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Abstract: Recently, contract based design has been proposed as an ”orthogonal” approach that can be
applied to all methodologies proposed so far to cope with the complexity of system design. Contract based
design provides a rigorous scaffolding for verification, analysis and abstraction/refinement. Companion
paper [11] proposes a unified treatment of the topic that can help in putting contract-based design in per-
spective. This paper complements [11] by further discussing methodological aspects of system design with
contracts in perspective and presenting two application cases.
The first application case illustrates the use of contracts in requirement engineering, an area of system design
where formal methods were scarcely considered, yet are stringently needed. We focus in particular to the
critical design step by which sub-contracts are generated for suppliers from a set of different viewpoints
(specified as contracts) on the global system. We also discuss important issues regarding certification in
requirement engineering, such as consistency, compatibility, and completeness of requirements.
The second example is developed in the context of the Autosar methodology now widely advocated in
the automotive sector. We propose a contract framework to support schedulability analysis, a key step in
Autosar methodology. Our aim differs from the many proposals for compositional schedulability analysis
in that we aim at defining sub-contracts for suppliers, not just performing the analysis by parts—we know
from companion paper [11] that sub-contracting to suppliers differs from a compositional analysis entirely
performed by the OEM. We observe that the methodology advocated by Autosar is in contradiction with
contract based design in that some recommended design steps cannot be refinements. We show how to
circumvent this difficulty by precisely bounding the risk at system integration phase. Another feature of
this application case is the combination of manual reasoning for local properties and use of the formal
contract algebra to lift a collection of local checks to a system wide analysis.

Key-words: system design, component based design, contract, interface.



Contrats pour la conception de systèmes: méthodologie

et exemples d’application

Résumé : La conception de système constitue une étape clé pour la conception des
avions, des trains, des voitures, etc. La complexité croissante des ces systèmes, large-
ment due au logiciel, est source de retards et dépassements de coût. Les ”bonnes pra-
tiques” ne suffisent pas à régler ce problème et de nouvelles approches sont nécessaires.
La conception fondée sur des modèles, complétée par la conception par niveaux et par
composants, constituent un premier progrès. Récemment, une approche originale a été
proposée, qui peut s’appliquer à toutes les méthodologies ci-dessus: la conception par

contrats. De nombreux résultats existent dans ce domaine mais il manquait une vision
unifiée qui mette en perspective des approches apparemment différentes telles que les
contrats hypothèse/garantie ou les interfaces. L’article [11] propose une telle vision
unifiée.

Le présent article accompagne l’article [11] de considérations méthodologiques
approfondies et l’illustre par deux cas d’application.

Le premier porte sur l’utilisation de contrats pour l’ingéniérie des exigences, un
domaine où les approches formelles n’ont pas encore vraiment trouvé leur place, mais
sont cependant nécessaires. Notre cas d’application aprofondit en particulier l’étape
difficile où l’on produit des sous-contrats pour les fournisseurs, à partir des exigences
de niveau système. Nous étudions également comment utiliser les contrats pour for-
maliser des notions importantes dans le processus de certification, comme “consis-
tence”, “compatibilité”, et “complétude” des exigences.

Le second exemple se situe dans le cadre d’Autosar, un standard de conception
largement utilisé dans le secteur de l’automobile. On propose un formalisme de con-
trats pour l’analyse d’ordonnancements, une étape critique et délicate de la méthodologie
Autosar.

Mots-clés : conception des systèmes, composant, contrat, interface.
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1 Introduction

The reader is referred to companion paper [11] for a general introduction motivating
contract based design. We only summarize in this brief introduction the contributions
of this paper.

In Section 2 we complement the sections of companion paper [11] dealing with
methodology. We review the existing answers to system complexity, such as layered
and component based design, model based design and virtual integration, platform
based design, and for each of them we briefly indicate how they would benefit from
using contracts.

The first application case, presented in Section 3, illustrates the benefit of using
contracts in requirement engineering. We develop and study requirements for a sim-
ple parking garage. Its top-level specification comprises several viewpoints, each one
consisting of a requirement table. We pay attention to responsibilities by properly iden-
tifying assumptions regarding the context of use, and guarantees offered by the system
if properly used. We then study the critical design step consisting in producing sub-
contracts for each supplier, following an architecture of sub-systems that differs from
the top-level architecture—a frequently encountered situation. We go beyond the state-
of-the-art by proposing a synthesis method and algorithm, by which the sub-contracts
are automatically derived, from the top-level contract and the (SysML-like) topolog-
ical description of the sub-systems architecture. We discuss the use of contracts in
formally establishing properties of the requirements such as consistency, compatibil-
ity, and completeness. Despite this is a simple example, it is yet much too complex
to be dealt with by hand. A Proof of Concept tool was used to support our develop-
ment. The contract framework used for this study is the Modal Interfaces, extensively
developed in companion paper [11].

Our second application case, presented in Section 4, addresses a key part of the
Autosar development process—Autosar is the methodology used today in the auto-
motive industry. Autosar advocates a design methodology by which the functions,
structured into tasks, are first designed independently of the computing and communi-
cation infrastructure, assuming a virtual Autosar run time environment. We study the
key step by which time budgets are then allocated to tasks and computing resources
are assigned. Lack of formal support in Autosarmethodology makes this step difficult
today. We show the benefit of using contracts for this step. To this end, we develop
an adaptation of the Assume/Guarantee contracts of companion paper [11] that we call
scheduling contracts. Our study illustrates the semi-formal/semi-manual use of con-
tracts.

2 Methodological issues in contract based design

The discussion in this section complements the two methodological sections 1 and 2 of
our companion paper [11], by building on and extending the analysis of the methods,
theories and tools covered there. We will first discuss in more details the role of the
methodologies that have been introduced to cope with system complexity. Then, we
will cover those methodological aspects which are most relevant to our case studies.
Requirement engineering is the primary target of contract based design, so we discuss
it in detail. Contracts are also useful in supporting virtual integration and deployment.
One important point is that, by addressing early stages of system design, contracts
must support domains in which automatic reasoning does not apply (e.g., due to issues
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of decidability). Contract based design does not need to be fully automatic, however.
Combining manual local reasoning with automatic lifting of local to system wide prop-
erties is sensible and well supported by contracts. These are the topics we are going to
develop next.

2.1 Complexity of Systems and System-wide Optimization

As introduced in our companion paper [11], several approaches have been developed
by research institutions and industry to cope with the exponential growth in systems
complexity. Of particular interest to the development of embedded controllers and sys-
tems are layered design, component-based design, the V-model process, model-based
development (MBD), virtual integration and Platform-Based Design (PBD). There are
two basic principles followed by these methods: abstraction/refinement and composi-
tion/decomposition. Abstraction and refinement are processes that relate to the flow
of design between different layers of abstraction (vertical process) while composition
and decomposition operate at the same level of abstraction (horizontal process). Lay-
ered design, the V-model process, and model-based development focus on the vertical
process while component-based design deals principally with the horizontal process.
PBD combines the two aspects in a unified framework and hence subsumes them. It
can be used to integrate the other methodologies. Contracts are ideal tools to solidify
both vertical and horizontal processes providing the theoretical background to support
formal methods.

Layered design: Layered design copes with complexity by focusing on those aspects
of the system pertinent to support the design activities at the corresponding level of
abstraction. This approach is particularly powerful if the details of a lower layer of
abstraction are encapsulated when the design is carried out at the higher layer. Layered
approaches are well understood and standard in many application domains, e.g., the
Autosar standard1 in the automotive sector, and the ARINC2 standard in the avionic
domain. As an example, consider the Autosar standard. This standard defines sev-
eral abstraction layers. Moving from “bottom” to “top”, the micro-controller abstrac-
tion layer encapsulates completely the specifics of underlying micro-controllers, the
second layer abstracts from the concrete configuration of the Electronic Control Unit
(ECU), the employed communication services and the underlying operating system,
whereas the (highest) application layer is not aware of any aspect of possible target
architectures, and relies on purely virtual communication concepts in specifying com-
munication between application components. Similar abstraction levels are defined by
the ARINC standard in the avionic domains. The benefits of using layered design are
manifold. Using the Autosar layer structure as example, the complete separation of
the logical architecture of an application and target hardware supports decoupling the
number of automotive functions from the number of hardware components. In particu-
lar, it is flexible enough to mix components from different applications on one and the
same ECU. This illustrates the double role of abstraction layers, in allowing designers
to focus completely on the logic of the application and abstracting from the underlying
hardware, while at the same time imposing a minimal (or even no) constraint on the
design space of possible hardware architectures. In particular, these abstractions allow
the application design to be re-used across multiple platforms, varying in number of
bus-systems and/or number and class of ECUs. These design layers can, in addition,

1http://www.autosar.org/
2http://www.aeec-amc-fsemc.com/standards/index.html
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be used to match the boundaries of either organizational units within a company, or to
define interfaces between different organizations in the supply chain.

Component-based design: Whereas layered designs decompose complexity of systems
“vertically”, component-based approaches reduce complexity “horizontally” whereby
designs are obtained by assembling strongly encapsulated design entities called “com-
ponents” characterized by concise and rigorous interface specifications. Re-use can
be maximized by finding the weakest assumptions on the environment sufficient to es-
tablish the guarantees on a given component implementation. Another issue is related
to product line design, which allows for the joint design of a family of variants of a
product. The aim is to balance the contradicting goals of striving for generality versus
achieving efficient component implementations. Methods for systematically deriving
“quotient” specifications to compensate for “minor” differences between required and
offered component guarantees by composing a component with a wrapper component
(compensating for such differences as characterized by quotient specifications) exists
for some classes of contract models.

Layered and component-based design are well supported by the introduction of
contracts. The theory discussed in the companion paper was deliberately construed
to comply with the vertical and horizontal decomposition strategies, thus making the
transition from a component-centric to a contract-centric approach seamless. Indeed, it
has been shown how component models can easily be lifted to a contract model given
sufficient compositionality properties [11, 8].

The V-shaped process model: A widely accepted approach to deal with complexity
of systems in the defense and transportation domain is to structure product develop-
ment processes along variations of the V diagram originally developed for defense
applications by the German DoD.3 Its characteristic V-shape splits the product devel-
opment process into a design and an integration phase. Specifically, following product
level requirement analysis, subsequent steps would first evolve a functional architec-
ture supporting product level requirements. Sub-functions are then re-grouped taking
into account re-use and product line requirements into a logical architecture, whose
modules are typically developed by different subsystem suppliers. The realization of
such modules often involves mechanical, hydraulic, electrical, and electronic system
design. Subsequent phases would then unfold the detailed design for each of these
domains, such as the design of the electronic subsystem involving among others the
design of electronic control units. These design phases are paralleled by integration
phases along the right-hand part of the V, such as integrating basic and application soft-
ware on the ECU hardware to actually construct the electronic control unit, integrating
the complete electronic subsystems, integrating the mechatronic subsystem to build
the module, and integrating multiple modules to build the complete product. Form-
ing an integral part of V-based development processes are testing activities, where at
each integration level test-suites developed during the design phases are used to verify
compliance of the integrated entity to their specification.

Contracts provide an orthogonal added value with regard to the V-shaped process
model. Contract based design does not impose any particular process. It only qualifies
each design step with regard to system integration but does not impose any particular
sequence of steps. It is therefore fully compliant with the V-shaped process model, as
well as with other kinds of processes.

3See e.g. http://www.v-model-xt.de
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Model-Based Design: Model-based design (MBD) is today generally accepted as a
key enabler to cope with complex system design due to its capabilities to support early
requirement validation and virtual system integration. MBD-inspired design languages
and tools include SysML4 [39] and/or AADL [40] for system level modeling, Catia
and Modelica [26] for physical system modeling, Matlab-Simulink [31] for control-law
design, and UML5 [14, 37] Scade [13] and TargetLink for detailed software design.
The state-of-the-art in MBD includes automatic code-generation, simulation coupled
with requirement monitoring, co-simulation of heterogeneous models such as UML
and Matlab-Simulink, model-based analysis including verification of compliance of
requirements and specification models, model-based test-generation, rapid prototyping,
and virtual integration testing.

In MBD today non-functional aspects such as performance, timing, power or safety
analysis are typically addressed in dedicated specialized tools using tool-specific mod-
els, with the entailed risk of incoherency between the corresponding models, which
generally interact. To counteract these risks, meta-models encompassing multiple
views of design entities, enabling co-modeling and co-analysis of typically heteroge-
neous viewpoint specific models have been developed. Examples include the Marte
UML [38] profile for real-time system analysis, the Speeds HRC metamodel [41] and
the Metropolis semantic meta-model [7, 19]. In Metropolis multiple views are accom-
modated via the concept of “quantities” that annotate the functional view of a design
and can be composed along with subsystems using a suitable algebra. The Speeds
meta-model building on and extending SysML has been demonstrated to support co-
simulation and co-analysis of system models for transportation applications allowing
co-assessment of functional, real-time and safety requirements. It forms an integral
part of the meta-model-based inter-operability concepts of the Cesar reference tech-
nology platform.6 Meta-modeling is also at the center of the model driven (software)
development (MDD) methodology. MDD is based on the concept of the model-driven
architecture (MDA), which consists of a Platform-Independent Model (PIM) of the
application plus one or more Platform-Specific Models (PSMs) and sets of interface
definitions. The Vanderbilt University group [32] has evolved an embedded software
design methodology and a set of tools based on MDD. The generic modeling envi-
ronment (GME) [32] provides a framework for model transformations enabling easy
exchange of models between tools and offers sophisticated ways to support syntactic
(but not semantic) heterogeneity.

Model-based development has reached significant maturity by covering nearly all
aspects of the system (physics, functions, computing resources), albeit not yet in a fully
integrated way. To offer a real added value, any newly proposed technology should be
rich enough for encompassing all these aspects as well. Contract-based design offers,
in large part, this desirable feature.

Virtual Integration: Rather than “physically” integrating a system from subsystems
at integration stages, model-based design allows systems to be virtually integrated
based on the models of their subsystem and the architecture specification of the sys-
tem. Virtual integration involves models of the functions, the computer architecture
with its extra-functional characteristics (timing and other resources), and the physical
system for control. Such virtual integration thus allows detecting potential integration
problems up front, in the early design phases. Virtual system integration is often a

4http://www.omg.org/spec/SysML/
5http://www.omg.org/spec/UML/
6www.cesarproject.eu
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source of heterogeneous system models, such as when realizing an aircraft function
through the combination of mechanical, hydraulic, and electronic systems. Hetero-
geneous composition of models with different semantics was originally addressed in
Ptolemy [23], Metropolis [19, 15], and in the Speeds meta-model of heterogeneous
rich components [18, 10, 12], albeit with different approaches. Developments around
Catia and Modelica as well as the new offer SimScape by Simulink provide support for
virtual integration of the physical part at an advanced level.

Virtual integration and virtual modeling is a step beyond basic model-based devel-
opment, by offering an integrated view of all the above different aspects, e.g., physics
+ functions + performances. Contract-based design is well-suited to virtual integration
as it supports the fusion of different systems aspects.

Platform Based Design: In Platform-Based design [19, 20, 44], the design progresses
in precisely defined abstraction layers; at each abstraction layer, functionality (what the
system is supposed to do) is strictly separated from architecture (how the functionality
could be implemented). This aspect is clearly related to layered design and hence it
subsumes it. Each abstraction layer is defined by a design platform. A design plat-
form consists of a set of computation and communication library components, models
of the components that represent a characterization in terms of performance and other
non-functional parameters, and the rules that determine how the components can be
assembled and how the functional and non-functional characteristics can be computed.
Then, a platform represents a family of designs that satisfies a set of platform-specific
constraints [6]. This aspect is related to component-based design enriched with multi-
ple viewpoints. This concept of platform encapsulates the notion of re-use as a family
of solutions that share a set of common features (the elements of the platform).

Contracts offer the theory and methodological support for both the successive re-
finement aspect, the composition aspect and the mapping process of PBD allowing
formal analysis and synthesis processes.

2.2 Requirement capture and engineering

Requirements are the mean by which an OEM interacts with its supplier chain, on both
a legal and technical perspective. For this reason, requirement engineering is the area of
choice for contract based design. Therefore, we devote to this design activity a special
discussion.

Requirements are nowadays typically expressed in the form of Doors sheets.7 Such
sheets combine informal text statements with or without figures, formal or informal
models, or semi-formal or formal statements from various specification languages.

Distinguishing and properly identifying the roles and foremost the responsibilities

of the different actors in contributing to the system design is therefore essential in
requirement engineering. This naturally leads to adopting Assume/Guarantee reasoning
as a foundational paradigm. As we have seen in the companion paper [11], all known
contract theories rely, either explicitly or implicitly, on a clean distinction between the
systems guarantees and the assumptions about the environment specifying the legal
context of use for the guarantees to hold. This identification of responsibilities, which
lead to the A/G-paradigm, has a number of consequences for requirement engineering.

The meaning of requirements documents: Requirements generally aim at specifying
the guarantees that are expected from the system. Defining these guarantees well is

7http://www-03.ibm.com/software/products/en/ratidoor
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the primary focus of requirement management. Guarantees, however, generally go
along with assumptions regarding the context of use. Such assumptions are most often
left implicit, which is both a source of problems at system integration, and a source
of dispute regarding liability between the OEM and its suppliers in case a problem
occurs. Even if assumptions are carefully listed, no clean difference is generally made
between how assumptions combine, versus how guarantees combine, in a requirements
table. Clearly, guarantees must combine in a conjunctive way. This is indeed reflected
by the common practice that “the system must pass all tests attached to the different
requirements”. What about assumptions? Assumptions should not get conjuncted: if
the system is used in a way that violates some assumption, then the system is relieved
from the set of guarantees that relied on this assumption. Other guarantees, however,
remain. This reflects that assumptions must not be conjuncted. As we have seen in
companion paper [11], contract theories offer the notion of contract conjunction to
account for the difference in combining assumptions and guarantees in a requirements
table. This very same concept is also valid to set the meaning of how the combination
of different chapters or viewpoints of the systems requirements must be interpreted.
Typical instances of wiewpoints are function, safety, energy, etc. These viewpoints
rely on different modeling frameworks but nevertheless generally interact. This calls
for supporting heterogeneous modeling in contract based design. Being generic, the
meta-theory of contracts we have developed in Section 3 of the companion paper [11]
is a useful step toward supporting heterogeneity.

