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Summary. Consider a linear autonomous system of ordinary differential 
equations with the property that the norm ]U(t)l of each solution U(t) satis- 
fies I U(t)l <hU(0)i (t >0). We call a numerical process for solving such a sys- 
tem contractive if a discrete version of this property holds for the numerical 
approximations. A given k-step method is said to be unconditionally con- 
tractive if for each stepsize h > 0 the numerical process is contractive. 

In this paper a general theory is given which yields necessary and sufficient 
conditions for unconditional contractivity. It turns out that unconditionally 
contractive methods are subject to an order barrier p < 1. Further the con- 
cept of a contractivity threshold is studied, which makes it possible to com- 
pare the contractivity behaviour of methods with an order p > 1 as well. 

Most theoretical results in this paper are formulated for differential 
equations in arbitrary Banach spaces. Applications are given to numerical 
methods for solving ordinary as well as partial differential equations. 

Subject Classifications: AMS(MOS):  65J10, 65L20, 65M10; CR: 5.17. 

1. Introduction 

1.1. Formulation of Two Problems 

In order to introduce the subject treated in this article we consider an initial 
value problem for a linear system of s ordinary differential equations 

d 
(1.1) dt  U(t)=AU(t)(t>O), U(0)=u o. 

We assume here that 

(1.2.a) s ~ l  and A=(aij) is a real s• matrix; 
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(1.2.b) I"1 is an arbitrary fixed norm on the vector space IW; 

(1.2.c) for each Uo~N ~ the solution to (l.1) satisfies [U(t)[<luo[ (t>O). 

Many numerical methods for the solution of initial value problems (such as 
linear multistep methods, Runge-Kutta methods, Rosenbrock methods) result, 
when applied to problem (1.1), into a procedure of type 

(1.3) Po(hA)u,=Pa(hA)u, l + P z ( h A ) u , - z + . . . + P k ( h A ) u ,  k 

( n=k , k  + l , k  + 2 . . . .  ). 

Here k > l  is a fixed integer, and u, are approximations to U(t,) for t,,=nh, 
h>0,  n > k  that are obtained from (1.3) when starting vectors Uo, 
u 1 . . . .  , Uk_lSN ~ are given. Further Po((), PI((),--., Pk(() stand for polynomials 
(with real coefficients) which have no common zero. 

We assume Po(0)+0, and recall that the order of (1.3) is the largest integer p 
for which U(t,) always satisfies (1.3) up to an error =(9(h p+ 1) (for h ~ 0 + ) .  We 
assume (1.3) to be of an order p>0 .  

Definition 1.1. Method (1.3) is called unconditionally contractive with respect to 
the pair (A, ['l) if for all h > 0  and all u,(n>O) satisfying (1.3) we have 

(1.4) lu , [  < m a x ( [ U o l ,  l u l l  . . . .  , lUk - 1[) (n>k). 

Clearly (1.4) is a discrete version of (1.2.c), and therefore unconditional con- 
tractivity is a natural demand upon (1.3). It is also a useful demand since (1.4) 
implies that any (rounding) errors, which might be present in the starting vec- 
tors, are propagated in the numerical calculations no stronger than lies in the 
nature of the original problem (1.1). 

For the case where (1.3) stands for a linear multistep method (i.e. all P~(() 
have a degree __<1) Nevanlinna and Liniger [12, p. 59] derived simple con- 
ditions on P/(0 that are necessary and sufficient for (1.3) to be unconditionally 
contractive with respect to all pairs (A, [.1) satisfying (1.2). They arrived at a 
nontrivial class of linear multistep methods with this favourable contractivity 
property. However, all members of this class were proved to have only an or- 
der p__<l. 

The question arises what conditions on arbitrary polynomials P~(() are nec- 
essary and sufficient for unconditional contractivity of the general method (1.3) 
with respect to all pairs (A, ['1) satisfying (1.2). A second natural question is 
whether there exist any methods (1.3) with this nice contractivity property and 
an order p > 1. 

1.2. Solution of the Two Problems 

Finding answers to the above two questions, as well as to related ones, is the 
purpose of this article. In the subsequent two theorems we formulate already 
our solutions to the above two problems. 
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We recall that a scalar function ~b is called absolutely monotonic on the in- 
terval J c l R  if ip(() as well as all derivatives ~p~J)(() ( j=  1, 2, 3 . . . .  ) exist in IR and 
are > 0  (for all ~ J ) .  

For 1 <_i<k we define ~i(() to be the rational function (without removable 
singularities) with ~b i(~) = P/(()/Po (~) (for ~ ~ ~ ,  Po (~) * 0). 

Theorem 1.2. Method (1.3) is unconditionally contractive with respect to all pairs 
(A, I'[) satisfying (1.2) if and only if all ~i(~) are absolutely monotonic on the in- 
terval ( -  ~ ,  0] (here 1 < i <_ k). 

Theorem 1.3. Suppose method (1.3) has the contractivity property of Theorem 1.2. 
Then its order cannot exceed p = 1. 

1.3. Outline of the Rest of this Paper 

After a few remarks (in Sect. 1.4) in connection with the above two theorems 
we give in Sect. 2.1 basic definitions needed in this paper. We consider linear 
initial value problems in arbitrary Banach spaces, thus generalizing the situa- 
tion of (1.1), (1.2). 

Section 2.2 contains the principal results of Chap. 2. The Theorems 2.4, 2.5 
of this section can be regarded as generalizations of the above Theorems 1.2, 
1.3, respectively. 

Applications of the theory of Sect. 2.2 are presented in the next Sect. 2.3. 
Here we deduce the Theorems 1.2, 1.3 as well as contractivity results on 
Runge-Kutta methods already stated (without proof) in [17]. 

In view of the order barrier p__< 1, appearing in Theorem 1.3 and related 
theorems of Chap. 2, we turn in Chap. 3 to a framework suitable for comparing 
also the contractivity properties of methods with p > 1. 

