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Abstract: Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems,

and more, involve systems design as a critical step. Complexity has caused system design times and costs

to go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods and

standard practices do not seem to scale with complexity so that novel design methods and tools based on a

strong theoretical foundation are sorely needed. Model-based design as well as other methodologies such

as layered and compositional design have been used recently but a unified intellectual framework with a

complete design flow supported by formal tools is still lacking.

Recently an “orthogonal” approach has been proposed that can be applied to all methodologies introduced

thus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contract-

based design. Several results have been obtained in this domain but a unified treatment of the topic that can

help in putting contract-based design in perspective is missing. This paper intends to provide such treatment

where contracts are precisely defined and characterized so that they can be used in design methodologies

such as the ones mentioned above with no ambiguity. In addition, the paper provides an important link

between interface and contract theories to show similarities and correspondences.

This paper is complemented by a companion paper [30] where contract based design is illustrated through

use cases.

These results were announced in the report [29]

Key-words: system design, component based design, contract, interface.



Contrats pour la conception de systèmes: théorie

Résumé : La conception de système constitue une étape clé pour la conception des

avions, des trains, des voitures, etc. La complexité croissante des ces systèmes, large-

ment due au logiciel, est source de retards et dépassements de coût. Les ”bonnes pra-

tiques” ne suffisent pas à régler ce problème et de nouvelles approches sont nécessaires.

La conception fondée sur des modèles, complétée par la conception par niveaux et par

composants, constituent un premier progrès. Récemment, une approche originale a été

proposée, qui peut s’appliquer à toutes les méthodologies ci-dessus: la conception par

contrats. De nombreux résultats existent dans ce domaine mais il manquait une vision

unifiée qui mette en perspective des approches apparemment différentes telles que les

contrats hypothèse/garantie ou les interfaces. Cet article a pour ambition d’apporter

une telle vision unifiée.

Cet article est complété par l’article [30] où la conception par contrats est illustrée

sur des cas d’application.

Mots-clés : conception des systèmes, composant, contrat, interface.
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1 Introduction: why contract based design?

System companies such as automotive, avionics and consumer electronics companies

are facing significant difficulties due to the exponentially raising complexity of their

products coupled with increasingly tight demands on functionality, correctness, and

time-to-market. The cost of being late to market or of imperfections in the products is

staggering as witnessed by the recent recalls and delivery delays that system industries

had to bear. Many challenges face the system community to deliver products that are

reliable and effective.

Design task Tasks Tasks Tasks

delayed delayed delayed

automotive automation medical

System integration 63.0% 56.5% 66.7%

test, and verification

System architecture 29.6% 26.1% 33.3%

design and specification

Software application 44.4% 30.4% 75.0%

and/or middleware

development and test

Project management 37.0% 28.3% 16.7%

and planning

Design task Tasks Tasks Tasks

causing delay causing delay causing delay

automotive automation medical

System integration 42.3% 19.0% 37.5%

test, and verification

System architecture 38.5% 42.9% 31.3%

design and specification

Software application 26.9% 31.0% 25.0%

and/or middleware

development and test

Project management 53.8% 38.1% 37.5%

and planning

Table 1: Difficulties related to system integration. The table displays, for each indus-

trial sector, the percentage of tasks delayed and tasks causing delays, for the different

phases of system design.

The first issue is the complexity of systems, regarding both architecture alternatives,

the embedded software, the underlying platform of predefined components, and system

integration. Table 11 displays the share of these different items in the difficulties related

to systems complexity. This table highlights the importance of system integration,

where corrections occur late in the design flow and are therefore very costly.

System integration is particularly critical for OEMs managing the integration and

maintenance process with subsystems that come from different suppliers who use dif-

ferent design methods, different software architectures, and different hardware plat-

1VDC research, Track 3: Embedded Systems Market Statistics Exhibit II-13 from volumes on automo-

tive/industrial automation/medical, 2008

RR n° 8759
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forms. Technical annexes to commercial contracts between OEM and suppliers are

the first source of problems. Specifications used for procurement should be precise,

unambiguous, and complete. Indeed, a recurrent reason for failures causing deep it-

erations across supply chain boundaries rests in incomplete characterizations of the

conditions for use and environment of the system to be developed by the supplier, such

as missing information about failure modes and failure rates, missing information on

possible sources of interference through shared resources, and missing boundary con-

ditions. This highlights the need to explicate assumptions on the design context in

OEM-supplier commercial contracts.

Multiple lines of attack have been developed to cope with the above difficulties.

Regarding holistic approaches, the iterative and incremental development [134]

was first proposed several decades ago. More recently, of particular interest to the

development of embedded systems were: the V-model process, component-based de-

sign and model-based development [165, 130, 107, 47, 163, 35, 164, 172, 17, 190, 79],

virtual integration and Platform-Based Design [175, 93, 191, 101, 78].

Another key answer to the complexity of OEM-supplier chains has been standard-

ization. Standardization concerns both the design entities as well as the design pro-

cesses, particularly through the mechanism of certification. Examples of these stan-

dards in the automotive sector include the recently approved requirement interchange

format standard RIF2, the Autosar3 de-facto standard, the OSEK4 operating system

standard, standardized bus-systems such as CAN5 and Flexray6, standards for “car2X”

communication, and standardized representations of test supported by ASAM7. Exam-

ples in the aerospace domain include ARINC standards8 such as the avionics applica-

tions standard interface, IMA, and RTCA9 communication standards. In the automa-

tion domain, standards for interconnection of automation devices such as Profibus10

are complemented by standardized design languages for application development such

as Structured Text. Harmonizing or even standardizing key processes (such as devel-

opment processes and safety processes) provides for a further level of optimization in

interactions across the supply chain. Shared use of Product Lifecycle Management

(PLM)11 databases across the supply chain offers further potentials for cross-supply

chain optimization of development processes. Also, in domains developing safety re-

lated systems, domain specific standards clearly define the responsibilities and duties

of companies across the supply chain to demonstrate functional safety, such as in the

ISO 2626212 for the automotive domain, IEC 6150813 for automation, its derivatives

2http://www.w3.org/2005/rules/wiki/RIF_Working_Group
3http://www.autosar.org/
4http://www.osek-vdx.org/
5http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&searchSubmit=

Search&sort=rel&type=simple&published=true
6http://www.flexray.com/
7http://www.asam.net/
8http://www.aeec-amc-fsemc.com/standards/index.html
9http://www.rtca.org/

10http://www.profibus.com/
11PLM: Product Lifecycle Management [179]. PLM centric design is used in combination with virtual

modeling and digital mockups. PLM acts as a data base of virtual system components. PLM centric design

is, for example, deployed at Dassault-Aviation http://www.dassault-aviation.com/en/aviation/

innovation/the-digital-company/digital-design/plm-tools.html?L=1.
12http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
13http://www.iec.ch/functionalsafety/
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Cenelec EN 50128 and 5012614 for rail, and Do 178 B15 for civil avionics.

Requirement capture and engineering is the design activity where relations between

actors of the supply chain are legally and technically formalized. It plays thus a key role

in managing system integration well. Efforts have been made by paying close attention

to book keeping activities, i.e., the management of the requirement descriptions and

corresponding traceability support (e.g., using commercial tools such as Doors16 in

combination with Reqtify17) and by inserting whenever possible precise formulation

and analysis methods and tools.

The way system design challenges have been addressed so far leaves huge opportu-

nities for improvements by relying on contract-based design. Contracts in the layman

use of the term are established when an OEM must agree with its suppliers on the sub-

system or component to be delivered. Contracts can also be used through their technical

annex in concurrent engineering, when different teams develop different subsystems or

different aspects of a system within a same company. Contracts involve a legal part

binding the different parties and a technical annex that serves as a reference regard-

ing the entity to be delivered by the supplier—in this work we focus on the technical

facet of contracts. We now briefly summarize how contracts could improve the current

situation in different ways.

Contribution 1 Addressing the Complexity of Systems.

While component based design has been a critical step in breaking systems complexity,

it does not by itself provide the ultimate answer. When design is being performed at a

considered layer, implicit—and generally hidden—assumptions regarding other layers

(e.g., computing resources) are typically invoked by the designer. Actual properties of

these other layers, however, cannot be confronted against these hidden assumptions.

Similarly, when components or sub-systems are abstracted via their interfaces in com-

ponent based design, it is generally not true that such interfaces provide sufficient infor-

mation for other components to be safely implemented based on this sole interface. By

pinpointing responsibilities and making hidden assumptions explicit, contract-based

design provides the due discipline, concepts, and techniques to cope with this. One

challenge for component-based design of embedded systems is to provide interface

specifications that address behaviors, not only type properties of interfaces, and are rich

enough to cover all phases of the design cycle. This calls for including non-functional

characteristics as part of the component interface specifications, which is best achieved

by using multiple viewpoints [28, 34]. Contract-based design supports multiple view-

points by giving a mathematically precise answer to what it means to fuse them.

Contribution 2 Addressing OEM-Supplier Chains.

The problems raised by the complexity of OEM-Supplier Chains are indeed the core

target of contract-based design. By making the explication of implicit assumptions

mandatory, contracts help assign responsibilities to a precise stake holder for each de-

sign entity. By supporting independent development of the different sub-systems while

guaranteeing smooth system integration, they orthogonalize the development of com-

plex systems. Contracts are thus adequate candidates for a technical counterpart of the

14http://www.cenelec.eu/Cenelec/CENELEC+in+action/Web+Store/Standards/default.

htm
15http://www.do178site.com/
16http://www-01.ibm.com/software/awdtools/doors/productline/
17http://www.3ds.com/products-services/catia/capabilities/

catia-systems-engineering/requirements-engineering/reqtify/
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legal bindings between partners involved in the distributed and concurrent development

of a system.

Contribution 3 Managing Requirements.

So far the task of getting requirements right and managing them well has only got

support for sorting the complexity out (traceability services and ontologies, which is

undoubtely necessary). However, requirements can only be tested on implementations

and it is not clear whether proper distinctions are made when performing tests regarding

the following: fusing the results of tests associated to different chapters or viewpoints

of a requirement document versus fusing the results of tests associated to different sub-

systems; testing a requirement under the responsibility of the designer of the considered

sub-system versus testing a requirement corresponding to an assumption regarding the

context of use of this sub-system—such distinctions should be made, as we shall see.

Also, requirements are barely executable and cannot, in general, be simulated. Re-

quirements engineering is the other primary target of contract-based design: the above

issues are properly handled by contracts and contracts offer improved support for evi-

dencing the satisfaction of certification constraints.

This paper intends to provide a unified treatment of contracts where they are pre-

cisely defined and characterized so that they can be used in design with no ambiguity.

In addition, the paper provides an important link between interfaces and contracts to

show similarities and correspondences.

The organization of the paper is as follows. In Section 2 we first discuss the require-

ments on a theory of contracts, based on methodological considerations, particularly

the need to support different viewpoints on the system (operation, function, timing,

energy, safety, etc.) and to allow for independent development by suppliers. Then we

develop a primer on contracts by using a very simple example requiring only elemen-

tary mathematical background to be followed. The purpose of this simplistic example

is to smoothly introduce the different concepts and operations we need for a contract

framework—the restricted case considered is by no means representative of the kind of

system we can address using contracts. This section concludes with a general bibliogra-

phy on contract based design in general. Section 3 is the cornerstone of this paper and it

is a new vista on contracts. The so-called “meta-theory” of contracts is introduced and

developed in detail. By meta-theory we mean the collection of concepts, operations,

and properties that any formal contract framework should offer. Concepts, operations,

and properties are thus stated in a fairly generic way. Every concrete framework com-

pliant with this meta-theory will inherit these generic properties. The meta-theory fo-

cuses on assumptions and guarantees, it formalizes how different aspects or viewpoints

of a specification can be integrated, and on which basis independent development by

different suppliers can be safely performed. The meta-theory by itself is non-effective

in that it does not specify how components and contracts are effectively represented and

manipulated. The subsequent series of sections propose a panorama of major concrete

contract frameworks. Section 4 develops the Assume/Guarantee contracts. This frame-

work is the most straightforward instance of the meta-theory. It deals with pairs (A,G)

of assumptions and guarantees explicitly, A and G being both expressed as properties.

This framework is flexible in that it allows for different styles of description of such

properties—computational efficiency depends on the style adopted. Section 5 develops

the Interface theories, in which assumptions and guarantees are specified by means of

a single object: the interface. Interface theories turn out to include the most effective

frameworks.

RR n° 8759
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This paper contains no illustration example. This is developed in the companion

paper [30] where an application case for requirement engineering is presented in Sec-

tion 3 and another one related to real-time scheduling in the context of Autosar is

discussed in Section 4.

2 Contracts: what? where? and how?

As we argued in the previous section, there are two basic principles followed by de-

sign methods so far developed: abstraction/refinement and composition/decomposi-

tion. Abstraction and refinement are processes that relate to the flow of design between

different layers of abstraction (vertical process) while composition and decomposition

operate at the same level of abstraction (horizontal process). In this section we mo-

tivate by methodological considerations the algebra we need on contracts. We then

study a simple instance of this algebra on a toy example, where all operations can be

examplified. We conclude the section by providing a (non exhaustive) bibliography on

the general concept of contract.

2.1 Contract based design

Contract based design can be seen as a set of methodological guidelines exploiting an

algebra of contracts characterized by the operators of refinement �, conjunction ∧, and

composition ⊗. In this section we review these guidelines and discuss the requirements

they set about the contract algebra.

Supporting open systems: Component reuse requires that components be seen as open

entities, meaning that their context of use is not fully known while the component is

being designed. We therefore need a description of components in which both the

guarantees offered by the component and the assumptions on its possible context of

use, we call it its environment, shall be exposed. This states what contracts should be.

Managing Requirements and Fusing Viewpoints: Complex systems involve a number

of viewpoints (or aspects) that are generally developed by different teams using differ-

ent skills. As a result, there is a need for fusing these viewpoints in a mathematically

sound way. Structuring requirements or specifications is a desirable objective at each

step of the design.

viewpoint viewpoint viewpoint

behavioral timing safety

CB
1

CB
2

CT CS
1

CS
2

of requirements

all contracts shown
are conjunctionsCB

1
∧ CB

2
∧ CT ∧ C

S
1
∧ CS

2

Figure 1: Conjunction of requirements and viewpoints in top-level design

This process is illustrated in Figure 1. In this figure, we show three viewpoints:

the behavioral viewpoint where the functions are specified, the timing viewpoint where

timing budgets are allocated to the different activities, and the safety viewpoint where

RR n° 8759
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fault propagation, effect, and handling, are specified. Typically, different viewpoints

are developed by different teams using different frameworks and tools. Development of

each viewpoint is performed under assumptions regarding its context of use, including

the other viewpoints. To get the full system specification, the different viewpoints

must be fused. As the notation of Figure 1 suggests, conjunction is used for fusing

viewpoints, thus reflecting that the system under design must satisfy all viewpoints.

Similarly, each viewpoint is itself a conjunction of requirements, seen as the “atomic”

contracts—all requirements must be met. This wrongly suggests that the usual logical

conjunction is used. In fact, the need to handle differently guarantees and assumptions

will make this notion of “conjunction” subtle.

Design Chain Management, Reuse, and Independent Development: In Figure 2, we

show three successive stages of the design. At the top level sits the overall system

specification as developed by the OEM. As an example, it can be obtained as the con-

junction of several viewpoints as illustrated on Figure 1. As a first design step, the

is delegated for
implementation by a supplier

is delegated for
implementation by a supplier

C11 ⊗ (C121 ⊗ C122) ⊗ (C131 ⊗ C132)

C11

C12

C13

C11

C121 C122 C131 C132

C121 ⊗ C122 C131 ⊗ C132

C11 ⊗ C12 ⊗ C13

C1

is refined by the OEM

Figure 2: Stepwise refinement

OEM decomposes its system into an architecture made of three subsystems for inde-

pendent development by (possibly different) suppliers. For each of these subsystems,

a contract C1 j, j = 1, 2, 3 is developed. A contract composition, denoted by the symbol

“⊗”,

C11 ⊗ C12 ⊗ C13

mirrors the composition of subsystems that defines the architecture. For our method to

support independent development, this contract composition operator must satisfy the

following:

if designs are independently performed for each sub-contract C1 j, for

j = 1, 2, 3, then integrating these subsystems yields an implementation

that satisfies the composed contract C11 ⊗ C12 ⊗ C13.

(1)

RR n° 8759
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This contract composition must then be qualified against the top-level contract C1. This

qualification must ensure that any development compliant with C11 ⊗C12 ⊗C13 should

also comply with C1. To ensure substitutability, compliance concerns both how the

system behaves and what its valid contexts of use are: any valid context for C1 should

be valid for C11 ⊗ C12 ⊗ C13 and, under such context, the integrated system should

behave as specified by C1. This will be formalized as the refinement relation, denoted

by the symbol �:

C11 ⊗ C12 ⊗ C13 � C1 (2)

Overall, the satisfaction of (2) guarantees the correctness of this first design step per-

formed by the OEM.

Obtaining the three sub-contracts C11,C12, and C13, is the art of the designer, based

on architectural considerations. Contract theories, however, offer the following services

to the designer:

• The formalization of parallel composition and refinement for contracts allows

the designer to firmly assess whether (2) holds for the decomposition step or not.