Subsystems requirements for suppliers: Once the OEM has its system-level require-
ments at hand, it proceeds to defining the sets of requirements attached to the dif-
ferent subsystems it has identified in its architectural study. The natural question is
then: does the composition of these subsystems requirements tables properly refine the
system level requirements? The two words in italics are two concepts that must be
properly clarified. Once more, there must be a difference in handling assumptions and
guarantees while composing requirements tables attached to different subsystems. The
conjunctive interpretation behind the statement “all tests must be passed” is clearly
erroneous. It is acknowledged by skilled designers that part of the assumptions for a
subsystem may be discharged by the guarantees offered by other subsystems. Unfortu-
nately, this is not easily reflected in a simple aggregation of some requirements. How
the subsystem’s assumptions are discharged by the other subsystems actually requires
the comprehensive notion of contract composition extensively studied in the compan-
ion paper [11]. In the same vein, assumptions and guarantees are handled differently in
the notion of contract refinement, see the companion paper [11], which again rules out
the naive “all tests must be passed” discipline when confronting subsystems require-
ments to system level requirements. See in particular the Section 3 of this paper where
the parking garage example in requirement engineering is presented.

The added value of contracts in requirements engineering: We will illustrate this added
value in our two case studies in two different ways:

• The correctness of subsystems requirements against system level requirements
will be verified in the Autosar case study, see Section 4, for the special viewpoint
of task scheduling.

• The Parking Garage case study of Section 3 will propose a more prospective
synthesis technique, by which subsystems contracts are formally derived from
system level contracts and an architecture specification (à la SysML).
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2.3 From informal to semi-formal to formal contracts

Unlike model checking and formal verification in general, contract based design does
not need to be fully automatic. Indeed, the following is sensible and useful in practice:

1. Performing manual proofs or analyses on local parts of the system—due to issues
of undecidability or excessive computational complexity. This of course implies
that the designer is willing to take responsibility for their validity.

2. Lifting a large collection of local contract properties to system-wide guarantees
and assumptions, automatically.

The point is that step 2 can exhibit a large combinatorial complexity, which deserves
assistance from some automatic engine. In contrast, manual reasoning on “local sub-
systems” (step 1) is acceptable and can be reasonably trusted and argued in certification
processes. The Autosar case study of Section 4 is an illustration of this.

3 Contracts in requirement engineering

In this section, we discuss the use of contracts for requirement engineering. We il-
lustrate our purpose by the means of a small example, a car parking system, that is
representative of early requirements capture. The following issues arise in requirement
capture. For each of them, we briefly indicate how our example illustrates them:

1. The top-level system specification is captured in a table or document collect-
ing different kinds of requirements expressed using different formalisms (con-
strained natural language, boilerplate requirements [4], all sorts of automata
theoretic formalisms, scenario languages, logics). Different formalisms may be
used for different kinds of requirements in a same specification.

In our example, we illustrate this by blending textual requirements writ-
ten in constrained English with tiny automata, expressing elementary be-
havioural properties.

2. The requirements document is often structured into chapters describing various
aspects of the system.

In our example of car parking system, there is a clear separation between
the specification of how the gates should behave, and of how the payment
subsystem should proceed.

3. The current practice is that assumptions are often implicit, and even when they
are explicitly stated, the pairing with the guarantees is missing. We clarify all of
this in our application example. Some requirements are under the responsibility
of the system under development; they contribute to specifying the guarantees

that the system offers. Other requirements are not under the responsibility of
the system; they contribute to defining the assumptions regarding the context in
which the system should operate as specified. Requirement documents should be
structured in such a way that each guarantee is paired with a subset of assump-
tions explaining the operational context under which this guarantee is expected
to hold.
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In our example, both assumptions and guarantees are handled as first class
citizens and the pairing between them is explicitly stated.

We now move to the presentation of the example.

3.1 The car parking system, informal presentation

We begin with the top-level requirements and then we discuss how to map the require-
ments onto an architecture and sub-contract them to several independent suppliers.

3.1.1 Top-level requirements

The system under specification is a car parking subject to payment of a fee before ex-
iting. At its most abstract level, the requirements document comprises three chapters
gate, payment, and supervisor, see Table 1. The gate chapter collects the common re-
quirements regarding one or several entry and exit gates. These common requirements
will then be instantiated to entry and exit gates.

gateforall g ∈ {entry, exit}
Rg,1:“vehicles shall not pass when gate is closed”, see Fig. 1
Rg,2: ?vehicle pass is forbidden next to ?vehicle pass

Rg,3: !gate open is forbidden next to !gate open, and
!gate close is forbidden next to !gate close

(Rg,1,Rg,2) −→ Rg,3

payment

supervisor

Table 1: The top-level specification, with chapter gate expanded; requirements written
in roman are guarantees and requirements written in italics are assumptions. The last
line (Rg,1,Rg,2) −→ Rg,3 indicates the pairing between guarantees and associated as-
sumptions. Quotes indicate requirements informally expressed in natural language and
formalized as automata.

0

!gate_close

1
!gate_open

!gate_close

?vehicle_pass
!gate_open

Figure 1: i/o-automaton formalizing requirement Rg.1. Prefix “?” indicates an input
and prefix “!” indicates an output.

Focus on the “gate” chapter. It consists of the three requirements shown on Table 1.
Requirement Rg.1 is best described by means of an i/o-automaton, shown in Figure 1—
In Table 1, we only provide a specification in natural language. Suppose that some
requirement says: “?gate open never occurs”. This is expressed by having no mention
of ?gate open in the corresponding i/o-automaton—this way of doing assumes that the
alphabet of actions of the i/o-automaton is explicitly given. The other two requirements
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are written using constrained natural language, which can be seen as a boilerplate style
of specification. Prefix “?” indicates an input and prefix “!” indicates an output.

The first two requirements are not under the responsibility of the system, since they
rather concern the car driver. Thus it does not make sense to include them as part of the
guarantees offered by the system. Should we remove them? This would be problematic.
If drivers behave the wrong way unexpected things can occur for sure. The conclusion
is that 1) we should keep requirements Rg.1 and Rg.2, and 2) we should handle them
differently than Rg.3, which is a guarantee offered by the system. Indeed, Rg.1 and Rg.2

can only be seen as assumptions and Rg.3 is the guarantee stated under the operational
context of Rg.1 and Rg.2. This pairing between a guarantee and its related assumptions
is denoted using the graph notation in the last line of Table 1.8 So far we have specified
gate as a list of requirements. Requirement Rg.1 specified as an i/o-automaton can be
considered formal. Requirements Rg.2 and Rg.3 are formulated in constrained natural
language and are ready for subsequent formalization (e.g., using i/o-automata too).

Are we done? Not yet! We need to formalize what it means to have a collection
of requirements, and what it means to distinguish assumptions from guarantees. Simi-
larly, we must formalize what it means to combine different chapters of a requirement
document. The answer was announced in point 3 of the discussion at the beginning
of this Section 3: requirement documents are conjunctions of causal pairs, consist-
ing of a guarantee together with the set of assumptions required for this guarantee
to be in force. It turns out that this is realized by using the conjunction of the con-
tracts encoding the causal pairs {guarantee, related assumptions}, as we shall see in
Section 3.2.2. Thus, if C is the top-level specification of the car parking system, we
have C = Cgate ∧ Cpayment ∧ Csupervisor. The following issues then arise regarding
this top-level specification. First of all, since a conjunction operator is involved in the
construction of C , there is a risk of formulating inconsistent (i.e., contradicting) re-
quirements. Second, are we sure that the top-level specification C is complete, i.e.,
precise enough to rule out undesirable implementations? One good way of checking
for completeness would consist in being able to execute or simulate this top-level spec-
ification C and to observe if unexpected behaviors can occur. All of this is developed
in Section 3.2.4.

3.1.2 Sub-contracting

Having the top-level specification C at hand, the designer then specifies an architec-
ture à la SysML, as shown on Figure 2. Some comments are in order regarding this
architecture.

The considered instance of car parking system consists of one entry gate, one exit
gate, and one payment machine. Compare with the top-level specification of Table 1.
The latter comprises a generic gate, a payment machine, and a supervisor, each one
with its set of requirements. In contrast, the architecture of Figure 2 involves no
supervisor—the latter is meant to be distributed among the two gates. So the sys-
tem architecture does not match the structure of the top-level specification—this is a
typical situation encountered in practice.

The next step in the design consists in sub-contracting the development of each of
the three sub-systems of the architecture of Figure 2. This amounts to specifying three

8Such a pairing can be easily implemented as hyperlinks in requirement engineering tools.
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?request enter

!ticket issue

!entry gate open

!entry gate close
EntryGate

?vehicle enter

?vehicle exit

?exit ticket insert ExitGate
!exit gate open

!exit gate close

?ticket insert payment

?coin insert payment
PaymentMachine !exit ticket issue

Figure 2: System architecture as specified by the designer.

sub-contracts CEntryGate, CExitGate, and CPaymentMachine, such that9:

CEntryGate ⊗ CExitGate ⊗ CPaymentMachine � C (1)

Recall that refinement � in (1) means that any implementation of the left hand side is
also a valid implementation of the top-level C and any legal operational use (we call it:
environment) of C is also legal for the left hand side. Then, the contract composition
operator ⊗ ensures that each supplier can develop its sub-system based on its own
sub-contract only, and, still, integrating the so designed sub-systems yields a correct
implementation of the top-level specification. Guessing such sub-contracts is a difficult
task. This is investigated in the next section.

3.2 Formalization using contracts

Despite being simple and small, the car parking system example quickly becomes com-
plex for reasons that are intrinsic to the formal management of requirements. The
MICA10 tool was used to develop it [17]. In this development, requirements were
written in constrained English language and then translated into Modal Interfaces—
while the presented translation is manual, automatic translation could be envisioned.11

Once this is completed, contracts are formally defined and the apparatus of contracts
can be used. In particular, important properties regarding certification can be formally
defined and checked, e.g., consistency, compatibility, correctness, and completeness.
In addition, support is provided for turning top-level requirements into an architecture
of sub-systems, each one equipped with its own requirements. The latter can then be

9We refer readers not well acquainted with contract-based reasoning or these notations to section 2 of the
companion paper [11].

10http://www.irisa.fr/s4/tools/mica/
11In fact, the contract specification languages proposed in the projects SPEEDS [10] and CESAR (http:
//www.cesarproject.eu/) are examples of translations from a constrained English language to a formal
models of contracts similar to Modal Interfaces.
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submitted to independent suppliers for further development. We begin with the presen-
tation of the contract framework we will be using, namely Modal Interfaces.

3.2.1 The contract framework

We use Modal Interfaces (with variable alphabet) as developed in Section 5.3 of the
companion paper [11] and subsequent ones. There are three main reasons for this
choice:

1. By offering the may and must modalities, Modal Interfaces are well suited to ex-
press mandatory and optional behaviors in the specification, which we consider
important for requirements engineering.

2. Being large sets of requirements structured into chapters, requirements docu-
ments are a very fragmented style of specification. Only Modal Interfaces offer
the needed support for an accurate translation of concepts such as “set of require-
ments”, “set of chapters”, together with a qualification of who is responsible for
each requirement (the considered component or sub-system versus its environ-
ment).

3. As we shall see, at the top-level, conjunction prevails. However, as soon as the
designer refines the top-level requirements into an architecture of sub-systems,
composition enters the game. Turning a conjunction of top-level requirements
into a composition of sub-systems specifications thus becomes a central task.
Only Modal Interfaces provide significant assistance for this.

Overall, the problem considered in the above claim 3 can be stated as follows. The
designer begins with some system-level contract C , which is typically specified as a
conjunction of viewpoints and/or requirements. The designer guesses some topological
architecture by decomposing the alphabet of actions of C as

Σ =
⋃

i∈I Σi , Σi = Σin
i
⊎ Σout

i (2)

such that composability conditions regarding inputs and outputs hold. Once this is
done, we expect our contract framework to provide help in generating a decomposition
of C as

⊗

i∈I
Ci � C (3)

where sub-contract Ci has alphabet Σi = Σ
in
i
⊎ Σout

i
. Guessing architectural decomposi-

tion (2) relies on the designer’s understanding of the system and how it should naturally
decompose—this typically is the world of SysML. Finding decomposition (3) is, how-
ever, technically difficult in that it involves behaviors. The algorithmic means that were
presented in Section 5.5 of the companion paper [11] provide the due answer. In this
car parking system, we use the special operation of restriction that was developed in
that section.

3.2.2 Top-level requirements

We first explain how the specification of “gate” in Table 1 translates into Modal Inter-
faces. Observe that each requirement Rg.j of Table 1 is a sentence that can be formalized
as an i/o-automaton, see Figure 1 for such a formalization of requirement Rg.1. In gen-
eral, each (chapter of a) requirement document D collects requirements (assumptions
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or guarantees) for which the input/output status of the different actions is consistent,
meaning that no action exists in D that is an input in some requirement and an output in
another one. Furthermore, document D takes the form of a set of causal pairs Ai → Gi:

D =
{

Ai → Gi |G = ⊎i∈IGi and Ai ⊆ A
}

(4)

where the subset G of guarantees of D decomposes as G = ⊎i∈IGi and Ai ⊆ A is the
subset of the assumptions of D on which each guaranty belonging to Gi relies. Refer-
ring to Table 1 for gate, there is only one guarantee which requires the two assumptions
to hold: {Rg,1,Rg,2} = A → G = {Rg,3}. The translation of document D specified as in
(4) is explained next, where Gi = {Rij | j∈Ji} and Ai = {Rik | k∈Ki}.

Rules 1 (translating individual guarantees) For each causal pair Ai → Gi, we start

from a description of each guarantee Rij ∈ Gi as an i/o-automaton. This i/o-automaton

is translated to a Modal Interface by applying the following rules:

RG
1 : Unless otherwise explicitly stated, transitions labeled by an output action are

given a may modality. The rationale is that the default semantics for guarantees

is “best effort”. The only exception is when the requirement specifies that an

output action is mandatory, e.g., by having a “must” in the sentence.

RG
2 : Transitions labeled by an input action of the considered system are given a

must modality. The rationale is that implementations may not refuse this input

action in this state.

Applying these rules to Rij yields a modal interface called Gi j. �

Performing this for the single guarantee Rg.3 of gate yields the Modal Interface shown
in Figure 3.

0 1
!gate_open

!gate_close

0 1
!gate_open

!gate_close

Figure 3: Translating the guarantee Rg.3 of gate as an i/o-automaton (top) and then as
a Modal Interface Ggate (bottom) using Rules 1.

Rules 2 (translating individual assumptions) For each causal pair Ai → Gi, we

start from a description of each assumption Rik ∈ Ai as an i/o-automaton. This

i/o-automaton is translated to a Modal Interface by applying the following sequence

of rules:

1. We complement the status input/output in every assumption Rik, thus taking the

point of view of the environment; we call the result Rik;

2. Having done this we apply Rules 1 to each Rik. So far this yields, for each Rik, a

Modal Interface Aik that must be satisfied by every environment; complementing

backward the status input/output of each action yields a modal interface Aik. �
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A1: 0

!gate_close

1
!gate_open

!gate_close

!gate_open

?vehicle_pass

A2: 0

!gate_open

1
?vehicle_pass

!gate_open

Figure 4: Translating the assumptions of gate using Rules 2.

Performing this for the assumptions Rg.1 and Rg.2 of gate yields the Modal Interfaces
A1 and A2 shown in Figure 4.

Rules 3 (combining) The modal interface Ci representing the causal pair Ai → Gi is

then computed as indicated in Section 5.7 of the companion paper [11]. Finally, the

top-level contract C is the conjunction of the contracts associated to each causal pair:

C =
∧

i∈I C (Ai,Gi).

Performing this for the whole chapter gate yields the Modal Interface shown in Fig-
ure 5.

0

1
?vehicle_pass

2
!gate_open

?vehicle_pass
!gate_close
!gate_open

!gate_close
3

?vehicle_pass

!gate_close

?vehicle_pass

Figure 5: Chapter gate of the top-level requirements document translated into a Modal
Interface Cgate. Remark state 1 is universal, meaning that any behavior may be allowed
after reaching this state.

Some comments are in order:

• Regarding the guarantees offered by the component: Allowed outputs possess a
may modality, which reflects that Guarantees specify what the component may
deliver. Other actions are forbidden.

• Regarding the context of operation: Legal inputs to the gate (e.g., vehicle pass

when exiting state “2”) have a must modality. This complies with the intuition
that the component should not refuse legal stimuli from its environment. Viola-
tion of the contract by its environment occurs when an illegal input is submitted
by the environment (vehicle through when exiting state 0 or state 3). As a conse-
quence, the whole contract gets relaxed by moving to the special state “1” from
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which any action is allowed—such a state is often called a “top” state. This top
state resulted from computing the quotient.