In Sect. 3.1 we focus on initial value problems that are less general than 
those considered in Chap. 2. For this restricted class of problems we give in 
Sect. 3.2 contractivity results valid under a condition 0 < h  < H  on the stepsize 
h. 

Section 3.3 contains applications of the theory of Sect. 3.2 to linear multi- 
step methods and general one-step methods. We describe some methods with 
conditional contractivity properties when applied to our restricted class of in- 
itial value problems, and with an order p > 1. 

At the end of the Chaps. 2, 3 we illustrate the theories of the Sects. 2.2, 3.2 
by applying them to a numerical method for solving a simple partial differen- 
tial equation of parabolic type. 

Our last Chap. 4 is of a technical nature and contains the proofs of our 
main Theorems 2.4, 3.3 already formulated in the Sects. 2.2, 3.2. 

1.4. Remarks 

1. The contractivity property occurring in Theorem 1.2 concerns arbitrary 
pairs (A, 1"1) satisfying (1.2). If we would consider only pairs (A, ].]) satisfying 
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the additional condition that the norm I'1 is generated by some inner product 
in Ns, the order barrier p <  1 of Theorem 1.3 would no longer be present (see 
[12] or [3], [4]). On the other hand one would certainly not gain the same in- 
sight into the general error propagation of numerical methods by considering 
only pairs (A, I'[) subject to this additional condition, nor by considering e.g. 

d 
only the test equation d t  U(t)=2U(t) ( t>0)  with 26112 (cf. e.g. [17], [1l, pp. 

258-261]). 
2. Suppose the right-hand members of the inequalities in (1.2.c) and (1.4) 

are multiplied by an arbitrary factor M >  1. It can be seen, e.g. by using [10, 
p. 277], that the inclusion of such factors in the above would not alter the mo- 
notonicity criterion of Theorem 1.2. 

3. In [1] Bolley and Crouzeix studied the positivity of numerical methods 
for linear initial value problems. Here they arrived also at an order barrier 
p < 1 and at monotonicity criteria similar to the one of Theorem 1.2. The pres- 
ent paper has benefited by some of their nice results (cf. the Sects. 2.2, 4.2). 

4. Theorem 1.2 would not be valid if the condition that the P~(~) have no 
common zero (see Sect. 1.1) would be omitted. This can be seen from the coun- 
terexample k=  1, P0(~)= 1 __~2 p1 ([)= l + ~. 

2. Unconditional Contractivity 

2.1. Linear Autonomous Differential Equations 

Throughout this paper IK stands consistently for the set of real or complex 
numbers I t  or •, respectively. Further X denotes an arbitrary Banach space 
over IK. The norm for x~X is denoted by [x[. By ~(X)  we denote the set of all 
bounded linear transformations T mapping X into itself with norm [ITI[ 
= sup {1Tvl: veX, Iv[ = 1 } < oo (see e.g. [9, Chap. 3]). 

For any linear operator A we denote its domain and range by ~(A) and 
~(A), respectively and its resolvent set by 

p(A) = {212~IK, (A - 2)- t exists in ~(X)}. 

In the following cn denotes a fixed real number, and we deal with operators 
A satisfying condition (2.1). 

(2.1) A is a linear operator with range in X and with a domain in X whose 

closure equals ~ ( A ) = X .  Further there is some real ~>co for which ~ ( A - ~ )  
= X .  

We note that any A~YJ(X) automatically satisfies (2.1) (cf. [9, Chap. 3]). 
Let Uo~(A  ) and consider the initial value problem 

d 
(2.2) dt U(t)=AU(t)(t>O), U(O)=u o. 
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We shall focus on operators A which are such that, in addition to (2.1), the fol- 
lowing condition (I) is fulfilled. 

(I) For each Uoe~(A ) problem (2.2) admits a unique solution U(t)s~(A) 
(0 < t < oo) and this solution satisfies ] U(t)] < exp (co t). lUol (0 < t < oo). 

In order to state conditions on A that are equivalent to (I) but easier to 
check we give the subsequent definitions, where we follow closely [10, pp. 244, 
245]. 

For x, yeX,  0=t=zelR we put 

m~[x,y]=z-l( lx+zyl- lx l ) ,  m+_[x,y]= lim m~[x,y], 
z~O++_ 

and we write 

/6[A] = supm~[v, Av], p+_ [A] =supm_+ Iv, Av], 

both suprema being for all ve~(A) with Iv[ = 1. 
We note that for the case of finite-dimensional X we always have 

(2.3) # [ A ] = / ~ + [ A ] =  lim r- l[ l l I+zZ[[-1] .  
~ 0 +  

The limit in (2.3) equals the so-called logarithmic norm of A (see e.g. [18, 
p. 91]). 

We consider the following two conditions (II) and (III) on A. 

(II) Each real 4 > o) belongs to p(A) and satisfies II(A-4) 111 < ( 4 -  ~o)-1. 

(III) p [A]__<~o. 

We formulate the following version of the well known Hille-Yosida theorem. 

Theorem 2.1. Let A satisfy (2.1). Then the three conditions (I), (II), (III) are 
equivalent to each other. 

This theorem can be proved by using the material in [10, pp. 282, 283]. 

Definition 2.2. By Lf(X, ~o) we denote the class of all A satisfying both (2.1) and 
(III). 

2.2. General k-Step Methods 

In this section we consider the numerical solution of the initial value problem 
(2.2) by the general k-step procedure 

(2.4) u =~q(hA)u,_l +~,z(hA)u,_2+...+qlk(hA)u,_ k (n>k). 

Here q/i(~) are rational functions which are regular at ~=0  and have nume- 
rators and denominators with coefficients in IK. 

In order to define qli(hA ) appearing in (2.4) we consider an arbitrary linear 
transformation T with domain and range in X. Let ~(O=P(O/q(O where P(0, 
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q(0 are polynomials with coefficients in IK and with no common zeros. We say 
that ~(T) exists in ~ (X) and we write ~(T)=p(T)[q(T)]-1  whenever the oper- 
ator q(T) is injective and p(T)[q(T)]  I~y)(X)  (cf. [9, p. 163] or [10, p. 62]). 

