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Abstract—The standard interference functions introduced by
Yates have been very influential on the analysis and design of
distributed power control laws. While powerful and versatile,
the framework has some drawbacks: the existence of fixed-points
has to be established separately, and no guarantees are given on
the rate of convergence of the iterates. This paper introduces
contractive interference functions, a slight reformulation of the
standard interference functions that guarantees existence and
uniqueness of fixed-points and geometric convergence rates. We
show that many power control laws from the literature are
contractive and derive, sometimes for the first time, convergence
rate estimates for these algorithms. Finally, we show that al-
though standard interference functions are not contractive, they
are paracontractions with respect to a certain metric space.
Extensions to two-sided scalable interference functions are also
discussed.

I. INTRODUCTION

Distributed power control (DPC) algorithms such as [1]–[3]

have had an enormous influence on modern wireless systems.

The basic algorithm for adjusting transmit powers to meet pre-

defined Signal-to-Interference-and-Noise-Ratio (SINR) targets

can be written as a linear iteration and has been thoroughly

analyzed. In particular, when the SINR targets are feasible, the

algorithm converges to a unique fixed-point at a geometric rate.

These results can be derived using Perron-Frobenius theory for

positive matrices or, alternatively, by showing that the linear

iteration is a contraction mapping in a weighted maximum

norm; (e.g. [3], [4]).

An elegant axiomatic framework for studying more general

power control iterations was proposed by Yates [5]. The

so-called standard interference functions include the linear

iterations, and several important nonlinear power control laws.

While several results exist for synchronous and asynchronous

convergence of standard interference function iterations, the

current proofs are tailor-made and the link to contraction map-

pings, that is essential for the analysis of the linear iterations,

is absent. In addition very few results on the convergence rate

of such algorithms have appeared in the literature (e.g. [6]–[8]

for exceptions). This paper tries to fill this gap.

Contrary to various claims in the literature, we demonstrate

that standard interference functions are, in general, not con-

traction mappings. However, we show that a slight modifica-

tion of the scalability axiom of standard interference function

allows to guarantee contractivity of the iterations and hence

unique fixed-points and geometric convergence rates. This
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condition is satisfied by the basic DPC algorithm and allows to

recover the same convergence rate that comes out of a tailored

analysis. It also allows to estimate the convergence rate of the

other power control schemes considered by Yates framework,

as well as the utility-based power control scheme developed

in [9]. We also demonstrate how a logarithmic change-of-

variables render interference functions Para-contractions. Var-

ious extensions of the basic framework have been proposed by

Sung and Leung [10] and Schubert and Boche [11]. We give

analogous conditions that guarantee that two-sided scalable

interference functions [10] define contraction mappings, and

hence have unique fixed points and geometric convergence

rates. This result is related to the work by Möller and

Jönsson [12], who demonstrated that in logarithmic variables,

two-sided scalability implies global Lipschitz continuity of the

interference function, and an alternative restriction allows to

establish convergence rates and uniqueness of fixed-points.

Finally, we discuss how asynchronous convergence can be

established in our framework. Due to space constraints, we

refer the reader to the full-length version of our paper [13] for

technical details, omitted proofs and extensions.

Throughout the paper, we use the following notation: vec-

tors are written in bold lower case letters. The ith component

of a vector x is denoted by xi . The notation x ≥ y implies

that xi ≥ yi for all elements i. We use the notation x ≥ 0
to show that all of the components of x are greater than

zero. Let ex and ln(x) denote component-wise exponential

and logarithm of the entries x, respectively. Given a vector

v > 0, ‖ · ‖v∞ stands for the weighted maximum norm, i.e.

‖x‖v∞ = maxi |xi/vi|. The vector norm ‖·‖v∞ induces a matrix

norm, also denoted by ‖ · ‖v∞ defined by

‖M‖v∞ = max
x �=0

‖Mx‖v∞
‖x‖v∞

When vi = 1 for each i, we suppress the superscript v. We

use ρ(A) to denote the spectral radius of matrix A.

II. FIXED-POINT THEORY AND INTERFERENCE FUNCTIONS

A. Fixed-points, contractions and para-contractions

We consider iterative algoritms on the form

x(n+ 1) = T
(
x(n)

)
, n = 0, 1, 2, . . . (1)

where T is a mapping from a subset X of R
n into itself. A

vector x� is called a fixed point of T if T (x�) = x�. If T is

continuous at x� and the sequence {x(n)} converges to x�,

then x� is a fixed point of T . Therefore, the iteration (1) can
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be viewed as an algorithm for finding such a fixed point of T .