• In passing, the compatibility of the three sub-contracts C11,C12, and C13, can be

formally checked.

• Using contracts as a mean to communicate specifications to suppliers guarantees

that the information provided to the supplier is self-contained: the supplier has

all the needed information to develop its subsystem in a way that subsequent

system integration will be correct.

Each supplier can then proceed with the independent development of the subsystem it

is responsible for. For instance, a supplier may reproduce the above procedure.

Alternatively, this supplier can develop some subsystems by reusing off-the-shelf

components. For example, contract C121 would be checked against the interface spec-

ification of a pre-defined component M121 available from a library, and the following

would have to be verified: does component M121 satisfy C121? In this context, shared

implementations are of interest. This is illustrated on Figure 3 where the same off-the-

C11

C121 C122 C131 C132

C11 ⊗ (C121 ⊗ C122) ⊗ (C131 ⊗ C132)

C121 ⊗ C122 C131 ⊗ C132

C122 ∧ C132

Figure 3: Conjunction for component reuse

shelf component implements the two referred contracts.

To conclude on this analysis, the two notions of refinement, denoted by the symbol

“�”, and composition of contracts, denoted by the symbol “⊗”, are key. Condition (1)

ensures that independent development holds.
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2.2 A primer on contracts

In this section we instantiate the above motivated algebra on a very simple framework

of “stateless contracts” where the properties considered do not involve system states.

2.2.1 Components, Environments, and Contracts

We start from a model that consists of a universal setM of components, each denoted

by the symbol M. A component M is typically an open system, i.e., it contains some

inputs that are provided by other components in the system or the external world and

it generates some outputs. This collection of other components and the exterior world

is referred to as the environment of the component. The environment is often not com-

pletely known when the component is being developed. Although components cannot

constrain their environment, they are designed to be used in a particular context.

In the following example, we define a component M1 that computes the division

between two real inputs x and y, and returns the result through the real output z. The

underlying assumption is that M1 will be used within a design context that prevents the

environment from giving the input y = 0. Since M1 cannot constrain its input variables,

we handle the unwanted input y = 0 by generating an arbitrary output (0 in this case):

M1 :



variables:

{
inputs: x, y

outputs: z

types: x, y, z ∈ R

behaviors: (y , 0→ z = x/y) ∧ (y = 0→ z = 0)

A contract, denoted by the symbol C , is a way of specifying components with the

following characteristic properties:

1. Contracts are intentionally abstract;

2. Contracts distinguish responsibilities of a component from those of its environ-

ment.

By 1, contracts expose enough information about the component, but not more than

necessary for the intended purpose. We can see a contract as an under-specified de-

scription of a component that can either be very close to the actual component, or

specify only a single property of a component behavior. Regarding 2, and in contrast

to components, a contract explicitly makes a distinction between assumptions made

about the environment, and guarantees provided, mirroring different roles and respon-

sibilities in the design of systems.

A contract can be implemented by a number of different components and can op-

erate in a number of different environments. Hence, we define a contract C at its most

abstract level as a pair C = (E
C
,M

C
) of subsets of components that implement the

contract and of subsets of environments in which the contract can operate. We say that

a contract C is consistent ifM
C
, ∅ and compatible if E

C
, ∅.

This definition of contracts and the implementation relation is very general and, as

such, it is not effective. In concrete contract-based design theories, a contract needs to

have a finite description that does not directly refer to the actual components, and the

implementation relation needs to be effectively computable and establish the desired

link between a contract and the underlying components that implement it. For our
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present simple example of static systems, we propose the following way to specify

contracts:

C1 :



variables:

{
inputs: x, y

outputs: z

types: x, y, z ∈ R

assumptions: y , 0

guarantees: z = x/y

C1 defines the set of components having as variables {inputs: x, y; output: z} of type

real, and whose behaviors satisfy the implication

“assumptions⇒ guarantees”

i.e., for the above example, y , 0⇒ z = x/y. Intuitively, contract C1 specifies the

intended behavior of components that implement division. It explicitly makes the as-

sumption that the environment will never provide the input y = 0 and leaves the behav-

ior for that input undefined.

This contract describes an infinite number of environments in which it can operate,

namely the set E
C1

of environments providing values for x and y, with the condition

that y , 0. It describes an infinite number of components that implement the above

specification, where the infinity comes from the underspecified case on how an imple-

mentation of C1 should cope with the illegal input y = 0. In particular, we have that

M1 implements C1. Thus, contract C1 is consistent. We now show a variant of contract

C1 that is not consistent:

C
′
1 :



variables:

{
inputs: x, y

outputs: z

types: x, y, z ∈ R

assumptions: t

guarantees: z = x/y

where symbol t denotes the boolean constant “true”. In contrast to C1, the contract C ′
1

makes no assumption on values of the input y. Hence, every component that imple-

ments C ′
1

has to compute the quotient x/y for all values of y, including y = 0, which

makes no sense.

2.2.2 Contract Operators

There are three basic contract operators that are used in support of the design method-

ologies we presented previously: composition, refinement and conjunction.

Contract Composition and System Integration: Intuitively, the composition operator

supports component-based design and, in general, horizontal processes. The composi-

tion operator, that we denote by the symbol ×, is a partial function on components. The

composition is defined with respect to a composability criterion: for our illustration ex-

ample, two components M and M′ are composable if their variable types match and if

they do not share output variables. Generally, composability is a syntactic property on

pairs of components that defines conditions under which the two components can in-

teract. Composition × must be both associative and commutative in order to guarantee

that different composable components may be assembled together in any order.
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Consider the component M2, defined as follows:

M2 :



variables:

{
inputs: x

outputs: y

types: x, y ∈ R

behaviors: y = ex

Component M2 computes the value of the output variable y as the exponential function

of the input variable x. M1 and M2 are composable, since both common variables x and

y have the same type, x is an input variable to both M1 and M2, and the output variable

y of M2 is fed as an input to M1. It follows that their composition M1 ×M2 has a single

input variable x, and computes the output z as a function of x, that is z = x/ex.

Now, consider component M′
2

that consists of an input variable x and an output

variable z, both of type real, where z = abs(x) denotes the absolute value of x:

M′2 :



variables:

{
inputs: x

outputs: z

types: x, z ∈ R

behaviors: z = abs(x)

Component M′
2

is not composable with M1, because the two components share the

same output variable z. Their composition is illegal, as it would result in conflicting

rules for updating z.

We now lift the above concepts to contracts. The composition operator between two

contracts, denoted by ⊗, shall be a partial function on contracts involving a more subtle

compatibility criterion. Two contracts C and C ′ are compatible if their variable types

match and if there exists an environment in which the two contracts properly interact.

The resulting composition C ⊗ C ′ should specify, through its assumptions, this set of

environments. By doing so, the resulting contract will expose how it should be used.

Unlike component composability, contract compatibility is a combined syntactic and

semantic property. Let us formalize this. For C a contract, let AC and GC be its

assumptions and guarantees and define

GC1⊗C2
= GC1

∧GC2

AC1⊗C2
= max


A

∣∣∣∣∣∣∣∣

A ∧GC2
⇒ AC1

and

A ∧GC1
⇒ AC2


(3)

where “max” refers to the order of predicates by implication; thus AC1⊗C2
is the weakest

assumption such that the two referred implications hold. Thus, this overall assumption

will ensure that, when put in the context of a component implementing the second

contract, then the assumption of the first contract will be met, and vice-versa. Since the

two assumptions were ensuring consistency for each contract, the overall assumption

will ensure that the resulting composition is consistent. This definition of the contract

composition therefore meets our previously stated requirements. The two contracts C1

and C2 are called compatible if the assumption computed as in (3) differs from f, the

“false” predicate.
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Consider contracts C2 and C ′
2

that we define as follows:

C2 :



variables:

{
inputs: u

outputs: x

types: u, x ∈ R

assumptions: t

guarantees: x > u

and C
′
2 :



variables:

{
inputs: v

outputs: y

types: v, y ∈ R

assumptions: t

guarantees: y = −v

C2 specifies components that for any input value u, generate some output x such that

x > u and C ′
2

specifies components that generate the value of the output variable y as

function y = −v of the input v. Observe that both C2 and C ′
2

are consistent. A simple

inspection shows that C1 and C2 can be composed and their composition yields:

C1 ⊗ C2 :



variables:

{
inputs: u, y

outputs: x, z

types: x, y, u, z ∈ R

assumptions: y , 0

guarantees: x > u ∧ z = x/y

C1 and C ′
2

can also be composed and their composition yields:

C1 ⊗ C
′
2 :



variables:

{
inputs: v, x

outputs: y, z

types: v, x, y, z ∈ R

assumptions: v , 0

guarantees: y = −v ∧ z = x/y

Both compositions possess a non-empty assumption, reflecting that the two pairs (C1,C2)

and (C1,C
′
2
) are compatible.

In our example, it holds that contract composition is associative and commutative,

that is, compositions C1 ⊗ (C2 ⊗ C3) and (C1 ⊗ C2) ⊗ C3 result in equivalent contracts,

as well as compositions C1 ⊗ C2 and C2 ⊗ C1, thus providing support for incremental

system integration. This result will follow from the results of Section 3 on the meta-

theory.

A quotient operation can be defined that is dual to the composition operation. Given

a system-wide contract C and a contract C1 that specifies pre-existing components and

their interactions, the quotient operation C /C1 defines the part of the system-wide

contract that still needs to be implemented. It formalizes the practice of “patching” a

design to make it behave according to another contract.

Contract Refinement and Independent Development: In all vertical design processes,

the notions of abstraction and refinement play a central role. The concept of contract

refinement must ensure the following: if contract C ′ refines contract C , then any imple-

mentation of C ′ should 1) implement C and, 2) be able to operate in any environment

for C . Hence the following definition for the refinement pre-order � between contracts:

we say that the contract C ′ refines the contract C , if E
C ′
⊇ E

C
andM

C ′
⊆ M

C
. Since

� is a pre-order, refinement is a transitive relation. For our current series of examples,

and using previous notations, C ′ � C amounts to requiring that 1) AC implies AC ′ ,

and 2) AC ′ ⇒ GC ′ implies AC ⇒ GC . Also, for all contracts C1, C2, C ′
1

and C ′
2
, if C1

is compatible with C2 and C ′
1
� C1 and C ′

2
� C2, then C ′

1
is compatible with C ′

2
and

C ′
1
⊗ C ′

2
� C1 ⊗ C2.
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We now illustrate this on our toy example, where we start with very abstract re-

quirements for a component that implements a function z = x/ex. Consider contracts

C ′′
1

and C ′′
2

, that we define as follows:

C
′′
1 :



variables:

{
inputs: y

outputs: z

types: y, z ∈ R

assumptions: y , 0

guarantees: z ∈ R

and C
′′
2 :



variables:

{
inputs: x

outputs: y

types: x, y ∈ R

assumptions: t

guarantees: y > 0

The contract C ′′
1

formalizes the most crude and abstract requirements for a divider. It

requires that the denominator value (input variable y) is not equal to 0, and only ensures

that the output value of z is any real. Note that the contract C ′′
1

does not declare the

nominator input variable x. The contract C ′′
2

specifies components that have an input

variable x and an output variable of type y. The only requirement on the behavior of

C ′′
2

is that y is strictly greater than 0. The composition C ′′
1
⊗ C ′′

2
is well defined. The

contract C1 refines C ′′
1

, since it allows more inputs (the nominator input variable x) and

restricts the behavior of the output variable z, by defining its behavior as the division

x/y. It follows that C1 is also compatible with C ′′
2

and that C1 ⊗ C ′′
2
� C ′′

1
⊗ C ′′

2
.

Finally, we have that M1 and M2 are implementations of their respective contracts. It

follows that M1 × M2 implements C1 ⊗ C ′′
2

.

Contract Conjunction and Viewpoint Fusion: We now introduce the conjunction oper-

ator between contracts, denoted by the symbol ∧. Conjunction complements composi-

tion:

1. In the early stages of design, the system-level specification consists of a require-

ments document that is a conjunction of requirements;

2. Full specification of a component can be a conjunction of multiple viewpoints,

each covering a specific (functional, timing, safety etc.) aspect of the intended

design and specified by an individual contract.

3. Conjunction supports reuse of a component in different parts of a design.

We state the desired properties of the conjunction operator as follows: Let C1 and C2

be two contracts. Then, C1 ∧ C2 � C1 and C1 ∧ C2 � C2, and for all contracts C , if

C � C1 and C � C2, then C � C1 ∧ C2.

To illustrate the conjunction operator, we consider a contract C T
1

that specifies the

timing behavior associated with C1. For this contract, we introduce additional ports

that allow us to specify the arrival time of each signal.

C
T
1 :



variables:

{
inputs: tx, ty

outputs: tz

types: tx, ty, tz ∈ R+
assumptions: t

guarantees: tz≤max(tx, ty) + 1

The contract C T
1

is consistent with C1, meaning that C T
1
∧ C1 possesses implementa-

tions. Their conjunction C1 ∧ C T
1

yields a contract that guarantees, in addition to C1

itself, a latency with bound 1 (say, in ms) for it. Because there are no assumptions,

this timing contract specifies the same latency bound also for handling the illegal input

RR n° 8759



Contracts for System Design 18

y = 0. In fact, the contract says more: because it does not mention the input y, it as-

sumes any value of y is acceptable. As a result, the conjunction inherits the weakest t

assumption of the timing contract, and cancels the assumption of C1. This, however,

is clearly not the intent, since the timing contract is not concerned with the values of

the signals, and is a manifestation of the weakness of this simple contract framework

in dealing with contracts with different alphabets of ports and variables. We will fur-

ther explain this aspect, and show how to address this problem, in Section 4. For the

moment, we can fix the problem by introducing y in the interface of the contract, and

use it in the assumptions, as in the following contract C T
2

C
T
2 :



variables:

{
inputs: y, tx, ty

outputs: tz

types: y ∈ R; tx, ty, tz ∈ R+
assumptions: y,0

guarantees: tz≤max(tx, ty) + 1

Note that this timing contract does not specify any bound for handling the illegal input

y = 0, since the promise is not enforced outside the assumptions.

So far this example was extremely simple. In particular, it was stateless. Extension

of this kind of Assume/Guarantee contracts to stateful contracts will be indeed fully

developed in the coming sections and particularly in Section 4 and subsequent ones.

2.3 Bibliographical note

Having collected the “requirements” on contract theories, it is now timely to confront

these to the previous work referring to or related to the term “contract”. This biblio-

graphical note is limited to the grounding work on contract based design, across the

different communities that have considered the problem, namely: software engineer-

ing, language design, system engineering, and formal methods in a broad sense. We

report here a partial and limited overview of how this paradigm has been tackled in

these different communities. While we do not claim being exhaustive, we hope that

the reader will find her way to the different literatures. This note is organized into

two parts. In the second part we focus on the development of contract based design

for embedded systems and Cyber-Physical systems, which is the main focus of this

tutorial. In a first part, we review the work done by the other communities, under the

generic name of “SW engineering”. A more extensive and deeper coverage is given in

subsequent bibliographical notes, for the different subtopics discussed in the different

sections.

2.3.1 Contracts in SW engineering

This part of the bibliographical note was inspired by the report [188]. Design by Con-

tract is a software engineering technique popularized by Bertrand Meyer [155, 156]

following earlier ideas from Floyd-Hoare logic [189, 125]. Floyd-Hoare logic assigns

meaning to sequential imperative programs in the form of triples of assertions {P,C,Q}

consisting of a precondition on program states and inputs, a command, and a postcon-

dition on program states and outputs. Meyer’s contracts were developed for Object-

Oriented programming. They expose the relationships between systems in terms of

preconditions and postconditions on operations and invariants on states. A contract on

an operation asserts that, given a state and inputs which satisfy the precondition, the
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operation will terminate in a state and will return a result that satisfies the postcon-

dition and respects any required invariant properties. Contracts contribute to system

substitutability. Systems may be replaced by alternative systems or assemblies that of-

fer the same or substitutable functionality with weaker or equivalent preconditions and

stronger/equivalent postconditions. With the aim of addressing service oriented archi-

tectures, Meyer’s contracts were proposed a multiple layering by Beugnard et al. [40].

The basic layer specifies operations, their inputs, outputs and possible exceptions. The

behavior layer describes the abstract behavior of operations in terms of their precon-

ditions and postconditions. The third layer, synchronisation, corresponds to real-time

scheduling of component interaction and message passing. The fourth, quality of ser-

vice (QoS) level, details non-functional aspects of operations. The contracts proposed

by Beugnard et al. are subscribed to prior to service invocation and may also be altered

at runtime, thus extending the use of contracts to Systems of Systems [158]. So far

contracts consisting of pre/postconditions naturally fit imperative sequential program-

ming. In situations where programs may operate concurrently, interference on shared

variables can occur. Rely/Guarantee rules [126] were thus added to interface contracts.

Rely conditions state assumptions about any interference on shared variables during

the execution of operations by the system’s environment. Guarantee conditions state

obligations of the operation regarding shared variables.

The concepts of interface and contract were subsequently further developed in the

Model Driven Engineering (MDE) [131, 193, 146]. In this context, interfaces are de-

scribed as part of the system architecture and comprise typed ports, parameters and

attributes. Contracts on interfaces are typically formulated in terms of constraints on

the entities of components, using the Object Constraint Language (OCL) [166, 202].