Definition 2.3. Let p be an integer > 0. Method (2.4) is of order p if 

e k r  ) e(k- 1)~+g,2(~ ) e(k 2)~+... +~k(~)+(9(~q+ 1) 

(for ( ~  0) with q = p, and not with q > p. 
The following theorem, which will be proved in Chap. 4, is basic for the 

rest of the present chapter. With IK~ we denote the s-dimensional vector-space 
IK s equipped with the maximum norm Jx[ =[xJo r (cf. [10, p. 3]). 

Theorem 2.4. Let h > 0  and all Oi(~) regular at ~=h~o. Then the following three 
propositions are equivalent. 

(P1) For each Banach space X (over IK) and AEZ~(X, ~o) the operators ~9i(hA ) 
exist in ~ ( X )  (i = 1, 2 . . . .  , k) and satisfy 

k k 

~=l~i(hA)vl <= ~, qJi(hog)lv~l (for all vieS ). 
i i = 1  

(P2) For each integer s > l  and real (matrix)  A ~ ( I K ~ , o 9 )  such that all 
tPi(hA ) exist in ~ ( IK  s )  (i = 1, 2 . . . . .  k), we have 

~=lOi(hA ) <= i(h~ - max [vj[~ (for all vieIKS). 
.= i l 1 l < j < = k  

(e3) All ~ i (i= l, 2 . . . .  , k) are absolutely monotonic on the interval ( -  oo, he)]. 

The next theorem provides an important consequence of condition (P3) for 
the case where h ~o__> 0. 

Theorem 2.5. I f  all Oi (i = 1, 2 . . . .  , k) are absolutely monotonic on ( -  oo, 0] then 
the order of  method (2.4) is not greater than 1. 

Proof It is easily verified that the function 0 defined by 

k 

0(4) = ~, Oi(~ / k ) . e xp[ ( k - j )~ / k ]  ( - ~ < ~ < 0 )  
j = l  

is absolutely monotonic on ( - ~ , 0 ] .  Suppose the order of (2.4) exceeds 1. 
Then 

exp(~)=O(~)+(9(~ 3) (for ~ 0 - ) .  

In [1] Bolley and Crouzeix present a lemma implying that any ff(~) which 
is absolutely monotonic on ( - ~ , 0 ]  and satisfies exp(r  3) (for 
~ - ~ 0 - )  must be of the form ~,(~)=exp(0 ( - ~ < ~ < 0 ) .  The proof in [1] of 
this lemma is based on Bernstein's representation for absolutely monotonic 

oo 

functions q/, which reads ~9(~)= ~ exp(~t)dct(t) ( - ~  <3<0) .  Here c((t) is bound- 
0 

ed and non-decreasing, and the integral stands for a (convergent) improper 
Riemann-Stieltjes integral. 
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Clearly, our function ~9 as defined above cannot satisfy ff(~)=exp(r 
( - ~  < ~ < 0). We thus have a contradiction, which proves the theorem. [] 

2.3. Applications 

2.3.1. Proof of the Theorems 1.2 and 1.3. The first application we shall give of 
the theorems from Sect. 2.2 consists in a proof of the two theorems presented 
in the Introduction. 

1. In order to apply the results of Sect. 2.2 to the situation in Sect. 1.1, we 
define ffi as in Sect. 1.2, and IK=IR, ~o=0. It is easily verified that 

(2.5) (1.3) is of order p (see definition in Sect. 1.1) if and only if 

(2.4) is of order p (see Definition 2.3). 

Clearly a pair (A,].]) satisfies (1.2) if and only if A~Y(X,O)  where X = R  s 
equipped with the norm Ixl for xelR ~, s>  1. Note also that when TEM(R ~) with 
~i(T) existing in ~(IR s) we have 

(2.6) Po(T) ~i(T)= P~(T) (i = 1, 2,.. . ,  k). 

2. Suppose all rational functions ffl are absolutely monotonic on ( - ~ ,  0]. 
Let h>0,  (A, I'l) satisfy (1.2), and u, be computed from (1.3). We prove (1.4). 

Since proposition (P3) is valid, we have by Theorem 2.4 also (P1). Hence 
tPi(hA ) exist in ~(IR ~) and the vector 

k 

v= Z Oi(hA) u.-i 
i = l  

satisfies 
k 

Ivl~ ~ ~,(O)lu._,l. 
i = 1  

Since the order of (1.3) in Sect. 1.1 is assumed to be >0, we obtain from (2.5) 
the relation 

(2.7) q,~(0) + ~2(0)+  ... + q,k(0) = 1. 

It follows that Iv[ <max(lu,_lL, ] t /n_2[  . . . . .  lUn_kl). Using the assumption of Sect. 
1.1 that Po, P1, "",Pk have no common zero, it can be seen that Po(hA) is 
regular. In view of (2.6) and the definition of v we have Po(hA) (u , -v )=0 .  Hence 
u, = v and therefore 

lu, l~max(lu,_al,  lu, zl . . . .  , lu,-kl). 

This implies (1.4). 
3. Suppose (1.3) is unconditionally contractive for all pairs (A, I'l) satisfying 

(1.2). We prove (P3). 
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Let h>0 ,  s >  1, A~Zf(P, s ,  O) and suppose, as in (P2), that all t~(hA) exist in 
~(P,~)  (i = 1, 2 . . . . .  k). Let v~elR~ (i = 1, 2 . . . . .  k) and 

k 
v o = ~" Oi(hA)vi. 

i=1 

From (2.6) it follows that UI=Vk_ i (i=0, 1 . . . . .  k) satisfy (1.3) with n=k.  Hence 

luklo~ ~<max(luol~, lull . . . . . .  luk_lloo)- 

Using (2.7) we obtain 
k 

]v~ . . . . . .  ]V2[c~' IVl]~176 [ =~1i- ~i(hog)]. l<J <kmax [Vj[~. 

