, b)
+ jda jdt’) X(a, b) Fus (2). -5

Putting X (a, ) =0(a—a’), we obtain (3-10).
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In order to derive (3-22), let F(£)=F(A(0), B(0), 2, t) be an arbitrary
function of A(0), B(0) and 2. Then we have

F@) ;s ad = jda jdé<mb<o> sadfa, b, 8), (C-6)

where f(a, b, t) is the average of I'(a,b,2,t) over £ and have been assumed
to be independent of @, Since

(ITay (0) ; = j bl (0) 5 abo>q (bo; as)

=0(a—a)q(b;a), (C-7D
(C-6) leads to
F@);ad— jd&f(a, b,0)q(b; @),

=Pf(a,b,?). (C-8)
F.(®» and R,(¢) have the form OF(f) so that we have Qf instead of £ in
(C-8). Therefore PO=0 leads to (3-22).

Appendix D
——Derivation of (8-16)——
Since (3:7) leads to
I'(a,0)0(a—a’) = ~raa7[vi(a’) —a;;(a”)b;]0(a—a”)
a;

2 ,
+@;?57Lff6(ﬂﬁa'), D1

T, b)d(a—a’);ay=— a% [v:(a”) —ai;(a’)<{b;; ay]o(a—a’)

2
+o O Lf(a—ar), (D-2)
Oa;/0a;
we obtain
Sala,b,0)=0QrI' (a, )0 (a—a’) :5’0 iy (a) b0 (a—a’). (D-3)

7

In the propagator of the memory term of (3-10), we treat QI similarly to

(4-10) of T:

A 9 5° &
or= rEQ{ @) =7 (@) b ] o Oy O }
Q [3 (a) T]k<a> el Obj } aai@bj -+

(D-4)
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Then we have
f ds(T (a, b) O (@, b,0) s ad
1}

- 05,/ e (@) [ (@) JlBe(@”) —7r(a’){bi; ayli(a—a’)

+ 9w @) @) 1 0 At () b a> 2137 0 (a—a”)
Oa; Oa,
— 0 @ [ @) 108885 2 10, (a7 — i () s a7
afli 0@1
x0(@—a)+ 0 @) [ ()] L
va

7

d[2Pa 0 0B a 5, -5

0a, Oa, 0a,/0a,

Since Li#~O (4%, the last term of (D-5) is of order 6°, but other terms are of
order ¢°. Hence we neglect the last term. Using the Markov approximation and

inserting (D-2) and (D-5) into (3-10), we obtain (3-16).
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