The same procedure applies to all chapters gate, payment, and supervisor, of the
top-level textual specification, shown in Table 2 (it is an expansion of Table 1).

gate(x) where x ∈{entry, exit}
Rg.1(x): “vehicles shall not pass when x gate is closed”, see Fig. 1

Rg.2(x): after ?vehicle pass ?vehicle pass is forbidden

Rg.3(x): after !x gate open !x gate open is forbidden and
after !x gate close !x gate close is forbidden

(Rg.1(x),Rg.2(x)) −→ Rg.3(x)
payment

Rp.1: “user inserts a coin every time a ticket is inserted and only then”, Fig. omitted

Rp.2: “user may insert a ticket only initially or after an exit ticket has been issued”, Fig. omitted

Rp.3: “exit ticket is issued after ticket is inserted and payment is made and only then”, Fig. omitted
(Rp.1,Rp.2) −→ Rp.3

supervisor

Rg.1(entry) (assumption borrowed from gate(entry))
Rg.1(exit) (assumption borrowed from gate(exit))
Rg.2(entry) (assumption borrowed from gate(entry))
Rg.2(exit) (assumption borrowed from gate(exit))
Rs.1: initially and after !entry gate close !entry gate open is forbidden
Rs.2: after !ticket issued !entry gate open must be enabled
Rs.3: “at most one ticket is issued per vehicle entering the parking and tickets can be issued

only if requested and ticket is issued only if the parking is not full”, see Fig 7
Rs.4: “when the entry gate is closed, the entry gate may not open unless a ticket has been issued”,

Fig. omitted
Rs.5: “the entry gate must open when a ticket is issued”, Fig. omitted
Rs.6: “exit gate must open after an exit ticket is inserted and only then”, Fig. omitted
Rs.7: “exit gate closes only after vehicle has exited parking”, Fig. omitted
(Rg.1(entry),Rg.1(exit),Rg.2(entry),Rg.2(exit)) −→ (Rs.1, . . . ,Rs.7)

supervisor: unformalized requirements
Rs.8: “the ticket inserted in the gate must be physically the same as the one issued

by the payment machine”
Rs.9: “a vehicle cannot exit without having paid a ticket”
(Rg.1(entry), . . . ,Rg.2(exit),Rs.8) −→ Rs.9

Table 2: Top-level requirements. Assumptions and Guarantees are written in italics and
roman, respectively. The last line of each chapter specifies the causal pairs following
(4)—for this example, all assumptions are required for every guarantee. Quoted re-
quirements are written in natural language; the corresponding formalization as a modal
interface is omitted. The additional chapter, in blue, collects requirements not sup-
ported by our formalization.
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0 1
?ticket_insert_payment 2

?coin_insert_payment

?ticket_insert_payment

3

?coin_insert_payment

?ticket_insert_payment
?coin_insert_payment
!exit_ticket_issue

!exit_ticket_issue

?ticket_insert_payment
?coin_insert_payment

Figure 6: Chapter payment of the top-level requirements document translated into a
Modal Interface Cpayment.

(a,0)

?vehicle_exit
(b,0)

?request_enter

(a,1)
?vehicle_enter

?request_enter
?vehicle_exit

!ticket_issue

?vehicle_enter

?vehicle_exit

(b,1)

?request_enter

(a,2)

?vehicle_enter

?vehicle_exit

!ticket_issue

?request_enter

?vehicle_enter

?vehicle_exit

?vehicle_enter

(b,2)?request_enter

?vehicle_exit

?vehicle_enter

?request_enter

Figure 7: Modal Interface for Rs.3

Comment 1 (Requirements not supported by our formalization) This table involves
a supplementary chapter for the supervisor, written in blue, which collects require-
ments that are not supported by our formalization. The reason for this lack of formal
support is that infinite domains of data are beyond the reasoning capabilities of the
MICA tool we are using, whereas tickets are infinitely many and must be characterized
by a unique identifier. As a consequence, guarantee Rs.9 is outside the scope of our
formal analysis. It is indeed a typical situation in practice, that only a subset of the
requirements can be formally supported—requirements address all aspects of system
specification, be they within or outside the scope of formalization. For the case of Ta-
ble 2, requirement Rs.9 must be validated against the designed system, either manually,
or via observer techniques. �

The Modal Interfaces encoding chapters payment and supervisor of the top-level
are displayed in Figures 6 to 8. Figure 8 showing the contract associated to the su-

pervisor is unreadable and the reader may wonder why we decided to put it here. We
indeed wanted to show that, when contract design is performed formally and carefully,
top-level contracts rapidly become complex, even for modest sets of requirements. So
the formal management of requirements and their translation into formal contracts must
be tool-assisted.

Finally, the whole top-level contract C is the conjunction of the contracts represent-
ing chapters gate, payment, and supervisor, of the top-level requirements document:

C = Cgate ∧ Cpayment ∧ Csupervisor (5)

Owing to the complexity of Csupervisor shown in Figure 8, we do not show the Modal
Interface C formalizing the full document. Nevertheless, the latter was generated and
can then be exploited as we develop next. The above specification only covers the
functional viewpoint of the system. Other viewpoints might be of interest as well, e.g.,
regarding timing behavior and energy consumption. They would be developed with the
same method and combined to the above contract C using conjunction.
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0

!entry_gate_close

1

?exit_ticket_insert

7

?vehicle_enter
?vehicle_exit

44

?request_enter

!entry_gate_close

?exit_ticket_insert

2

!exit_gate_open

?vehicle_enter
?vehicle_exit

43

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

3

?request_enter

?vehicle_enter

75

?vehicle_exit

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

4

!ticket_issue

?vehicle_enter

72

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

?vehicle_enter

5

?vehicle_exit

11

!entry_gate_open

!exit_gate_open,?exit_ticket_insert
!exit_gate_close,!entry_gate_close
?vehicle_enter,!entry_gate_open
?vehicle_exit,?request_enter

!ticket_issue

?vehicle_enter
?vehicle_exit

?exit_ticket_insert
?request_enter

6

!exit_gate_open

8

!exit_gate_close

59

!entry_gate_open

?vehicle_enter

?vehicle_exit ?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_close

58

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

9

?exit_ticket_insert

45

!entry_gate_open

!exit_gate_open

?vehicle_enter
?vehicle_exit?exit_ticket_insert

?request_enter

10

!entry_gate_open

?vehicle_exit

!entry_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_open

!entry_gate_close

47

!ticket_issue

68

?vehicle_enter

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert
?request_enter

12

!ticket_issue

69

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

49

?vehicle_enter

13

?vehicle_exit

?vehicle_enter

?exit_ticket_insert

!exit_gate_open

19

?request_enter

77

!entry_gate_open

50

?vehicle_exit

?vehicle_enter

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

20

!entry_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

21

!ticket_issue

34

?vehicle_enter

71

!entry_gate_close

?vehicle_exit

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

22

?vehicle_enter

?vehicle_exit

?vehicle_enter

?exit_ticket_insert

!exit_gate_open

23
?request_enter

84

!entry_gate_open

127

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
?request_enter

!exit_gate_open

24

?vehicle_exit

33

!entry_gate_open

?vehicle_enter
?vehicle_exit

?exit_ticket_insert
?request_enter

16

!exit_gate_open

17

!exit_gate_close

25

!entry_gate_open

?vehicle_enter

?vehicle_exit

!exit_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_close

26

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

18

?exit_ticket_insert

114

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

80

!entry_gate_open

?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

81
!ticket_issue

79

!entry_gate_close

99

?vehicle_enter

?vehicle_exit

!exit_gate_open

!entry_gate_open

?exit_ticket_insert
?request_enter

82
?vehicle_enter

?vehicle_enter
?vehicle_exit!exit_gate_open

?exit_ticket_insert

31

?request_enter

83

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

32

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
?request_enter

!entry_gate_open

!exit_gate_open

?vehicle_enter

91

!entry_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

?vehicle_enter

92

!entry_gate_close

?vehicle_exit

?vehicle_enter

?exit_ticket_insert

!exit_gate_open

35

?request_enter

101

!entry_gate_close

!entry_gate_open

60

?vehicle_exit

?vehicle_enter

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

36

?vehicle_exit

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

37

!exit_gate_open

125

!exit_gate_close

93

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!exit_gate_open

38

?vehicle_exit

!exit_gate_close

94

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

39

!exit_gate_open

40

!exit_gate_close

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit
?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_close

!entry_gate_open

73
!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?request_enter

41

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

!entry_gate_open

?exit_ticket_insert
?request_enter

42

!exit_gate_open

!entry_gate_close

!entry_gate_close

!ticket_issue

?vehicle_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_open ?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter

!entry_gate_open

46

!ticket_issue

124

?vehicle_enter

?vehicle_exit

!entry_gate_open

?request_enter
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Figure 8: Chapter supervisor of the top-level requirements document translated into a
Modal Interface Csupervisor, for a capacity of two for the parking garage.

3.2.3 Sub-contracting

In this section, we apply the technique developed in Section 5.5 of the companion
paper [11] for generating an architecture of sub-systems with their associated sets of
requirements. Each sub-system can then be submitted for independent development to
a different supplier. The next duty of the designer is, thus, to specify an architecture à

la SysML shown on Figure 2.

Comment 2 (Mismatch requirements architecture vs. system architecture) Observe
that the considered instance of the parking garage consists of one entry gate, one exit
gate, and one payment machine. Compare with the top-level specification of Table 2.
The latter comprises a generic gate, a payment machine, and a supervisor, each one
with its set of requirements. In contrast, the architecture of Figure 2 involves no super-
visor. The supervisor is meant to be distributed among the two gates. This mismatch
between requirements architecture and system architecture is representative of real sit-
uations: it is the purpose of this application case to propose solutions for it. �

In Figure 9 we show the result of applying, to the architecture of Figure 2, the Algo-
rithm 1 developed in Section 5.5 of companion paper [11], which yields by construction
a refinement of the top-level contract C by a decomposition into local contracts:

C � C (ΣEntryGate) ⊗ C (ΣExitGate) ⊗ C (ΣPaymentMachine) (6)

Local contract C (ΣEntryGate) is the more complex one because it involves counting. For
the sake of readability, we have assumed a capacity of two. Small capacities less than
20 can be handled with enumerated methods. For larger capacities, symbolic methods
must be used. Remarkably enough, the decomposition (6) involves small sub-systems

compared to Csupervisor (Fig. 8) and the global contract C ; the restriction operation

is to be acknowledged for this strong reduction in size. The main reasons is that the
components have few synchronizations and that the decomposition method revealed
the parallelism that is hidden in C .
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Figure 9: The three restrictions of the global contract C for the three sub-systems
EntryGate (top), ExitGate (mid), and PaymentMachine (bottom).

Comment 3 (Comment 1, cont’d) Referring to Table 2, recall that requirement Rs.9

must be validated against the designed system, either manually, or via observer tech-
niques. How can this piece of manual work be combined with our formal analysis? Call
Csupervisor informal the contract corresponding to the supplementary chapter of Table 2.
The total top-level contract is in fact given by C ∧Csupervisor informal. To check a design
against this contract it is enough to check it against C and against Csupervisor informal.
The former check involves a complex contract but is tool supported. In contrast, the
latter check must rely on observers but involves a simple contract. The bottom line
is that contract based requirement engineering supports the combination of tool based
and manual checks well. �

3.2.4 Consistency, Compatibility, Correctness, Completeness

Requirements capture and management are important matters for discussion with certi-
fication bodies. These bodies would typically assess a number of quality criteria from,
e.g., the following list elaborated by incose [30]: Accuracy, Affordability, Bounded-
ness, Complexity, Completeness, Conciseness, Conformance, Consistency, Correct-
ness, Criticality, Level, Orthogonality, Priority, Risk, Unambiguousness, and Verifia-
bility. In this section we focus on four quality criteria that are considered central by
certification authorities and are relevant to contracts, namely: Completeness, Correct-
ness, Consistency, and Compatibility.
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Consistency & Compatibility. Consistency and compatibility have been formally
defined in the meta-theory, see Section 3 of companion paper [11] and Table 2 therein.
In particular, those formal definitions can be formally checked. Thus, the question
arises whether these formal definitions suitably reflect the common sense meaning of
these terms.

According to the common meaning, a set of requirements is consistent if it is not
self-contradicting. The intent is that there is no point in trying to implement an incon-
sistent set of requirements, as no such implementation is going to exist. It turns out
that the existence of implementations is the formal definition of consistency according
to the meta-theory, which meets the common sense interpretation of this term.

We illustrate consistency on the top-level specification of Table 2. Referring to this
table, let us investigate the consistency of the set of requirements

{

Rg.3(exit),Rs.6,Rs.7
}

under assumptions
{

Rg.1(exit),Rg.2(exit)
}

. The following scenario is may-reachable for
this modal interface:

1) exit ticket insert; 2) exit gate open; 3) exit ticket insert

After this scenario, event exit gate open has modality must in interface Rs.6∧Rs.7, whereas
it has modality cannot in interface Rg.3(exit). Thus, the state reached after this scenario
is inconsistent. Two options are possible:

1. Return to the designer the message that the set of requirements is inconsistent,

since it possesses inconsistent states. This has the merit of leaving the designer
with the entire responsibility of avoiding hidden contradictions in its require-
ments. On the other hand, this puts a heavy burden on the shoulders of the
designer since she must have detailed understanding of its specification. Alter-
natively, one can

2. Reduce the resulting interface by pruning away the inconsistent states, hoping

that not all states become inconsistent. (See Lemma 9 of Section 5.3 in com-
panion paper [11] regarding interface reduction.) This is the option we have
followed in this application example. It is supported by our tool MICA [17].

According to the common meaning, an architecture of sub-systems, as characterized by
their respective specifications, is compatible if these sub-systems “match together”, in
that they can be composed and the resulting system can interact with the environment as
expected—use cases can be operated as wished. As explained in Table 2 of Section 3 of
companion paper [11], this is the formal definition of compatibility in the meta-theory.
Again, the formal definition of compatibility meets its common sense interpretation.

Correctness. Correctness can only be defined with reference to another specification.
In contract based design, correctness is not a known concept. We thus propose to
specialize “correctness” as one of the following properties, depending on the design
step performed (see Table 2 of Section 3 of companion paper [11] for the notations):

• “correctness” specializes as: “is a correct implementation of”, written |=m;

• “correctness” specializes as: “is a correct environment of”, written |=e;

• “correctness” specializes as: “refines”, written �.
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Completeness. Completeness raises a difficulty. Although the term “completeness”
speaks for itself, it cannot be formally defined what it means to be complete, for a
top-level specification in the form of a set of requirements. The reason is that we
lack a reference against which completeness could be checked. Hence, the only way
to inspect a top-level specification for completeness is to explore it manually. The
best help for doing this is to execute the specification. Thus, specifications must be
executable. Fortunately, Modal Interfaces are executable and, this way, undesirable
behaviors can be revealed.

We illustrate this on the top-level specification of Table 2, in which we change
requirement Rs.6 to: “exit gate must open after an exit ticket is inserted” (by omitting
“and only then”). Lack of completeness is revealed by simulation. The following
scenario can occur:

1) exit ticket insert; 2) exit gate open; 3) vehicle exit; 4) exit gate close; 5) exit gate open

where step 5) conforms the specification, due to prior step 1). This scenario shows
that vehicles may exit without having inserted an exit ticket, an unwanted behavior.
This reveals that the specification was not tight enough, i.e., incomplete. So far for
completeness of the top-level specification.

In contrast, completeness can be formally defined when a reference C is available.
We propose to say that C ′ is incomplete with reference to C , if

1. C ′ does not refine C , but

2. there exists C ′′ � C ′ such that C ′′ is consistent, compatible, and refines C .

The rationale for this definition is that C ′ is not precise enough but can be made so by
adding some more requirements. Note that C ′ is incomplete with reference to C if and
only if C ′ ∧ C is consistent and compatible. This criterion is of particular relevance
when C ′ =

⊗

i∈I
Ci is an architecture of sub-contracts, where Ci is to be submitted to

supplier i for independent development.

3.3 Discussion

Requirements engineering is considered very difficult. Requirements are typically nu-
merous and very difficult to structure. Requirements concern all aspects of the system:
function, performance, energy, reliability/safety. Hence, systems engineers generally
use several frameworks when expressing requirements. The framework of contracts
expressed as Modal Interfaces that we have proposed here improves the situation in a
number of aspects:

• It encompasses a large part of the requirements.12

• It can accommodate different concrete formalisms. In our example, we have
blend textual requirements with requirements specified as state machines. Richer
formalisms such as Stateflow diagrams can be accommodated in combination
with abstract interpretation techniques—this is not developed here.

• We have shown how to offer formal support to important properties during the
process of certification.

12 According to figures that were given to us by industrials, 70-80% of the requirements can be expressed
using the style we have developed here. Other requirements typically involve physical characteristics of the
system or define the range for some parameters.
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• We have proposed a correct-by-construction approach to the difficult step of
moving from the top-level specification in the form of a requirements document,
to an architecture of sub-contracts for the suppliers.13

• Not all requirements can be supported by a formal approach—be it contract-
based or different in nature. It is the merit of our contract-based approach to
allow for a semi-automatic/semi-manual handling of requirements.

4 Contracts for deployment and mapping in the con-

text of Autosar

Autosar14 is a world-wide development partnership including almost all players in the
automotive domain electronics supply chain. It has been created with the purpose of de-
veloping an open industry standard for automotive software architectures. To achieve
the technical goals of modularity, scalability, transferability and reusability of func-
tions, Autosar provides a common software component model and a common infras-
tructure based on standardized interfaces for the different layers. The Autosar project
has focused on the objectives of resource independence, standardization of interfaces
and portability of code. While these goals are clearly of paramount importance, their
achievement may not be sufficient for improving the quality of software systems and
ensuring safe system integration.

As for most other embedded system, the design of car electronics involves func-
tional as well as non-functional properties, assumptions and constraints [28]. In the
Autosar design flow, a large part of the effort is devoted to non-functional aspects
combining:

• latencies and throughputs, which are critical in computer controlled systems, and

• the sharing of communication and computing resources and the conflicts that can
result.

Getting a proper scheduling of the software components is a key step in meeting such
specifications. The case study we develop in this section addresses the above issues—
the detail of the functions, however, is not considered.