Hence (P2) holds and, in view of Theorem 2.4, also (P3). This completes the 
proof of Theorem 1.2. 

4. Suppose (1.3) is unconditionally contractive for all (A, I'[) satisfying (1.2). 
Since (P3) holds, an application of Theorem 2.5 and (2.5) shows that the order 
of (1.3) does not exceed 1. Theorem 1.3 has thus been proved. 

2.3.2. Linear Multistep Methods. We consider the numerical solution of (1.1) by 
the linear multistep method 

k k 
(2.8) ~ c t i u , + , = h ~ f l i A u , +  i (n=0, 1,2 . . . .  ). 

i=0 i=0 

Here el, fll are real coefficients with 0~ k :~= 0, 

k k k 

oq=O, ~ ioq= ~ f l i=l  
i=0 i=0 i=0 

(consistency and normalization) 

(cf. 1-12, p. 462]). 
It is easily verified that (2.8) is of type (1.3) with Po(O=:tk--flk(, P/(0= 

-- C~k- i + ilk- i ~ (1 < i < k) satisfying the assumptions made in Sect. 1.2. By Theo- 
rem 1.2 it follows easily that (2.8) is unconditionally contractive for all pairs 
(A, 1"[) satisfying (1.2) if and only if 

(2.9) ~k>0, ilk>O, ei/Ctk<fl,/flk<O (i=0, 1 . . . . .  k -  1). 

In view of Theorem 1.3 the conditions (2.9) imply that the order of (2.8) does 
not exceed p = 1. 

A simple example is provided by the O-method. Here k =  1, al = 1, % = - 1 ,  
ill=O, f l o = l - 0  with parameter 0s l ( .  Clearly (2.8) becomes equivalent to a 
procedure of type (1.3) with P0(()= 1 - 0 ( ,  P I ( 0 = I + ( 1 - 0 ) (  and of type (2.4) 
with 

(2.10) ~: (0  = [1 + (1 - 0) ~]/[1 - 0~3. 
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In view of (2.9) the 0-method is unconditionally contractive for all pairs (A, I'[) 
satisfying (1.2) if and only if 0 > 1. 

In [12, pp. 58, 59] Nevanlinna and Liniger arrived at the criterion (2.9) by 
different means. 

2.3.3. Runge-Kutta Methods. Any Runge-Kutta method for solving (1.1) can be 
written in the form 

(2.11.a) u,+ 1 = u , + h  ~ b~ Ay~ (n=0, 1, 2 . . . .  ) 
i=1 

where the vectors yi~R s depend on u, and satisfy 

(2.11.b) y i = u , + h  ~ c~iAy~ ( i=1,2  . . . .  ,m). 
j - 1  

Here b~, c~ are real parameters with b 1 + b 2 +  ... +b , ,=  1. 
The order p and the concept of unconditional contractivity for (2.11) are 

defined in a similar way as for (1.3) in Sect. 1.1. 
We define m • matrices C i and polynomials Qi (i=0, 1) by Co=(Clj), C 1 

= ( c i j - b j ) ,  Qo(O=de t ( I -~Co) ,  Q l ( ( ) = d e t ( I - ~ C O .  By ~ we denote the ra- 
tional function, without removable singularities, such that 

~,(0=QI(0/Qo(~) (for ~r  

It can be proved that (2.11.b) admits a unique solution y~, Y2 .. . .  ,y,,  for all 
h > 0  and all A satisfying (1.2) if and only if 

(2.12) Q0(0#0  (for all complex ~ with Re~<0).  

Theorem 2.6. Assume (2.12). Then the Runge-Kutta method (2.11) is uncon- 
ditionally contractive with respect to all pairs (A, I'[) satisfying (1.2) if and only if 
~9(() is absolutely monotonic on ( - ~ ,  0]. Further if (2.11) has this contractivity 
property, then its order does not exceed p = 1. 

Proof. Let h > 0  and (A, [.[) satisfy (1.2). It can be proved (cf. [18, pp. 132, 152]) 
that (2.11) is equivalent to 

(2.13) Qo(hA)u,+a=Qx(hA)u . (n=0, 1,2 . . . .  ). 

Let Po((), PI(~) be polynomials without common zeros such that PI(()/Po(~) 
=QI(~)/Qo(~) (for all ~ with Qo(~)#0). In view of (2.12) the matrix Qo(hA) is 
regular, and therefore (2.13) is equivalent to 

(2.14) Po(hA) Un = P1 (hA) u,_ a (n = 1, 2, 3 . . . .  ). 

Since Po, Pa satisfy the assumptions made in Sect. 1.1 with k=  1, we can apply 
the Theorems 1.2, 1.3 to (2.14). The statements in the above theorem thus ea- 
sily follow. [] 
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2.3.4. A Partial Differential Equation. The material in this section provides a 
simple illustration to Theorem 2.4 where X is of an infinite dimension. It will 
also illustrate some considerations in the next chapter. 

Let IK = IR and 

X={xlxeC[O, 1],x(0)=x(1)=0} with norm Ixl= max Ix(C)l. 
o_<~_<1 

The operator A : D ~ X is defined by 

(Ax)(~)=a2(4)x"(4)+al(r162 ( 0 < ~ <  1, xeD), 
(2.15) 

D={xlx~C(2)[O, 1], x(4)=a2(4)x"(~)+a~(~)x'(r for r  1}. 