If T has the following property

‖T (x)− T (y)‖ ≤ c‖x− y‖
where ‖ · ‖ is some norm and c ∈ [0, 1), then T is called

a contraction mapping. The following proposition shows that

contraction mappings have a unique fixed point and geometric

convergence rate.

Proposition 1 (Convergence of Contracting Iterations [14])
If T is a contraction mapping in X , then:
• (Existence and Uniqueness of Fixed Points) The mapping

T has a unique fixed point x� ∈ X .
• (Geometric Convergence) For every initial vector x(0) ∈

X , the sequence {x(n)} generated by x(n + 1) =
T
(
x(n)

)
converges to x� geometrically. In particular,

‖x(n)− x�‖ ≤ cn‖x(0)− x�‖ (2)

An operator T on X is called para-contraction if

‖T (x)− T (y)‖ < ‖x− y‖ for all x �= y

Para-contractions have at most one fixed point [14] and, in

contrast to contractions, may not have a fixed point. As an

example, consider the para-contracting function T (x) = x +
e−x in [0,∞). It is easily seen that T has no fixed point. We

also note that para-contractivity does not yield any estimate

on the rate of convergence to the fixed point.

B. Standard interference functions

The interference function framework was introduced by

Yates [5] to study various extensions of the basic distributed

power control problem of adjusting transmit powers to meet

prespecified signal-to-interference and noise ratios.

Definition 1 (Standard Interference Function [5]) A func-
tion I(p) is called standard interference function, if for all
p ≥ 0 the following properties are satisfied:
• Positivity: I(p) > 0.
• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′).
• Scalability: For all α > 1, αI(p) > I(αp).

The main convergence result for standard interference func-

tions can be summarized as follows:

Proposition 2 ( [5]) Let I(p) be a standard interference
function and consider the iteration

p(n+ 1) = I
(
p(n)

)
(3)

Then, if (3) has a fixed-point, this fixed-point is unique and
the iterates {p(n)} produced by (3) converge to the fixed-point
from any initial vector p(0).

Note that contrary to the result for contraction mappings,

the existence of fixed-points has to be verified separately, and

no guarantees about the convergence rate of the iterates to the

fixed-point are given. Already this should raise the suspicion

that standard interference function do not define contraction

mappings in normed linear spaces. The following simple

example establishes that this suspicion is indeed correct.

Example 1 (Interference functions are not contractive)
Consider the function

I(p) = 2p+ 1

where 1 is the vector with all components equal to 1. This is
a standard interference function, but ‖I(p)− I(p′)‖ = 2‖p−
p′‖, so it is neither contractive nor para-contractive.

To establish convergence rates of power control algorithms,

one could certainly make a separate analysis of contractivity

of the particular interference functions at hand. However,

if one can prove contractivity, particularly in the maximum

norm, then the interference function framework brings little

additional value. The beauty of the framework lies in the

easily verifiable conditions that guarantee synchronous and

asynchronous convergence. Next, we will show that a new

definition of the scalability condition ensures contractivity.

III. CONTRACTIVE INTERFERENCE FUNCTIONS

We propose to study a different class of functions which we

call contractive interference functions.

Definition 2 A function I(p) is said to be a contractive
interference function if it, for all p ≥ 0, satisfies the following
conditions:
• Positivity: I(p) > 0.
• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′).
• Contractivity: There exists a positive vector v and a

constant c ∈ [0, 1) such that for all ε > 0, I(p + εv) ≤
I(p) + cεv.

Note that the two first conditions are the same as for standard

interferernce functions, but the scalability condition has now

been replaced by contractivity. As shown in the next theorem,

contractive interference functions define contraction mappings,

which implies that the associated iterations (3) have unique

fixed-points and geometric convergence rates.

Theorem 1 If I(p) is a contractive interference function, then
(3) has a unique fixed point p� and the iterates {p(n)}
produced by (3) converge geometrically to p� from every
initial vector p(0).

Proof: Let p �= p′, then p ≤ p′ + ‖p − p′‖v∞v. Since
‖p−p′‖v∞ > 0, the monotonicity and contractivity properties
imply

I(p) ≤ I(p′) + c‖p− p′‖v∞v

By interchanging role of p and p′,

I(p′) ≤ I(p) + c‖p− p′‖v∞v

So for all components of I(p), we have

|Ii(p)− Ii(p
′)| ≤ c‖p− p′‖v∞vi ∀i
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Therefore, ‖I(p′)−I(p)‖v∞ ≤ c‖p−p′‖v∞. From Proposition

1, I(p) is contractive and hence it has a unique fixed point.