4.1 An illustrative design scenario

The focus of the used contract framework is the integration phase of a design process,
where software components are allocated to a hardware platform. More specifically,
we consider scenarios like the following: The bottom part of Figure 10 shows a tar-
get platform that is envisioned by, say, an Original Equipment Manufacturer (OEM).
It consists of two processing nodes (CPU1 and CPU2). Suppose the OEM wants to im-
plement two applications, characterized by contracts C1 and C2, on this architecture
and delegates their actual implementation to two different suppliers. Both applications
share a subset of the resources of the target platform, e.g. tasks τ2 and τ4 are executed

13The framework of Assume/Guarantee contracts that is used in Section 4 does not offer this, because
local alphabets are not properly handled. In contrast, Assume/Guarantee contracts are very permissive in
how they can be expressed. In particular, dataflow diagrams (Simulink) can be used to express assumptions
and guarantees.

14http://www.autosar.org/
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Figure 10: Exemplary Integration Scenario using Resource Segregation
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τ3
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τ1
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Figure 11: A sample trace showing the joint histories of the four tasks τ1–τ4 (top).
Observe that the additional histories of the two CPU (bottom) are redundant if we know
the resource allocation for each task. We show them nevertheless to highlight that no
conflict occurs in this trace.

on CPU2 after integration. Furthermore, we assume the system specification C shown
in Figure 10 to be available from previous design phases. While some components to-
gether with their (local) contracts may also be known (e.g. in case of reuse), the OEM
generally has to negotiate proper specifications with the suppliers, in our case the two
contracts C1 and C2. At this point, the designer is faced with the following two issues:

1. The functions performed by the two subsystems must integrate correctly and
their integration must satisfy the top-level function specification;

2. The scheduling of the software components delegated to each supplier must yield
a satisfactory scheduling at system integration, meaning that timing constraints
are met given the performance characteristics of the computing and communica-
tion resources, despite the two designs compete for shared resources.

For these two aspects, the design method must support independent development by
each supplier while guaranteeing safe and correct integration, provided that the subsys-
tems are correctly implemented. In this case study we concentrate on issue 2, leaving

aside issue 1 (the latter was addressed by the parking garage case study of Section 3).
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Example 1 Suppose task τ1 on the system depicted at the bottom of Figure 10 is a
periodic task with period p = 5 and execution time c = 3. The two tasks τ2 and τ3 also
have period p = 5. Task τ2 depends on τ1, i.e. is activated by τ1, and has an execution
time c2 = 2. Task τ3 depends on τ2 and has an execution time c3 = 1. Task τ4 is also a
periodic task with period p4 = 5 and c4 = 2. Suppose both CPUs are scheduled using a
fixed priority preemptive policy, where tasks τ1 and τ4 have high priority on their CPU.
The delay of the task-chain τ1 → τ2 → τ3 depends on the activation-pattern of τ4

and its execution time. This is illustrated in Figure 11. Once τ1 completes execution it
activates (via port po1 ) τ2, which in turn might be preempted by τ4. Finally, τ3, activated
by τ2, could be preempted by a subsequent instance of τ1 resulting from another event i1
of the periodic event stream. An excerpt of a possible trace in L is shown in Figure 11,
which corresponds to the discussed scheduling scenario. Indeed, while composing
the two subsystems and deploying them on the computing architecture of Figure 10,
bottom, the main problem is the coupling due to the sharing of CPU2. Observe that
every port and resource has its own event tape in the component. Note that we omitted
input ports connected to some output port: the intuition is that the synchronization of
the subsystems’ behaviors is by unifying ports with identical names. This intuition for
the composition of subsystems will be indeed formalized by our forthcoming notion of
abstract scheduling component, see Definition 4. �

Objectives of this application case: In this work, we assume that a procedure per-

forming global scheduling analysis is available. Such procedures exist for various

classes of scheduling problems. Our aim is to lift such procedures to a contract frame-

work supporting compositionality and independent development. In the next sections
we develop our contract framework for this application case. Then, we develop the
application.

4.2 Scheduling Components

In this section we prepare the material for the framework of “scheduling contracts”
we will be using for this application. This contract framework is a mild adaptation of
the Assume/Guarantee contracts (A/G-contracts for short) considered in Section 4 of
companion paper [11].

Recall that Assume/Guarantee contracts (A/G-contracts) are pairs of assumption
and guarantees: C = (A,G). In the basic A/G-contract framework [10], A and G are
assertions, i.e., sets of traces for system variables.15 Components capturing legal im-
plementations or environments of contracts are also modeled by assertions. Component
E is a legal environment for C if E ⊆ A and component M is an implementation for
C if A×M ⊆ G. In this writing, ⊆ is simply set inclusion and component composition
× is by intersection of sets of traces (assuming that the underlying set of system vari-
ables is universal and thus fixed): A×M =def A∩M. One difficulty of A/G-contracts
is the important notion of saturation: contracts (A,G) and (A,G ∪ ¬A), where ¬ is set
complement, possess identical sets of legal environments and implementations, so we
consider them equivalent. The second one is called saturated and is a canonical form
for the class of equivalent contracts. Also, MC = G ∪ ¬A is the maximal implemen-
tation for this contract. Thus, we need the operations ∪ and ¬, or at least we need the
operation (A,G)→ G ∪ ¬A, which is to be interpreted as “A entails G”.

15These are typically specified using modeling tools such as Simulink/Stateflow.

RR n° 8760



Contracts for System Design 27

Thus, as a first step, we need the counterpart of assertions for our component frame-
work, with the associated algebra. Ingredients of scheduling problems are: tasks with
their precedence conditions reflecting data dependencies and resource allocation. The
sets of timed traces we are interested in are those satisfying the scheduling constraints,
plus extra quantitative properties such as period, deadline conditions, etc. Call con-

crete scheduling components the resulting model. Unfortunately, no rich algebra with
the above requested operators ⊆,×,∪¬ exists for concrete scheduling components.

By abstracting away part of the description of task activities in traces, we slightly
abstract concrete scheduling components to so-called abstract ones. The idea is that we
keep only what is essential for capturing interactions of scheduling problems, namely:
1) trigger and release events for tasks, and 2) busyness of resources. The abstraction
map binds each concrete scheduling component to its abstraction and we will show
that this binding is faithful. The framework of abstract scheduling components is sim-
ple enough so we manage to equip it with the wanted operations ⊆,×,∩,∪,¬. A/G-
contracts for abstract scheduling components follow then easily. The rest of this section
is devoted to the introduction of concrete and abstract scheduling components. Then
we study the relation between them.

4.2.1 Concrete Scheduling Components

For our model of scheduling components we assume the following:

• A slotted model of real-time, in which the real line R+ is divided into successive
discrete time slots of equal duration. Successive slots are thus indexed by using
natural numbers 1, 2, 3, . . . , n, . . . ∈ N, with 0 indexing the initial conditions. In
the sequel, the term “date” will refer to the index of the time slot in consideration.

• An underlying set T of tasks, generically denoted by the symbol τ. To describe
events of interest for tasks, we consider the following alphabets:

– the control alphabet Σc = {i, o, io, aw, sl} collects the trigger, completion,
trigger-and-completion, awake, and sleeping events, for a task; this alpha-
bet describes the triggering and completion of tasks; since we follow a
slotted model of time, triggering and completion can occur within the same
slot, which is indicated by the event io;16

– the busyness alphabet Σb = {∗,⊥} collecting the busy and idle events; this
alphabet indicates, for a task, its status busy/idle at a given time slot.

On top of these alphabets, we build:

Σ =def { (c, b) ∈ Σc × Σb | c=sl ⇒ b=⊥} (7)

reflecting that task τ can only be busy when it is not sleeping. The status of each
task in each time slot is expressed by using alphabet Σ. This is illustrated on
Figure 12.

In addition, each task τ comes equipped with a pair (pt(τ), pc(τ)) ∈ P×P of
trigger and completion ports, where P is an underlying set of ports. For T a set
of tasks, we will consider the set PT =def

{

pt(τ), pc(τ) | τ ∈ T
}

.

16Strictly speaking, statuses aw and sl add no useful information about the history of a task; these two
statuses are only here for technical convenience. They are used in (7) to build our structured alphabets and
they facilitate the formulation of the condition 1 characterizing behaviors in Definition 2.
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τ: τ:

Figure 12: Two executions for task τ, with their successive time slots. The top/bottom
rows illustrate the history of Σc and Σb in each execution; blank and grey stand for ⊥
and ∗.

• An underlying set R of resources, generically denoted by the symbol r. A re-
source can be either available or busy with executing a given task at a given time
slot. Resources can run in parallel. Each resource r ∈ R is assigned the alphabet
Σr ⊆ T ∪ {0} of the tasks it can run, where the special symbol 0 indicates that r

is idle.

Definition 1 A concrete scheduling component is a tuple M = (K, L), where:

• K = (T,R, ρ) is the sort of M, where: T ⊆ T is the set of tasks, R ⊆ R is the set

of resources, and ρ : T → R, the resource allocation map, is a partial function

satisfying τ ∈ Σρ(τ). Say that tasks τ1 and τ2 are non-conflicting if they do not

use the same resource:

τ1 ‖K τ2 if



















either ρ(τ1) is undefined

or ρ(τ2) is undefined

or ρ(τ1) , ρ(τ2)
(8)

• For τ1, τ2 ∈ T, say that τ1 precedes task τ2, written

τ1−→◦ τ2, (9)

if the completion port of τ1 coincides with the start port of τ2: pc(τ1) = pt(τ2).
We require that this relation is circuit free and we denote by � the partial order

on T obtained by taking the transitive closure of −→◦ and we call � the precedence
order. The dual order between ports will also be needed: for p1, p2 ∈ PT , say

that p1 precedes p2, written

p1−→� p2, (10)

if there exists τ ∈ T such that p1 = pt(τ) and pc(τ) = p2; relation −→� is

circuitfree if so was −→◦ and, with no risk of confusion, we also denote by � the

precedence order on PT generated by −→� .

• L ⊆ Σω
T

is the language of M, where ΣT =def T → Στ and Aω denotes the set

of all infinite words over alphabet A. Due to the decomposition (7) of Σ, every

word w ∈ L can be equivalently seen as a pair of words w = (wc,wb) describing

the control and busyness history of w. �

Since a word w∈L yields a history for each task, it induces, by picking the resource
running that task, a corresponding resource word wR, such that

wR is the tuple collecting the wr for r ∈ R, such that, for every slot n:
wr(n) = {τ ∈ T | ρ(τ) = r and w(τ, n) = (c, b) satisfies b = ∗}

(11)
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i.e., wr(n) returns the set of tasks that resource r runs at slot n. Note that this set is not
a singleton if and only if a conflict occurs at slot n regarding resource r. A possible
word w of L was shown in Figure 11, together with its corresponding (non-conflicting)
resource extension.

Notations: Whenever convenient, we will denote by TK or T K the set of tasks of sort K,
and similarly for the other constituents of a sort. The events of a task τ will be denoted
by iτ, oτ, etc. For w a word of Σω

K
, T ′ ⊆ T , and R′ ⊆ R, we denote by

wT ′ the T ′-word of w, and by wR′ the R′-word of w, (12)

obtained by projecting w to the subalphabet ΣT ′ and projecting the induced word wR

to the subalphabet ΣR′ , respectively. If T ′ = {τ} is a singleton, we simply write wτ

and similarly for R′. The reader is referred to Figure 11 for an illustration of this—
occurrences of a 0 are figured by a blank. �

Not all words of L are compliant with the rules of scheduling. We characterize
those compliant words in the following definition, where M = (K, L) denotes a concrete
scheduling component:

Definition 2 (semantics of concrete scheduling component) A behavior of sort K is

any infinite word w ∈ Σω
T

satisfying the following three scheduling conditions:

1. For each task τ ∈ T, the control word wc belongs to the language (sl∗.(io +
i.aw∗.o))ω, where a∗ =def ǫ + a + a.a + a.a.a + . . . is the Kleene closure starting

at the empty word. Informally, the two events i and o alternate in w, with i

occurring first; io is interpreted as the immediate succession of two i and o

events at the same time slot. Call nth epoch of τ in w the n-th occurrence of a

pattern of w belonging to (io + i.aw∗.o).

2. τ1 � τ2 implies the following: for every n ≥ 1, the nth occurrence of event oτ1

must have occured in w strictly before iτ2 —in words, τ2 can only start after τ1

has been completed;

3. w is non-conflicting, meaning that, for any two conflicting tasks τ1 and τ2 be-

longing to T (cf. (8)), it never happens that wτ1 and wτ2 are non-idle at the same

time slot.

The semantics of M is the sublanguage [[M]] ⊆ L consisting of all behaviors of K

belonging to L. Say that M is schedulable if [[M]] , ∅. �

Observe that, due to the above Condition 2, tasks related by precedence conditions
possess identical logical clocks—consequently, if they are specified to be periodic,
their periods must be equal. This is not required for tasks not related by precedence
conditions.

Comment 4 (roles of K and L) The pair M = (K, L) can be seen as the specification
of a global scheduling problem. The sort K fixes the set of tasks and their precedence
conditions, the set of resources, and the allocation of tasks to resources. The language
L can serve to specify additional aspects of this scheduling problem, including task
durations and/or minimum time interval between successive activation calls for a task.
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Comment 5 (role of [[M]]) Semantics [[M]] can be seen as the maximally permissive
solution of the scheduling problem stated by M. Recall that, in this work, we as-

sume that the procedure for computing the semantics of a scheduling component is

available—such procedures exist for various classes of scheduling problems. Our aim

is to lift such procedures to a contract framework supporting compositionality and in-

dependent development. �

The class of concrete scheduling components is easily equipped with a parallel com-
position:

Definition 3 (composition of concrete scheduling components) Say that M1 and M2

are composable if their allocation maps ρ1 and ρ2 coincide on T1 ∩T2 and the relation

−→◦ 1 ∪ −→◦ 2 on T1 ∪T2 is cycle free. If M1 and M2 are composable, their composition
M1 ×M2 =def ((T,R, ρ), L) is defined as follows:

T = T1 ∪ T2

R = R1 ∪ R2

∀τ ∈ T : ρ(τ) = if τ ∈ T1 then ρ1(τ) else ρ2(τ)
L = pr−1

T→T1
(L1) ∩ pr−1

T→T2
(L2)

where prT→Ti
() , i = 1, 2, denotes the projection from T to Ti and pr−1 is its inverse. �

Of course, the key to understand the meaning of composition × is the construction of
the semantics [[M1 ×M2]], where the scheduling problem is solved. To each scheduling
component M = ((T,R, ρ), L), we associate the following scheduling component where
L is replaced by the semantics [[M]] of M:

[M] =def ((T,R, ρ), [[M]]) (13)

The following result holds:

Lemma 1 If M1 and M2 are composable, then [[M1 ×M2]] = [[ [M1]× [M2] ]].

Proof: Since sorts are unchanged, from Mi to [Mi], the right hand side is well defined.
For the same reason, the conditions listed in Definition 2 are the same when selecting
the behaviors of M1 ×M2 and of [M1]× [M2].
To construct the semantics of M1 ×M2:

1. pick all pairs (w1,w2) ∈ L1 × L2 such that prT1→T1∩T2
(w1) = prT2→T1∩T2

(w2);

2. for such a pair (w1,w2) and τ ∈ Ti, i = 1, 2, set w(τ) = wi(τ); this define a word
w ∈ Σω

T
;

3. keep only the words w that are behaviors of sort (T,R, ρ).

To construct the semantics of [M1]× [M2]:

1. pick all pairs (w1,w2) ∈ L1 × L2;

2. keep only the pairs (w1,w2) such that wi is a behavior of sort (Ti,Ri, ρi);

3. keep only the pairs (w1,w2) ∈ L1×L2 such that prT1→T1∩T2
(w1) = prT2→T1∩T2

(w2);

4. for such a pair (w1,w2) and τ ∈ Ti, i = 1, 2, set w(τ) = wi(τ); this define a word
w ∈ Σω

T
;
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5. keep only the words w that are behaviors of sort (T,R, ρ).

Since precedence relations −→◦ 1 ∪ −→◦ 2 and −→◦ coincide, the combination of steps 2
and 5 of the second procedure coincides with step 3 of the first procedure. �

Comment 6 (the need for a more abstract mathematical framework) As announced
in the introductory discussion of Section 4.2, the model of concrete scheduling com-
ponent is too complex and detailed as a model of component on top of which contracts
can be built. In particular, the consideration of sorts raises a difficult typing problem
and is an obstruction against getting the constructs required for a universe of com-
ponents. Moreover, scheduling component M and its semantics [[M]] are related in a
complex way, through Definition 2. This makes it difficult to define the operations we
need on components, particularly ⊆ and ∪¬ (in turn, parallel composition × was easy
to define as we have seen). The notion of abstract scheduling component we develop
in the forthcoming section will overcome these difficulties. Abstract scheduling com-
ponents capture the architecture aspect of Figure 10, namely: ports carrying start and
completion events of tasks, and resources—tasks themselves are, however, ignored. �

4.2.2 Abstract Scheduling Components

Definition 4 (abstract scheduling component) An abstract scheduling component is

a language

M ⊆ Vω , where V =def
( {

0, 1
}P )
×
(∏

r∈R Σr

)

Recall that Σr is the alphabet of tasks that can be executed by resource r, see the be-
ginning of Section 4.2.1. We will freely interpret {0, 1} as the Boolean domain and
symbol “1” indicates the occurrence of an event. Abstract scheduling components
come equipped with the following algebra:

• The Boolean algebra ∩,∪,¬ (set complement), and the inclusion ⊆ on sets;

• A parallel composition by intersection: M1 × M2 =def M1 ∩ M2.

Thus, abstract scheduling components offer all the algebra required for a universe of
components on top of which A/G-contracts can be built. It is therefore interesting to
map concrete to abstract scheduling components.