Roughly speaking, an OCL statement refers to a context for the considered statement,

and expresses properties to be satisfied by this context (e.g., if the context is a class, a

property might be an attribute). Arithmetic or set-theoretic operations can be used in

expressing these properties. OCL can, for instance, be used to specify an invariant in

terms of the conditions that must be satisfied before and after the execution of a method

or the step of a state machine, providing ways to express assumptions and guarantees.

Likewise, attributes on port methods have been used to represent non-functional re-

quirements or provisions of a component [58, 57]. The effect of a method is made

precise by the actual code that is executed when calling this method. The state ma-

chine description and the methods together provide directly an implementation for the

component — actually, several MDE related tools, such as GME and Rational Rose,

automatically generate executable code from this specification [18, 147, 178]. The

notion of refinement is replaced by the concept of class inheritance. From a contract

theory point of view, this approach has several limitations. Inheritance, for instance,

does not properly cover aspects related to behavior refinement, in the sense that the ab-

stract class is unable to constrain the actions that its implementations may perform, and

is instead limited to establishing the signature of the methods. Nor is it made precise

what it means to take the conjunction of interfaces, which can only be approximated

by multiple inheritance, or to compose them.

In a continuing effort since his joint work with W. Damm on Live Sequence Charts

(LSC) in 2000 [77] with its Play-Engine implementation [120], David Harel has de-

veloped the concept of behavioral programming [121, 119, 122], which puts in the

forefront scenarios as a program development paradigm—not just a specification for-

malism. In behavioral programming, b-threads generate a flow of events via an en-

hanced publish/subscribe protocol. Each b-thread is a procedure that runs in parallel to

the other b-threads. When a b-thread reaches a point that requires synchronization, it

RR n° 8759



Contracts for System Design 20

waits until all other b-threads reach synchronization points in their own flow. At syn-

chronization points, each b-thread specifies three sets of events: requested events: the

thread proposes that these be considered for triggering, and asks to be notified when

any of them occurs; waited-for events: the thread does not request these, but asks to

be notified when any of them is triggered; and blocked events: the thread currently

forbids triggering any of these events. When all b-threads are at a synchronization

point, an event is chosen (according to some policy), that is requested by at least one

b-thread and is not blocked by any b-thread. The selected event is then triggered by

resuming all the b-threads that either requested it or are waiting for it. This mechanism

was implemented on top of Java and LSCs. The execution engine uses planning and

model checking techniques to prevent the system from falling into deadlock, where

all requested events are blocked. Behavioral programming is incremental in that new

threads can be added to an existing program without the need for making any change to

this original program: new deadlocks that are created by doing so are pruned away by

the execution engine. While behavioral programming cannot be seen as a paradigm of

contracts, it shares with contracts the objectives of incremental design and declarative

style of specification.

2.3.2 Our focus—contracts for systems and CPS

The frameworks of contracts developed in the area of Software Engineering were es-

tablished as useful paradigms for component based software system development. In

this paper, we target the wider area of computer controlled systems, more recently

referred to as Cyber-Physical systems, where reactive systems [118, 123, 114, 152]

are encountered, that is systems that continuously interact with some environment, as

opposed to transformational systems [114], considered in Object-Oriented program-

ming. For reactive systems, model-based development (MBD) is generally accepted

as a key enabler due to its capabilities to support early validation and virtual sys-

tem integration. MBD-inspired design languages and tools include SysML [165] or

AADL [168] for system level modeling, Modelica [107] for physical system modeling,

Matlab-Simulink [130] for control-law design, and Scade [161, 35] and TargetLink

for detailed software design. UML-related standardization efforts in this area also in-

clude the MARTE UML18 profile for real-time systems. Contract theories for model

based development were considered in the community of formal verification. They

were initially developed as specification formalisms able to refuse certain inputs from

the environment. Abadi and Lamport (with Wolper for the first publication) [3, 1]

were the first to propose a comprehensive Assume/Guarantee specification theory for

Transition Systems. The first publication introduced the game point of view in dis-

tinguishing component from environment and using this for defining refinement. The

second long publication proposed a comprehensive specification framework with As-

sumptions (restricted to safety properties) and Guarantees (both safety and liveness are

covered). The composition of specifications is studied and the issue of circular reason-

ing is pinpointed and solved by a reinforcement of the assumptions of the composition,

with comparison to the “intuitive” definition for them. The resulting theory is quite

complex, which may explain why it did not deserve the attention it should. Dill pro-

posed asynchronous trace structures with failure behaviors [94]. A trace structure is

a representation of a component or interface with two sets of behaviors. The set of

successes are those behaviors which are acceptable and guaranteed by the component.

18www.omgmarte.org
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Conversely, the set of failures are behaviors which drive the component into unaccept-

able states, and are therefore refused. This work focuses primarily on the problem

of checking refinement, and does not explore further the potentials of the formalism

from a methodological point of view. The work by Dill was later extended by Wolf

in the direction of synchronous systems [203]. Negulescu later generalizes the algebra

to Process Spaces which abstract away the specifics of the behaviors, and derives new

composition operators [160]. This particular abstraction technique was earlier intro-

duced by Burch with Trace Algebras to construct conservative approximations [53],

and later generalized by Passerone and Burch [54, 171] to study generic trace struc-

tures with failure behaviors and to formalize the problem of computing the quotient

(there called mirror) [169]. Methodological aspects of contract-based design of Cyber-

Physical Systems are extensively discussed in [192]. This paper aims at proposing, for

model based design of systems and CPS, a new vista on contracts. In the next section,

we propose an all encompassing meta-theory of contracts.

3 A Mathematical Meta-Theory of Contracts

In Section 2 and its bibliographical discussion, we showed that a number of frameworks—

specification, interface, contract theories, and more—were proposed to cope with the

issues of system development in a supplier chain. The list of such frameworks will be

further increased in the forthcoming sections. This calls for developing a “birds-eye

view” of the subject, by which the essence and commonalities of such frameworks will

be highlighted. In software engineering, meta-models are “models of models”, i.e.,

formal ways of specifying a certain family of models [190, 172]. Analogously, we call

meta-theory a way to specify a particular family of theories. In this section we propose

a meta-theory of contracts.

Our meta-theory is summarized in Table 2. It comes as a few primitive concepts, on

top of which derived concepts can be built. A number of key properties can be proved

about the resulting framework. These properties demonstrate that contracts are a conve-

nient paradigm to support incremental development and independent implementability

in system design.

In this meta-theory we will mainly focus on semantic concepts. Clearly, compo-

nents, contracts, and the associated relations and operators, must be expressed in some

language which defines the syntax for specifying them. The properties of the specifi-

cation language are important in several respects. In particular, the finite nature of the

representation may limit the kind of objects that can be represented, and could con-

sequently affect the realizability (closure) of the operators of our theory—we will pay

special attention to this issue. Nonetheless, in this section on the “meta-theory”, we are

interested primarily in the relations between the objects that the language describes,

irrespective of how they are represented. Therefore, we will proceed under the hypoth-

esis that questions of representations have been adequately addressed. Hence, when

referring to components and contracts, we implicitly assume that they are described in

some language whose semantics maps to the concepts that we present in this section.

How this meta-theory can be instantiated to various concrete frameworks is discussed

in subsequent sections.

The meta-theory we develop here is novel. There are very few attempts of that kind.

In fact, the only ones we are aware of are the recent works by Bauer et al. [19] and Chen

et al. [66], which follow a different (and complementary) approach. The discussion of

this work is deferred to the bibliographical Section 3.8.
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Concept Definition and generic properties

Primitive

Component Components are denoted by M

Composability

of components
A type property on pairs of components (M1,M2)

Composition

of components

M1×M2 is well defined if and only if M1 and M2 are composable;

It is required that × is associative and commutative

Environment
An environment for component M is a component

E such that E×M is well defined

Derived

Contract
The semantics of contract C is a pair (E

C
,M

C
), whereM

C
is

a subset of components and E
C

a subset of valid environments

Consistency C is consistent iff it has at least one component: M
C
, ∅

Compatibility C is compatible iff it has at least one environment: E
C
, ∅

Implementation
M |=m C if and only if M ∈M

C

E |=e C if and only if E ∈E
C

Refinement C ′ � C iff E
C ′
⊇ E

C
andM

C ′
⊆ M

C
; Property 1 holds

GLB and

LUB

of contracts

C1∧C2 = Greatest Lower Bound (GLB) of C1 and C2 for � ;

C1∨C2 = Least Upper Bound (LUB) of C1 and C2 for � ;

Assumption 1 is in force and Property 2 holds

Say that (C1,C2) is a consistent pair if C1∧C2 is consistent

Composition

of contracts

C1⊗C2 is well defined if
∀M1 |=

m C1

∀M2 |=
m C2

}
⇒ (M1,M2) composable

C1⊗C2 = min


C

∣∣∣∣∣∣∣∣


and ∀M1 |=

m C1

and ∀M2 |=
m C2

and ∀E |=e C2

⇒


M1 × M2 |=

m C1

and E×M2 |=
e C1

and E×M1 |=
e C2





Assumption 2 is in force;

Properties 3, 4, 5, and Corollaries 1 and 2 hold

Say that (C1,C2) is a compatible pair if C1⊗C2 is compatible

Quotient C1/C2 =
∨
{C | C ⊗ C2 � C1}; Property 6 holds

Table 2: Summary of the meta-theory of contracts. We first list primitive concepts

and then derived concepts introduced by the meta-theory. C1,C2, and C are implicitly

universally quantified over some underlying class C of contracts which depends on the

particular contract framework considered.
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3.1 Components and their composition

To introduce our meta-theory, we start from a universeM of possible components, each

denoted by the symbol M or E, and a universe of their specifications, or contracts, each

denoted by the symbol C . Our meta-theory does not presume any particular modeling

style, neither for components nor for contracts—we have seen in Section 2 an example

of a (very simple) framework for static systems. More generally, some frameworks

may represent components and contracts with sets of discrete time or even continuous

time traces, other theories use logics, or state-based models of various kinds, and so

on.

We assume a composition operator M1 × M2 acting on pairs of components. Com-

ponent composition × is partially, not totally, defined. Two components such that

M1 × M2 is well defined are called composable. Composability of components is meant

to be a typing property. In order to guarantee that different composable components

may be assembled together in any order, it is required that component composition ×

is associative and commutative. An environment for a component M is another com-

ponent E composable with M.

3.2 Contracts

In our primer of Section 2, we have highlighted the importance of the valid environ-

ments associated with contracts, for which an implementation will operate satisfacto-

rily. At the abstract level of the meta-theory, we make this explicit next:

Definition 1 We consider a class C of contracts C whose semantics is a pair [[C ]] =

(E
C
,M

C
) ∈ 2M × 2M, where:

• M
C
⊆ M is the set of implementations of C , and

• E
C
⊆ M is the set of environments of C .

• For any (E,M) ∈ E
C
×M

C
, E is an environment for M.

A contract having no implementation is called inconsistent. A contract having no en-

vironment is called incompatible. Write

M |=m C and E |=e C

to express that M ∈ M
C

and E ∈ E
C

, respectively.

In the meta-theory the class C is abstract. Each particular contract framework comes

with a concrete definition of C and instantiates all the concepts listed in the last column

of Table 2, thus making them effective. While the definition of contract consistency

complies with the intuition, the definition of contract compatibility may seem strange

at first glance. We shall, however, see later that it specializes to known notions for

concrete theories.

3.3 Refinement and conjunction

To support independent implementability, the concept of contract refinement must en-

sure the following: if contract C ′ refines contract C , then any implementation of C ′

should implement C and be able to operate in any environment for C . Hence the

following definition for the refinement preorder � between contracts: C ′ refines C ,
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written C ′ � C , if and only ifM
C ′
⊆ M

C
and E

C ′
⊇ E

C
. As a direct consequence,

the following property holds, which justifies the use of the term “refinement” for this

relation:

Property 1 (refinement)

1. Any implementation of C ′ is an implementation of C : M |=m C ′ ⇒ M |=m C ;

2. Any environment of C is an environment of C ′: E |=e C ⇒ E |=e C ′.

At this point we need the following assumption on the contract language:

Assumption 1 For C′ ⊆ C any subset of expressible contracts, the Greatest Lower

Bound (GLB)
∧

C′ and the Least Upper Bound (LUB)
∨

C′ both exist in C, where

GLB and LUB refer to refinement order.

Although strong, this assumption is satisfied by the instances of contract languages

we know, see the subsequent sections for this. It allows us to define the conjunction

C1∧C2 of contracts C1 and C2 as the GLB of these two contracts. The intent is to define

this conjunction as the intersection of sets of implementations and the union of sets of

environments. However, not every pair of sets of components can be the semantics of

a contract belonging to class C. The best approximation consists in taking the greatest

lower bound for the refinement relation. The following immediate properties hold:

Property 2 (shared refinement)

1. Any contract that refines C1 ∧ C2 also refines C1 and C2. Any implementation of

C1 ∧ C2 is a shared implementation of C1 and C2. Any environment of C1 or C2

is an environment of C1 ∧ C2.

2. For C′ ⊆ C a subset of contracts,
∧

C′ is compatible if and only if there exists a

compatible C ∈ C′.

The conjunction operation formalizes the intuitive notion of a “set of contracts” or a

“set of requirements”.

3.4 Contract composition

On top of component composition, we define a contract composition C1 ⊗ C2, whose

intuition is as follows: composing two implementations of C1 and C2 should yield an

implementation of C1 ⊗ C2 and any environment for C1 ⊗ C2, when composed with

an implementation for C1, should yield a valid environment for C2 and vice-versa.

Observe that E |=e C implies that E is composable with any implementation of C , and

thus E × Mi are well defined. Formally, C1 ⊗ C2 is defined by the formula given in

Table 2, where “min” refers to the refinement order. For this to make sense, we assume

the following:

Assumption 2 We assume that the min in the formula defining C1 ⊗ C2 in Table 2

exists and is unique.
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Denote by CC1,C2
the set of contracts defined by the brackets in the formula defining

C1 ⊗ C2 in Table 2, that is:

CC1,C2
=def


C

∣∣∣∣∣∣∣∣


and ∀M1 |=

m C1

and ∀M2 |=
m C2

and ∀E |=e C2

 =⇒


M1 × M2 |=

m C1

and E×M2 |=
e C1

and E×M1 |=
e C2




(4)

With this notation, Assumption 2 rewrites
∧

CC1,C2
∈ CC1,C2

and contract composition

rewrites

C1 ⊗ C2 =
∧

CC1,C2
(5)

The following lemma will be instrumental:

Lemma 1 Let four contracts be such that C ′
1
�C1, C ′

2
�C2, and C1⊗C2 is well defined.

Then, so is C ′
1
⊗C ′

2
and

CC ′
1
,C ′

2
⊇ CC1,C2

Proof: Since C1 ⊗ C2 is well defined, it follows that every pair (M1,M2) of respective

implementations of these contracts is a composable pair of components. Hence, C ′
1
⊗C ′

2

is well defined according to the formula of Table 2. Next, since C ′
1
� C1 and C ′

2
� C2,

M1 |=
m C ′

1
and M2 |=

m C ′
2

implies M1 |=
m C1 and M2 |=

m C2; similarly E × M2 |=
e C1

and E × M1 |=
e C2 implies E × M2 |=

e C ′
1

and E × M1 |=
e C ′

2
. Therefore, replacing, in

the right hand side of (4), C1 by C ′
1

and C2 by C ′
2

can only increase the set CC1,C2
. �

To conform to the usage, we say that C1 and C2 are compatible contracts if their

composition C1 ⊗ C2 is defined and compatible in the sense of Table 2. The following

properties are a direct corollary of Lemma 1:

Property 3 (independent implementability) For all contracts C1, C2, C ′
1

and C ′
2
, if

1) C1 is compatible with C2, and 2) C ′
1
� C1 and C ′

2
� C2 hold, then C ′

1
is compatible

with C ′
2

and C ′
1
⊗ C ′

2
� C1 ⊗ C2.

Thus, compatible contracts can be independently refined. This property holds in par-

ticular if C ′
1

and C ′
2

are singletons:

Corollary 1 Compatible contracts can be independently implemented.

Referring to the discussion of Section 2.1, Property 3 is fundamental, particularly in

top-down design, which consists in decomposing a system-level contract C into sub-

system contracts Ci, i ∈ I for further independent development. To ensure that inde-

pendent development will not lead to integration problems, it is enough to verify that⊗
i∈I

Ci � C . Then, any Ci can be independently refined into C ′
i
, the composition⊗

i∈I
C ′

i
will be a refinement of C . We claim that, since contracts are purposely ab-

stract and subsystems are not many, the composition of contracts Ci will not typically

result in state explosion.

This is in contrast with compositional verification, where ×i∈I Mi |=
m P is to be

checked, where Mi are detailed implementations and P is a property. In this context, I

may be a large set, and thus the composition ×i∈I Mi typically gives raise to state explo-

sion. Techniques have thus been proposed to verify such properties in an incremental

way [196, 71, 112, 2, 132].

The following property states that contract composition can be performed in any

order and changes in architecture (captured by changes in parenthesizing) are allowed:
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Property 4 For all contracts C1, C2, C3 and C4,

(C1 ⊗ C2) ⊗ (C3 ⊗ C4) = (C3 ⊗ C1) ⊗ (C4 ⊗ C2) (6)

Furthermore, if C1 and C2 are compatible, C3 and C4 are compatible and C1 ⊗ C2 is

compatible with C3 ⊗ C4, then C1 is compatible with C3, C2 is compatible with C4,

C3 ⊗ C1 is compatible with C4 ⊗ C2.