Here a o, al, a2EC[-0  , 1] are any given functions with a2(r ( 0 < 3 <  1). 
It follows easily from the theory of ordinary differential equations that 

A ~ ( X ,  o9) (cf. Definition 2.2) with 

(2.16) co= max ao(~ ). 
o<3<1 

An application of Theorem 2.1 shows that, for any uoeD, the initial-bound- 
ary value problem 

~2 
~3t V(~, t)=a2(~) ~ V(~, t)+al(~) V(~, t)+ao(~ ) V(~, t), 

(2.17) 
V(r 0)= Uo(4), V(0, t)= V(1, t )=0  (0=_<4__< 1, t_>0) 

has a solution, which can be written as V(~, t)= U(t)(4) (0-<4-<1, t>0)  with 
U(t) as in statement (I) of Sect. 2.1. 

We consider the application of procedure (2.4) with k=  1 and O x given by 
(2.10). We thus arrive at the "semi-discrete" process 

u,(4) = y(~) + (1 -- 0) h(Ay)(4), 
(2.18) 

y(4)-Oh(Ay)(~)=U,_l(~ ) , y(0)=y(1)=0 ( 0 < 4 <  1, n>  1). 

By Theorem 2.4 we have (P3)~(P1).  Therefore this theorem implies that 
for any uo~X, 0>1 and h satisfying hco< 1/0 the functions u,(4) are uniquely 
determined by (2.18) and satisfy 

max [u,(4)l < [1 +(1 -O)hog]" max 
r =1_ ] - 0 h ~  A" e lu~ (n>l) .  

Similar bounds can be derived in an analogous fashion for "semi-discrete" 
processes based on more complicated functions ~b I (e.g. ff~ =~o given in (3.7)). 

2.4. Remarks 

1. For 0=1 process (2.18) reduces to the so-called Rothe-method (see [16], 
1-14]). Further, for 0=1 the procedure (2.4) with k = l ,  and if1(0 given by 
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(2.10), plays an important part in the usual proof of the Hille-Yosida theorem 
(cf. e.g. [10], [9] and Sect. 2.1). 

2. For procedure (2.4) with k=  1 very interesting upperbounds on [u.I/lUol 
were obtained in [2]. These upperbounds are valid under much weaker as- 
sumptions on ~1(() than the assumption of absolute monotonicity that is re- 
quired in the situation of Theorem 2.4. On the other hand, this theorem yields 
upperbounds which are usually sharper than those in [2] and hold through for 
the case of variable stepsizes h = h, > 0. 

3. We have preferred the definition of ~(T) as given in Sect. 2.2 to other 
definitions (see e.g. [6, p. 601]) since it is short, requires no complex variables 
when IK=IR, and indicates how actual (numerical) evaluations of ~O(T)x can 
be performed. 

3. Conditional Contractivity 

3.1. A Circle Condition on the Operator A 

We shall consider the numerical solution of the initial value problem (2.2) 
where the operator A satisfies some stronger condition than assumed in 
Chap. 2. It will turn out that for such operators the k-step procedure (2.4) can 
have an order p > 1 while it is still contractive under some condition 0 < h < H  
on the stepsize. 

In all of the following ~o, z denote fixed real numbers with ~>0,  1 +zco>0,  
and we consider the following three conditions on an operator A ~ ( X ) .  

(i) For each uo~X the recurrence relation 

z-a(u - u , _ l ) = A u , _ l  ( n > l )  

has a solution satisfying 

lu, l<(1 +~@"[u0l (n_>_ 1). 

(ii) HA+z I[I~<(L)"~-'IT-1- 
(iii) /~ [A] < co. 

We emphasize the apparent analogy between any of the conditions (i), 
(ii), (iii) and (I), (II), (III) (cf. Sect. 2.1), respectively. 

We note that when co=0, condition (i) means that Euler's method with 
stepsize h=T behaves contractively (see also [8, pp. 75, 76]). Further in case X 
= I K = ~ ,  condition (ii) means that z = A  lies within the circle~r passing 
through the point co and with center = -  T-1, while (II) means that z = A  be- 
longs to the complex half-plane Re z < co. Therefore we call (ii) a circle condition 
(see also loc. cit.). Finally an intuitive feeling of the nature of condition (iii) is 
obtained by discretizing the operator A of Sect. 2.3.4 as indicated in Sect. 3.3.3. 
While A itself satisfies (III) but violates (iii), its discretized version A~ fulfills 
both (III) and (iii) under the assumptions (3.8), (3.9). 
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Theorem 3.1. Let AeN(X). Then the requirements (i), (ii), (iii) are equivalent to 
each other and imply the properties (2.1), (I), (II), (III) listed in Sect. 2.1. 

Proof. It is easily verified that (i), (ii), (iii) are equivalent to each other. Since 
Aeg~(X), it satisfies (2.1). 

For a < 0  we have m~[x,y]<=m~[x,y] (see Sect. 2.1 and [10, p. 37]), and 
therefore m [x, y] <__m~[x, y]. It follows that g_[A]<pz[A ]. Condition (iii) 
thus implies (III) and in view of Theorem 2.1 also (I), (II). [] 

Definition 3.2. By ~,r e), z) we denote the class of all A ~ ( X )  satisfying (iii). 

3.2. k-Step Methods when A Satisfies a Circle Condition 

In this section we consider the k-step procedure (2.4) for AeSF(X, e), ~). The 
following theorem, to be proved in Chap. 4, has some similarity to Theo- 
rem 2.4. It is basic for the present chapter. 

Theorem 3.3. Let h > 0  and all Oi(~) regular at ~=he). Then the following three 
propositions are equivalent. 

(p-l) For each Banachspace X (over IK) and Ae~LP(X,e),Q the operators 
tki(hA ) exist in 9~(X) (1"-<iNk) and satisfy 

i= ~ 1 ~li(hA) vl 
k 

<= 2 Oi(he))lvil (for all v ieX ). 
i = i  

(p-2) For each integer s>l  and real (matrix) Ae2~~ such that all 
~,i(hA) exist in NOK~) (1 <iNk), we have 

i=~Oi(hA)vi~ [ ~=1 ] <= t ~ i ( h e )  ) �9 max Ivjloo (for all vielK2). 
i= l<J <k 

(p-3) All ~k i (1<=i<= k) are absolutely monotonic on the interval [ - h z - l ,  he)]. 