4.2.3 Mapping Concrete to Abstract Scheduling Components

Recall that, for K = (T,R, ρ) a sort, we denote by PT =def pt(T )⊎pc(T ) ⊆ P the set of
ports used by T , see the beginning of Section 4.2.1. Then, we set

VK =def
( {

0, 1
}PT
)

×
(∏

r∈R Σr

)

(14)

Definition 5 (Mapping concrete to abstract scheduling components) Each concrete

scheduling component M = (K, L) is mapped to a unique abstract scheduling compo-

nent [[M]]A called its abstract semantics, defined as follows:

1. Pick any w ∈ [[M]], see Definition 2;

2. Denote by πT (w) the word over {0, 1}PT obtained from w as follows:

∀p ∈ PT , define •p =
{

τ ∈ T | pc(τ) = p
}

and p• =
{

τ ∈ T | pt(τ) = p
}

,

the sets of anterior and posterior tasks of p. Put the nth event of p, nondetermin-
istically:
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• after the n−1st event of p,

• when or after every task belonging to •p has completed for the nth time in

w, and

• strictly before every task belonging to p• has started for the nth time in w.

If •p = ∅, then the first condition is not considered and similarly if p• = ∅.

3. Denote by πR(w) the word over alphabet
∏

r∈R Σr defined as follows:

(a) For every time slot n and every resource r ∈ R, set

πR(w)(r, n) = τ if and only if w(τ, n) = (c, b) satisfies b = ∗ and ρ(τ) = r.

This part of word πR(w) represents the “positive history” of w, i.e., the use

of the resources belonging to R by tasks belonging to T;

(b) We complement πR(w) by describing the “negative history” of w, consisting

of a description of all the possibilities left, for tasks not belonging to T , in

using resources from R:

in all slots of πR(w)(r, n) that are kept idle after step 3a, we set

πR(w)(r, n) = τ′ where τ′ ∈ Σr, τ
′
< T is chosen nondeterministi-

cally.

Then, with reference to the sort K = (T,R, ρ) of M, we set:

ηK(w) =def ( πT (w), πR(w) ) ∈ Vω
K (15)

4. Finally, we define

[[M]]A =def pr−1
Vω→Vω

K

( {

ηK(w)i
∣

∣

∣ w ∈ [[M]]
} )

⊆ Vω

where the quantification ranges over w ∈ [[M]] and all instances of nondetermin-

istic choices in step 2, and prVω→Vω
K

denotes the projection, fromVω toVω
K

.

Step 2 of this construction is sound since w is a behavior in the sense of Definition 2.
Step 2 is the key step since it transforms a max-plus type of parallel composition (every
task waits for all its preceding tasks having completed before starting) into a dataflow
connection where data are communicated through the shared ports. The data communi-
cated are the events carried by the ports. These events occur nondeterministically after
all preceding tasks have completed for the nth time and before all succeeding tasks start
for the nth time.

Step 3 complements the actual history of each task of M by an explicit descrip-
tion of all possibilities that are left to other scheduling components in using resources
shared with M. The reason for doing this is that this allows to capture the interleaved
use of shared resources by different components, by a simple parallel composition by
intersection.

The above construction is illustrated in Figure 13. When hiding the tasks sitting
inside the boxes, the architecture shown on Figure 10 is a dataflow representation of
[[M]]A: in interpreting this figure, one should consider that each task is free to start any
time after it has received its triggering event, and free to wait for some time before
emitting its completion event.
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τ1,τ3 are assigned to CPU1
τ2 is assigned to CPU2

Figure 13: Showing a concrete behavior of M (left, with reference to Figure 11) and
a corresponding abstract behavior of [[M]]A (right), by using P =

{

i1, o1, o2, o3
}

as
underlying alphabet of ports. On the second diagram, blanks figure the slots left free
for any external task to run on the referred resource. The yellow rectangles indicate
the room for nondeterministic choices; bounds of these rooms are figured by pointing
arrows; where such arrow is missing, the corresponding rectangle is unbounded on that
side.

Lemma 2 The mapping M→ [[M]]A satisfies the following properties:

1. Schedulability is preserved in that [[M]] , ∅ if and only if [[M]]A
, ∅;

2. For every r < R, the set
{

v(r)
∣

∣

∣ v ∈ [[M]]A
}

is the free language (T − T )ω.

The special property 2 is not preserved under the Boolean set algebra. Therefore, the
mapping M→ [[M]]A is not surjective.

4.2.4 Faithfulness of the mapping

Consider two concrete scheduling components M1 and M2, where Mi = (Ki, Li) and
Ki = (Ti,Ri, ρi). Checking the inclusion [[M1]]A ⊆ [[M2]]A requires computing the
abstract semantics [[Mi]]A, which may be costly. In this section we provide sufficient
conditions for this inclusion, to be checked directly on the concrete scheduling compo-
nents M1 and M2.

Lemma 3 The following conditions on the pair (M′,M) imply [[M′]]A ⊆ [[M]]A:

1. There exists a surjective total map ψ : T ′ → T, such that:

(a) For every τ ∈ T:

pt(τ) = min
ψ(τ′)=τ

pt(τ′) and pc(τ) = max
ψ(τ′)=τ

pc(τ′) (16)

where min and max refer to the order �′ generated by the precedence rela-

tion (10) on ports of M′;

(b) The following holds, for every 4-tuple of tasks (τ′1, τ
′
2, τ1, τ2) ∈ T ′2 × T 2:

[

ψ(τ′1)=τ1 and ψ(τ′2)=τ2
′
]

=⇒
[

τ′1 ‖
′

τ′2 ⇒ τ1 ‖ τ2

]

(17)
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2. For each task τ ∈ T, there exists an injective total map χτ : Στ →
⊎

τ′ ∈ψ−1(τ) Στ′ ,

where the Στ′ are copies, for each referred task τ′, of the alphabet Σ defined

in (7); set χ =def
⊎

τ ∈T χτ. The language L is defined through some temporal

property Timing Prop on the events from alphabet
⊎

τ ∈T Στ, and, replacing, in

Timing Prop, every event e by its image χ(e) defines a language L′′ such that

L′′ ⊇ L′.

Say that M′ ⊑ M when the above three conditions hold. Furthermore, the following

condition implies the above Condition 1b:

ρ′(τ′) = ρ(ψ(τ′)) . (18)

Observe that Conditions 1 involve only the sorts K1 and K2 of M1 and M2. Condi-
tion 2 formalizes the situation in which the language L2 is specified through timing
properties relating certain events of interest for tasks of M2 (duration between trigger
and completion, end-to-end duration when traversing a set of successive tasks, etc.).
The considered events are then mapped to some events of M1 and the timing property
remains the same or is strenghtened. Proof: The additional statement is obvious. Note
that (18) implies R′ = R. So, we focus on the main statement. By Condition 2, we only
need to prove that the scheduling conditions associated to K1 are stronger than those
associated to K2. By definition of the precedence order, see (9), Condition 1a implies
that, for every 4-tuple of tasks (τ′1, τ

′
2, τ1, τ2) ∈ T ′2 × T 2,

[

ψ(τ′1)=τ1 and ψ(τ′2)=τ2
′
]

=⇒
[

τ1 ≺ τ2 ⇒ τ′1 ≺
′ τ′2

]

. (19)

Set Ψ = (ψ, ψ) : T 2
1 → T 2

2 . By (16), M involves a subset of the ports of M′. By
(17), we have ‖

′

⊆ Ψ−1( ‖ ), and, by (19), we have ≺′ ⊇ Ψ−1(≺). Consequently, the
ports involved in M are less sequentialized and more concurrent than the same ports in
M′. Furthermore, additional ports only involved in M′ may be subject to precedence
constraints and access conflicts. The inclusion [[M′]]A ⊆ [[M]]A follows. � The
following result expresses that abstract semantics is faithful with respect to concrete
scheduling components equipped with the composition × introduced in Definition 3:

Lemma 4 If M1 and M2 are composable, then [[M1 ×M2]]A = [[M1]]A × [[M2]]A.

Proof: To construct [[M1 ×M2]]A the following steps are performed:

1. pick all pairs (w1,w2) ∈ L1 × L2;

2. keep only the pairs (w1,w2) that agree on T1∩T2; for such a pair (w1,w2), fuse
w1 and w2 by setting for τ ∈ Ti, i = 1, 2: w(τ) := wi(τ);

3. keep only the words w that are behaviors of sort K = (T,R, ρ), thus obtaining
[[M1 ×M2]]; for each remaining word w, following steps 2 and 3 of Definition 5,
generate non-deterministically vK =def ηK(w);

4. expand vK to all ports and resources by applying the inverse projection of step 4
of Definition 5.

To construct [[M1]]A × [[M2]]A the following steps are performed:

1. pick all pairs (w1,w2) ∈ L1 × L2;
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2. keep only the pairs (w1,w2) such that wi is a behavior of sort (Ti,Ri, ρi), for
i = 1, 2; for each remaining word wi, following steps 2 and 3 of Definition 5,
generate non-deterministically vKi

=def ηKi
(wi);

3. keep only the pairs (vK1 , vK2 ) that agree on (PT1∩PT2 )⊎ (R1∩R2); for such a pair,
fuse vK1 and vK2 by setting, for p ∈ PTi

, r ∈ R j for i, j = 1, 2: vK(p) = vKi
(p)

and vK(r) = vK j
(r);

4. expand vK to all ports and resources by applying the inverse projection of step 4
of Definition 5.

The first and last steps of these two procedures are identical. On the other hand, the
mapping M 7→ [[M]]A specified in step 2 of Definition 5 is indeed designed so that the
second and third steps of the above two procedures yield identical results. � For
(A,G) a composable pair of concrete scheduling components, we will sometimes need
to consider the expression [[G]]A ∪ ¬[[A]]A. This is addressed in the following lemma,
where the items of A possess “A” as a subscript, and similarly for G:

Lemma 5 Let (A,G) be a composable pair of concrete scheduling components such

that RA = ∅. Then, the following formulas define a concrete scheduling component

M = ((T,R, ρ), L) such that [[M]]A = [[G]]A ∪ ¬[[A]]A :

T = TA ∪ TG , R = RG , ρ(τ) = if τ ∈ TA then ρA(τ), (20)

L = pr−1
T→TG

(LG) ∪ pr−1
T→TA

(¬LA) (21)

where pr−1
T→TG

() and pr−1
T→TA

() denotes the referred inverse projections.

Proof: This results from the fact that, thanks to the assumption that RA = ∅, the char-
acterization (2) for the abstract scheduling components that are image of a concrete
scheduling component is satisfied. �

4.3 Scheduling Contracts

4.3.1 Scheduling Components and Scheduling Contracts

In this section we reuse Section 4 of companion paper [11]. As recomended in that
reference, we first define what components are for this theory, and then we define
contracts. Regarding components, the notations used here refer to the operations ⊆
,∩,∪,¬,× introduced for abstract scheduling components in Section 4.2.2.

Definition 6 (scheduling components and scheduling contracts) A scheduling con-
tract is a pair C = (A,G) of abstract scheduling components, called its assumptions
and guarantees, respectively.

The set E
C

of the legal environments for C collects all abstract scheduling compo-

nents E with non-empty semantics and such that E ⊆ A. The setM
C

of all implemen-

tations of C collects all abstract scheduling components M with non-empty semantics

and such that A×M ⊆ G.

Each scheduling contract can be put in its equivalent saturated form C = (A,G ∪
¬A), possessing the same sets of legal environments and implementations. Scheduling

contract C is compatible if and only if A , ∅ and consistent if and only if G ∪ ¬A , ∅.

Say that scheduling contract C = (A,G) is schedulable if A ∩G , ∅. �
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The material of Section 4.1 of companion paper [11] applies verbatim and the reader is
referred ot it. Note that A∩G = A∩ (G ∪¬A), hence checking schedulability does not
require the contract to be saturated. The justification of this notion of schedulability
for contracts is given in the next section.

In practice the designer will specify scheduling contracts via pairs (A,G) of com-
posable concrete scheduling components, called its assumption and guarantee (see Def-
inition 3 for the notion of composability). Thus, define:

Definition 7 Call concrete scheduling contract (or concrete contract) a pair C = (A,G)
of composable concrete scheduling components called its assumptions and guarantees.

To contrast with concrete contracts, we will sometimes call abstract scheduling con-

tracts, or abstract contracts, the scheduling contracts of Definition 6. The mapping
from concrete to abstract scheduling components developed in Section 4.2.3 allows
mapping concrete scheduling contracts to abstract ones:

C = (A,G) 7→ C(A,G) =def ([[A]]A, [[G]]A) (22)

Say that C is consistent, compatible, schedulable, or in saturated form, if so is C(A,G).
Regarding schedulability, the following holds:

Lemma 6 If C is schedulable, then it has G as a concrete implementation that remains

schedulable (in the sense of Definition 2) when put in the context of A. �

Proof: By Definition 6 regarding schedulability of abstract contracts, we have [[A]]A ×

[[G]]A = [[A]]A ∩ [[G]]A
, ∅. By Lemma 4, we have [[A]]A × [[G]]A = [[A×G]]A. By

Statement 1 of Lemma 2, [[A×G]]A
, ∅ if and only if [[A×G]] , ∅, which is the

implication stated in the lemma. � The reason for considering mapping (22) is that
only abstract scheduling contracts, not concrete ones, are equipped with the contract
algebra. Observe that contract C(A,G) may not be in saturated form. To prove contract
properties, we need a few criteria that are expressed in terms of concrete scheduling
components and use only the algebra available for them.

By notational convention and unless confusion can result, we will simply denote
by C the abstract contract associated to concrete contract C through the mapping (22).

4.3.2 A toolbox of sufficient conditions in terms of concrete contracts

These criteria will only be sufficient conditions, stronger than the verification of the
same properties expressed in the true contract domain, i.e., by using abstract scheduling
components (recall that the latter are not convenient for practical specification).

Lemma 7 (Checking for implementation and environment relations) The following

conditions imply that [[E]]A is an environment and [[M]]A is an implementation for

C(A,G):

E ⊑ A and M is composable with A and A×M ⊑ G (23)

Proof: This follows from Lemmas 3 and 4. �

Lemma 8 (Checking for contract refinement) The following conditions imply refine-

ment C(A,G) �
(

∧

j∈J C(A j,G j)

)

:

∀ j ∈ J =⇒ A j is composable with G and
{

A j ×G ⊑ G j

A j ⊑ A
(24)
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Proof: that (24) implies the desired refinement: by Lemmas 3 and 4, Condition (24)
implies its abstract counterpart:

∀ j ∈ J =⇒

{

[[A j]]A × [[G]]A ⊆ [[G j]]A

[[A j]]A ⊆ [[A]]A (25)

Focus first on environments. Pick any abstract scheduling component E such that E ⊆

[[A j]]A for some j. Using the second inclusion of (25) we deduce that E ⊆ [[A]]A.
Consider next implementations. Pick any abstract scheduling component M such that
[[A]]A × M ⊆ [[G]]A. Since [[A j]]A ⊆ [[A]]A, we deduce [[A j]]A × M ⊆ [[A j]]A × [[G]]A,
and thus (25) implies [[A j]]A ×M ⊆ [[G j]]A. This proves that Conditions (25) imply the
desired refinement, hence so do Conditions (24). �

Formula (24) supports refinement checking for pairs of concrete assumptions and
guarantees that do not induce contracts in saturated form.

Checking for contract refinement and composition: For (A,G) a concrete system-
level contract and (Ai,Gi), i∈I a set of concrete sub-contracts assigned to each subsys-
tem in an architectural decomposition of the global system, we typically want to check
if refinement ⊗i∈I C(Ai,Gi) � C(A,G) holds. Unfortunately, checking this requires having
these contracts in saturated form, see Section 4 of companion paper [11]. To this end
we can use Lemma 5, which provides a concrete formula for representing the satu-
rated form of a contract, assuming that assumptions of this contract have no resource
assigned to them. If this is not possible (e.g., because assumptions involve resources),
we will need to work directly in the domain of (abstract) scheduling contracts.

Comment 7 (verification vs. synthesis of contracts) We now have the material at hand
for: 1) verifying that successive refinement steps proposed by the designer are correct
and, 2) checking for implementation and environment relations. We can also synthe-
size the conjunction and composition of abstract contracts, but we have no way to
reverse engineer the results back to concrete scheduling components. To summarize,
our contract framework supports verification of independent designs but is not power-
ful enough to synthesize them—as it was for instance performed for the parking garage
example of Section 3.

4.3.3 Getting sub-contracts in the Autosar development process

In this section we develop techniques in support of the following design steps, which
are advocated by Autosar:

Process 1 (Autosar development process)

1. Start with a top-level, system wide, contract. At this level, only functions are
considered while computing resources are ignored. Functions are abstracted as
systems of tasks with their precedence constraints. The top-level contract may
be the conjunction of several viewpoints, and/or it may be specified by means of
requirement tables.

2. To prepare for subcontracting to different suppliers, decompose this functional
top-level contract into functional sub-contracts. So far computing resources are
not considered.

3. At this step the computing infrastructure is now taken into account. Perform
system wide (global) task scheduling, thus inferring resource budgets.
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4. Derive resource aware sub-contracts and submit them to the supplier, for imple-
mentation. (The supplier may request a negotiation in case resource budgeting
is too tight for him to meet the sub-contract.) �

This process is rather informal. It is thus tempting to interpret the above tasks as re-
finement steps, for scheduling contracts. With this in mind, Steps 1 and 2 exhibit no
particular difficulty. Step 3, however, raises a problem. Adding the consideration of
resources to a resourceless contract cannot be a refinement step. This can be seen from
Lemma 3, which gives sufficient conditions for concrete contract refinement: referring
to this lemma, there is no way that the resulting contracts C′ = (A′,G′) can refine C

since [[A′]]A ⊇ [[A]]A is not possible when resources are added, from A to A′. This
is no surprise in fact, since one cannot independently add shared resources to differ-
ent contracts, and at the same time expect to be able to develop and implement them
independently.

