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Abstract

This position paper concerns formal methods for devel-

oping safe service-oriented architectures (SOAs) with sup-

port for resource management. We seek an approach to

building such SOAs based on the specification of service re-

quirements as declarative contracts, and the enforcement of

these contracts at the level of the middleware. Using hier-

archical containers that provide the necessary middleware

services, we expect to guarantee certain safety properties

by construction and raise the level of model abstraction for

verifying other necessary properties.

1. Introduction

The service-oriented architecture (SOA) paradigm fa-

cilitates component reuse, interoperability, scalability,

and flexibility in assembling mission-specific applications.

However, SOA-based systems cannot yet support critical

tasks because the underlying technologies fail to provide

sufficient guarantees of safety or quality of service (QoS).

To do so, SOA developers need models, tools, and middle-

ware infrastructures that enable the design, implementation,

and verification of SOA-based applications.

Safety problems arise when services are composed. In-

stances, called processes, of a composite service application

may execute for long periods of time and must be robust in

the face of remote-service failures. Long-running processes

could degrade server performance, possibly to the point of

causing the server to deny service to its customers. To ad-

dress these issues, the developer must typically augment an

otherwise simple interaction protocol with logic that, e.g.,

monitors the time spent waiting for a response and that trig-

gers some form of remediation when too much time has

elapsed. Flaws in these protocols can lead to safety vio-

lations and may be exploited by attackers.

To develop safe SOAs requires the ability to design

and package services as components, to specify composi-

tions, and to reason about global safety properties and QoS.

Herein lies the dilemma: Safety and QoS are complex non-

functional concerns, whose effects are global and thus dif-

ficult to verify. In prior work, we developed an approach,

called Szumo [2, 16], to building systems with strong guar-

antees relating to synchronization of concurrent threads—a

similarly global and cross-cutting non-functional concern.

Many of the safety issues that confront the developer of a

composite service bear a striking resemblance to those ad-

dressed by Szumo. This paper describes these safety issues

by way of a concrete example and argues for the use of a

Szumo-inspired solution to address them.

In Szumo, design and implementation of concurrency is

divided between the developer and middleware. In lieu of

writing low-level synchronization code, developers declare

synchronization contracts, which are explicit and which are

dynamically negotiated at run time by a middleware. In ad-

dition to raising the level of abstraction in development,

the use of such contract-enabled middleware relegates a

class of assurance obligations to the middleware, thereby

enabling a larger class of obligations to be discharged us-

ing abstract (and thus more compact) models. The use of

contracts and middleware in this capacity is an example of

design for verification (D4V) [10, 6, 11], a general approach

to dealing with complexity in which the developer concedes

some degree of design freedom in order to enable efficient

verification of system properties with strong guarantees. In

the sequel, we postulate that a similar approach should en-

able the development of safe SOAs. A key insight is the

use of hierarchical containers, which build on the theory of

connector wrappers [15] and our prior work in implement-

ing connector wrappers [14]. The remainder of the paper

fleshes out these ideas in more detail.

2. Problem Description

SOAs must ensure safety while guaranteeing a level of

service necessary to support clients, be they human users

or other (composite) services. By safety, we mean that in-



tegrity should not be compromised as a side-effect of autho-

rized use; whereas by level of service, we mean to include

issues of usability, availability, and QoS. Services com-

municate with each other by sending and receiving asyn-

chronous messages, and service interactions often involve

complex protocols of message exchange. The protocols de-

scribe communication among multiple services, possibly

running on different servers, and may involve operations

on remote servers’ resources. Furthermore, it is possible

that several constituent services running concurrently per-

form operations on different resources as parts of a single

transaction. To properly implement a distributed transac-

tion across multiple constituent services requires elaborate

protocols of message exchange among the constituents. If

the constituent services are developed in an ad hoc manner,

subtle implementation flaws could result in safety problems

and degraded levels of service.