Definition 3.4. A stepsize h 0 > 0 is admissable if 

lu,I _-< max (lu01, lull . . . . .  hUg_ 11) (n> k) 

whenever h--h0, X is any Banach space over IK, A e.~e(X, co, z) and un satisfies 
(2.4). The largest number H ~ o o  with the property that each hoe(O,H) is ad- 
missable, is denoted by H(e),z) and is called the contractivity threshold of 
method (2.4). 

RestriCtions on the stepsize h for stability or contractivity reasons are often 
embarrassing (in particular in the numerical solution of stiff initial value prob- 
lems, see e.g. [18, 8, 121). Therefore, the larger H(e), z) the better. 

We note that thresholds quite similar to H(e), z) were introduced in [5, 17]. 

Theorem 3.5. Let method (2.4) be of an order p >= 1. Then 

=O (for e) >0), 

H(e), z) =Rz  (for co=O), 

t> g~ (for e)<O). 
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Here 

(3.1) R =sup { r l r=0 ,  or r > 0  and all Oi(() are absolutely monotonic on [ - r ,  0]}. 

Proof. 1. Suppose o9>0. Choosing X=IK,  A=o)e2'(IK, co, z), u~=exp(jho)) 
( O < j < k - 1 ) ,  we obtain by Definition 2.3 (with p >  1, (=he) )  the relation 

uk=exp(khog)+(9(h z) (for h ~ 0 + ) .  

Consequently [ukl--~(h). max(luol, lull . . . .  , luk- 11) with 7(h)= 1 +hco+ (~(h:)> 1 
(for h - , 0 + ) .  Hence H(e), r )=0.  

2. Suppose co=0. We first assume hoe(O, Rz  ). Since R>ho r-1 we have (p 
- 3 )  with h=h o, and consequently (p-l) with h=h o. In view of 01(0)+~2(0) 
+ ... + 0k(0)= 1, it follows that h 0 is admissible. 

We next assume hoe(Rr, oe). With h=h o condition (p-3) is violated. There- 
fore (p-2) does not hold with h = h o, and h o is thus not admissible. 

It follows that H(co, Q=Rz .  
3. For co<0 we always have 2#(X, co, z )c2Y(X,  O, z) and consequently 

H(oo, z)> H(O, z)=Rz.  [] 

In view of Theorem 3.5 we call R the threshold-factor of method (2.4). 
Clearly, the larger R, the better is the general contractivity behaviour of (2.4) in 
the important case o9 = 0. 

3.3. Applications 

3.3.1. Linear Multistep Methods. We consider the numerical solution of (2.2), 
with AeL, F(X, O, z), by the linear multistep method (2.8). We thus have a meth- 
od of the general type (2.4) with 

Oi(()=(--CCk_~+flk_i~)/(~k--Bk() (for CCk--~k(*O ). 

A straightforward calculation shows that the threshold-factor R (see (3.1)) is 
positive if and only if 

(3.2) ~k > 0, flk > O, r > O, 
Oq<=O, ~iflk<=fli~k (0_<i_< k -  1). 

Here r is defined by 

(3.3) r = min { - ccl/fl~ I 0_< i < k - 1 and fl~ > 0}, 

with the convention min 0 = ~ .  
Further, in case (3.2) holds, the threshold-factor equals 

(3.4) R = r. 

For the O-method, defined in Sect. 2.3.2, we obtain from (3.2), (3.4) 

! (for 0<0),  

(3.5) R m~- - - 0 )  - 1  (for 0 < 0 < 1 ) ,  

(for 0 > 1). 
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We note that when 0=�89 we have the well-known trapezoidal rule or Crank- 
Nicolson method with order p=2.  This method thus has a contractive be- 
haviour when 

(cf. also [1, p. 243]). 
0 < h < 2 r  

3.3.2. One-Step Methods. We consider the application of the general method 
(2.4) to A E d ( X ,  O, ~) when k = l .  In view of (3.1) the threshold-factor is given 
by 

(3.6) R = s u p  {r I r=0 ,  or r > 0  and ~/1(~) absolutely monotonic on I - r ,  0]}. 

An example is provided by the Runge-Kutta scheme (2.11). With the as- 
sumptions and notations of Sect. 2.3.3 we have a method of type (2.4) with 
k = l ,  Ol(~)=O(~)=QI(~)/Qo(~ ) (for ~e~2, Q0(~)4=0). It thus follows that the 
threshold-factor of (2.11) is given by (3.6) with ~k 1 replaced by 0. 

We next consider a two-parameter family of methods (2.4) with k = 1 and 
~1 = q~ where 

(3.7) q9(~)=[1+(1-20)~+(0(0-1)+c0~2]  �9 [ 1 - 0 ~ ]  2 

For any 0, c~eN the function r is a so-called restricted-denominator approxi- 
mation to exp(ff) with an order p satisfying 1 < p < 3  (see [13, Theorem 2.1]). 
We denote the threshold-factor by R(O, c~). 

A straightforward calculation shows that R(O, ~)>0 if and only if 

0 > 0  and cr 

For cr we have q~=01 where 01 is defined in (2.10). Hence R(O,O)=R 
with R given in (3.5). 

For 0--0 the method is explicit, and R(0, cr is easily calculated. The 
threshold-factor R(0, cr is maximal for 7 = J  with R(0, J )= 2. 

Within the class of second order methods the threshold-factor can be 
shown [7] to be maximal for 0=�88 ~=�88 with R(�88 �88 

A simple calculation using [13, Theorem 2.1] shows that there are two 
methods of order 3, one with R = 0  and one with R>0.  The latter is obtained 

when 0=(3-1/5) /6 ,  c~=1/3/6, with R(O, c0= 1+1/5. 