Of course, from a theoretical standpoint, there is an easy solution to this problem.
One could argue that not considering resources and budgeting them from the very be-
ginning is a mistake and cannot work. Following this argument we would need to
consider resources already in the top-level contracts, and address budgeting right from
the beginning. Unfortunately, this is in total disagreement with the Autosar approach,
which advocates at early stages the specification of software architectures consisting of
software components, regardless of resources.

To overcome this difficulty, our approach is: 1) to precisely characterize the “ille-
gal” development steps we perform that violate contract refinement, and 2) to precisely
identify the resulting risks for later system integration. We will need the following
notion of “port-refinement” for concrete contracts, which is an approximation of re-
finement in which only ports are taken into consideration.

Port-refinement of contracts: Decompose the alphabetV introduced in Definition 4:

V =
( {

0, 1
}P )
×
(∏

r∈R Σr

)

= VP ×VR (26)

For M = ((T,R, ρ), L) a concrete scheduling component, define

[[M]]P =def prVP
(

[[Mρ/ǫ]]A
)

, where Mρ/ǫ =def ((T, ∅, ǫ), L) , (27)

and ǫ is the allocation map with empty domain. In words, we first ignore the possible
conflicts due to shared resources (replacing M by Mρ/ǫ), we then take the abstract se-
mantics [[Mρ/ǫ]]A, and we finally project the resulting abstract semantics over the ports
only (taking prVP (...)). [[M]]P captures the scheduling aspect of M while discarding the
resource aspect of it. Observe that [[M]]P contains the language obtained by projecting
[[M]]A over the ports; this inclusion is generally strict. If, however, M = ((T, ∅, ǫ),M)
is resourceless, then [[M]]P = prVP

(

[[M]]A
)

. For C = (A,G) a concrete scheduling
contract, define

[[C]]P =def ([[A]]P, [[G]]P) , the port-contract associated with C. (28)

Despite the boldface notation used, port-contracts are abstract contracts. For C and C′

two concrete contracts, say that

C′ port-refines C, written C′ �P C if [[C′]]P � [[C]]P. (29)

T-closed contracts and illegal development steps: We restrict these steps to the fol-
lowing situation, which does not contradict the Autosar methodology. Assume, from
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early design stages on, prior knowledge of the following property about a given set T

of tasks—this does not require detailed knowledge of the computing resources:

Definition 8 (T-closed contracts) Say that a set T ⊂ T of tasks is segregated if the set

R of all resources partitions as follows:

R = RT ∪ RT ,RT ∩ RT = ∅, and

{

T ⊆ ΣRT

T − T ⊆ Σ
RT

(30)

For any segregated set of tasks T , say that concrete contract C = (A,G) is T-closed if

TG ⊆ T and TA ∩ T = ∅. �

An instance of T-closed set of tasks will naturally occur in our application case. If
C = (A,G) is T-closed, then ρG(TG) ∩ ρA(TA) = ∅ holds. Illegal steps are performed
on T-closed contracts only. An illegal step consists in replacing T-closed contract C by
another T-closed contract C′ port-refining it: C′ �P C.

The resulting risks at system integration: Port-refinement being not a refinement, re-
placing C by C′ won’t ensure that any implementation of C′ will meet the guarantees of
C under any legal environment for C′—it should ensure this if it was a true refinement.
Still, the following result holds, which precisely bounds the risks at system integra-
tion. In this lemma, we generically denote by M the abstract scheduling component
associated to M.

Lemma 9 Let be C′ �P C satisfying the following conditions:

1. C and C′ are T-closed for a same segregated set T of tasks,

2. C′ is schedulable,

3. [[A′]]P = [[A]]P, A and A′ both have their tasks pairwise non-conflicting, and

4. G is resourceless.

Then, the following holds: ∅ , A×G′ ⊑ G. �

Proof: Property ∅ , A×G′ follows from Condition 3 and the assumption that C′ is
schedulable. Finally, since C′ �P C, we have [[A]]P × [[G′]]P ⊆ [[G]]P, which implies
A×G′ ⊑ G since G is resourceless. �

Comment 8 Lemma 9 expresses that G′ is an implementation of C′ that, when put
in the context of the most permissive environment of C, meets the guarantee G and
is schedulable. That G is met will remain valid for any legal environment of C and
any implementation of C′. Schedulability, however, is only ensured by the most per-
missive environment of C and implementation of C′. This restriction is not surprising
since schedulability is a liveness property whereas A/G-contracts support only safety
properties. �

The Autosar development process made safe: We are now ready to explain how the
Autosar development process (Process 1) can be made safe by implementing the illegal
development steps safely.

Process 2 (Autosar development process made safe) We assume a segregated sub-
set T of tasks.
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1. Start with a top-level, T-closed, contract Cfunc
top = (Atop,Gtop). At this level, only

functions are considered while computing resources are ignored. Functions are
abstracted as systems of tasks with their precedence constraints. The top-level
contract may be the conjunction of several viewpoints, and/or it may be specified
by means of requirement tables.

• Comment: No change with respect to Process 1 besides T-closedness.

2. To prepare for subcontracting to different suppliers, decompose the above func-
tional contract Ctop into functional, resource agnostic, sub-contracts in such a
way that

Cfunc
ref = (Aref ,Gref) = × i∈I Ci satisfies

{

Atop ×Gref ⊑ Gtop

Aref ⊒ Atop
(31)

where the Ci are T-closed subcontracts for the different suppliers. In addition, we
require that Aref and Atop possess identical sets of tasks, i.e., map ψ of Lemma 3
is the identity. By Lemma 8, (31) ensures C func

ref � C func
top . So far resources were

not considered.

• Comment: No change so far, with respect to Process 1, besides naming
contracts and making refinement step precise through (31). The first two
steps make no reference to semantics, meaning that no scheduling analysis
is required, cf. Comment 5. From the next step on, this process deviates
from Process 1.

3. At this step the computing resources are now taken into account. Allocate a
resource to each task of Aref and Gref , in such a way that all tasks of Aref are
pairwise non-conflicting, see Definition 1. Precedence constraints between tasks
are not modified. This yields a resource aware T-closed contract Cres

ref such that

Cres
ref = (Ares

ref ,G
res
ref) �P Cfunc

ref (32)

Since Ares
ref is free of conflict, only Gres

ref requires a non-trivial scheduling analysis,
which result is specified through the semantics [[Gres

ref]], cf. Comment 5. At this
point, resources have been globally budgeted and scheduling analysis globally
performed.

• Comment: This is the illegal step, which is protected by Lemma 9.

4. Continue by decomposing contract Cres
ref into resource aware sub-contracts Cres

i
,

following the architecture specified at Step 2, in such a way that
⊗

i∈I
C res

i
�

C res
ref . The results of the next section can be used for this.

4.3.4 Dealing with non staturated contracts

The operation of contract saturation is algorithmically complex since it requires taking
complements. In this section we discuss direct sufficient conditions to support inde-
pendent development without the need for saturating contracts.

Lemma 10 Let C = (A,G) be a (possibly nonsaturated) contract such that A,G ⊆

D∗ ∪ Dω, where X is some set of variables with domain Dx and D =def
∏

x∈X Dx.

Assume X = X1 ∪ X2 and set Di =def
∏

x∈Xi
Dx. Assume a decomposition

G = G1 ∩G2 (33)
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where Gi = pr−1
D→Di

(Hi) for some Hi ⊆ D∗
i
∪Dω

i
, meaning that Gi involves only variables

belonging to Xi. Then, the following conditions on the pair (A1, A2) ensure that the two

contracts C1 = (A1,G1) and C2 = (A2,G2) satisfy C1 ⊗ C2 � C :

A1 ∪ A2 ⊇ A ∩ ¬G

¬G1 ∪ A2 ⊇ A ∩ ¬G

A1 ∪ ¬G2 ⊇ A ∩ ¬G

(A1 ∩ A2) ∪ ¬G ⊇ A

(34)

How to satisfy (33) in practice: Suppose that the set of behaviors G is defined by some
finite set E of equations involving the variables of X. We associate to E its incidence

graph GE, which is a non directed bipartite graph with E ⊎ X as set of vertices. GE has
a branch (x, E) ∈ X ×E if and only if equation E involves the variable x. Recalling that
X = X1 ∪ X2, set E1 =def {E | (x, E) ∈ GE and x ∈ X1} and similarly for E2. We have
E = E1∪E2 (the two subsets overlap in general), which induces G = G1∩G2. Proof: of
the lemma. None of the considered contracts is saturated. So we first saturate them, that
is, we redefine C = (A, (G ∪ ¬A)) and Ci = (Ai, (Gi ∪ ¬Ai)). Setting G′ =def G ∪ ¬A

and G′
i
=def Gi ∪ ¬Ai, we have, regarding the guarantees:

G′1 ∩G′2 = (G1 ∪ ¬A1) ∩ (G2 ∪ ¬A2)
= G ∪ (G1 ∩ ¬A2) ∪ (G2 ∩ ¬A1) ∪ ¬(A1 ∪ A2)

(by the first three lines of (34)) ⊆ G ∪ ¬A

which implies G′1 ∩G′2 ⊆ G′. Regarding the assumptions, we have:

(A1 ∩ A2) ∪ ¬(G′1 ∩G′2) ⊇ (A1 ∩ A2) ∪ ¬(G ∪ ¬A)
= (A1 ∩ A2) ∪ (¬G ∩ A)

(by the last line of (34)) ⊇ A

This shows the lemma. �

4.4 Modeling methodology and extensions used in the case study

In this section we discuss the use of our framework in practice. We first discuss how
scheduling components capture scheduling problems in practice. Then, in order to
capture read and write actions we propose an extension of our existing set of pure
events carried by ports.

4.4.1 Capturing scheduling problems with our framework

Scheduling problems are captured by our notion of Concrete Scheduling Component
M=(K, L). Sort K identifies the set of tasks together with their ports, induced prece-
dence conditions, and the resource allocation map. Language L allows expressing var-
ious dynamical constraints such as, for instance:

1. Bounds on the execution time of tasks, i.e., the number of busy slots for each
epoch;

2. Bounds on the duration of intervals [iτ, oτ], from start to completion events;

3. Bounds on the intervals [pt(τ), iτ] from release times to start times of tasks;

4. Minimum inter-arrival time between two successive triggers pt(τ) for a task;
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5. Bounds on the response time interval [pt(τ), po(τ)] of tasks for each output po(τ) ∈
Po(τ) produced by the task (this captures deadlines);

6. When combining the consideration of K and L it is possible, for two tasks τ1 and
τ2 such that τ1 � τ2, to express in L end-to-end bounds for the interval [iτ1 , oτ2 ].

Observe that bounds 1–3 cannot be expressed using abstract scheduling components,
but other above listed properties 4–6 can.

Figure 14: Typical real-time task parameters + timing constraints on data paths

In the literature about real-time scheduling analysis [34, 16, 47], there exist a com-
mon understanding about typical task parameters, which are important for 1) defining
timing constraints and 2) defining algorithms solving scheduling problems like check-
ing feasibility of a schedule or the schedulability of a task set. Figure 14 puts these task
parameters in the context of our model of concrete scheduling components. For a task
τ, the following parameters are typically of interest:

• r: The release or activation time of a task. This is the point in time when a new
job of a task is created and becomes ready for execution.

• s: The start time of a task. This is the point in time when the task starts executing
its job. It may coincide with the release time or delayed for example by a higher
priority task that is executing.

• f : The finishing time of a task. This is the point in time when the task finished
its current job and terminates.

• R: The response time of a task. This is the difference between the finishing time
the the release time of a task: R = f − r.

• d: A relative deadline of a task. This is the point in time when the task must
have finished its current job. Usually this is seen relative to r. A task meets its
deadline if R ≤ d.

• e: The execution time of a task. This is the time a task needs for execution on its
processor without being preempted.

So far we discussed the specification of monolithic scheduling problems. Composi-
tionality is supported by contracts, which we discuss next.

Our model of Definitions 1 and 2 carries the essence of real-time scheduling,
namely: resources, tasks, precedence conditions between tasks, and the language L

that can be used to express various timing assumptions or guarantees. Now, this model
does not offer the expressiveness we need for our application case developed in Sec-
tion 4.5.
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Figure 15: Loss and duplication of data due to under- and oversampling [21]

4.4.2 Extensions used in practice

To avoid complicating our theoretical development, we only give informal explana-
tions. So far in our current framework of Definitions 1 and 2, each task τ possesses one
trigger and one completion port. In fact, our practical application requires considering
additional ports.

Figure 15 motivates the extension with regard to reads/writes of variables. Iden-
tification of activation or input ports with output or completion ports of other tasks
represent data dependencies within a task set. In [34, Section 3.4] such dependen-
cies are discussed in terms of a task graph, which is distinquished from a precedence

graph, with the former being an extension of the precedence graph by adding different
kinds of edges between tasks denoting for example data dependencies. Such data paths
may involve under- and oversampling effects like depicted in Figure 15. Though these
dependencies do not necessarily coincide with task predences, it is typical in control
engineering to require input values to not exceed a certain age (called AgeConstraint in
[21]). At the same time, data loss due to undersampling is acceptable. This discussion
motivates the following extensions related to ports:

Input and Output ports: In addition to its trigger and completion ports pt(τ) and pc(τ),
each task τ possesses two sets of input ports Pi(τ) = {pi(τ, k) | k∈Kτ} and output

ports Po(τ) = {po(τ, ℓ) | ℓ∈Lτ}. As part of the specification of the considered
concrete scheduling component M, the relation −→� between ports introduced
in (10) can be extended to the whole set of ports associated to task τ, namely
{pt(τ)} ∪ Pi(τ) ∪ Po(τ) ∪ {pc(τ)}, with the condition that the trigger port and
completion port remain minimal and maximal in this extended order. Since ports
can be shared between tasks, the precedence relation −→� extends to the set of all
ports of the concrete scheduling component M. The reason for this extension is
that Autosar designs generally involve tasks having several control points from
which certain “posterior” tasks can be launched.

Read and Write actions: To each input port pi(τ, k) we associate some read action oc-
curring at some busy slot of the task. Similarly, to each output port po(τ, ℓ) we
associate some write action occurring at some busy slot of the task.

Semantics: The semantics [[M]] is obtained by adapting Definition 2 to the refined
ordering between start and completion of tasks and the various read and write
actions, and meeting the conflict freeness condition.
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Extending Lemma 3 regarding inclusion: In this lemma tasks get refined by using the
surjective total map ψ : T1 → T2, where T1 is the set of tasks of the refined
concrete scheduling component. Since the pair of trigger and completion ports,
which was associated to each task, is now replaced by a pair of sets of ports, we
need to replace the map ψ acting on tasks by a surjective map Ψ : P1 → P2

acting on ports. As a counterpart of Condition 1 of Lemma 3, we require that
Ψ(�1) =�2, where �i is the precedence order on Pi, for i = 1, 2. Conditions 1b
and 2 of Lemma 3 remain unchanged.

In the sequel, we will be using the above extension of our contract framework. We
now move to our application case.

4.5 Autosar compliant development of an Exterior Light Manage-

ment System

To illustrate the practical use of the framework of scheduling contracts in Autosar,
we consider as an example an excerpt of an exterior light management system for an
automobile.17 We focus on the parts responsible for sensing driver inputs and actuating
the rear direction indicator lights and brake lights. With this example we show how
typical timing requirements can be expressed in the contract framework and discuss
the added value of these contracts for negotiations between OEM and suppliers. Also
we reconsider the Autosar methodology by applying development Process 2. All of
this allows us to establish contractual specifications along the supply chain on firm
bases, even when electronic control units (ECUs) are going to be shared by different
suppliers, who independently implement software components for them. Throughout
the case-study we assume discrete time slots to have a fixed duration of 1µs.

Regarding modeling methodology and notations, we will be using both concrete
contracts (for the specification of contracts at early steps of the design) and abstract
scheduling contracts (when using the contract algebra). We will use the symbols C and
C to distinguish between them.

Step 1 of Process 2: top-level specification of the Virtual Functional Bus

BrakeLights

ext_pedal ext_brake_lamp

TurnLights

emcy

ext_rear_di_lamp

τBL
τTLtrig_TL

Figure 16: Virtual Functional Bus (VFB) architecture

We begin our study by showing how timing requirements of Autosar components
can be captured by means of the contract framework. Figure 16 shows the Virtual
Functional Bus (VFB) architecture handling the exterior light management. It specifies

17A case-study from the German SPES2020 project
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the interfaces exposed by the components to the sensors delivering driver inputs (brake
pedal, warn light button, turn signal lever)18 and to the actuators controlling the lights
(rear direction indicator lights and brake lights). The system shall control the brake
lights in accordance with the driver pressing the brake pedal. The TurnLights component
controls the direction indicator lights according to the position of the turn signal lever
and the warn lights button. The system shall also implement an emergency stop signal,
where warn lights flash when the vehicle is braked severely.

The graphical notations in Figure 16 distinguishes pure data flows (the dashed lines)
and control flows (the solid lines), where the latter ones may also carry data items. For
example the task τTL is only triggered whenever an event occurs on port trig TL. When
executing, it will read the data item from port emcy. In our context, pure data flow
wires induce no precedence constraint: reads from the wire occur independently from
corresponding writes.19

The requirements document of the system contains two timing-related requirements
R1 and R2 shown on Table 3, top. We formalize these two requirements as scheduling
contracts in the sequel of Table 3. To this end, we first capture the VFB architecture
through the sort of its component KG

VFB
: each component is represented by means of

a task; there are not further tasks since the two blocks BrakeLights and TurnLights are
considered black-box at this stage; for the same reason, no resource is allocated; we
only specify part of the ports for tasks; the orders −→◦ and −→� and precedence order
�, follow as explained in (9) and (10). For the two contracts CRi

, i = 1, 2, the sort
of their assumption Ai is specified by KA

VFB
; note that Ai is composable with Gi as

requested for a contract; the languages LAi
and LGi

are specified by using a pattern-
based contract specification language (terms in bold-face are keywords). A1 and A2

reflect and make explicit an assumption about the frequency of sensors samples of the
brake pedal position.20 The guarantees specify an interval for the latency when new
values have been computed and are sent at output ports. Using conjunction we obtain
the contract expressing the behavior required by the system requirements R1 and R2:
Ctop level = CR1

∧ CR2
, where CRi

is the abstract counterpart of CRi
—we must switch to

abstract contracts to apply the conjunction.