2.1. An example SOA

Consider a very simple web-based SOA application that

allows customers to make on-line arrangements for flights

with one specific airline (say, Delta) and accommodations

with one specific hotel network (say, Hilton). This Trip-

Manager SOA handles customers’ requests by contacting

two component web services, DeltaService and HiltonSer-

vice, responsible for finding, respectively, flights and ac-

commodations that satisfy the customers’ travel constraints.

Given a request to arrange only a flight or an accommoda-

tion, TripManager forwards the request, along with the cus-

tomer’s constraints, to the respective vendor service. The

service processes the request, and returns to TripManager

with a set of results including the flight or lodging options

meeting the customer’s requirements and, possibly, alter-

native options “close” to meeting these requirements. The

TripManager forwards the results to the customer who then

may choose one.

If no flight/accommodation is selected, the transaction is

aborted, either by an explicit termination of TripManager

by the customer, or by TripManager’s time-out in case the

customer abandons the process. If the customer does select

a flight/accommodation, TripManager forwards the relevant

information back to the appropriate vendor service, which

finalizes the transaction. The transaction finalization pro-

ceeds according to a two-phase protocol. In the first phase,

TripManager notifies DeltaService (HiltonService) that it

intends to commit to the flight (hotel room) selected by the

customer, and waits for an acknowledgment from the ven-

dor service, confirming that the requested resource is avail-

able. If DeltaService (HiltonService) confirms the request,

the resource in question is provisionally allocated to the re-

questing TripManager service. In the second phase, Trip-

Manager sends to the vendor service a notification of com-

mitment. The vendor service then allocates the resource to

the customer (charging their credit card accordingly), and

returns to TripManager with a final acknowledgment.

Whether or not the customer decides to purchase the re-

quested flight or accommodation, processing the request

involves asynchronous message exchange between the in-

volved services. Furthermore, TripManager must fol-

low interaction protocols established with DeltaService and

HiltonService, so that the flight or lodging option initially

reported as available is indeed available after being selected

by the customer.

This scenario is additionally complicated when the re-

quest involves arrangements for both flight and accommo-

dation, as TripManager must then ensure consistency be-

tween the results returned by DeltaService and HiltonSer-

vice. For example, suppose a customer selects a combina-

tion of flight and accommodation that suits her needs. The

TripManager cannot just forward the selected flight infor-

mation to DeltaService and the selected accommodation in-

formation to HiltonService with instructions to finalize, be-

cause one might succeed and the other might fail (for in-

stance, a vendor’s server might crash). The difficulty lies

in ensuring that these transactions are processed atomically,

that is, either neither transaction or both transactions final-

ize while maintaining an acceptable level of service. The

customer should not wait too long to learn if the trip ar-

rangements are successfully finalized, but if TripManager

is too hasty in aborting an attempt to finalize a set of op-

tions, it risks not finding good solutions.

2.2. Inter-process coordination issues

Consider two instances of the TripManager SOA,

TripManager1 and TripManager2, each independently pro-

cessing a request to arrange travel and accommodation for

a different customer. Each instance must be careful to book

the hotel and the corresponding flight as an atomic trans-

action. To achieve this, the TripManager will commit a

transaction in two phases, first sending two notifications of

intent—for the selected flight to DeltaService, and for the

selected hotel room to HiltonService, then waiting for ac-

knowledgments from both before starting the second phase,

which finalizes the commit, causing the constituent services

to update their respective databases.

When the two instances of TripManager perform these

sequences of operations concurrently, the following situ-

ation may occur. Assume that both TripManager1 and

TripManager2 begin the first phase of their respective com-

mits by sending messages to both DeltaService and Hilton-

Service. Suppose also that the message from TripManager1

arrives at DeltaService1 and is acknowledged before the

corresponding message from TripManager2 arrives at

DeltaService2, and that the message from TripManager2
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Figure 1. Concurrent operation of two TripManager processes

arrives at HiltonService2 and is acknowledged before

the corresponding message from TripManager1 arrives at

HiltonService1. At this point neither of the two TripMan-

ager processes may finalize and must re-attempt, which

could cause the same scenario to repeat until the TripMan-

ager processes time out.