Moreover for every initial vector p, the sequence p(n+1) =
I
(
p(n)

)
converges to p� geometrically.

To emphasize the modulus c of the contraction mapping, we

sometimes say that a function is a c-contractive interference
function. To show that the concept of contractive interference

function is useful, we will now show that it is readily ap-

plied to several distributed power control algorithms from the

literature yielding, sometimes for the first time, guaranteed

convergence rates for these algorithms. We denote by T the

set of transmitters and R the set of receivers in the network.

Firstly, we consider linear interference functions:

Ii(p) = γi

∑
j∈T ,j �=i Gijpj + ηi

Gii
, i ∈ R, (4)

where G = [Gij ] ≥ 0 is a fixed link gain matrix, γi and ηi are

the target SINR and the background noise at the receiver of

transmitter i, respectively. This equation can be rewritten as

Ii(p) =
∑K

j∈T ,j �=i Mijpj +Ni, i ∈ R, where Ni = γiηi/Gii

and

Mij =

{
γiGij/Gii , j �= i,
0 , j = i.

(5)

We then have the following result.

Theorem 2 If ‖M‖v∞ < 1 for some v > 0, the linear inter-
ference functions (4) are c-contractive interference functions
with c = ‖M‖v∞.

Proof: It is clear that linear interference functions are

positive and monotone. Furthermore,

I(p+ εv) = M(p+ εv) +N ≤ I(p) + ‖M‖v∞εv.

Hence, I(p) is contractive with c = ‖M‖v∞.

Since M is a square nonnegative matrix, ρ(M) < 1 is

equivalent to the existence of a positive vector v for which

‖M‖v∞ < 1 [14, pp.148]. In this case, v is the right Perron-

Frobenius eigenvector of M . The same analysis with v = 1
(which corresponds to an unweighted max-norm contraction)

for the linear interference functions would yield ‖M‖∞ < 1
which is a sufficient condition for convergence of (3), but

conservative since ρ(M) ≤ ‖M‖∞.

One can carry out a similar analysis also for the minimum

power assignment and macro-diversity interference functions

from [5], but the poofs are omitted here for brevity.
To show that our framework allows to go beyond the known

results, consider the utility-based power control (UBPC)
from [9]. The associated interference function is

Iui (p) =

(∑
i �=j Gijpj + ηi

Gii

)
f−1
i

(
αi

∑
i �=j Gijpj + ηi

Gii

)
(6)

where αi is a price coefficient and f−1
i (x) is a decreasing

function on [Ki,Ki] for all i given by

fi(SIRi) = U ′i(SIRi) (7)

where Ui is a utility function of user i. In their paper, Xiao et
al. use a sigmoidal utility function

Ui(SIRi) =
1

1 + e−ai(SIRi−bi)
(8)

where bi = γi−a−1
i ln(aiγi−1). Let Mij be defined as (5). We

will next show that the framework of contractive interference

functions will allow us to analytically bound the convergence

rate, which has an immediate use for tuning the algorithm

parameters. Specifically, we have the following result.

Theorem 3 Consider the interference function Iu(p) =

[Iui (p)] defined in (6–8). If c = maxi

{
bi

∑K
j=1 Mij

}
< 1

then Iu(p) is a c-contractive interference function.

Proof: Let v = 1. For all ε > 0 we have

Iui (p+ ε1) =

(
K∑

j=1

Mij(pj + ε) +Ni

)

f−1
i

(
αi

( K∑
j=1

Mij(pj + ε) +Ni

))

<

(
K∑

j=1

Mij(pj + ε) +Ni

)

f−1
i

(
αi

( K∑
j=1

Mijpj +Ni

))

= Iui (p) + ε

(
K∑

j=1

Mij

)
f−1
i

(
αi

( K∑
j=1

Mijpj +Ni

))

where the first inequality comes from the fact that f−1
i (x) is

a decreasing function. Since the maximum value of f−1
i (x) on

[Ki,Ki] is f−1
i (Ki) , if maxi

{
f−1
i (Ki)(

∑K
j=1 Mij)

}
< 1,

then UBPC iteration geometrically converges to a unique

fixed point. Under the sigmoidal utility function (8), the

maximum value of U ′i(SIRi) occurs at point bi, and we have

max f−1
i (x) = bi. Hence, f−1

i

(
Ki

)
≤ bi and the result

follows.