18We do not name some ports of the TurnLights component, as they are not relevant for the case study.
19This communication mode, in which writers and readers act quasi-periodically but with no synchroniza-

tion, was referred to as Communication by Sampling in [9].
20Note that these two assumptions were not part of the requirements. It is actually not uncommon that

some critical assumptions are implicit in requirements documents, which may, at times, become a problem.
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Req:
R1

The delay between brake sensing and activation of the brake lights
must not be greater than 25ms.

R2
The delay between brake sensing and flashing of the warn lights in
case of an emergency brake situation must not be greater than 60ms.

KG
VFB

:

T τBL, τT L

PT
Pi(τBL) = pt(τBL) = ext pedal, Po(τBL) = {emcy,ext brake lamp},
Pi(τT L) = {trig TL,emcy}, pt(τT L) = trig TL, Po(τT L) = {ext rear di lamp}

R undefined

KA
VFB

:

T τA1
VFB

, τA2
VFB

PT
Pi(τA1

VFB
) = pt(τA1

VFB
) = undefined, Po(τA1

VFB
) = {ext pedal},

Pi(τA2
VFB

) = pt(τA2
VFB

) = undefined, Po(τA2
VFB

) = {trig TL}

R undefined

CR1 :

KA1 import KA
VFB

LA1

ext pedal occurs each 20ms and

trig TL occurs each 20ms

KG1 import KG
VFB

LG1 delay between ext pedal and ext brake lamp within [0ms,25ms]

CR2 :

KA2 import KA
VFB

LA2

ext pedal occurs each 20ms and

trig TL occurs each 20ms

KG2 import KG
VFB

LG2 delay between ext pedal and ext rear di lamp within [0ms,60ms]

Table 3: “Req” (on top) displays informally the top-level requirements for VFB, as a
set {R1,R2} of requirements. The duration of the time slot is 1µs. KG

VFB
is a formal-

ization of the system architecture displayed on Figure 16 as a component sort. The
two concrete contracts CRi

, i = 1, 2 import KG
VFB

for their guarantee Gi. Assumption Ai

has a different sort sharing ports ext pedal and trig TL. Since their behavior is assumed to
be independent, they are driven by two different tasks τA1

VFB
, τA2

VFB
respectively, which

represent the environment of the VFB. Observe that LA1 = LA2 =def LA. The top-
level contract, which formalizes the requirements (under the added assumptions) is
Ctop level =def CR1 ∧ CR2 , where CRi

is the abstract counterpart of CRi
.
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Contracts in saturated form: The calculus of A/G-contracts developed in Section 4 of
companion paper [11] requires that contracts are in saturated form. Thus, if we write
Ctop level = (A,G), for A and G two abstract scheduling components, we must work
with its saturated form (A,G ∪ ¬A). For the case where assumptions do not involve
resources, we can use Lemma 5. For our top-level contract Ctop level this amounts to
replacing the conjunction LG1 ∩ LG2 derived from Table 3 by the following saturated
one: (LG1 ∩ LG2 ) ∪ ¬LA. We express it by using our pattern language, see Table 4.
To avoid heavy notations such as in Table 4, the saturation of contracts will not be

ext pedal occurs each 20ms ;
trig TL occurs each 20ms

=⇒

delay between ext pedal and ext brake lamp within

[0ms,25ms] ;
delay between ext pedal and ext rear di lamp within

[0ms,60ms]

Table 4: Getting saturated contracts in practice

explicitly performed in the specifications to follow. But we will have to take care of it
when invoking the algebra of contracts.

Notational convention: In the sequel, we will not mention, in the description of a sort,
its undefined items. For instance, referring to Table 3, we will not mention the item R,
nor the undefined input ports Pi(τ) or trigger port pt(τ). Further, we will not explicitly
link assumptions and guarantees to their sorts. Instead we take as generic convention
that a guarantee of contract CX is a language of a scheduling component with sort KG

X

and the sort of the assumption is KA
X

. These conventions are used in the sequel unless
otherwise specified.

Step 2 of Process 2: resource agnostic sub-contracts for the VFB

Assuming components BrakeLights and TurnLights shall be implemented by two different
suppliers, we now propose sub-contracts specifying a time budgeting for them, regard-
less of resource allocation. These two contracts are depicted on Table 5. For ports PT

and their association to tasks, the reader is referred to Figure 16. Note that, for these
two contracts, assumption and guarantee are composable. To ensure that CBL and CTL

are correct with respect to the top-level requirements, we must prove the refinement

CVFB � CR1 ∧ CR2 , where CVFB =def CBL ⊗ CTL (35)

Observe that (35) involves abstract contracts. In the sequel, we write CBL = (ABL,GBL)
and similarly for other abstract contracts. For C = (A,G) a contract, we set G =def

G∪¬A (interpreted as: G in the context of A), so that the saturated form for this contract
is (A,G). Using these notations and Lemma 8, to prove (35) it is enough to prove the
following:

A ∩GBL ∩GTL ⊆ GRi
, i = 1, 2 (36)

A ⊆ (ABL ∩ ATL) ∪ ¬(GBL ∩GTL) (37)
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KG
BL

:
T τBL

PT Pi(τBL) = pt(τBL) = ext pedal, Po(τBL) = {emcy,ext brake lamp}

KA
BL

:
T τA1

VFB

PT Po(τA1
VFB

) = {ext pedal}

CBL:
LA ext pedal occurs each 20ms

LG
delay between ext pedal and ext brake lamp within [0ms,25ms] and

delay between ext pedal and emcy within [0ms,5ms]

KG
TL

:

T τT L

PT
Pi(τT L) = {trig TL,emcy}, pt(τT L) = trig TL, Po(τT L) =
{ext rear di lamp}

KA
TL

:

T τA2
VFB

, τBL

PT
Po(τA2

VFB
) = {trig TL},

Pi(τBL) = pt(τBL) = ext pedal, Po(τBL) = {emcy}

CTL:
LA

emcy occurs each 20ms with jitter 5ms and

trig TL occurs each 20ms

LG delay between emcy and ext rear di lamp within [0ms,50ms]

Table 5: Concrete contracts CBL and CTL.

where A =def AR1 = AR2 . So far none of the above contracts refer to resources, hence
Lemma 5 applies. Returning to the mapping from concrete to abstract scheduling com-
ponents developed in Definition 5, we see that, if no resource is involved, the mapping
M 7→ [[M]]A is entirely determined by

1. the precedence order between tasks (or ports), and

2. the language L specified as part of M = (K, L).

Since the precedence order on tasks is unchanged when moving from Ctop level shown
on Table 3 to CVFB =def CBL ×CTL introduced in Table 5 and (35), it is enough to
reason using the pattern-based expressions shown in the tables. Wo do this without
further notice in the sequel. Denote by L1

A,TL
the first statement of LA in CTL. We first

observe that
A ∩GBL ∩GTL = A ∩GBL ∩ (GTL ∪ ¬L1

A,TL).

Reasoning on latencies, jitter, and periods, allows to infer that L1
A,TL

is discharged by
A ∩GBL:

A ∩GBL ⊆ L1
A,TL. (38)

More precisely, (38) follows from the implication shown on Table 6. Thus,

A ∩GBL ∩GTL = A ∩GBL ∩GTL
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ext pedal occurs each 20ms ;
trig TL occurs each 20ms ;
delay between ext pedal and ext brake lamp within

[0ms,25ms] ;
delay between ext pedal and emcy within [0ms,5ms]

=⇒

emcy occurs each 20ms with jitter 5ms

Table 6: Proving (38).

follows. Again, reasoning on latencies, jitter, and periods, allows to prove that A∩GBL∩GTL

⊆ GRi
holds for i = 1, 2, which shows (36). Focus next on (37). We have ABL ∩ ATL =

A ∩ L1
A,TL

. Hence,

(ABL ∩ ATL) ∪ ¬(GBL ∩GTL) = (A ∩ L1
A,TL) ∪ ¬(GBL ∩GTL)

⊇ (A ∩ L1
A,TL) ∪ ¬GBL

(by (38)) ⊇ (A ∩ L1
A,TL) ∪ (A ∩ ¬L1

A,TL) = A

which proves (37), and thus also (35).

Discussion: The above step of our contract based design methodology leads to the
following important observations:

• Verification tools exist that would make the above reasoning automatic. Our pur-
pose, however, in this use case, is to demonstrate that reasoning with contracts
does not need to be performed fully automatically. Here, local properties are
considered easy for the human and are thus verified manually. In contrast, lift-
ing local properties of contracts to system wide properties is error prone (risk of
circular reasoning) and thus relies on the formal algebra of contracts. How as-
sumptions get discharged when composing contracts must be handled carefully,
as our analysis of refinement (35) showed.

• Manual reasoning can be complemented by the use of observers. Again, it is
important that the use of observers when component composition and viewpoint
combination both occur is performed correctly. Our development in Section 3.6
of companion paper [11] provides the formal support for this. For the pattern
based language used here, a framework for checking refinement of contracts
using an observer based strategy is described in [27].

So far we did not consider target architecture for computing, that is, we did not consider
resources. If tasks get allocated to resources, the need to schedule tasks sharing a same
resource may be a cause of failure to meet the top-level contract. In the next section,
we further refine our contracts to account for resources.

Steps 3 and 4 of Process 2: budgeting resources using contracts

Considering resources in contracts occurs at a next stage of the design process, at which
1) the target platform and its provided resources are known and 2) software components

RR n° 8760



Contracts for System Design 50

RIECANCBE

TurnLights_SC

0

emcy

ext_rear_di_lamp

BrakeLights_SC BrakeLampActuator

ext_pedal

lamp_out

ext_brake_lamp

RearDirActuator

rear_dir_out

CAN

BL


CBE

BL
 RIE

BL


trig_BLAlamp_in

rear_dir_in

CBE

TL


trig_TL

CAN

TL
 RIE

TL


trig_RDA

ms

CLK

10

1


ms

CLK

10

2


Figure 17: Deploying VFB on computing and communication resources.

have been decomposed such that they can be mapped to platform resources.21

For our case study we assume a simple target architecture consisting of two ECUs,
Central Body ECU (CBE) and Rear Indicator ECU (RIE), connected by a CAN bus. The VFB

architecture shown in Figure 16 is further refined and then deployed as the architecture
shown in Figure 17. Observe that the deployment architecture does not match the high-
level architecture of Figure 16. Instead, the deployment is driven by the separation of
the sensing and control parts from the actuation part. The first parts should be deployed
on CBE and the latter part on RIE. The blue boxes denote the previous components
BrakeLights and TurnLights from the architecture shown on Figure 16. The objective here
is to define sub-contracts Cres

BL
and Cres

TL, with the architecture shown in Figure 17. We
know this will not yield a contract refinement. Nevertheless, we will comply with the
steps 3 and 4 of the safe Process 2.

Resource budget: The OEM provides a resource budget for ECUs CBE and RIE and
the CAN bus. The resource reservation for the BrakeLights component is modelled by
the tasks shown at the top of Figure 17. At the bottom of that figure the tasks of the
TurnLights components are depicted. Allocation of tasks to resources is indicated by
the brown boxes. The OEM specfies that with a period of 20ms a time window of 2–
3ms is available for component BrakeLight SC for sensing and control of the brake light
part, and additional 2ms for the calculation of a possible emergency brake situation.
This is modeled by the task τCBE

BL
in Figure 17, which has an execution time interval of

[4ms, 5ms] assigned. Further, task τCBE
BL

triggers task τCAN
BL

, which has an execution time
of 250µs. The task τRIE

BL
is periodically triggered each 10ms by a timer of the operating

system (represented by τ10ms
CLK1), reading the value of lamp in and sending control values

to the actuator via port ext brake lamp. Similar execution time budgets are assigned to
the remaining tasks.

Performing Step 3 of Process 2: To perform Step 3 of Process 2 we proceed as follows.
We first consider the top-level contract in saturated form Ctop = (A; (G1 ∩G2) ∪ ¬A),
where requirement R1 is represented by contract (A,G1) and similarly for R2. Since

21In fact, Step 2 of Process 2 was not mandatory. The designer can directly move from Step 1 to Step 3
of Process 2. Step 2 was developed for illustration purposes, to show the difference when resources get
considered.
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it is a resource agnostic contract, Lemma 5 applies and provides us with a concrete
form for this contract, denoted by Ctop = (Atop,Gtop). This top-level contract is then
modified as follows:

Regarding assumptions: Tasks relevant to the assumption Atop remain unchanged, namely
τA1

VFB
and τA2

VFB
. We assign them resources that are different, and different from the

resources shown on Figure 17. We thus comply with Condition 3 of Lemma 9.

Regarding guarantees: We split tasks τBL and τTL as shown on Figure 17, which results
in a change of the sort of guarantee Gtop that complies with the Conditions 1 of
Lemma 3. This splitting results in the creation of new ports. In addition, we want
this new set of tasks to be scheduled according to fixed priorities. The additional
information provided when specifying the resource budget (see above) is trans-
lated to constraints on the language of the guarantees, which, again, complies
with the Conditions 1 of Lemma 3.

Performing this results in the resource aware contract Cres
top = (Ares

top,G
res
top) shown in Ta-

ble 7 that complies with the conditions of Lemma 9. At this point we have implemented
Step 3 of Process 2.

Performing Step 4 of Process 2: We now proceed to Step 4, which consists in decom-
posing this resource aware global contract into sub-contracts.

To this end we first map concrete contract Cres
top to its abstract form C res

top , which in
turn is amenable of Lemma 10. Besides assigning concurrent resources to tasks, map-
ping Ares

top to Ares
top is immediate since resource allocation causes no conflict. Mapping

Gres
top to Gres

top, however, requires solving a global schedulability analysis. We thus per-
form this, which results in strengthened statements in out pattern language, to reflect
the semantics of the scheduling policy. Table 8 shows the resulting guarantee.

Then, as a final step, we proceed to the decomposition by using Lemma 10, result-
ing in contracts Cres

BL
and Cres

TL
as shown in Table 9. The languages of their assumptions

and guarantees are obtained by projecting, respectively, to the sorts Kres
G,BL

, Kres
A,BL

and
Kres

G,TL
, Kres

A,TL
, the language resulting from the scheduling analysis that has been carried

out to compute the semantics of Cres
top. The asymmetry between local assumptions Ares

BL

and Ares
TL

is justified by the chosen priorities: Each task τ belonging to the guarantee
of contract Cres

BL
has a higher priority than any task τ′ of the guarantee of contract Cres

TL
,

which is allocated to the same resource as τ.
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Kres
G,top:

T τCBE
BL

, τCAN
BL

, τRIE
BL

, τCLK1
10ms

τCBE
T L

, τCAN
T L

, τRIE
T L

, τCLK2
10ms

PT

Pi(τCBE
BL

) = pt(τCBE
BL

) = ext pedal, Po(τCBE
BL

) = {emcy,lamp out},
Pi(τCAN

BL
) = pt(τCAN

BL
) = lamp out, Po(τCAN

BL
) = {lamp in},

Pi(τRIE
BL

) = {trig BLA,lamp in}, pt(τRIE
BL

) = trig BLA,
Po(τRIE

BL
) = {ext brake lamp}, Po(τCLK1

10ms
) = {trig BLA}

Pi(τCBE
T L

) = pt(τCBE
T L

) = trig TL, Po(τCBE
T L

) = {rear dir out},
Pi(τCAN

T L
) = pt(τCAN

T L
) = rear dir out, Po(τCAN

T L
) = {rear dir in},

Pi(τRIE
T L

) = {trig RDA,rear dir in}, pt(τRIE
BL

) = trig RDA,
Po(τRIE

T L
) = {ext rear di lamp}, Po(τCLK2

10ms
) = {trig RDA}

R
R = {CBE,CAN,RIE} and ρ(τCBE

BL
) = CBE, ρ(τCAN

BL
) = CAN, ρ(τRIE

BL
) =

RIE

Kres
A,top:

T τA1
VFB

, τA2
VFB

PT Po(τA1
VFB

) = {ext pedal}, Po(τA2
VFB

) = {trig TL}

Cres
top:

LA
ext pedal occurs each 20ms and

trig TL occurs each 20ms

LG

exeT(τCBE
BL

) within [4ms,5ms] , exeT(τCAN
BL

) = 250µs , exeT(τRIE
BL

) =
2ms
exeT(τCBE

T L
) = 14ms , exeT(τCAN

T L
) = 250µs , exeT(τRIE

T L
) = 4ms

prio(τCBE
BL

) > prio(τCBE
T L

) , prio(τCAN
BL

) > prio(τCAN
T L

) , prio(τRIE
BL

) >
prio(τRIE

T L
)

delay between ext pedal and ext brake lamp within [0ms,25ms] and

delay between ext pedal and ext rear di lamp within [0ms,60ms]

Table 7: Concrete contract Cres
top obtained by splitting tasks and adding resources to

contract Ctop.