The problems of service coordination are exacerbated in

a more realistic scenario, in which the TripManager service

can make travel and accommodation arrangements with

multiple vendors. To facilitate this capability, TripManager

might coordinate two subordinate services, FlightFinder

and RoomFinder, which serve as intermediaries, each com-

municating with the individual hotel and airlines services.

This situation is illustrated in Figure 1. To properly handle

this case, the commit initiated by TripManager will need to

compose hierarchically.

2.3. Intra-process coordination issues

In addition to protocol flaws among multiple interacting

services, a single service could exhibit safety problems if it

is multi-threaded, and the concurrent threads operate over

shared data without proper synchronization. In the context

of web services, concurrency is realized by means of a flow

construct provided by WS-BPEL [1]. Each of the concur-

rently operating flows may read and modify shared vari-

ables. For instance, to improve its performance, an SOA

may deploy separate flows—each responsible for interact-

ing with a different component service—and embed logic

to compensate for those components that do not respond in

a reasonable time or do not produce acceptable results. With

distribution and the need to synchronize come the kinds of

complexity that lead to safety problems.

For example, given a customer’s request to find a flight

to a specific destination, on a specific date and within a

specific price range, TripManager forwards this request to

FlightFinder. The FlightFinder service may then delegate

a primary flow to look for the flights to that destination

exactly meeting the customer’s constraints, and auxiliary

flows to look for the options where only the time or price

constraint is satisfied in case both constraints cannot be met.

Each flow writes its results to a separate variable, and after

all flows complete execution (or their execution exceeds al-

lowed time and is terminated), the best results are copied to

a shared buffer storing the service’s output. The flows must

be synchronized to prevent races on the shared buffer and to

ensure that the best solution over all solutions computed by

the flows is among those returned by the service.

In addition to the issues of flow-level parallelism, there

is also the issue of when to collect the resources allocated to

a process, especially if the threads allocated to this process

are either mutually blocked or waiting on a message from

a remote service that has crashed. Continuing with our ex-

ample, after FlightFinder receives all results supplied by

its provider services within an acceptable time frame, these

results should be returned to TripManager, and all the re-

sources allocated to FlightFinder (including the resources

for the flows which did not complete their execution within

that time frame) should be collected.



3. Research Directions

We see parallels between many of the safety issues that

confront the developer of composite services and those ad-

dressed by Szumo, our approach to designing and analyzing

systems for properties involving the synchronization of con-

current threads [2, 16]. In Szumo, the tasks of system design

and implementation are divided between the developer and

the middleware. The developer enhances the specification

of the system objects with declarative contracts which de-

scribe the objects’ requirements for exclusive resource ac-

cess. At run time, the middleware first composes and then

negotiates these local contracts to ensure that the exclusive

access requirements are satisfied globally, i.e., at the system

level.

We believe this idea of contract-enabled middleware

could be applied in the context of SOAs, with contain-

ers playing the role of the middleware (Section 3.1). Our

Szumo middleware could be promoted into a flow con-

tainer, with which to synchronize the interaction of concur-

rent flows within a given service (Section 3.2). In addition,

we believe the essential ideas could be extended to automate

the coordination of services that participate in hierarchical,

atomic transactions. In this case, the developer of a com-

posite service would specify a contract that declares how

the service will need to atomically commit operations with

its suppliers. These contracts would then be negotiated by

means of inter-process containers, thereby alleviating the

service developer from having to code up this tedious and

error-prone logic (Section 3.3).

3.1. Containers

A container is an entity that encapsulates a software

component from its environment—all interaction with the

component from the outside is routed through the container,

which may add new capabilities and enforce safety con-

straints by intercepting and issuing messages to and from

the component. We believe that contract-aware containers

can automate the implementation of complex service inter-

action protocols and thereby dramatically simplify the addi-

tion of reliability enhancements, such as failsafes, bounded

retry, and failover, by developers.