3.3.3. A Partial Differential Equation. We present a final illustration to the ma- 
terial of this chapter. 

Let A denote the operator defined in Sect. 2.3.4. We consider the "discrete" 
operator A~ obtained from A by replacing the derivatives in (2.15) by second 
order, central difference approximations (cf. [11]). We deal with a uniform grid 
on [0, 1] with grid spacing 6 = ( s +  1)-1 where s is an integer > 1. Assume 3 > 0  
is so small that 

(3.8) 6. Max [a I (~) [2az(~) ] -  11 < 1. 
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A simple calculation shows that A~ can be viewed as an element of 
L~'(IR~, o9) with 09 as in (2.16). In fact, #_ [A~]=p~[Aa]<~o for any z > 0  satis- 
fying 

(3.9) z .Max [27J 2 az(~)_ao(r < 1. 

Applying method (2.4) with k=  1, ~b~=tp (see (3.7)) and with A replaced by 
A~ amounts to the "fully-discrete" process. 

(I - OhAa) 2 u, = [-I + (1 - 2 0) hA~ + (0(0 - 1) + ~)(hA~) 2] u,_ 1" 

Here the components of u, e N  ~ approximate V(~, t,) (see (2.17)) at the grid 
points r  ( i=1 ,2  . . . . .  s) (cf. [11]). 

Let ~o defined by (2.16) be nonpositive and let r satisfy z>0 ,  1+~o~>0, 
(3.9). Using the implication (p-3)=>(p-1) of Theorem 3.3 one arrives at the 
bound 

lu,l~<:~p(hco)"luol~luol~ ( n > l )  

for any stepsize h satisfying 

O<h<R(O, ~). z = H(O, z). 

4. Proof of  the Theorems 2.4, 3.3 

4.1. Preliminaries 

We first note that it is sufficient to prove the Theorems 2.4, 3.3 for the case 
where h=  1. The general case can be reduced to the situation where h=  1 by 
defining q~i(~)=Oi(h~) and dealing with ~Pi instead of 0i. In all of the following 
we therefore assume h = 1. 

In this section we shall prove the theorems for the case IK=IR, under the 
assumption that they hold when I K = ~ .  We shall need the following two lem- 
mata. 

Lemma 4.1. Let T~=(T~m,) denote square matrices of order s> 1 with entries ~IK 
(i= 1, 2 . . . . .  k). Then the smallest constant 7' with the property 

i=~l zil)i oo ~?"  x~i<_kmax IviL ~ (for all vielK s) 

is given by 

max y 
l < m < - s  i=1 n - I  

For k = 1 this lemma is well-known, and its (easy) proof for k > 1 omitted. 

Let X be a real Banachspace. We denote its complexification by X' and 
when T is an operator with domain and range in X we define T'(x ,y)  
=(Tx,  Ty)~X'  for all (x, y)~X' with x ~ ( T ) ,  y ~ ( T ) .  
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Lemma 4.2. X'  can be given a norm Iwl ( for w=(x, y)~X ' )  such that it is a com- 
plex Banach space with the following three properties. 

(i) The isomorphism x ~ (x, 0) of  X into X '  is an isometry. 

(ii) I f  7"1, T 2 . . . . .  T k are operators with d o m a i n = X  and r a n g e ~ X  and 71, 
72, . . . ,  ~'k ~ ,  then 

< F. ~ilvgl (for all vleX ) 
i = 1  

i f  and only i f  

k k 
~--1Ti' Wi "( 2 ~2ilw~l (for all wi~X' ). 

i i=1  

(iii) Let  tp(()=p(() /q(()  where p((), q(() are polynomials with real coefficients. 
Let  T be an operator with domain and range in X.  Then ~(T ' )  exists in ~ ( X ' )  iff 
~,(T) exists in ~ ( X ) ,  and when they exist  we have ~(T')=~(T) ' ,  II~(T')II 
= II~(T)II. 

This lemma is a slight extension of a theorem stated in [-15, p. 6]. For its 
proof, which is a bit more difficult than might be expected at first, we refer to 
[15, pp. 6, 7]. 

Assume the Theorems 2.4, 3.3 hold with I K = ~ .  We prove that they hold 
also when IK = F,.. 

Let z>0,  coeP,., and ~i be as in Sect. 2.2 (with IK=IR). We define 
~ ( X ,  co, 0)=~5~v(X, w) and for i=1,  2 we denote by Si(w, z, IK) statement (p-i) 
of Theorem 3.3 when z>0,  and statement (Pi) of Theorem 2.4 when z=0.  
Clearly, it is sufficient to prove the implications Sl(co, z, C)~Sl(co , z ,~) ,  and 
S2(co, ~, IR)=~ S2(co, z, C). 

Using Lemma 4.2 ((i), (iii)) it can be seen that for any real Banach space X 
and A ~ L # ( X ,  co, z) we also have A'e~w(X' ,  co, z). Hence, in view of (ii), (iii) of 
Lemma 4.2, we have S~(co, z, C)~Sl(co, z, IR). From Lemma 4.1 (with k=  1) it 
can be seen that any real (matrix) A ~ ( C ~ ,  co, z) also belongs to 5r co, z). 
Applying Lemma 4.1 once more (with T~=~I(A)) it follows that 
S2(co, z, F,)=~-S2(co, z, ~). This completes the proof. 

In all of the following we assume, with no loss of generality and much gain 
of simplicity, that IK = ~. 

4.2. The Proof  of  Theorem 3.3 

1. We shall prove Theorem 3.3 by arguments that have some similarity to 
those in [1, pp. 239, 240]. 

Assume (p-3). We shall prove (p-l). 
Let X be a complex Banach space and A e ~ ( X ,  co, z). From property (ii) 

(Sect. 3.1) we obtain A = ~ +  Twith ~= - z  -1, qITIt <co -~ .  
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Since all Oi are absolutely monotonic on [3, o)], the Taylor series O~io+ailt 
+e~zt2+.. .  with aij=O~J)(~)/j! are absolutely convergent for tell2, I t l<co-~,  
1 <iNk.  It follows (cf. e.g. [6, p. 568]) that ~ ( ~ +  T) exist in ~(X) and 0~(~+ T) 
=a io+~i l  T+~i2 T2 +.. .  (for l <_i<_k). 