The following numerical example illustrates our result.

Example 2 We consider UBPC under the simulation scenario
described in [9]. Here, four mobiles share a channel with link
gain matrix G given by

G =

⎡⎢⎢⎣
10−4 6.82× 10−7 3.57× 10−8 2.12× 10−8

1.52× 10−7 6.25× 10−4 3.51× 10−6 1.98× 10−7

7.67× 10−9 2.44× 10−8 1.23× 10−6 5.16× 10−9

2.63× 10−7 4.82× 10−8 2.56× 10−7 3.28× 10−5

⎤⎥⎥⎦
The noise power is 0.5 and the target SIRs of the users are
6, 6, 8 and 10 dB, respectively. We assume that four users
in the system use sigmoidal utility function with parameters
1.02, 1.32, 0.88 and 1.05, respectively. The price coefficient
α is equal to 5000 for all users. Fig. 1 shows the norm
between power vector and optimal power vector with respect
to iteration. The upper bound obtained from proposition 8 is
plotted as a dotted curve.
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Fig. 1. Comparison of upper bound on convergence rate of UBPC obtained
in Proposition 8 and the actual convergence rate of UBPC for the scenario
considered in example 2.

Another useful result shows that imposing an upper and

lower bound on a contractive interference function does not

change the contractivity properties.

Theorem 4 If I(p) is a c-contractive interference function,
then so is Iq(p) = max{pmin,min{pmax, I(p)}} .

Proof: Omitted for brevity but can be found in [13].

IV. INTERFERENCE FUNCTIONS AND

PARA-CONTRACTIONS

We have already shown that standard interference functions

do not define contraction mappings. However, the convergence

results for standard interference functions are identical to those

of para-contractions, so there should be a link between the

two. This section shows one such link. In particular, we

demonstrate that a logarithmic change of variables s = ln(p)
makes the iterations para-contracting in the new variables.

Theorem 5 Suppose that the interference function I(p) is
standard. Then the change of variables s = ln(p) and
Ĩ(s) = ln

(
I(es)

)
transforms the interference function I(p)

into a para-contracting function Ĩ(s).

Proof: First we rewrite the properties of standard inter-

ference function in the new coordinates.

1) monotonicity: If s1 ≤ s2, then Ĩ(s1) ≤ Ĩ(s2).
2) sub-additivity: For all ε > 0, Ĩ(s+ ε1) < ε1+ Ĩ(s).

Let s1 �= s2, then monotonicity and sub-additivity of Ĩ(s)
imply

‖Ĩ(s1)− Ĩ(s2)‖∞ < ‖s1 − s2‖∞

Therefore, Ĩ(s) is a para-contraction. Due to space constraints,

we refer reader to [13] for a detailed proof.

Theorem 5 helps us to understand that interference functions

are para-contractions with respect to a certain metric space.

Specifically, we note the following:

Theorem 6 Standard interference functions are
para-contractions with respect to the metric space
dc(p,p

′) = maxi

∣∣∣ln pi

p′
i

∣∣∣.
It is important to note that standard interference functions

are para-contractions on the metric space induced by dc
irrespectively if they have a fixed-point or not. To guarantee

convergence of the iterates, we must verify that the iteration

has fixed-points. The following theorem can then be useful.

Theorem 7 Given a standard interference function I(p), if
there exists a p′ such that I(p′) ≤ p′, then a fixed point
exists.

V. TWO-SIDED INTERFERENCE FUNCTIONS

Sung and Leung [10] present a new class of functions called

two-sided scalable interference functions which generalizes

the standard interference functions to allow for simple and

powerful analysis of certain opportunistic power control laws:

Definition 3 (Two-sided scalable interference functions [10])
A function I(p) is called two-sided scalable interference

function, if for all p ≥ 0, I(p) satisfies:
• Positivity: I(p) > 0, and
• Two-sided scalability: For all α > 1,

1

α
p ≤ p′ ≤ αp⇒ 1

α
I(p) < p′ < αI(p).

Note how monotonicity and scalability has been replaced by

the two-sided scalability condition. The key convergence result

reads as follows:

Proposition 3 ( [10]) Let I(p) be a two-sided scalable inter-
ference function and consider the iteration (3). If the iteration
has a fixed-point p�, then this fixed-point is unique and the
sequence {p(n)} generated by the iteration converges to p�

for every initial value p(0).