We envision two types of containers—flow and inter-

process containers—that could help ameliorate the safety

and level of service issues in the context of SOAs. Figure 2

shows an example of a container-enhanced SOA-based sys-

tem. Here, S1 and S2 represent the servers that are run-

ning web service processes. P1, P2, and P3 are instances

of three different web services executing on S1, whereas

P4 and P′

4 are two instances of the same service executing

on S2. Each process has one or more flows, represented as

white squares. The arrows connect the constituents of two

P4

S1

P2P1

P3
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P’4

Figure 2. Container-enhanced SOA

different composite processes—one comprising P1, P3 and

P′

4
, and the other comprising P2 and P4—running across the

two servers. The flow and inter-process containers are de-

picted as darkly- and lightly-shaded boxes drawn within and

around the component processes, respectively.

3.2. Flow container

To address the problems of concurrency within a sin-

gle web service process, a flow container would encompass

the flows of an individual process and govern the execu-

tion of these flows based on the satisfaction of programmer-

supplied synchronization contracts. The container would

synchronize concurrent process flows attempting to access

shared resources, and automate the negotiation of these

flows for exclusive resource access. Flow containers would

provide flows with certain safety guarantees, including free-

dom from simple races among accesses to shared variables

by multiple concurrent flows.

Figure 2 depicts the flow containers as boxes with dark

shading, surrounding the flows within each process. The

WS-BPEL specification provides for a notion of containers

to hold shared resources [1]. There is also related work on

process containers for web services, but the synchronization

aspects of their behavior are left open [7].

3.3. Inter-process container

An inter-process container could allow multiple concur-

rent processes to safely commit atomic transactions involv-

ing multiple resources.We envision such a container encom-

passing all processes running on a given server and gov-

erning their interaction with other processes by negotiating

contracts between a client and its suppliers. Figure 2 de-

picts inter-process containers as boxes with light shading

surrounding the processes within a server.

In our running example, to ensure atomic processing of

travel and accommodation requests, the TripManager ser-

vice might declare a contract that defines conditions under



which it needs to perform atomic commits involving the air-

line and hotel services. Following Szumo syntax, such a

contract might be expressed in the form:

finalizing =⇒ FlightFinder ∧ RoomFinder

In English, this states that when the TripManager service is

in a finalizing state (i.e., when finalizing is true), it needs

to commit transactions involving the processes bound to

FlightFinder and RoomFinder. Consequently, when cod-

ing up the TripManager service, the developer would write

code to signal when a transaction should finalize rather than

write the communication code needed to implement Trip-

Manager’s role in the commit protocol. At run time, the

container would enforce that execution of code that signals

entry into a finalizing state succeeds if the container is able

to successfully execute the two-phase commit protocol with

the constituent services. Otherwise, the container could ei-

ther block execution of the statement until the time when it

is able to successfully execute the commit or fail. We en-

vision a number of different policies being applicable here,

including the use of bounded retry and failover.

If contracts, such as these, were explicitly declared and

available at run time, an inter-process container could use

them to automate the customization of a commit protocol

with the subordinate services, thereby alleviating the devel-

oper of TripManager from this design burden. Moreover, it

is possible that the contracts could be used to inform proto-

cols that attempt to avoid the repeated service denial (due to

failure to commit) presented earlier. This example is remi-

niscent of the behavior of two threads negotiating for exclu-

sive access to the same sets of resources while attempting

to avoid or recover from deadlock. The strategies used in

these cases require protocols that cannot be implemented

by a service in isolation.

3.4. Design for verification

In Szumo, the negotiation of contracts guarantees free-

dom from a large class of typical concurrency errors, in-

cluding simple data races and a large class of deadlocks and

starvation. These guarantees eliminate the need to analyze

systems with regard to such errors, and enable construction

of abstract models that facilitate reasoning about other prop-

erties. This general approach—conceding some degree of

freedom during design in order to enable verification—has

been called design for verification (D4V) [10, 6].