We thus obtain IlO~(A)ll<a~o+ail(co-~)+ai2(co-~)2+... and therefore 
IlOi(A)I[ < Oi(co). This proves (p-l). 

2. Clearly (p-l) implies (p-2). Therefore we assume (p-2), and it remains to 
show that (p-3) holds. 

Let 2E[~, ~o) and A = 2 + ( c o - 2 ) E .  Here E denotes the square matrix of or- 
der s > l  all of whose entries E,,,, are zero with the exception E~, , ,+a=l  (m 
= 1, 2 . . . . .  s -1) .  For the operator norm subordinate to the maximum norm 
I'l~o in C ~ we have I I A + ~ - ' I I -  - l l(2-~)+(co-2)Ell ~ O) - -  ~ = (D -t - T - l ,  and there- 
fore A e S v ( ~ ,  ~, z). 

Applying (p-2) (with s = l )  we see that all Oi(~) are regular in a neigh- 
bourhood of (=2 .  Since the spectrum of E equals {0} it follows (cf. [6, p. 568]) 
that all tp~(A)=tpi(2+(oo-2)E ) exist in ~ ( r  and 

~ i ( A )  = fl, o + 8 i l  ((D - -  2 )  E -~- 8 i 2  (0 )  - 2 )  2 E 2 -~- . . .  

with 8~j = @J)(2)/j !. 
It follows that A satisfies the assumptions stated in (p-2). We thus obtain, 

by using Lemma 4.1 with T/=~/(A), 

k s 1 k s k 

~ 18J(o-2)J= max ~ ~ 18, . . . .  (~o-2)'-"b__< ~ (p,(o~) 
i = 1  j = O  l < m < s  i = 1  n=m i = 1  

for s = 1, 2, 3 . . . . .  Hence 

k k 

i = 1  j = 0  i = l  j = 0  

and therefore flij>O (l<=i<=k,j>O). This completes the proof. [] 

4.3. Proof of Theorem 2.4 

1. Clearly (P1)~(P2).  Further for any z > 0  with - - 2 7 - 1 < ( / )  proposition (P2) 
implies, in view of Theorem 3.1, proposition (p-2). By virtue of Theorem 3.3, 
(P2) thus implies (p-3). By letting z-- ,0+ it follows that (P2)~(P3).  

2. We assume (P3), and we shall prove (P1). 
Let i be an integer with 1 < i N k  and write O=Oi. From (P3) it follows that 

~(() is holomorphic and satisfies IqJ(()l<ff(~o) for (eC,  Re(<~o. 
Let X be a complex Banach space and AeS f (X ,  co). It follows (see e.g. [10, 

pp. 279-283]) that for all ( e ~  with Re(>~o we have 

#ep(A), II R(#)II _-< [(Re ~)-  co]- ' 

where we use the notation R(~)= ( A - 0 - 1  for the resolvent of A. 
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Using the operational calculus as given in [6, pp. 599-604] it can be seen 
that O(A) exists in ~(X)  (according to the definition given in Sect. 2.2) and sat- 
isfies 

1 
(4.1) ~b(A) = 0 ( o o ) - ~ / !  ~b(~)R(~)d~. 

Here F denotes a circle with negative orientation enclosing all poles of ~k(~) 
and lying strictly to the right of ff = co. 

With B a we denote the Yosida-approximation of A given by 

Bz= - 2 - 2 2  R()~) (for 2>max(0,  co)), 

and with A;. we denote the approximation 

A z = B ; - e  z (for 2>max(0 ,  co)) 

where ez=co2(2-co)-L The term e z has been subtracted from B z here since it 
implies 

A ;fi s (X, co, z) 

for some zE(0, oo) (a little calculation proves that A;. has property (ii) of Sect. 
3.1 with ,=(2-co) (22-2co+co2) -1) .  

Since proposition (p-3) of Theorem 3.3 is true, we obtain by an application 
of this theorem to A~. the inequality 

In view of (4.1) there follows 

with 

1 [1! ~,(~) C2(ff) d~l[, ~=2~- 
We shall prove below that 

(4.2) lim I[ C).(011 = 0  
) .~0o 

I] ~b(A).)I[ ~ ~&(co). 

II~(A)II ~ ~(co)+~z 

C ~ . ( ~ ) = ( A - O - ~ - ( A ~ - O  1 

(uniformly for ~ F ) .  

Consequently lime%=0, and H~b(A)tl ~b(co). Recalling the definition of ~ we 
).~Oo 

see that (P1) holds. 
3. We complete the proof by showing (4.2). Clearly 

where 

- ( A ~ - 0 -  1 = [(22 + ( 2 + ~ + ( ) ( A - 2 ) ) ( A - 2 )  13 1 

= (2 + ~. + 0 -  I(A -2 ) (A  -C) -1 

~=(2+e~+~)-l(e~+~)X 

tends to ~ for 2 ~  oo (uniformly for ~sF). 
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By writing A - 2 = (A - ~) + ( ~ -  2) we obtain 

- (Az-  ~) -1 = (2 + ~ . +  0 -  1 (1 + ( (  _ ).) R (0) .  

An application of the resolvent identity (see e.g. [10, p. 74]) 

R(~)= R(()+(~-~) R(~) R(() 
now yields 

C~.(0- E1 - 2(,~ + ~ + ~)- ' ]  R (0  +(2 + ez + ~)- 1 (I + ~-R(~)) 

+ ( ~ - 0  R(~) R((). 

Let 6 > 0  be such that R e ~ > ~ o + 6  (for (~F). Then for 2 sufficiently large we 
have 

IIR(011 =<,5 ~, IIR(~)11 ~2(~ 1 (for r 

and it follows that (4.2) holds. [] 
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