Proof: To shorten notations, write C(12) instead of (C1⊗C2), C(12)(34) instead of the

left hand side of (6), and similarly for the other cases. By Assumption 2 and the

associativity and commutativity of component composition, C(12)(34) is characterized

by the following two properties, where index i ranges over the set 1. . .4:

Mi |=
m Ci ⇒ M1× . . .×M4 |=

m C(12)(34)

E |=e C(12)(34) ⇒ E×
(
× j,iM j

)
|=e Ci

(7)

Observe that (7) is fully symmetric, which proves (6). For the additional statement,

using the assumptions regarding compatibility, we derive the existence of at least one

environment E satisfying the premise of the second implication of (7). Since (7) is

fully symmetric, this proves this additional statement. �

By a variation of the same proof, successively, for two contracts C1 and C3, and

then for three contracts C1, C3, and C4, we get:

Corollary 2 (commutativity, associativity)

• commutativity: C1 ⊗ C3 = C3 ⊗ C1;

• associativity: C1 ⊗ (C3 ⊗ C4) = (C1 ⊗ C3) ⊗ C4.

Property 5 (sub-distributivity) If the following contract compositions are all well de-

fined, then the following holds:

[(C11 ∧ C21) ⊗ (C12 ∧ C22)] � [(C11 ⊗ C12) ∧ (C21 ⊗ C22)] (8)

Proof: By Lemma 1, C(C11∧C21),(C12∧C22) ⊇ CC11,C12
. Taking the GLB of these two sets

thus yields [(C11 ∧ C21) ⊗ (C12 ∧ C22)] � C11 ⊗ C12 and similarly for C21 ⊗ C22. Thus,

(8) follows. �

The use of sub-distributivity is best illustrated in the following context. Suppose

the system under design decomposes into two sub-systems labeled 1 and 2 and each

subsystem has two viewpoints, labeled by another index with values 1 or 2 in such a

way that contract C11 ∧C21 is the contract associated with sub-system 1 and C12 ∧C22

is the contract associated with sub-system 2. Thus, the left hand side of (8) specifies

the set of implementations obtained by, first, implementing each sub-system indepen-

dently, and then, composing these implementations. Property 5 states that, by doing

so, we obtain an implementation of the overall contract obtained by, first, getting the

two global viewpoints C11 ⊗ C12 and C21 ⊗ C22, and, then, taking their conjunction.

This property supports independent implementation for specifications involving multi-

ple viewpoints. Observe that only refinement, not equality, holds in (8).
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3.5 Quotient

The quotient of two contracts is defined in Table 2. It is the adjoint of the product

operation ⊗ in that C1/C2 is the most general context C in which C2 refines C1. It for-

malizes the practice of “patching” a component to make it behave according to another

specification. From its definition in Table 2, we deduce the following property:

Property 6 (quotient) The following holds:

C � C1/C2 ⇔ C ⊗ C2 � C1

Proof: Immediate, from the definition. �

Discussion. By inspecting Table 2, the different notions can be classified into the

following two categories:

• Primitive notions that are assumed by the meta-theory. This category comprises:

components, component composability and composition.

• Derived notions comprise: contract; refinement, conjunction, composition, and

quotient; consistency and compatibility for contracts. The derived notions follow

from the primitive ones through set theoretic, non-effective, definitions.

The meta-theory offers by itself a number of fundamental properties that underpin in-

cremental development and independent implementability. Concrete theories will offer

definitions for the primitive notions as well as effective means to implement the derived

notions. Observers and then abstractions we develop next provide generic approaches

to recover effectiveness.

3.6 Observers

A typical obstacle in getting finite (or, more generally, effective) representations of

contracts is the occurrence of infinite data types and functions having infinite domains.

These can be dealt with by using observers, which originate from the basic notion of

test for programs:

Definition 2 Let C be a contract. An observer for C is a pair (bE

C
, bM

C
) of non-

deterministic boolean functionsM 7→ {f, t} called verdicts, such that:

bE

C
(M) outputs f =⇒ M < E

C

bM

C
(M) outputs f =⇒ M <M

C

(9)

The functions M 7→ bE

C
(M) and M 7→ bM

C
(M) being both non-deterministic account

for the fact that the outcome of a test depends on the stimuli from the environment and

possibly results from internal non-determinism of the tested component itself. Note the

single-sided implication in (9), which reflects that tests only provide semi-decisions.

The following immediate results hold, regarding consistency and compatibility:

Lemma 2

1. If bE

C
(E) outputs f for all environment E, then C is incompatible;

2. If bM

C
(M) outputs f for all component M, then C is inconsistent.
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Nothing can be said about the relationship of observers for contracts based on the fact

that they are in a refinement ordering. Dually, nothing can be inferred in terms of their

refinement from such a relationship between the observers. Still, the following weaker

result holds. To formulate it, we need to compare verdicts. Since verdicts are non-

deterministic functions, this must be done with some care: equip the boolean domain

with the order f < t and say that bE

1
≤ bE

2
if, for any M ∈ M, at least one of the following

two conditions holds:

Case 1: there exists a non-decreasing function ϕ : {f, t}→{f, t} such that

bE

2
(M)=ϕ(bE

1
(M)),

Case 2: there exists a non-increasing function ψ : {f, t}→{f, t} such that

bE

1
(M)=ψ(bE

2
(M)).

The same definition holds for bM

1
≤ bM

2
.

Lemma 3 Let (bE

C
, bM

C
) be an observer for C and let C ′ � C . Then, any pair (bE, bM)

satisfying bE ≥ bE

C
and bM ≤ bM

C
is an observer for C ′.

Based on this lemma, Table 3 indicates how operations from the contract algebra can

be mirrored to operations on observers.

Notion Observer

C = (E
C
,M

C
)

(
bE

C
, bM

C

)

C = C1∧C2 bE

C
= bE

C1
∨ bE

C2
, bM

C
= bM

C1
∧ bM

C2

C = C1∨C2 bE

C
= bE

C1
∧ bE

C2
, bM

C
= bM

C1
∨ bM

C2

C = C1⊗C2

bE

C
(E) =

∧

M1 |=
m C1

M2 |=
m C2

[
bE

C2
(E×M1) ∧ bE

C1
(E×M2)

]

bM

C
(M1 × M2) = bM

C1
(M1) ∧ bM

C2
(M2)

Table 3: Mirroring the algebra of contracts with observers.

The formula for bE

C1⊗C2
(E) requires considering the set of all implementations Mi

of Ci. This set is not within the scope of observers (which are only semi-decision proce-

dures). Worse, it cannot be underapproximated by using observers. Underapproximat-

ing this set requires using abstractions introduced in the next section, not observers.

Due to the need for exercising all components or environments, using observers

for checking consistency or compatibility is still non-effective. For concrete theories

exhibiting some notion of “strongest” environment or component for the considered

contract, a reinforcement of Lemma 2 will ensure effectiveness. In subsequent section

where concrete theories are reviewed, we indicate, for each theory, how observers can

be constructed and how Lemma 2 specializes.

To conclude, observers provide semi-decision procedures to disprove properties

such as the validity of a component or an environment, or consistency or compatibility.

Observers can be complemented by abstractions to prove the same properties.
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3.7 Abstractions

An abstraction consists of an abstract domain of contracts—intended to be simple

enough to support analysis—together with a mapping, from contracts (we call them

“concrete contracts” in the sequel) to abstract contracts. The hope is that properties of

contracts can be proved by taking abstractions thereof.

In this section we explain how to lift, to contracts, abstraction procedures available

on components. In doing so, our objectives are the following:

1. Abstraction for contracts should allow proving refinement, consistency, or com-

patibility, for any contract or sets of contracts, based on their abstractions;

2. Properties of contracts should be deducible from their abstractions, composition-

ally with respect to both conjunction and parallel composition;

3. The mechanism of lifting abstractions, from components to contracts should be

generic and instantiable for any concrete contract framework.

A large part of this agenda is achieved. Our starting point is a framework for abstracting

components. This framework must be rich enough to support abstraction and its oppo-

site operation in a coherent way. A known formalization of this is the notion of Galois

connection, which is key in the theory of Abstract Interpretation [72, 73, 74, 157].

A Galois connection consists of two concrete and abstract partially ordered sets

(Xc,⊑c) and (Xa,⊑a), and two total monotonic maps:19

α : Xc 7→ Xa : the abstraction

γ : Xa 7→ Xc : the concretization

such that, for any two Xc ∈ Xc and Xa ∈ Xa,

Xc ⊑c γ(Xa) if and only if α(Xc) ⊑a Xa (10)

Property (10) is equivalent to any of the following properties:

Xc ⊑c γ ◦ α(Xc) ; α ◦ γ(Xa) ⊑a Xa (11)

where γ ◦ α is the composition of the two referred maps: γ ◦ α(Xc) =def γ(α(Xc)). The

intent is that Xc is the concrete domain of interest and Xa is a simpler and coarser rep-

resentation of the former, where concrete entities can be approximated. The two orders

⊑c/a are interpreted as “is more precise”—for example, if components are specified as

sets of behaviors, the preciseness order is simply set inclusion. The Galois connection

property (10) relates the preciseness orders in concrete and abstract domains.

Having the above notions at hand, our next step consists in systematically lifting a

given Galois connection (α, γ) on components to an abstraction on contracts, as defined

in Table 2. Since contracts are defined as pairs consisting of a set of valid environments

and a set of valid components, our first task is to lift Galois connections on sets, to

abstractions on powersets. Our construction will be using the notion of inverse map,

which we recall next. For X and Y two sets, f : X→Y a partial function, and Z ⊆ Y ,

define

f −1(Z) = {x ∈ X | f (x) is defined and f (x) ∈ Z}

19 f : X→Y , where (X,≤X) and (Y,≤Y ) are two ordered sets, is monotonic if x′≤X x implies f (x′)≤Y f (x),

and strictly monotonic if x′<X x implies f (x′)<Y f (x), where <=def ≤ ∩ ,.
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The following holds:

f −1(Z1 ∩ Z2) = f −1(Z1) ∩ f −1(Z2)

f −1(Z1 ∪ Z2) = f −1(Z1) ∪ f −1(Z2)
(12)

Referring to the previously introduced notations, we consider the sets X<c ⊆ 2Xc and

X<a ⊆ 2Xa collecting all ideals20 of (Xc,⊑c) and (Xa,⊑a), respectively. Equip X<c and

X<a with their inclusion orders ⊆c and ⊆a. The canonical abstraction

α̂ : (X<c ,⊆c)→ (X<a ,⊆a)

associated to Galois connection (α, γ) is defined by

α̂(χc) =def γ −1(χc) (13)

where χc ranges over X<c . Definition (13) is sound since γ is monotonic. The following

property follows by construction:

∀χc ∈ X
<
c : χc = ∅ =⇒ α̂(χc) = ∅ (14)

We now instantiate the generic construction (13) by substituting Xc←Mc and Xa←Ma,

where Mc and Ma are concrete and abstract domains of components. We assume the

following, which expresses that the preciseness orders fit our contract framework:

Assumption 3 For any concrete contract Cc ∈ Cc with semantics [[Cc]] = 〈E
Cc
,M

Cc
〉,

both E
Cc

andM
Cc

are downward closed under ⊑c. The same holds for abstract con-

tracts.

Assumption 3 is indeed very natural for known contract frameworks, see Section 4.6

and [33] for more details.

By (13) we inherit an abstraction α̂ from (M<
c ,⊆) to (M<

a ,⊆). Since the semantics

of a concrete generic contract Cc is [[Cc]] = 〈E
Cc
,M

Cc
〉 ∈ M<

c ×M
<
c , we can define the

abstraction α(Cc) of Cc, whose semantics is:

[[α(Cc)]] =def 〈α̂
(
E

Cc

)
, α̂
(
M

Cc

)
〉 ∈ M<

a ×M
<
a (15)

α defined by (15) is the canonical abstraction on contracts associated to the Galois

connection (α, γ) on components. The following theorem achieves our first objectives

regarding contract abstraction:

Theorem 1 Let Mc, Ec,Cc be a concrete component, environment, and contract.

1. If α(Mc) |=ma α(Cc) holds, then Mc |=
m

c Cc follows.

If α(Ec) |=ea α(Cc) holds, then Ec |=
e

c Cc follows.

2. If C ′c �c Cc holds, then α(C ′c ) �a α(Cc) follows.

3. If α(Cc) is compatible or consistent, then so is Cc.

Proof: Statement 3 follows immediately from (14). Focus next on Statement 2. Since

set abstraction α̂ is monotonic with respect to set inclusion, we deduce that contract

abstraction α is monotonic for �c/a. Regarding Statement 1, α(Mc) |=ma α(Cc) means

20An ideal of (X,⊑) is a ⊑-downward closed subset of X.
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that γ(α(Mc)) ∈ M
Cc

. By (11), Mc ⊑c γ(α(Mc)), which, by Assumption 3, implies

Mc ∈ MCc
, i.e., Mc |=

m

c Cc. Similarly, α(Ec) |=ea α(Cc) means that γ(α(Ec)) ∈ E
Cc

. By

(11), Ec ⊑c γ(α(Ec)), which, by Assumption 3, implies Ec ∈ ECc
, i.e., Ec |=

e

c Cc.

Observe that Statement 1 allows proving implementation and environment relations

based on abstractions. Similarly, Statement 3 allows proving compatibility or consis-

tency based on abstractions. In contrast, Statement 2 allows disproving refinement

based on abstractions.

The second part of our agenda is about compositionality of abstraction, with re-

spect to both conjunction and parallel composition. Observe first that Statement 2 of

Theorem 1 implies α(C 1
c ∧ C 2

c ) �a α(C 1
c ) ∧ α(C 2

c ), etc. Using, however, the fact that

abstraction and concretizations for powersets arise from inverse maps, we can in fact

get equalities:

Theorem 2 The following equalities hold:

α(C 1
c ∧ C

2
c ) = α(C 1

c ) ∧ α(C 2
c ) (16)

Proof: By definition,

α(C 1
c ∧ C 2

c ) =

(
α̂(E

(C1
c )
∪ E

(C2
c )

) , α̂(M
(C1

c )
∩M

(C2
c )

)

)

(by (15)) =

(
γ−1(E

(C1
c )
∪ E

(C2
c )

) , γ−1(M
(C1

c )
∩M

(C2
c )

)

)

(by (12)) =

(
γ−1(E

(C1
c )

) ∪ γ−1(E
(C2

c )
) , γ−1(M

(C1
c )

) ∩ γ−1(M
(C2

c )
)

)

= α(C 1
c ) ∧ α(C 2

c )

which finishes the proof.

The last property in our agenda concerns parallel composition of contracts. We

wish to relate α(C 1
c ) ⊗ α(C 2

c ) and α(C 1
c ⊗ C 2

c ). Unlike previous properties, this does

not come for free. We first need an additional property for the concretization of com-

ponents: γ is called sub-multiplicative if

γ(X1
a ×a X2

a) ⊑c γ(X1
a) ×c γ(X2

a) (17)

and multiplicative if equality holds in (17).

Theorem 3

1. If γ is sub-multiplicative, then

α(C 1
c ) ⊗ α(C 2

c ) �a α(C 1
c ⊗ C

2
c ) (18)

2. If, in addition, γ is multiplicative, then the two contracts α(C 1
c ) ⊗ α(C 2

c ) and

α(C 1
c ⊗ C 2

c ) possess identical sets of implementations—their sets of valid envi-

ronments, however, may differ.

3. If, in addition to the condition stated in 2), C 1
c and C 2

c satisfy the following

propery: Xc |=
m

c C i
c =⇒ γ ◦ α(Xc) |=mc C i

c , then, equality holds in (18).

Proof: This is a difficult result and we refer the interested reader to [33].
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3.7.1 Concluding discussion regarding contract abstraction

• From having a Galois connection on components we inherit an abstraction on

contracts that is monotonic with respect to the refinement orders. Consistency

and compatibility can both be checked on abstractions, see Theorem 1. The

reader may conjecture that it should be possible to construct a Galois connec-

tion for contracts. We are rather convinced that this is not achievable, see [33]

regarding obstructions.

• Theorem 2 allows checking consistency and compatibility in a ∧-modular way

by using equality

α(
∧

i∈I C i
c ) =

∧
i∈I α(C i

c )

• If γ is sub-multiplicative, Theorem 3 allows checking consistency in a ⊗-modular

way by using refinement

⊗
i∈I
α(C i

c ) �a α(
⊗

i∈I
C i

c )

This inequality is in the wrong way, however, for checking compatibility in a ⊗-

modular way. Regarding this theorem, Galois connections on components where

concretization is multiplicative are quite natural. Thus, Properties 1) and 2) of

Theorem 3 will be easy to have. In contrast, the special condition, needed to have

Property 3), arises only in exceptional cases. We conjecture that Theorem 3 is

the best achievable result regarding compositionality of abstraction with respect

to ⊗.

3.8 Bibliographical note

Abstract contract theories and features of our presentation Our presentation here is

new. There is only a small literature providing an abstract formalization of the notion

of contracts. The only attempts we are aware of are the recent works by Bauer et al. [19]

and Chen et al. [66], albeit with deeply different and complementary approaches.