The convergence conditions for two-sided scalable interfer-

ence functions coincide with those of para-contractions. Our

framework introduces the two-sided contractive interference
functions with which we can guarantee existence and unique-

ness of fixed points along with convergence rates.

Definition 4 A function I(p) is called two-sided contractive

interference function if it, for all p ≥ 0 satisfies
• Positivity: I(p) > 0, and
• Two-sided contractivity: there exists a positive vector v

and a constant c ∈ [0, 1) such that for all ε > 0, p′−εv ≤
p ≤ p′ + εv implies that

I(p′)− cεv ≤ I(p) ≤ I(p′) + cεv. (9)

Theorem 8 If I(p) is a two-sided contractive interference
function, then (3) has a unique fixed point p� and the sequence
{p(n)} generated by the iteration (3) converges geometrically
to p� from every initial value p(0).
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The proof follows similarly to the contractive interference

function proof and is omitted in this paper. Next, we show

how two-sided scalable functions relate to para-contractions.

Theorem 9 Suppose that I(p) is two-sided scalable. Then
I(p) is a para-contraction in a metric space defined by
dc(p,p

′) = maxi

∣∣∣ln pi

p′
i

∣∣∣.
Our results in this section are related to the work by Möller

and Jönsson [12], [15], who studied stability of higher-order

power control laws. They demonstrated that in logarithmic

variables, two-sided scalability implies global Lipschitz conti-

nuity of the interference function, and an alternative restriction

allows to establish convergence rates and uniqueness of fixed-

points. The link to paracontractions, although not phrased this

way, can also be seen in [12, Proposition 3].

VI. TOTALY ASYNCHRONOUS POWER CONTROL

So far, we have examined synchronous power control al-

gorithms. In this case, every component of the vector p is

updated at every time step, using information of the transmit

powers used by all transmitters in the previous iteration.

However, a nice feature of the stadard interference functions

is that they also converge when executed asynchronously. In

this section, we will demonstrate that contractive interference

functions also converge asynchronously.
To state the precise result, we recall the totally asynchronous

computational model from Bertsekas and Tsitsiklis [14, pp.
426]. Let T be the set of times when some transmitter updates
its power, and let T i ⊆ T be the times when transmitter i
executes an update. To model that the transmitter might need to
update its power using old information from other transmitters,
let τ ij(t) be the time at which the most recent version of pj
available to node i at time t was computed. Node i executes
the update

pi(t+ 1) =

{
Ii
(
p1(τ

i
1(t)), · · · , pn(τ i

n(t))
) ∀t ∈ T i

pi(t) ∀t �∈ T i (10)

Definition 5 (Total Asynchronism [14, pp. 431]) The itera-
tion (10) is totally asynchronous if the sets T i are infinite for
all i, and if {tk} is a sequence of elements of T i that tends
to infinity, then it also holds that limk→∞ τ ij(tk) =∞ ∀j

Loosely speaking, this assumption guarantees that no transmit-

ter ceases to update its power, and that such updates eventually

propagate to all other transmitters in the network. Yates

showed that if an iteration involving standard interference

function converges synchronously, it also converges when

executed totally asynchronously. A similar result holds for

contracting interference functions:

Theorem 10 Let I(p) be a contractive interference function.
Then, the iterates produced by (10) converge to the unique
fixed-point under total asynchronism.

This result is proven by noticing that contractive interfer-

ence functions define max-norm contractions, and that max-

norm contractions converge under total asynchronism (e.g. [14,

pp. 434]). A similar result can be established for two-sided

contractive interference functions using the same arguments.

VII. CONCLUSIONS

In this paper we have shown that standard interference

functions do not define contraction mappings and introduced

contractive interference functions that guarantee existence and

uniqueness of fixed-point along with geometric convergence

of iterates. We have demonstrated that several important dis-

tributed power control algorithms proposed in the literature

are contractive and derived the associated convergence rates.

In some cases, such as linear iterations, the convergence rate

coincides with known results from the literature that has

been obtained using a detailed and tailored analysis. In other

cases, such as the utility-based power control, we provide the

first convergence rate estimates in the literature. This paper

also clarifies the link between standard interference functions

and para-contractions.We have also shown that contractive

interference functions converge when executed totally asyn-

chronously.
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