C res
top : LG

exeT(τCBE
BL

) within [4ms,5ms] , exeT(τCAN
BL

) = 250µs , exeT(τRIE
BL

) =
2ms
exeT(τCBE

T L
) = 14ms , exeT(τCAN

T L
) = 250µs , exeT(τRIE

T L
) = 4ms

prio(τCBE
BL

) > prio(τCBE
T L

) , prio(τCAN
BL

) > prio(τCAN
T L

) , prio(τRIE
BL

) >
prio(τRIE

T L
)

delay between ext pedal and ext brake lamp within [4.25ms,15.25ms]
and

delay between ext pedal and ext rear di lamp within [12.25ms,46.25ms]
and

delay between ext pedal and emcy within [4ms,5ms] and

delay between emcy and ext rear di lamp within [8.25ms,41.25ms]

Table 8: Guarantee of contract C res
top obtained by scheduling analysis of Cres

top.
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Kres
G,BL

:

T τCBE
BL

, τCAN
BL

, τRIE
BL

, τCLK1
10ms

PT

Pi(τCBE
BL

) = pt(τCBE
BL

) = ext pedal, Po(τCBE
BL

) = {emcy,lamp out},
Pi(τCAN

BL
) = pt(τCAN

BL
) = lamp out, Po(τCAN

BL
) = {lamp in},

Pi(τRIE
BL

) = {trig BLA,lamp in}, pt(τRIE
BL

) = trig BLA,
Po(τRIE

BL
) = {ext brake lamp}, Po(τCLK1

10ms
) = {trig BLA}

R
R = {CBE,CAN,RIE} and ρ(τCBE

BL
) = CBE, ρ(τCAN

BL
) = CAN, ρ(τRIE

BL
) =

RIE

Kres
A,BL

:
T τA1

VFB

PT Po(τA1
VFB

) = {ext pedal}

Cres
BL

:

LA ext pedal occurs each 20ms

LG

exeT(τCBE
BL

) within [4ms,5ms] , exeT(τCAN
BL

) = 250µs , exeT(τRIE
BL

) =
2ms
prio(τCBE

BL
) > prio(τCBE

T L
) , prio(τCAN

BL
) > prio(τCAN

T L
) , prio(τRIE

BL
) >

prio(τRIE
T L

)
delay between ext pedal and ext brake lamp within [4.25ms,15.25ms]
and

delay between ext pedal and emcy within [4ms,5ms]

Kres
G,TL

:

T τCBE
T L

, τCAN
T L

, τRIE
T L

, τCLK2
10ms

PT

Pi(τCBE
T L

) = pt(τCBE
T L

) = trig TL, Po(τCBE
T L

) = {rear dir out},
Pi(τCAN

T L
) = pt(τCAN

T L
) = rear dir out, Po(τCAN

T L
) = {rear dir in},

Pi(τRIE
T L

) = {trig RDA,rear dir in}, pt(τRIE
BL

) = trig RDA,
Po(τRIE

T L
) = {ext rear di lamp}, Po(τCLK2

10ms
) = {trig RDA}

R
R = {CBE,CAN,RIE} and ρ(τCBE

T L
) = CBE, ρ(τCAN

T L
) = CAN, ρ(τRIE

T L
) =

RIE

Kres
A,TL

:

T τA2
VFB

, τCBE
BL

, τCAN
BL

, τRIE
BL

, τCLK1
10ms

PT import PT of Kres
G,BL

, Po(τA2
VFB

) = {trig TL}

R import R of Kres
G,BL

Cres
TL

:

LA

trig TL occurs each 20ms and

emcy occurs each 20ms with jitter 1ms and

import LG of Cres
BL

LG

exeT(τCBE
T L

) = 14ms , exeT(τCAN
T L

) = 250µs , exeT(τRIE
T L

) = 4ms
prio(τCBE

BL
) > prio(τCBE

T L
) , prio(τCAN

BL
) > prio(τCAN

T L
) , prio(τRIE

BL
) >

prio(τRIE
T L

)
delay between emcy and ext rear di lamp within [8.25ms,41.25ms]

Table 9: Contracts Cres
BL

and Cres
TL

obtained by projecting the result of the scheduling
analysis that has been carried out to compute the semantics of Cres

top.
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As we obtained the guarantees of Cres
BL

and Cres
TL

by projections of the result of the
scheduling analysis, (33) holds. So it remains to prove (34). Denote by L1

A,TL
the first

statement of LA in Cres
TL

and by L2
A,TL

the second statement. Then

Ares
top = Ares

BL ∩ L1
A,TL

holds. Focus now on the conditions of (34). For our contracts they translate to

Ares
BL ∪ (L1

A,TL ∩ L2
A,TL ∩Gres

BL) ⊇ Ares
top ∩ ¬(Gres

BL ∩Gres
TL) (39)

¬Gres
BL ∪ (L1

A,TL ∩ L2
A,TL ∩Gres

BL) ⊇ Ares
top ∩ ¬(Gres

BL ∩Gres
TL) (40)

¬Gres
TL ∪ Ares

BL ⊇ Ares
top ∩ ¬(Gres

BL ∩Gres
TL) (41)

Ares
BL ∩ (L1

A,TL ∩ L2
A,TL ∩Gres

BL) ∪ ¬(Gres
BL ∩Gres

TL) ⊇ Ares
top (42)

Since Ares
top ⊆ Ares

BL
holds, conditions (39) and (41) are satisfied. For the remaining

conditions observe that Ares
BL
∩ Gres

BL
⊆ L2

A,TL
holds. This can be proved by reproducing

the same reasoning as shown in Table 6. With this, (40) and (42) are implied by

¬Gres
BL ∪ Ares

top ⊇ Ares
top ∩ ¬(Gres

BL ∩Gres
TL)

Ares
top ∩Gres

BL ∪ ¬Gres
BL ∪ ¬Gres

TL ⊇ Ares
top

and both conditions are satisfied. Whence all conditions of (34) are satisfied and con-
sequently C res

BL
⊗ C res

TL
� C res

top holds. So this concludes step 4 of Process 2. That means
contracts Cres

BL
and Cres

TL
can be refined and implemented independently from each other,

possibly by different suppliers. System integration remains safe.

4.6 Summary and discussion

We have illustrated the use of contracts in the context of Autosar. Our application case
was an example of semi-automatic—or semi-manual—use of contracts:

• Manual reasoning was applied for checking undecidable or computationally com-
plex properties of small, local, sub-systems. Manual reasoning is not a formal
analysis but it can be reasonably done and cross-checked as part of V&V activi-
ties;

• Combining small local proofs into a global system-level proof is error prone if
done manually. The algebra of contracts offers formal support for this combina-
tion step.

Task scheduling is a resource allocation problem, which, by essence, can only be solved
globally. Thus it was certainly not obvious to find a path toward independent develop-
ment. Supporting the Autosar methodology by a strict contract based approach was
not feasible. It is, however, the merit of our approach:

• To properly bound the development steps that do not comply with the rules of
contract based design, and

• To explain how risks at system integration can still be mitigated, with a clear and
limited additional discipline regarding resource segregation.
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A smooth transition of Autosar toward using contracts seems feasible. Indeed, the
current Autosar release is expressive enough to represent real-time contracts. Using
the concept of timing chains, both end-to-end deadlines as well as assumed response
times for component execution and communication can be expressed. We think that
the contract framework developed and used throughout this case-study is particularily
valuable for compositional reasoning about scheduling of applications distributed over
several resources. This kind of reasoning is currently not supported by Autosar and it
could be worthwhile to provide support for it in the autosar timing extensions.

On a more general level about contracts and Autosar, it has to be noted that sup-
port for formal specification of different viewpoints is not provided—currently there is
no established notion of viewpoints and, hence, no anchor to easily migrate from the
current setting (timing and safety extensions) to one supporting multiple viewpoints.
For example, viewpoints such as power or security are interesting candidates.

4.7 Bibliographical note

This short bibliographical note is divided into two parts: 1) formal studies related to
Autosar standard, and 2) compositional task scheduling.

Formal studies related to Autosar: Autosar22 is a worldwide development partnership
of vehicle manufacturers, suppliers and other companies from the electronics, semicon-
ductor and software industry, see [5] for an official introduction to 10 years of Autosar
developments. The following sentence taken from this reference properly defines what
the scope of Autosar is: “Autosar is not going to standardise the functional internal
behaviour of an application, for example algorithms, but the content exchanged be-
tween applications.” Regarding our concerns, Autosar provides, as part of its timing
extension, standards to express the syntax part of a real-time scheduling problem (re-
ferring to Definition 1, means to specify sorts) and selected features of the language
part (basic timing properties such as periods, latencies etc.). It says nothing regarding
how to use these interface data to guarantee safe integration from the timing point of
view.

While a comprehensive formal discussion about the execution semantics of AU-
TOSAR models does not exist, there is some literature addressing parts of it. For ex-
ample, in [29] the authors proposed an abstract formal model to represent AUTOSAR
OS programs with timing protection. Their goal is to compute on the one hand schedu-
lability conditions for a set of periodic tasks and on the other hand allowed maximal
preemption times by interrupts while keeping the task set schedulable. Whether this
development is compositional is not discussed. In [24] the authors developed a formal
model for an AUTOSAR multicore RTOS based on the language Promela. The model
includes transition systems for tasks, interrupt service routines and also considers crit-
ical sections of task, as well as includes the priority ceiling protocol. Besides enabling
model checking and detecting for example deadlocks and livelocks, the primary goal is
to generate test cases based on the model. While the model has a certain level of detail
with regard to the execution semantics of the operating system, its lacks an explicit
notion of time.

Regarding the AUTOSAR timing extensions, in [3] a case study is developed and
it is discussed how scheduling analysis techniques apply to an AUTOSAR model en-
riched by concepts from these timing extensions. The work [2] is interesting since
the comparision of MARTE and the AUTOSAR timing extensions found in this paper,

22http://www.autosar.org/
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also includes a discussion how specifications are composed. In the AUTOSAR timing
extensions a notion of composition is only discussed for end-to-end delays assigned
to software components. These delays may be decomposed along with the component
architecture. At a later step scheduling analysis determines whether required delays
for end-to-end communication are indeed satisfied. Different semantics for end-to-
end communication delays are supported. [25] provides a formal foundation for them.
MARTE, on the other hand, considers an assumption/guarantee style for the specifi-
cation of non-functional properties, making it also a suitable language to specify con-
tracts.

It should be noted that these works based on the AUTOSAR timing extensions
or on the Timing Augmented Description Language (e.g. [42]) stay on the level of
timing properties well established in classical scheduling theory like periods, latencies
etc. So composition is discussed based on these properies. However, they do not offer
a notion of independent implementability that would also encompass the deployment
of multiple components to the same ECUs of a target platform. To support this, task
scheduling itself has to be addressed in a compositional manner.

Compositional task scheduling: The following text is quoted verbatim from the pio-
neering work by Insup Lee et al. [48]: “Real-time systems could benefit from component-
based design, only if components can be assembled without violating compositional-
ity on timing properties. When the timing properties of components can be analyzed
compositionally, component-based real-time systems allow components to be devel-
oped and validated independently and to be assembled together without global valida-
tion.” The reader is referred to this paper for earlier related work from the real-time
scheduling community. This paper develops a model of scheduling interface collecting
the workloads, resources, and scheduling policy, addressing the above quoted objec-
tives. Concepts and techniques used originate from the real-time scheduling commu-
nity. Specific classes of hard real-time system scheduling problems are considered,
namely periodic models and bounded-delay models. This group of authors has further
developed the same track with the same techniques, enlarging the classes of real-time
scheduling problems considered. This significant body of work is nicely summarized in
the tutorial paper [1] and implemented through the CARTS tool for compositional anal-
ysis of real-time systems [43]. One interesting application case concerns the scheduling
of ARINC partitions [22]. The approach generally followed in these works is the fol-
lowing. The schedulability problem is structured as a hierarchy of subproblems. The
solution of each subproblem is summarized using some form of interface (depending on
the particuliar approach) and, at the next upper level, the amount of additional resource
and deadline conditions is computed as the solution of some optimization problem.

Lothar Thiele and co-workers have developed for real-time scheduling an elegant
algebraic framework called the Real-Time Calculus (RTC) [52, 53, 36]. This algebraic
framework builds on top of the foundational work on max-plus algebra, initially de-
veloped in the formerly available book Synchronization and Linearity, (1992), by F.
Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat. This framework was developed to
endow the class of event graphs (the subclass of conflict free Petri nets) with an algebra
of linear input-output transfer functions. Components of the RT Calculus are thus lin-
ear transfer functions in this max-plus algebra and interface behaviors are expressed as
arrival curves, which specify lower and upper bounds for event arrivals. Our Figure 10
could indeed be interpreted in this way, where wires carry flows of events driven by this
algebra—in fact, our mapping from concrete to abstract scheduling components (Def-
inition 5) is a trick for representing Thiele’s max-plus algebra by a dataflow composi-
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tion. Reference [52] considers real-time interfaces where assumptions and guarantees
are expressed by means of arrival curves on inputs and outputs, respectively. Refine-
ment of such interfaces is characterized and a parallel composition is defined. So-called
adaptive interfaces are proposed in which arrival curves are propagated throughout the
network of components, compositionally. This topic is further developed in [51]. A
blending of this model with timed automata is studied in [33] together with a mapping
of RTC-based real-time interfaces to timed automata. The very interesting work [35]
applies and develops similar techniques for distributed heterogeneous time-triggered
automotive systems.

Our work in this section has its roots in [50, 45, 46, 49]. Our aim is different
from the previous set of references and complements it nicely. Whereas previous ref-
erences considered restricted classes of real-time scheduling problems and addressed
them with complete algorithmic solutions, our model makes no restriction on the class
of scheduling problems, except that the allocation of tasks to resources is static and
so are precedence conditions. In turn, we provide a full fledged contract algebra de-
composing system wide problems into an architecture of (smaller) local scheduling
problems, seen as “proof obligations”, but, we do not discuss how these proof obli-
gations can be automatically or algorithmically checked. These proof obligations can
be either delegated to existing real-time scheduling algorithms (see the previous ref-
erences) or addressed manually, as we did here in Section 4.5, or by using a model
checking engine for a restricted class of scheduling contracts, as we did in Section 4.5.
That is, we favor generality over full automatization—still, the lifting of local proofs to
system-wide solutions is supported by our contract algebra. In doing so we specifically
target OEM-supplier relations in a supplier chain, by providing support for decompos-
ing a system-level scheduling contract into sub-contracts for suppliers while guarantee-
ing safe system integration, and support for fusing different viewpoints on the system
using contract conjunction—either relavant to schedulability analysis or to different as-
pects of the system. With comparison to the above four references [50, 45, 46, 49], our
development of Section 4.2 fully matches the meta-theory of contracts of companion
paper [11]. This way, we inherit refinement and parallel composition (like some previ-
ous real-time interface models offer), and also a conjunction, which allows to specify
real-time scheduling problems in a “requirement engineering” style.

We would like to conclude this discussion by the following question the reader may
want to ask: did we really reuse the material of our companion “theory” paper [11]?
Can we really claim that the theory developed there has a wide applicability? The point
is that the development made in Section 4.2 cannot be claimed trivial: is it always the
case? Here are our answers: First, the reader should not underestimate the cost of
upgrading a framework of components (offering a × but no refinement nor conjunc-
tion) to a corresponding framework of contracts—the whole paper [11] illustrates how
much it can cost. Second, and most importantly, the solid foundations of [11] pro-
vide very precise guidelines regarding what a framework of components should offer.
These guidelines were indeed extremely useful in developing our model of scheduling
components.

5 Conclusion

This paper complements companion paper [11] by developing two application cases.
The first application case, the parking garage example, examplified the benefits of

using contracts in requirement engineering. We illustrated the use of viewpoints to
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support modular development of top-level requirements. We showed how responsibili-
ties can be accurately specified, by distinguishing guarantees offered from assumptions
on the context of use throughout the entire contract based development process. Our
encoding of requirements as Modal Interfaces formalizes the requirements and allows
for their execution and exploration. This was the basis for giving formal support to
important certification related properties of requirements such as consistency, compat-
ibility, and completeness. While moving from a contract specified at a certain level, to
an architecture of sub-contracts at the next level, is generally meant to be performed by
hand and then formally verified using refinement checks, we illustrated in our exam-
ple the possibility to synthesize this refinement step automatically, by only providing a
structural specification of the refined architecture, à la SysML. This was made possible
thanks to the availability of the MICA tool [17].

Open issues and future work remain regarding the use of multiple viewpoints. Our
viewpoints in the parking garage example were homogeneous in nature. Developing
and then fusing heterogeneous viewpoints such as function, safety/reliability, schedu-
lability analysis, quantitative resources, and more, remains largely open. Heterogene-
ity has not been much considered. It is usually handled at the level of component
frameworks. As an example, this leads to embedding function and safety/reliability
frameworks into a unifying, more general, framework from which both views can be
recovered by specialization. Doing so results in issues of computational complexity
or even undecidability, due to the move to a more general modeling framework. We
conjecture that our meta-theory, by being “framework agnostic”, helps to manipulate
contracts that are specified as pairs of heterogeneous sets of environments and imple-
mentations. This remains to be explored.

Our second application case addressed a key part of the Autosar development pro-
cess. Autosar advocates a design methodology by which the functions, structured into
tasks, are first designed independently of the computing and communication infras-
tructure, assuming a virtual Autosar run time environment. We studied the key step by
which time budgets are then allocated to tasks and computing resources are assigned.
Lack of formal support in Autosar methodology makes this step difficult today, with
little guaranteed at system integration phase. We showed the benefit of using contracts
for this step. To this end, we developed an adaptation of the Assume/Guarantee con-
tracts of companion paper [11] that we call scheduling contracts.

Our study illustrated the semi-formal/semi-manual use of contracts, which we be-
lieve, is key to enable a smooth transition to contract based design. A contract engine
(such as the MICA tool presented in Section 3) can be used in combination with both
manual reasoning and dedicated formal verification engines as the basis for future de-
velopment that will make contracts main stream.
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