The publication [19] develops an axiomatization of the notion of specification, from

which contracts can be derived in a second step. More precisely, specifications are

abstract entities that obey the following list of axioms: it possesses a refinement relation

that is a preorder, which induces a notion of equivalence of specifications, and a parallel

composition that is associative, commutative (modulo equivalence), and monotonic

with respect to refinement. It is assumed that, if two specifications possess a common

lower bound, then they possess a greatest lower bound. A quotient is also assumed,

which is the residuation of the parallel composition. From specifications, contracts

are introduced as pairs of specifications, very much like Assume/Guarantee contracts

we develop in Section 4 are pairs of assertions. Sets of valid environments and sets

of implementations are associated to contracts. Finally modal contracts are defined by

borrowing ideas from modal specifications we discuss in Section 5. This abstract theory

nicely complements the one we develop here in that it shows that both specifications

and contracts can be defined as primitive entities and be used to build more concrete

theories.

The work [66] develops the concept of declarative specification, which consists

of a tuple P = (Σin,Σout,TΣ, FΣ), where Σin and Σout are input and output alphabets

of actions, Σ = Σin ⊎ Σout, and TΣ, FΣ ⊆ Σ
∗ such that FΣ ⊆ TΣ are sets of permissi-

ble and inconsistent traces, respectively—this approach find its origins in earlier work
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by Dill [94] and Negulescu [160]. Outputs are under the control of the component,

whereas inputs are issued by the environment. Thus, after any successful interaction

between the component and the environment, the environment can issue any input α,

even if it will be refused by the component. If α is refused by the component after

the trace t ∈ TΣ, t.α ∈ FΣ is an inconsistent trace, capturing that a communication

mismatch has occurred. An environment is called safe if it can prevent a component

from performing an inconsistent trace. For Q to be used in place of P it is required

that Q must exist safely in any environment that P can exist in safely; this is the basis

on which refinement is defined. Alphabet extension is used, by which input actions

outside the considered alphabet are followed by an arbitrary behavior for the declara-

tive specification. A conjunction is proposed that is the GLB for refinement order. A

parallel composition is proposed, which is monotonic with respect to refinement. A

quotient is also proposed, which is the residuation of parallel composition. In the same

direction, an algebraic theory of interface automata is proposed in [67], paying special

attention to issues of safety (which is usual) and progress (which is not usual). Finally,

[185] proposes a mathematical basis for multi-view modeling and [170] was an early

paper proposing a notion of quotient for an interface model.

As far as we know, no notion of abstraction existed for contracts or specifications,

with the attempt of being compliant with contract relations and operators. Our proposal

here is new.

Observers: Observers, being related to the wide area of software and system testing,

have been widely studied. A number of existing technologies support the design of

observers and we review some of them now.

First of all, observers are related to the widely explored area of so-called IOCO-

testing. The work [75] bridges the gap between this area and observers for contracts by

re-considering compositional testing in view of contract composition.

Synchronous languages [26, 114, 32] are a formalism of choice in dealing with ob-

servers. The family of Synchronous Languages comprises mainly the imperative lan-

guage Esterel [106, 97] and the dataflow languages Lustre [161] and Signal [173]. The

family has grown with several children offering statecharts-like interfaces and blend-

ing dataflow and statechart-based styles of programming, such as in Scade V621. Syn-

chronous languages support only systems governed by discrete time, not systems with

continuous time dynamics (ODEs). They benefit from a solid mathematical semantics.

As a consequence, executing a given program always yields the same results (results

do not depend on the type of simulator). The simulated or analysed program is iden-

tical to the code for embedding. Thanks to these unique features, specifications can

easily be enhanced with timing and/or safety viewpoints. The RT-Builder22 tool on top

of Signal is an example of framework supporting the combination of functional and

timing viewpoints while analyzing an application deployed over a virtual architecture

(see Section 2.1). The widely used Simulink/Stateflow23 tool by The Mathworks offers

similar features. One slight drawback is that its mathematical semantics is less firmly

defined (indeed, results of executions may differ depending on the code executed: sim-

ulation or generated C code). On the other hand, Simulink supports continuous time

dynamics in the form of systems of interconnected ODEs (Ordinary Differential Equa-

tions), thus supporting the modeling of the physical part of the system. Using Simulink,

21http://www.esterel-technologies.com/products/scade-suite/
22http://www.geensoft.com/en/article/rtbuilder
23http://www.mathworks.com/products/simulink/
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possibly enhanced with SimScape,24 allows for including physical system models in

observers, e.g., as part of the system environment. The same comment holds regarding

Modelica.25 Actually, observers have been proposed and advocated in the context of

Lustre and Scade [115, 116, 117], Esterel [48], and Signal [153, 154]. More precisely,

Scade advocates expressing tests using Scade itself. Tests can then easily be evaluated

at run time while executing a Scade program. To conclude, observe that synchronous

languages and formalisms discussed in this section are commercially available and

widely used.

Another good candidate for expressing observers is the Property Specification Lan-

guage (PSL). PSL is an industrial standard [167, 99, 98] for expressing functional (or

behavioral) properties targeted mainly to digital hardware design. We believe that PSL

is indeed very close to several, less established but more versatile formalisms based on

restricted English language that are used in industrial sectors other than digital hard-

ware, e.g., in aeronautics, automobile, or automation. Consider the following property:

“ For every sequence that starts with an a immediately followed by three

occurrences of b and ends with a single occurrence of c, d holds continu-

ously from the next step after the end of the sequence until the subsequent

occurrence of e. ”

This property is translated into its PSL version

{ [*];a;b[*3];c } |=> (d until! e)

PSL is a well-suited specification language for expressing functional requirements in-

volving sequential causality of actions and events. Although we are not aware of the

usage of PSL in the particular context of contract-based design, we mention the tool

FoCS [4] that translates PSL into checkers that are attached to designs. The result-

ing checker takes the form of an observer, if the PSL specification is properly parti-

tioned into assumption and guarantee properties. More recently, PSL was also used

for the generation of transactors that may adapt high-level requirements expressed as

transaction-level modules to the corresponding register-transfer implementation [15,

16]. It follows that the existing tool support for PSL makes this specification lan-

guage suitable in the contract-based design using observers. We note that the availabil-

ity of formal analysis tools allows the design to be checked exhaustively—this is, of

course, at the price of restrictions on data types. Another benefit in using PSL as an

observer-based interface formalism is an existing methodology for user-guided auto-

mated property exploration built around this language [174, 45], that is supported by

the tool RATSY [46]. As previously stated, PSL is built on top of LTL and regular

expressions. One can thus express liveness properties in PSL, which are not suitable

for online monitoring. There are two orthogonal ways to avoid this potential issue: (1)

restricting the PSL syntax to its safety fragment; or (2) adapting the PSL semantics to

be interpreted over finite traces [100]. A survey of using PSL in runtime verification

can be found in [98].

4 Specializing to Assume/Guarantee contracts

Our static example of Section 2 provided an example of contract specified using As-

sumptions and Guarantees. In Assume/Guarantee contracts (A/G contracts), Assump-

24http://www.mathworks.com/products/simscape/
25https://www.modelica.org/
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tions characterize the valid environments for the considered component, whereas the

Guarantees specify the commitments of the component itself, when put in interaction

with a valid environment. Various kinds of A/G contract theories can be obtained by

specializing the meta-theory in different ways. Variations concern how the composition

of components is defined. We will review some of these specialization and relate them

to the existing literature.

In general, A/G contract theories build on top of component models that are as-

sertions, i.e., sets of behaviors or traces assigning successive values to variables. As

we shall see, different kinds of frameworks for assertions can be considered, including

asynchronous frameworks of Kahn Process Networks (KPN) [129] and synchronous

frameworks in which behaviors are sequences of successive reactions assigning values

to the set of variables of the considered system. We first develop the theory for the

simplest case of a fixed alphabet of variables. Then, we develop the other cases.

4.1 Dataflow A/G contracts

For this simplest variant, all components and contracts involve the same alphabet of

variables V of variables, possessing identical26 domain D. The restriction to a sin-

gle alphabet of variables in this section is intended to simplify the concepts and the

formulas. We will deal with variable alphabets later, in Section 4.3.

Assertions constitute the basis of A/G-components and contracts. An assertion is a

set of behaviors:

P ⊆ V 7→ D∗ ∪ Dω (19)

i.e., a subset of the set of all finite or infinite behaviors over alphabet of variables V .

Assertions are equipped with the boolean algebra ∩,∪,¬, where the latter denotes set

complement.

Behaviors are generically denoted by the symbol σ; a behavior associates, to each

symbol x ∈ V , a finite or infinite flow of values. The flows are not mutually synchro-

nized and there is no global clock or logical step. We discuss in Section 4.4 variants

of this framework with synchronous models of behaviors. For V ′ ⊂ V and σ a behav-

ior, prV ′ (σ) is the restriction of σ to the sub-alphabet V ′. We simply write prx(σ) if

V ′ = {x}. Behaviors are partially ordered by the prefix relation denoted by σ′ ⊑ σ,

meaning that, for every x ∈ V , the word σ′(x) is a prefix of the word σ(x). We denote

by ǫ the empty word of D∗.

Definition 3 A component is a non-empty and prefix-closed assertion. The component

doing nothing is modeled by the singleton {ǫV }. For P an arbitrary assertion, denote

by P↓ the maximal prefix-closed subset of P. If P↓ is non-empty, then it is the maximal

component contained in P.

Despite the fact that a component is typically implemented in practice in form of

a program, we intentionally define it in Definition 3 as an abstract assertion. This

definition gives us greater flexibility and does not enforce any particular syntax. The

abstract assertions are, however, not effective and their syntax must be fixed in order to

allow finite description of the component behavior. The choice of the syntax is crucial

and affects both the expressiveness and succintness of the assertion language. Once the

26This is only an assumption intended to simplify the notations. It is by no means essential.
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semantic domain of the component is defined, both abstract assertions and concrete im-

plementations share a common feature—they define the component behavior in terms

of traces.

Two components are always composable and we define component composition by

the intersection of their respective assertions:

P1 × P2 = P1 ∩ P2 (20)

Formulas (19) and (20) define a framework of asynchronous components, with no

global clock and no notion of reaction. Instead, a component specifies a relation be-

tween the histories of its different flows. When input and output ports are considered

as in Section 4.2 and components are input/output functions, we obtain the model of

Kahn Process Networks [129] widely used for the mapping of synchronous programs

over distributed architectures [176, 177].

Definition 4 A contract is a pair C = (A,G) of assertions, called the assumptions and

the guarantees. The set E
C

of the legal environments for C collects all components

E such that E ⊆ A. The set M
C

of all components implementing C is defined by

A × M ⊆ G.

Observe that we are not requiring any particular condition on the sets A and G. They

can be empty and need not be prefix-closed. By Definition 3, contract C = (A,G) is

compatible if and only if A↓ is nonempty and we denote by EC = A↓ the maximal (for

set inclusion) environment of C . Denoting by ¬A the complement of set A, any compo-

nent M such that M ⊆ G∪¬A is an implementation of C . Thus, contract C = (A,G) is

consistent if and only (G ∪ ¬A)↓ is nonempty and we denote by MC = (G ∪ ¬A)↓

the maximal (for set inclusion) implementation of C . Observe that two contracts

C and C ′ with identical alphabets of variables, identical assumptions, and such that

(G′ ∪ ¬A′)↓ = (G ∪ ¬A)↓, possess identical sets of implementations:M
C
=M

C ′
. Ac-

cording to our meta-theory, such two contracts are equivalent. Say that contract

C = (A,G) is saturated if A = A↓,G = (G ∪ ¬A)↓.

Contract C = (A,G) is equivalent to its saturated form (A↓, (G ∪ ¬A)↓). Next, for C

and C ′ two saturated contracts with identical alphabets of variables,

refinement C
′ � C holds in the sense of the meta-theory iff

{
A′ ⊇ A

G′ ⊆ G
(21)

As a consequence of (21), Assumptions 1 and 2 of the meta-theory hold for A/G con-

tracts. Conjunction follows from the refinement relation: for C1 and C2 two saturated

contracts with identical alphabets of variables:

C1 ∧ C2 = (A1∪A2,G1∩G2).

Focus now on contract composition C = C1 ⊗ C2.

Lemma 4 For saturated contracts, contract composition instantiates through the fol-

lowing formulas:

G = G1 ∩G2 and A = max


A

∣∣∣∣∣∣∣∣

A = A↓ and

A ∩G2 ⊆ A1 and

A ∩G1 ⊆ A2


(22)
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Proof: We use the notation CC1,C2
introduced in Section 3.4. It is enough to prove the

following:

CC1,C2
=


(A,G)

∣∣∣∣∣∣∣∣

(A,G) saturated and

A ∩G2 ⊆ A1 and

A ∩G1 ⊆ A2


(23)

To prove inclusion ⊇ in (23), pick M1,M2, and E such that E ⊆ A, M1 ⊆ G1, and

M2 ⊆ G2. Then, M1×M2 = M1∩M2 ⊆ G, whence M1×M2 |=
m (A,G) follows. Then,

E×M2 = E∩M2 ⊆ A∩G2 ⊆ A1. This proves that E×M2 |=
e (A1,G1), and the inclusion

⊇ in (23) follows. To prove inclusion ⊆ in (23), pick a saturated pair (A,G) belonging

to CC1,C2
and take E = A, M1 = G1, and M2 = G2. By definition of CC1,C2

, we get

M1×M2 |=
m (A,G), M2×E |=e (A1,G1), and M1×E |=e (A2,G2), which translates as

G1∩G2 ⊆ G, G2∩A ⊆ A1, and G1∩A ⊆ A2. �

Formula (22) satisfies Assumption 2 of the meta-theory. Variational formulas (22)

reformulate as the formulas originally proposed in [28]:

G = G1 ∩G2 and A = (A1 ∩ A2) ∪ (¬(G1 ∩G2))↓ (24)

Observe that the so obtained contract (A,G) is indeed saturated.

No quotient operation is known for Assume/Guarantee contracts.

As the reader has noticed, getting saturated contracts is important in applying this

contract algebra. This seems to require being able to compute with unions and comple-

ments of assertions. In fact, we only need to be able to compute the operation A∪¬G,

which we like to interpret as the entailment A ⇒ G. Thus it is enough to have a tool

able to synthesize models for formulas of the form A⇒ G, where: G is a formula or a

conjunction of formulas, A is a formula or a conjunction of formulas, or, recursively, A

has the form A⇒ G.

We finish this section by observing that the two contracts C1 and C ′
1

of Section 2.2.1

satisfy C ′
1
� C1 according to the theory of this section: guarantees are identical but

assumptions are relaxed.

4.2 Capturing exceptions

Referring to the primer of Section 2.2.1 and its static system example, the contract C1

under-specifies the case when y = 0, modeling the assumption that the environment

never provides this input. If for some reason this input is nevertheless given to a com-

ponent that implements C1, the component has full freedom on how to react to this

input. In particular, if the component decides to compute z = x/y even when y = 0, it

can lead to an upredictable outcome and possibly a crash unless exeption handling is

offered as a rescue by the execution platform.

In this section, we show how a mild adjustment of our theory of A/G contracts can

capture exceptions and their handling. To simplify, we develop this again for the case

of a fixed alphabet of variables V . We only present the add-ons with respect to the

previous theories, the parts that remain unchanged are not repeated.

Since exceptions are undesirable events caused by the component itself and not

by its inputs—for our simple example, the exception is the improper handling of the

division by zero—we need to include inputs and outputs as part of our framework for

components.

A component is thus a tuple M = (V in,Vout, P), where V = V in ∪Vout is the decom-

position of alphabet of variables V into its inputs and outputs, and P ⊆ (V 7→ (D∗ ∪ Dω))
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is a non-empty prefix-closed assertion. Whenever convenient, we shall denote by V in
M

,

QM , PM , etc., the items defining component M. Components M1 and M2 are compos-

able if Vout
1
∩ Vout

2
= ∅. If so, then M1×M2 = (V in,Vout, P) is well defined, with Vout =

Vout
1
∪ Vout

2
, V in = V − Vout, and P = P1 ∩ P2.

Let us now focus on exceptions. To capture improper response (leading to a “crash”),

we distinguish a special element fail ∈ D. We assume that crash is not revertible, i.e., in

any behavior of the component, any variable remains at fail when it reaches that value.

Referring to the static example of Section 2, we would then set x/0 := fail for any x.

We are now ready to formalize what it means, for a component, to be free of exception:

Definition 5 A component M is free of exception if:

1. It accepts all inputs:

prV in
M

(PM) = V in
M 7→ (D∗∪Dω)

2. It does not cause by itself the occurrence of fail in its behaviors: for any behavior

σ ∈ PM , if the projection prV in
M

(σ) of σ to the input alphabet V in
M

does not involve

fail, then neither does σ.

3. Status “fail” is persistent: for all behaviors σ ∈ PM , for all x ∈ VM , if σ′ =

prx(σ) can be decomposed into σ′
1
· fail · σ′

2
, then σ′

2
= failω.