The vision outlined in this position paper suggests an

approach to D4V for SOAs. Containers at multiple levels

would ensure certain guarantees regarding concurrency, in-

formation flow and performance. These guarantees enable

assumptions that systems assembled from services that ex-

ecute within the containers will (or will not) exhibit certain

behaviors, eliminating the need to explicitly verify related

properties. We believe these guarantees will also permit ver-

ification of application-specific properties of SOAs based

on abstract (and thus compact) behavioral models, which fa-

cilitate simpler and more efficient analyses. In cases where

verification is not feasible, contracts provide information

that may be used to guide and automate testing of the SOAs

and of the individual services.

4. Related Work

The ideas discussed in this paper are most closely related

to two research areas: modeling transactions for compos-

ite services and using contracts to express service require-

ments.

Transaction design has been studied extensively in the

context of database systems [3, 5]. The long-running, asyn-

chronous nature of SOA application processes exacerbates

problems of multidatabase transaction management. Thus,

the traditional notion of transactions has been augmented

to address problems of SOAs [18, 17, 8, 12, 4]. Much of

this work focuses on seamless multidatabase operations in

scenarios where the collection of databases being accessed

changes dynamically during execution. Proposed solutions

generally require a developer to define services using new,

special-purpose formalisms, specify transactional require-

ments (e.g., concurrency or QoS) at a low level, or pro-

vide global scheduling schemes for service components. In

contrast, we propose that the developer should express lo-

cal transactional requirements at a high level, in a manner

that integrates well with existing service specification lan-

guages, and that the data processing algorithms needed to

enforce the contracts be encapsulated in middleware. The

example in this paper illustrates only transactional require-

ments, but we believe this contract-based middleware ap-

proach can be extended to also support other important as-

pects of service execution, such as security and some QoS

requirements.

Contracts have been used to represent service-level

agreements (SLAs)—mutual QoS responsibilities among

collaborating services. Existing SLA specification lan-

guages (e.g., WSLA [9], SLAng [13]) enable developers

to formalize these agreements, which may then be enforced

automatically by appropriately extending network routers,

database management systems, middleware, and/or web

servers. SLAs do not typically express transactional re-

quirements of the type illustrated in our example. Ideas

from SLA specification languages, however, may prove

useful in suggesting how to extend contracts to express var-

ious QoS requirements.



5. Summary and Challenges

This position paper calls for research to ensure safety and

QoS in SOA applications. The SOA paradigm plays a sig-

nificant role in today’s software engineering, with service

compositions implementing more and more critical tasks.

Thus, the reliability of SOA-based systems is increasingly

important. At the same time, safety and QoS are complex,

non-functional concerns with global effects on system be-

havior. Furthermore, the cross-cutting nature of these con-

cerns makes them difficult to define and verify.

We advocate for a contract-based D4V approach to

building SOAs with strong guarantees of safety and QoS.

In this approach, developers express safety requirements of

an individual service as declarative contracts enhancing the

service’s specification. When multiple services are assem-

bled into a composite SOA system, their contracts are com-

posed and enforced (negotiated) by the middleware. Ne-

gotiation of contracts of the constituent services provides

the composite system with certain safety guarantees by con-

struction, thus enabling the analysis of other properties at a

higher level of abstraction. We envision the use of process

containers to implement this concept of contract-enabled

middleware in the SOA environment. Our paper focuses on

web-based SOA applications; however, the approach may

be also applied to other applications that make use of SOAs.

Realization of our vision will require addressing many

open challenges, including:

• What extensions to our contract language will be nec-

essary to adapt it to the SOA setting and to express a

wider range of concerns, such as QoS or security?

• Will the overhead incurred by composing and negoti-

ating contracts in middleware be acceptable?

• Will the introduction of analysis abstractions for con-

tainers permit derivation of compact system models

and support systematic testing?
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