Exception freeness defined in this way is such that, if M1 and M2 are both composable

and free of exception, then M1×M2 is also free of exception. Hence, we are free to

restrict our universe of components to exception free components—thus, Definition 5

defines our family of components. A/G contracts are re-defined accordingly:

Definition 6 A contract is a tuple C = (V in,Vout, A,G), where V in and Vout are the

input and output alphabets of variables and A and G are assertions over V, called the

assumptions and the guarantees. The set E
C

of the legal environments for C are all

free of exception components E such that V in
E
= Vout

C
, Vout

E
= V in

C
, and PE ⊆ A. The set

M
C

of all components implementing C is defined by: M is free of exception, V in
M
= V in

C

and Vout
M
= Vout

C
and PE×M ⊆ G for every environment E of C .

Focus now on the issue of consistency and compatibility, for contracts. The following

holds:

Property 7 Let C = (V in,Vout, A,G) be a contract satisfying the following conditions:

prV in
C

(G) = V in
M 7→ (D∗∪Dω) (25)

prVout
C

(A) = Vout
M 7→ (D∗∪Dω) (26)

“fail” does not occur in G ∩ A (27)

Then, C is consistent and compatible.

Proof: By condition (25), the component M = (V in,Vout,G) satisfies condition 1 of

Definition 5. It may not satisfy conditions 2 nor 3, however. To achieve this we modify,

in M, the behaviors not belonging to A in order to avoid fail to occur (preserving M on A

will ensure that the modification still implements C ). To get the desired modification

M′, replace any behavior σ of M belonging to G ∩ ¬A by a behavior σ′ such that
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prV in
C

(σ′) = prV in
C

(σ) and prVout
C

(σ′) = fail. Component M′ obtained in this way is free

of exception and implements C , showing that C is consistent.

Consider next the component E = (Vout,V in, A). If E is free of exception, then it is

an environment for C . If this is not the case, then we can modify E on A ∩ ¬G as we

did for obtaining M′, thus obtaining a modification E′ that is free of exception and still

satisfies E′ ⊆ A. Thus, E′ is a legal environment for C , showing that C is compatible.

�

Conditions (25) and (26) express that assumptions and guarantees are both input

enabled. Condition (27) is the key one. Observe that, now, contract C ′
1

of Section 2.2.1

is inconsistent since it has no implementation—implementations must be free of excep-

tion. In turn, contract C1 is consistent. This is in contrast to the theory of Section 4.1,

where both contracts were considered consistent (crashes were not ruled out). Indeed,

contract C1 of Section 2.2.1 satisfies the conditions of Property 7, whereas C ′
1

does not.

Addressing exceptions matters.

4.3 Dealing with variable alphabets

Since contracts aim at capturing incomplete designs, we cannot restrict ourselves to

a fixed alphabet of variables—it is not known in advance what the actual alphabet of

variables of the complete design will be. Thus the simple variants of Sections 4.1

and 4.2 have no practical relevance and we must extend them to dealing with variable

alphabets. In particular, components will now be pairs M = (VM , PM), where VM is

the alphabet of variables of M and PM is an assertion over VM . Similarly, contracts are

tuples C = ((VA, A), (VG,G)), where assumptions A and guarantees G are assertions

over alphabets of variables VA and VG.

Key to dealing with variable alphabet of variables is the operation of alphabet

equalization that we introduce next. For P an assertion over alphabet of variables

V and V ′ ⊆ V , we consider its projection prV ′ (P) over V ′, which is simply the set of

all restrictions, to V ′, of all behaviors belonging to P. We will also need the inverse

projection pr−1
V ′′

(P), for V ′′ ⊇ V , which is the set of all behaviors over V ′′ projecting

to V as behaviors of P. For (Vi, Pi), i = 1, 2, we call alphabet equalization of (V1, P1)

and (V2, P2) the two assertions (V,pr−1
V

(Pi)), i = 1, 2 where V = V1 ∪ V2. We also

need to define alphabet equalization when the alphabet of variables V decomposes as

V = V in ⊎ Vout. Equalizing the above decomposition to a larger alphabet of variables

V ′′ ⊇ V yields V ′′out = Vout, whence V ′′in = V ′′ \ V ′′out follows. Alphabet equalization

serves as a preparation step to reuse the framework of Section 4.1 when alphabets are

variable.

This being defined, all operations and relations introduced in Section 4.1 are ex-

tended to the case of variable alphabet by 1) applying alphabet equalization to the in-

volved assertions, and, 2) reusing the operation or relation as introduced in Section 4.1.

A practical pitfall of A/G contracts with variable alphabet: As pointed out in [28], this

generalization yields a contract theory that is a valid instantiation of the meta-theory

(up to the missing quotient). It is not fully satisfactory from the practical standpoint,

however. The reason is that the conjunction of two contracts with disjoint alphabets

of variables yields a trivial assumption t, which is very demanding—any environment

must be accommodated—and does not reflect the intuition. This will be further dis-

cussed in Section 5.4. �

To summarize, Sections 4.1, 4.2, and 4.3, together define a framework of asyn-
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chronous Assume/Guarantee contracts where components are of Kahn Process Net-

work type. In the next section, we sketch a variant where components are synchronous

transition systems.

4.4 Synchronous A/G contracts

We obtain variants of this framework of Assume/Guarantee contracts by changing the

concrete definition of what an assertion is, and possibly revisiting what the component

composition is. We can redefine assertions as

P ⊆ (V 7→ D)∗ ∪ (V 7→ D)ω. (28)

Compare (28) with (19). In both cases, assertions are sets of behaviors. With reference

to (19), behaviors were tuples of finite or infinite flows, one for each symbol of the

alphabet of variables. In contrast, in (28), behaviors are finite or infinite sequences of

reactions, which are the assignment of a value to each symbol of the alphabet of vari-

ables. By having a distinguished symbol ⊥ ∈ D to model the absence of an actual data,

we get the multiple-clocked synchronous model used by synchronous languages [32].

Definition (28) for assertions correspond to the synchronous model of computation,

whereas (19) corresponds to the Kahn Process Network type of model [129, 159]. The

material of Sections 4.1, 4.2, and 4.3, can be adapted to this new model of component

composition, thus yielding a framework of synchronous Assume/Guarantee contracts.

4.5 Observers

The construction of observers for this case is immediate. We develop it for the most

interesting case in which exceptions are handled, see Sections 4.1 and 4.2. Let P be an

assertion according to (19). P defines a verdict b
P

by setting

bP(σ) = t if and only if σ ∈ P (29)

Observers must return their verdict in some finite amount of time. Hence, an on-

line interpretation of Definition 4 is appropriate. With this interpretation, for C =

(V in,Vout, A,G) a contract, its associated observer is obtained as follows, with refer-

ence to Definition 2:

• bE

C
(E) is performed by drawing non-deterministically a behavior σ of E and then

evaluating b
A
(σ).

• bM

C
(M) is performed by drawing non-deterministically a behavior σ of M and

then evaluating b
A
(σ)⇒ b

M
(σ).

Lemma 2 for generic observers specializes to the following, effective, semi-decision

procedure:

Lemma 5

1. If b
A

outputs f, then C is incompatible;

2. If b
A
⇒ b

G
outputs f, then C is inconsistent.
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4.6 Abstractions

For concepts and undefined notations, the reader is referred to Section 3.7. We assume

two sets Mc and Ma of concrete and abstract components. Mc and Ma are ordered by

set inclusion. We assume a Galois connection (α, γ) betweenMc andMa. Concrete and

abstract A/G contracts are pairs Cc = (Ac,Gc) and Ca = (Aa,Ga) of concrete/abstract

assumptions and guarantees. Ec |=
e

c Cc iff Ec satisfies Ac, i.e., Ec⊆Ac. Mc |=
m

c Cc

iff Mc∩Ac satisfies Gc, i.e., Mc∩Ac⊆Gc. Since components are sets of behaviors, the

intuitive choice for ⊑c/a is set inclusion. This complies with Assumption 3. Using (15)

yields, for two concrete and abstract A/G contracts Cc = (Ac,Gc) and Ca = (Aa,Ga),

α(Cc) = (α̂(E
Cc

), α̂(M
Cc

)), where:

α̂(E
Cc

) = γ−1(E
Cc

)

= {Ea | γ(Ea) ⊆ Ac}

(by using (10)) = {Ea | Ea ⊆ α(Ac)}

and
α̂(M

Cc
) = γ−1(M

Cc
)

= {Ma | γ(Ma)∩Ac ⊆ Gc}

(by using (10)) = {Ma | Ma ⊆ α(Gc∪¬Ac)}

To summarize:

α(Ac,Gc) = (α(Ac), α(Gc∪¬Ac)) (30)

It remains to explain how to construct a Galois connection for components defined

as sets of behaviors. To be able to apply Theorem 3, we are interested in knowing

if γ is (sub)-multiplicative. It is shown in [33] that predicate abstraction applied to

both the initial condition and the transition relation, defines a Galois connection over

components in which concretization γ is multiplicative, so that Statements 1 and 2 of

Theorem 3 apply. Recall that predicate abstraction works as follows—we explain it

for transition relations. Select an arbitrary finite set (Pi)i∈I of predicates over 2Dc×Dc .

For a concrete transition relation R ⊆ 2Dc×Dc , Pi(R) returns true or false, depending

on whether R satisfies this predicate or not. The abstraction of R is then defined as

α(R) = (Pi(R))i∈I ∈ BoolI =def Ma. It is seen that α is a complete ⊔c-morphism, hence

a unique concretization γ can be canonically associated with it, making (α, γ) a Galois

connection [73, 157]. Equipping the abstract domainMa with the product ×a =def

⋂
a,

where the infimum
⋂

a refers to the product order on the abstract domainMa = BoolI,

ensures that the so defined γ is multiplicative. See [33] for details.

4.7 Discussion

Assume/Guarantee contracts are a family of instantiations of our meta-theory. This

family is flexible in that it can accommodate different models of communication and

different models of exceptions. Assume/Guarantee contracts are an adequate frame-

work for use in requirements capture. Indeed, requirements are naturally seen as asser-

tions. When categorizing requirements into assumptions (specifying the context of use

of the system under development) and guarantees (that the system offers), formalizing

the resulting set of requirements as an A/G contract seems very natural.

Regarding exceptions, the special value fail that we introduced to capture excep-

tions is not something that is given in practice. Value fail may subsume various run

time errors. Alternatively, for the synchronous Assume/Guarantee contracts, fail can
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capture the failure of a component to be input enabled (able, in each reaction, to accept

any tuple of inputs).

In its present form, the framework of Assume/Guarantee contracts (synchronous or

asynchronous), does not handle variable alphabets in a satisfactory way. Also, it suffers

from the need to manipulate negations of assertions, an operation that is generally

not effective, except if the framework is restricted to boolean transition systems. For

general frameworks, using observers or abstract interpretation can mitigate this in part.

4.8 Bibliographical note

By explicitly relying on the notions of Assumptions and Guarantees, A/G contracts are

intuitive, which makes them appealing for the engineer. In A/G contracts, Assumptions

and Guarantees are just properties. The typical case is when these properties are lan-

guages or sets of traces, which includes the class of safety properties [133, 65, 152, 14,

70]. A/G contracts were advocated by the Speeds project [28]. They were further ex-

perimented in the framework of the CESAR project [76]. The theory developed in [28]

turns out to be closest to this presentation; still, exceptions were not handled in [28].

The presentation developed in this paper clarifies the design choices in A/G contract

theories.

Interface Input/Output automata were proposed in [138] as a pair of two i/o-automata

acting as assumption and guarantee. A comparison with interface automata is given.

Inspired by [138], another form for A/G contract was proposed by [110, 111, 113]

when designs are expressed using the Bip programming language [44, 195]. To achieve

separate development of components, and to overcome the problems that certain mod-

els have with the effective computation of the operators, the authors avoid using parallel

composition ⊗ of contracts. Instead, they replace it with the concept of circular rea-

soning, which states as follows in its simplest form: if design M satisfies property G

under assumption A and if design N satisfies assumption A, then M × N satisfies G.

When circular reasoning is sound, it is possible to check relations between composite

contracts based on their components only, without taking expensive compositions. In

order for circular reasoning to hold, the authors devise restricted notions of refinement

under context and show how to implement the relations in the contract theory for the

BIP framework. Compatibility is not addressed and this proposal does not consider

conjunction.

A/G contracts are proposed in [68] for finite traces of interface automata. Safety

and progress for possibly nondeterministic automata are addressed by characterizing a

component through observable, inconsistent (raising an exception), and quiescent (re-

action termination) traces. The satisfaction relations for environments and implemen-

tations are adjusted to account for this more precise characterization of components.

Refinement, conjunction, disjunction, parallel composition, and quotient are proposed:

this development is therefore remarkably comprehensive. An interesting comparision

with [138] is developed using an illustration example.

The automatic generation of observers for A/G contracts has been proposed in the

work [103, 102], where assertions are specified using a declarative pattern-based lan-

guage. A set of monitors is then generated and implemented in the Simulink framework

to observe the underlying system execution and flag behaviors that violate either the

assumptions or the guarantees. The method seems suitable for analyzing the imple-

mentation relation, while consistency and compatibility are only analyzed for closed

systems.
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Regarding extensions, a notion of contract for real-time interfaces is proposed in

[43]. Sets of tasks are associated to components which are individually schedulable on

a processor. An interface for a component is an ω-language containing all legal sched-

ules. Schedulability of a set of components on a single processor then corresponds

to checking the emptiness of their intersection. The interface language considered is

expressive enough to specify a variety of requirements like periodicity, the absence

or the presence of a jitter, etc. An assume/guarantee contract theory for interfaces is

then developed where both assumptions and guarantees talk about bounds on the fre-

quency of task arrivals and time to completions. Dependencies between tasks can also

be captured. Refinement and parallel product of contracts are then defined exactly as

in the Speeds generic approach. In the same direction, A/G contracts were proposed

in [198, 186, 187, 197] for real-time scheduling problems, where tasks and their data

dependencies, and resources, must be handled. See also Section 4 of companion pa-

per [30].

In [162], a platform-based design methodology that uses A/G analog contracts is

proposed to develop reliable abstractions and design-independent interfaces for analog

and mixed-signal integrated circuit design. Horizontal and vertical contracts are for-

mulated to produce implementations by composition and refinement that are correct by

construction. The effectiveness of the methodology is demonstrated on the design of

an ultra-wide band receiver used in an intelligent tire system, an on-vehicle wireless

sensor network for active safety applications.

A/G contracts have been extended to a stochastic setting by Delahaye et al. [87, 88,

89]. In this work, the implementation relation becomes quantitative. More precisely,

implementation is measured in two ways: reliability and availability. Availability is a

measure of the time during which a system satisfies a given property, for all possible

runs of the system. In contrast, reliability is a measure of the set of runs of a system

that satisfy a given property. Following the lines of the contract theories presented

earlier, satisfaction is assumption-dependent in the sense that runs that do not satisfy

the assumptions are considered to be “correct”; the theory supports refinement, struc-

tural composition and logical conjunction of contracts; and compositional reasoning

methods have been proposed, where the stochastic or non-stochastic satisfaction levels

can be budgeted across the architecture: For instance, assume that implementation Mi

satisfies contract Ci with probability αi, for i = 1, 2, then the composition of the two

implementations M1 × M2 satisfies the composition of the two contracts C1 ⊗ C2 with

probability at least α1 + α2 − 1.

Features of our presentation: This presentation of A/G contracts is new in many re-

spects. For the first time, it is cast into the meta-theory of contracts, with the advantage

of clarifying the definition of refinement and parallel composition of contracts—this

involved some hand waving in the original work [28]. Also, this allowed us to handle

exceptions. This presentation of A/G contracts is complemented by an application case

in real-time scheduling in the context of Autosar developed in Section 4 of companion

paper [30].

5 Specializing to Interface theories

Interface theories are an interesting alternative to Assume/Guarantee contracts. They

aim at providing a merged specification of the implementations and environments as-
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sociated to a contract via the description of a single entity, called an interface. We

review some typical instances of interface theories, with emphasis on Interface Au-

tomata and Modal Interfaces. Interface theories generally use (a mild variation of)

Lynch Input/Output Automata [151, 150] as their framework for components and envi-

ronments. As a prerequisite, we thus recall the background on Input/Output Automata,

i/o-automata for short.

5.1 Components as i/o-automata

An i/o-automaton is a tuple M = (Σin,Σout,Q, q0,→), where

• Σin,Σout are disjoint finite input and output alphabets; set Σ = Σin ∪ Σout;

• Q is a finite set of states and q0∈Q is the initial state;

• → ⊆ Q × Σ × Q is the transition relation; as usual, we write q
α
→ q′ to mean

(q, α, q′) ∈ → and q
α
→ to indicate the existence of a q′ such that q

α
→ q′.

An i/o-automaton can be interpreted as an open system: the transitions labeled by

actions in Σout represents the outputs that the system can generate while the transitions

labeled by actions in Σin represent the inputs a system can accept. By concatenation,

the transition relation→ extends to a relation→∗ on Q×Σ∗×Q, where Σ∗ is the set of all

finite words over Σ. Say that a state q′ is reachable from q if there exists some word µ

such that q
µ
−→∗q′. To considerably simplify the development of the theory, we restrict

ourselves to

deterministic i/o-automata, i.e.:
[
q

α
→ q1 and q

α
→ q2

]
=⇒ q2 = q1 (31)

and we denote by

α 7→ δ(q, α) (32)

the partial function such that δ(q, α) is the unique (if it exists) state such that q
α
→

δ(q, α).

Two i/o-automata M1 and M2 having identical alphabet Σ are composable if the

usual input/output matching condition holds: Σout
1
∩ Σout

2
= ∅ and their composition

M = M1 × M2 is given by

Σout = Σout
1
∪ Σout

2
; Σin =

(
Σin

1
∪ Σin

2

)
\ Σout ; Q = Q1 × Q2 and q0 = (q1,0, q2,0),

and the transition relation→ is given by

(q1, q2)
α
→ (q′1, q

′
2) iff qi

α
→i q′i , i = 1, 2

For Mi, i = 1, 2 two i/o-automata and two states qi ∈ Qi, say that q1 simulates q2,

written q2 ≤ q1 if

∀α, q′2 such that q2

α
→2 q′2 =⇒ ∃q′1 such that

[
q1

α
→1 q′1 and q′2≤q′1

]
(33)

Say that

M1 simulates M2, written M2 ≤ M1, if q2,0 ≤ q1,0. (34)
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Observe that simulation relation (33,34) does not distinguish inputs from outputs nei-

ther it distinguishes the component from its environment. It is the classical simulation

relation meant for closed systems.

Variable alphabets are again dealt with using the mechanism of alphabet equaliza-

tion. For M = (Σin,Σout,Q, q0,→) an i/o-automaton and Σ′ ⊃ Σ, we define

M↑Σ
′

=
(
Σin ∪ (Σ′ \ Σ),Σout,Q, q0,→

′
)

where→′ is obtained by adding, to→, for each state and each added action, a self-loop

at this state labeled with this action.

Components and Environments are receptive i/o-automata: Components—and conse-

quently environments—for use in interface theories will be receptive i/o-automata (also

termed input enabled), i.e., they should react by proper response to any input stimulus

in any state:27

M is receptive iff ∀q ∈ Q,∀α ∈ Σin : q
α
→ (35)

Receptiveness is stable under parallel composition.

The following simple technique can be used to make i/o-automaton M receptive:

augment Q with the extra “top” state ⊤ and, for each pair (q, α) ∈ Q × Σin such that α

is not enabled at q, add a transition q
α
→ ⊤ and then add all self-loops ⊤

α
→ ⊤ for any

action α ∈ Σ. This yields a receptive i/o-automaton that we denote by

M (36)

and we recover M from M by removing the extra state ⊤ and all transitions leading to

it.

5.2 Interface Automata with fixed alphabet

For reasons that will become clear later, we restrict the presentation of interface au-

tomata to the case of a fixed alphabet Σ. We begin with the definition of Interface

Automata which are possibly non-receptive i/o-automata. Moreover we give their se-

mantics as contracts, that is, as pairs formed of a component and of a valid environment.

Definition 7 An Interface Automaton is a tuple C = (Σin,Σout,Q, q0,→) where Σin,Σout,Q,

and→ are as in i/o-automata. The initial state q0, however, may not satisfy q0 ∈ Q. If

q0 ∈ Q holds, Interface Automaton C defines a contract by fixing a pair (E
C
,M

C
) as

follows:

The set E
C

of legal environments for C collects all components E such that:

1. Σin
E
= Σout and Σout

E
= Σin. Thus, E and C , seen as i/o-automata, are composable;

2. For any output action α ∈ Σin of environment E such that qE

α
→E and any

reachable state (qE , q) of E × C , then (qE , q)
α
→E×C holds.

Now define the particular environment EC ∈ EC
, such that EC × C simulates E × C

in the sense of (34) for any E ∈ E
C

; we define EC as follows:

27In fact, receptiveness is assumed in the original notion of i/o-automaton by Nancy Lynch [151, 150]. We

use here a relaxed version of i/o-automaton for reasons that will become clear later.
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(a) EC = (Σout,Σin,Q ∪ {⊤}, q0,→EC
), where ⊤ is a special extra state;

(b) transition relation→EC
is such that its restriction to Q×Σ×Q coincides with→;

and

(c) we make the resulting i/o-automaton receptive as indicated in (36).

The setM
C

of the implementations of C collects all components M such that i/o-automaton

C simulates EC×M in the sense of (34).

Condition 2 means that environment E is only willing to emit an output if it is accepted

as an input by C in the composition E × C .

Lemma 6 The environment EC is maximal (with respect to simulation) in E
C

.

Proof: Call ĚC the i/o-automaton obtained by applying (a) and (b) but not (c). By con-

struction, ĚC × C is isomorphic with (∅,Σ,Q, q0,→), i.e., it is obtained from C , seen

as an i/o-automaton, by simply turning inputs to outputs. Consequently, Condition 2.

holds for Ě and this i/o-automaton is maximal (with respect to simulation) having this

property. Step (c) preserves both Condition 2. and maximality when making Ě recep-

tive. � The above definition of Interface Automata is heterodox,

compare with the original references [84, 6]. Definition 7 introduces the two sets E
C

andM
C

, whereas no notion of implementation or environment is formally associated

to an Interface Automaton in the original definition. Also, the handling of the initial

state is unusual. Failure of q0 ∈ Q to hold typically arises when the set of states Q is

empty. Our Definition 7 allows us to cast Interface Automata in the framework of the

meta-theory of Table 2.

Corresponding relations and operations must be instantiated and we do this next.

As a first, immediate, result:

Lemma 7 q0 ∈ Q is the necessary and sufficient condition for C to be both consistent

and compatible in the sense of the meta-theory, i.e., E
C
, ∅ andM

C
, ∅.

Refinement and conjunction. Contract refinement as defined in Table 2 is equiva-

lent to alternating simulation [11], defined as follows: for Ci, i = 1, 2 two Interface

Automata, say that two respective states qi, i = 1, 2 are in alternating simulation, writ-

ten q2 � q1, if

∀α ∈ Σout
2
, q′

2
s.t. q2

α
→2 q′

2
⇒


α ∈ Σout

1
, and

∃q′
1

s.t. q1

α
→1 q′

1
and q′

2
�q′

1

∀α ∈ Σin
1
, q′

1
s.t. q1

α
→1 q′

1
⇒


α ∈ Σin

2
, and

∃q′
2

s.t. q2

α
→2 q′

2
and q′

2
�q′

1

(37)

Say that C2 refines C1, written C2 � C1, if q2,0 � q1,0. The first condition of (37)

reflects the inclusion M
C2
⊆ M

C1
, whereas the second condition of (37) reflects the

opposite inclusion E
C2
⊇ E

C1
. As Interface Automata are taken deterministic, a match-

ing state q′
1

for q′
2

(or q′
2

for q′
1
) is unique when it exists. Alternating simulation can

be effectively checked, see [82] for issues of computational complexity. We note

that we use simulation and alternating simulation and refinement relations for compo-

nents and contracts, respectively. It is sufficient to use the classical simulation relation

between components because we assume that components are input-enabled. In fact,

RR n° 8759



Contracts for System Design 47

for input-enabled systems, simulation and alternating simulation coincide. In addition,

for deterministic (contracts) components, (alternating) simulation also coincides with

(alternating) language inclusion.

Unfortunately, no simple formula for the conjunction of contracts is known. See [96]

for the best results in this direction.

Parallel composition and quotient: Contract composition C1⊗C2, as defined in the

meta-theory, is effectively computed as follows, for Ci two Interface Automata satisfy-

ing the conditions of Lemma 7. Consider, as a first candidate for contract composition,

the composition C1×C2 where Ci, i = 1, 2 are seen as i/o-automata. This first guess

does not work because of the condition involving environments in the contract compo-

sition of the meta-theory. More precisely, by the meta-theory we should have

E |=e C =⇒
[
E×M2 |=

e
C1 and E×M1 |=

e
C2

]

which requires: ∀α ∈ Σout
i

: qi

α
→i =⇒ (q1, q2)

α
→C1×C2

. Pairs (q1, q2) not satisfying

this are called illegal. In words, a pair of states (q1, q2) is illegal when one Interface

Automaton wants to submit an output whereas the other one does not have the cor-

responding input hence preventing a synchronization—referring to Assume/Guarantee

contracts, one could interpret this as a mismatch of assumptions and guarantees in this

pair of interfaces. Illegal pairs must then be pruned away. Pruning away illegal pairs

from C1×C2 together with corresponding incoming transitions may cause other illegal

pairs to occur. The latter must also be pruned away, until a fixed-point is reached. The

result is the contract composition C1⊗C2.

As a consequence of this pruning, it may be the case that the resulting contract has

an empty set of states, which, by Lemma 7, expresses that the resulting composition

of the two interfaces is inconsistent and incompatible—in the original literature on

Interface Automata [84, 6] it is said that the two interfaces C1 and C2 are incompatible.

In [42], incremental design of deterministic Interface Automata is studied. Let C ↓

be the interface C with input and output actions interchanged. Given two Interface

Automata C1 and C2, the greatest interface compatible with C2 such that their com-

position refines C1 is given by (C1 ‖ C2
↓)↓. Hence, the part regarding quotient in the

meta-theory is correctly addressed for deterministic Interface Automata.

Dealing with variable alphabets: So far we have presented the framework of interface

automata for the case of a fixed alphabet. The clever reader may expect that dealing

with variable alphabets can be achieved by using the mechanism of alphabet equal-

ization via inverse projections.28 This is a correct guess for contract composition. It

is however not clear if it is also adapted for conjunction for which no satisfactory

construction exists as previously indicated. In contrast, alphabet equalization and con-

junction are elegantly addressed by the alternative framework of Modal Interfaces we

develop now.

5.3 Modal Interfaces with fixed alphabet

Modal Interfaces inherit from both the Interface Automata and the originally unre-

lated notion of Modal Automaton (or Modal Transition System), see the bibliograph-

ical note 5.8. As for Interface Automata, the semantics of Modal Interfaces is given

28The inverse projection of an i/o-automaton is simply achieved by adding, in each state, a self-loop for

each missing symbol.
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below in terms of contracts, that is, pairs formed of a component and of a valid envi-

ronment represented as receptive i/o-automata. The presentation of Modal Interfaces

we develop here is thus aligned with our meta-theory and, thus, differs from classical

presentations. Again, we begin with the case of a fixed alphabet Σ.

Definition 8 Call Modal Interface a tuple C = (Σin,Σout,Q, q0,→,d), where Σin,Σout,Q, q0

are as in Interface Automata and→,d⊆ Q × Σ × Q are two deterministic transition

relations such that

q
α
→ q′ and q

α
d q′′ implies q′ = q′′ , (38)

called must and may, respectively. A Modal Interface C such that q0 ∈ Q induces two

(possibly non receptive) i/o-automata:

and C must = (Σin,Σout,Q, q0,→)

and C may = (Σin,Σout,Q, q0,d).

C defines a contract by fixing a pair (E
C
,M

C
) as follows:

The set E
C

of the legal environments for C collects all components E such that:

1. Σin
E
= Σout and Σout

E
= Σin; consequently, E and C must, when seen as i/o-automata,

are composable; the same holds with C may in lieu of C must;

2. For any α ∈ Σin such that qE

α
→E and any reachable state (qE , q) of E × C may:

(qE , q)
α
→E×C must .

Now define the particular environment EC ∈ EC
, such that EC × C may simulates E ×

C may in the sense of (34) for any E ∈ E
C

; we define EC as follows:

(a) EC = (Σout,Σin,Q ∪ {⊤}, q0,→EC
), where ⊤ is a special extra state;

(b) the restriction of→EC
to Q × Σin × Q coincides with→ ;

the restriction of→EC
to Q × Σout × Q coincides withd ;

(c) we make the resulting i/o-automaton receptive as indicated in (36).

The setM
C

of the implementations of C collects all components M such that:

3. EC×C
may simulates EC×M in the sense of (34), meaning that only may transi-

tions are allowed for EC×M;

4. EC×M simulates EC×C
must in the sense of (34), meaning that must transitions

are mandatory in EC×M.

Observe that, since components are receptive i/o-automata, we can equivalently replace

α∈ΣM by α∈Σout
M

in the above condition 4. On the other hand, the consideration of the

particular environment EC is justified by the following result, whose proof is similar

to that of Lemma 6:

Lemma 8 The environment EC is maximal in E
C

with respect to simulation relation

(34).
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Consistency and Compatibility: We begin with consistency. Say that state q ∈ Q of C

is consistent if q
α
→ q′ implies q

α
d q′, otherwise we say that it is inconsistent. Assume

that C has some inconsistent state q ∈ Q, meaning that, for some action α, q
α
→ q′ holds

but q
α
d q′ does not hold. By conditions 3) and 4) of Definition 8, for any environment

E and any implementation M of C , no state (qE , qM) of E×M satisfies (qE , qM)≤(qE , q).

Hence, all may transitions leading to q can be deleted from C without changingM
C

.

Performing this makes state q unreachable in C may, thus Condition 2 of Definition 8

is relaxed and the set of environments is possibly augmented. Since we have removed

may transitions, some more states have possibly become inconsistent. So, we must

repeat the same procedure. Since the number of states is finite, this procedure eventu-

ally reaches a fixpoint. At fixpoint, the set Q of states partition as Q = Qcon ⊎Qincon,

where Qincon collects all states that were or became inconsistent as a result of this pro-

cedure, and Qcon only collects consistent states. In addition, since the fixpoint has been

reached, Qincon is unreachable from Qcon. As a final step, we delete Qincon and call [C ]

the so obtained contract:

Lemma 9 (reduction) [C ] is called the reduction of C . It satisfies

M
[C ]
=M

C
and E

[C ]
⊇ E

C
(39)

where the inclusion is strict unless C possesses no inconsistent state. Furthermore,

[C ] offers the smallest set of environments among the Modal Interfaces satisfying (39).

Finally, C is consistent and compatible if and only if q0 ∈ Qcon.

In the sequel, unless otherwise specified, we will only consider reduced Modal Inter-

faces, whose states are all consistent and compatible.

Introducing must, may, and ready sets: It will be useful for the mathematics to reformu-

late the conditions of Definition 8 using must and may sets, and ready sets we introduce

now. For M a component (i.e., a receptive i/o-automaton) and q a reachable state of it,

we denote by

ΣM(q) =def {α | q
α
→M } (40)

the ready set of M at q. For C a Modal Interface and q a state of it, we introduce the

following may and must sets:

mayC (q) = {α ∈ Σ | q
α
d }

mustC (q) = {α ∈ Σ | q
α
→}

(41)

and we recall that, since C is assumed reduced, the inclusion mustC (q) ⊆ mayC (q)

holds. For both notions, we omit the subscript M or C when no confusion can result.

Using these notions, the following lemma holds:

Lemma 10

1. For M1 and M2 two i/o-automata as in (33), simulation relation q2 ≤ q1 rewrites

as follows: ΣM2
(q2) ⊆ ΣM1

(q1) holds and δM2
(q2, α) ≤ δM1

(q1, α) holds for every

α ∈ ΣM2
(q2).

2. The conditions of Definition 8 can be reformulated as follows:
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Condition 2. rewrites as follows: For every pair (qE , q) of states that is reach-

able in E × C may, the following holds:

Σin ∩ ΣE(qE) ⊆ mustC (q) (42)

Condition 3. rewrites as follows: For every pair (q, qM) of states that is reach-

able in EC × M, the following holds:

Σout ∩ ΣM(qM) ⊆ Σout ∩ may(q) (43)

Condition 4. rewrites as follows: For every pair (q, qM) of states that is reach-

able in EC × M, the following holds:

Σout ∩ must(q) ⊆ Σout ∩ ΣM(qM) (44)

Proof: Statement 1 and the item related to Condition 2 of Statement 2 are immediate.

Condition 3 of Statement 2 is equivalent to the following inclusion, which by itself

implies that the special state ⊤ of EC is not reachable in the product EC × M:

(
(Σin ∩ must(q)) ∪ Σout

)
∩ ΣM(qM) ⊆ (Σin ∩ must(q)) ∪ (Σout ∩ may(q)) (45)

Using the partitioning Σ = Σin ∪ Σout, inclusion (45) is equivalent to the conjunction of

the following two inclusions:

Σin ∩ must(q) ∩ ΣM(qM) ⊆ Σin ∩ must(q)

Σout ∩ ΣM(qM) ⊆ Σout ∩ may(q)

which is equivalent to (43) since the first inclusion is a tautology. The reasoning for

Condition 4 is similar. First, Condition 4 is equivalent to

must(q) ⊆
(
(Σout ∩ may(q)) ∪ Σin

)
∩ ΣM(qM)

which, by decomposing over Σ = Σin ∪ Σout, and using (43), proves (44). � Relation

of Definition 8 with the existing semantics of Modal Interfaces: The first sentence of

Definition 8 is a verbatim of the original definition of Modal Interfaces [183]. As for

Interface Automata in Section 5.2, the handling of the initial state q0 is heterodox and

motivated by our aim that Definition 8 casts Modal Interfaces in the framework of the

meta-theory. For the same reason, Definition 8 introduces the two sets E
C

and M
C

,

whereas the classical theory of Modal Interfaces considers and develops a different no-

tion of model (often also called “implementation”, which is unfortunate). Nevertheless,

the following relation holds betweenM
C

and the set of models of C .

Lemma 11

1. The map M → M defined in (36) maps every model of C to an implementation

of C , i.e., M ∈ M
C

.

2. For every M ∈ M
C

, N =
(
Σin,Σout,QM × Q, (qM,0, q0),→M×EC

)
is a model of C .

Proof: For statement 1, we must prove that every model M = (Σin,Σout,QM , q
M
0
,→M)

of C yields an implementation M of C according to Definition 8. Recall that M models
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C , written M |= C if, for every pair of states (qM , q) that is reachable in M × C may, the

following holds [183]:

must(q) ⊆ ΣM(qM) ⊆ may(q) (46)

Using Lemma 10, this condition implies that Conditions 3 and 4 of Definition 8 hold

for M. Replacing M by its receptive counterpart M does not change anything since the

transitions added when moving from M to M are canceled in the composition EC ×M.

For statement 2, we need to prove that, for every triple (qM , q, q) of states that is

reachable in N × C may,

must(q) ⊆ ΣN(qM , q) ⊆ may(q) (47)

By construction, we have

ΣN(qM , q) = ΣM(qM) ∩
(
(Σin ∩ must(q)) ∪ (Σout ∩ may(q))

)
(48)

Using again Lemma 10, Conditions 3 and 4 of Definition 8 for M, imply: for every

pair (q, qM) of states that is reachable in EC × M,

Σout ∩ must(q) ⊆ Σout ∩ ΣM(qM) ⊆ Σout ∩ may(q) (49)

Intersecting the second inclusion of (49) with may(q) and using (48) yields

Σout ∩ ΣN(qM , q) ⊆ Σout ∩ may(q) (50)

On the other hand, intersecting the first inclusion of (49) with must(q) and using (48)

and the fact that must(q) ⊆ may(q) gives

Σout ∩ must(q) ⊆ Σout ∩ ΣN(qM , q) (51)

Finally, using once more (48) and the fact that M is receptive, we get Σin ∩ΣN(qM , q) =

Σin ∩ must(q), which, together with (50) and (51), yields (47). �

Refinement and conjunction: Conjunction and refinement are instantiated in a very

elegant way in the theory of Modal Interfaces. Contract refinement in the sense of the

meta-theory is instantiated by the effective notion of Modal refinement we introduce

now. Roughly speaking, modal refinement consists in enlarging the must relation (thus

enlarging the set of legal environments) and restricting the may relation (thus restricting

the set of implementations). The formalization requires the use of simulation relations.

Definition 9 (modal refinement) Let Ci, i = 1, 2 be two Modal Interfaces and qi be a

state of Ci, for i = 1, 2. Say that q2 refines q1, written q2 � q1, if:

{
may2(q2) ⊆ may1(q1)

must2(q2) ⊇ must1(q1)
and ∀α ∈ Σ :


q1

α
d1 q′

1

q2

α
d2 q′

2

=⇒ q′2 � q′1

Say that C2 � C1 if q2,0 � q1,0.

The following result relates modal refinement with contract refinement as defined in

the meta-theory. It justifies the consideration of modal refinement. Its proof follows by

direct use of Definition 8 and Lemma 9:
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Lemma 12 For C1 and C2 two Modal Interfaces, the following two properties are

equivalent:

(i) M
C2
⊆ M

C1
and E

C2
⊇ E

C1
, meaning that contract C2 refines contract C1

following the meta-theory;

(ii) [C2] � [C1], i.e., [C2] refines contract [C1] in the sense of modal refinement.

The conjunction of two Modal Interfaces is thus the Greatest Lower Bound (GLB) with

respect to refinement order. Its computation proceeds in two steps. In a first step, we

wildly enforce the GLB and compute a pre-conjunction by taking union of must sets

and intersection of may sets:

Definition 10 The pre-conjunction29 C1∧C2 of two Modal Interfaces is only defined if

Σin
1
= Σin

2
and Σout

1
= Σout

2
and is given by Σin = Σin

1
, Σout = Σout

1
, Q = (Q1×Q2) ∪ {⊥},

q0 = (q1,0, q2,0), and its two transition relations are given by:

(q1, q2)
α
→ (q′1, q

′
2) iff qi

α
→i q′i , for i = 1, 2

(q1, q2)
α
→⊥ iff qi

α
→i q′i and α < must j(q j), for i, j = 1, 2, j,i

(q1, q2)
α
d (q′1, q

′
2) iff qi

α
di q′i , for i = 1, 2

By construction, the must and may sets of C1∧C2 are given by:

must(q1, q2) = must1(q1) ∪ must2(q2)

may(q1, q2) = may1(q1) ∩ may2(q2)
(52)

Now by (52), we can see that C1∧C2 may involve inconsistent states and, thus, in a

second step, the pruning introduced in Lemma 9 must be applied:

C1 ∧ C2 = [C1∧C2] (53)

Say that the two Modal Interfaces C1 and C2 are consistent if C1 ∧ C2 is consistent in

the sense of Lemma 9.

Parallel composition and quotient: For Modal Interfaces, we are able to define both

parallel composition and quotient in the sense of the meta-theory. As it was the case

for Interface Automata, parallel composition for Modal Interfaces raises compatibility

issues, thus, a two-step procedure is again followed for its computation.

Definition 11 The pre-composition C1⊗C2 of two Modal Interfaces is only defined if

Σout
1
∩ Σout

2
= ∅ and is given by: Σout = Σout

1
∪ Σout

2
, Q = Q1×Q2, q0 = (q1,0, q2,0), and its

two transition relations are given by:

(q1, q2)
α
→ (q′1, q

′
2) iff qi

α
→i q′i , i = 1, 2

(q1, q2)
α
d (q′1, q

′
2) iff qi

α
di q′i , i = 1, 2

Say that a state (q1, q2) of C1⊗C2 is illegal if

may1(q1) ∩ Σin
2 * must2(q2)

or may2(q2) ∩ Σin
1 * must1(q1)

29Pre-conjunction was originally denoted by the symbol & in [181, 184, 183].
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Illegal states are pruned away from C1⊗C2 as follows. Remove, from C
may

1
×C

may

2
, all

transitions leading to (q1, q2). As performing this may create new illegal states, the

same is repeated until fixpoint is reached. As a final step we delete the states that are

not may-reachable. This finally yields C1⊗C2, which no more possesses illegal states.

By construction, the must and may sets of C1⊗C2 are given by:

must(q1, q2) = must1(q1) ∩ must2(q2)

may(q1, q2) = may1(q1) ∩ may2(q2)
(54)

The above construction is justified by the following result:

Lemma 13 C1⊗C2 as defined in Definition 11 instantiates the contract composition

from the meta-theory.

Proof: (sketch) E is an environment for C = C1⊗C2 iff for any reachable state (qE , q1, q2)

of E × C
may

1
× C

may

2
, we have

rs(qE) ⊆ must1(q1) ∩ must2(q2), (55)

where rs(q), the ready set of state q, is the subset of actions α such that q
α
→ holds. Let

M1 be any implementation of C1 and consider E×M1. We need to prove that E×M1 is

an environment for C2, i.e., satisfies Condition 2 of Definition 8 (we must also prove

the symmetric property). Let (qE , q1, q2) be a reachable state of E×M1×C
may

2
. We must

prove

rs(qE) ∩ rsM1
(q1) ∩ Σ in

2 ⊆ must2(q2)

By (55) it suffices that the following property holds:

rsM1
(q1) ∩ Σ in

2 ⊆ must2(q2) (56)

However, we only know that rsM1
(q1) ⊆ may1(q1). Hence, to guarantee (56) we must

prune away illegal pairs of states. To this end, we use the same procedure as before: we

make state (q1, q2) unreachable in C
may

1
×C

may

2
by removing all may transitions leading

to that state. We complete the reasoning as we did for the study of consistency. �

Definition 12 The quotient C1/C2 of two Modal Interfaces C1 and C2 is only defined

if Σin
1
∩ Σout

2
= ∅ and is defined according to the following two steps procedure. First,

define C as follows: Σout = Σout
1
\ Σout

2
, Q = (Q1 ×Q2)∪ {⊥,⊤}, q0 = (q1,0, q2,0), and its

two transition relations are given by:

(q1, q2)
α
→ (q′1, q

′
2) iff qi

α
→i q′i , i = 1, 2

(q1, q2)
α
→⊥ iff q1

α
→1 q′1 and α < must2(q2)

(q1, q2)
α
d (q′1, q

′
2) iff q1

α
d1 q′1, q2

α
d2 q′2 and α ∈ must2(q2)

(q1, q2)
α
d (q′1, q

′
2) iff q1

α
d1 q′1, q2

α
d2 q′2 and α < must1(q1)

(q1, q2)
α
d⊤ iff q1

α
d1 q′1 and α ∈ may2(q2)

(q1, q2)
α
d⊤ iff ¬

[
may1(q1) ∪ may2(q2)

]

⊤
α
d⊤ iff α ∈ Σ

These rules may result in inconsistent states, thus, in a second step, we set C1/C2 = [C ].
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Observe that, by construction, the must and may sets of C1/C2 are given by:

must(q1, q2) = must1(q1)

may(q1, q2) =
[
may1(q1) ∩ ¬must1(q1)

]
∪
[
must1(q1) ∩ must2(q2)

]
∪

¬
[
may1(q1) ∪ may2(q2)

]

This definition is justified by the following result [183], showing that Definition 12

instantiates the meta-theory:

Lemma 14 C ⊗ C2 � C1 if and only if C � C1/C2.

For the next definition and lemma, we consider two consistent and compatible Modal

Interfaces C1 and C2. We are interested in modifying the quotient C1/C2 to prevent

(C1/C2) and C2 from being incompatible. For the following definition, Σout and Σin are

as in Definition 12 and may/ and must/ refer to the quotient C1/C2:

Definition 13 Let C ′ be the interface defined on the same state structure as C1/C2,

with however the following modalities:

may′(q1, q2) = may/(q1, q2) ∩
(
may2(q2) ∪ Σin

)

must′(q1, q2) = must/(q1, q2) ∪
(
Σout

1
∩ Σout

2
∩ may2(q2)

)

define the compatible quotient, written C1//C2, to be the reduction of C ′: C1//C2 = [C ′]

.

This construction is justified by the following result:

Lemma 15 The compatible quotient satisfies:

C1//C2 = max


C

∣∣∣∣∣∣∣∣

C has no inconsistent state

C ⊗ C2 has no illegal pair of states

C ⊗ C2 � C1



Proof: Denote C = C1//C2 the compatible quotient defined above. The proof is three-

fold: (i) C is proved to be a solution of the inequality C ⊗ C2 � C1, (ii) C is proved to

be compatible with C2, and (iii) every C ′ satisfying the two conditions above is proved

to be a refinement of C .

Remark that reachable states in (C1//C2)⊗C2 are of the form (q1, q2, q2) and that for

every reachable state pair (q1, q2) in C1//C2, state (q1, q2, q2) is reachable in (C1//C2) ⊗

C2.

(i) Remark that may′ ⊆ may/ and must′ ⊇ must/. Hence, C1//C2 � C1/C2. Since

the parallel composition is monotonic, (C1//C2) ⊗ C2 � (C1/C2) ⊗ C2 � C1.

(ii) For every state (q1, q2, q2), reachable in (C1//C2)⊗C2, one among the following

three cases occurs:

• Assume e ∈ Σin
1

, meaning that e is an input for both C2 and C1//C2. Hence state

(q1, q2, q2) is not illegal because of e.

• Assume e ∈ Σout
1
∩ Σout

2
, Therefore e is an input of the compatible quotient.

Remark must′(q1, q2) ⊆ may2(q2). Hence, state (q1, q2, q2) is not illegal because

of e.
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• Assume e ∈ Σout
1
∩Σin

2
, meaning that e is an output of the compatible quotient. Re-

mark may′(q1, q2) ⊆ must2(q2). Therefore state (q1, q2, q2) is not illegal because

of e.

(iii) Let C ′′ be a Modal Interface such that C1//C2 � C ′′ � C1/C2. We shall prove

that either C ′′ � C1//C2 or that C ′′ is not compatible with C2. Remark that every

reachable state (q1, q2) of C1//C2 is related to exactly one state q′′ of C ′′ by the two

modal refinement relations. Assume that C ′′ is not a refinement of C1//C2, meaning

that there exists related states (q1, q2) and q′′ such that may′(q1, q2) ⊆ may′′(q′′) ⊆

may/(q1, q2) and must′(q1, q2) ⊇ must′′(q′′) ⊇ must/(q1, q2) and either may′(q1, q2) (

may′′(q′′) or must′(q1, q2) ) must′′(q′′). Remark e ∈ Σin
1

implies that e ∈ may′(q1, q2)

iff e ∈ may/(q1, q2) and that e ∈ must′(q1, q2) iff e ∈ must/(q1, q2). Therefore the case

e ∈ Σin
1

does not have to be considered.

1. Assume there exists e such that e ∈ may′′(q′′)\may′(q1, q2). Remark this implies

e ∈ Σout
1
∩ Σin

2
, meaning that e is an output of the compatible quotient. Remark

also that e < must2(q2). Therefore state (q′′, q2) is illegal in C ′′ ⊗ C2.

2. Assume there exists e such that e ∈ must′(q1, q2) \ must′′(q′′). Remark this

implies e ∈ Σout
1
∩ Σout

2
, meaning that e is an input of the compatible quotient.

Remark also that e ∈ may2(q2). Therefore state (q′′, q2) is illegal in C ′′ ⊗ C2. �

5.4 Modal Interfaces with variable alphabet

As a general principle, every relation or operator introduced in Section 5.3 (for Modal

Interfaces with a fixed alphabet Σ) is extended to the case of variable alphabets by

1) extending and equalizing alphabets, and then 2) applying the relations or opera-

tors of Section 5.3 to the resulting Modal Interfaces. For all frameworks we studied

so far, alphabet extension was performed using inverse projections, see Section 4.3.

For instance, this is the procedure used in defining the composition of i/o-automata:

extending alphabets in i/o-automata is by adding, at each state and for each added ac-

tion, a self-loop labeled with this action. The very reason for using this mechanism is

that it is neutral for the composition in the following sense: it leaves the companion

i/o-automaton free to perform any wanted local action.

So, for Modal Interfaces, what would be a neutral procedure for extending alpha-

bets? Indeed, considering (52) or (54) yields two different answers, namely:

for (52) :
α ∈ may1(q1)

and α ∈ whatever2(q2)

}
=⇒ α ∈ whatever(q1, q2)

for (54) :
α ∈ must1(q1)

and α ∈ whatever2(q2)

}
=⇒ α ∈ whatever(q1, q2)

where “whatever” denotes either may or must. Consequently, neutral alphabet exten-

sion is by adding

• may self-loops for the conjunction, and

• must self-loops for the composition.

The bottom line is that we need different extension procedures. These observations

explain why alphabet extension is properly handled neither by Interface Automata (see

the last paragraph of Section 5.2) nor by A/G contracts (see the end of Section 4.3).
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These theories do not offer enough flexibility for ensuring neutral extension for all

relations or operators. We now list how alphabet extension must be performed for each

relation or operator, for two Modal Interfaces C1 and C2 (the reader is referred to [183]

for justifications).

Throughout this section, and, more generally, when alphabet extensions are con-

sidered, every alphabet comes with its partitioning Σ = Σin ⊎ Σout and Σ′ ⊇ Σ means

Σ′in ⊇ Σin and Σ′out ⊇ Σout.

With this in mind, we define the strong extension of C to Σ′ ⊇ Σ, written C ↑Σ
′

, as

the modal interface C ↑Σ
′

= (Σ′in,Σ′out,Q, q0,→
′,d′), where:

→′ = → ∪{ (q, α, q) | q ∈ Q and α ∈ Σ′ \ Σ }

d
′ = d ∪{ (q, α, q) | q ∈ Q and α ∈ Σ′ \ Σ }

(57)

Similarly, we define the weak extension of C to Σ′ ⊇ Σ, written C ⇑Σ
′

, as the modal

interface

C
⇑Σ′ = (Σ′in,Σ′out,Q, q0,→,d

′) (58)

where d′ is defined as in (57) while → is kept unchanged. In words, only may self-

loops are added in weak extensions, whereas both may and must self-loops are added

in the strong extension.

Observe that the strong extension uses the classical inverse projection everywhere.

The weak extension, however, proceeds differently with the must transitions in that it

forbids the legal environments to submit additional actions as its outputs.

Using weak and strong alphabet equalization, the relations and operations intro-

duced in Section 5.3 extend to variable alphabets as indicated now. In the following

theorem, (Σ,Σ′) is a pair such that Σ ⊆ Σ′ and (Σ1,Σ2,Σ) denotes a triple such that

Σ = Σ1 ∪ Σ2. Contract C has alphabet Σ, and contract Ci has alphabet Σi. Finally,

for each listed operation, decomposition Σi = Σ
in
i
⊎ Σout

i
is such that composability

conditions are satisfied:

Theorem 4 The following relations and operators

M′ |=m C ::= M′ |=m C ⇑Σ
′

E′ |=e C ::= E′ |=e C ↑Σ
′

C1 � C2 ::= C1 � C
⇑Σ

2

C1 ∧ C2 ::= C
⇑Σ

1
∧ C

⇑Σ

2

C1 ⊗ C2 ::= C
↑Σ

1
⊗ C

↑Σ

2

C1//C2 ::= C
⇑Σ

1
//C

↑Σ

2

(59)

instantiate the meta-theory.

Proof: The first two formulas just provide definitions, so no proof is needed for them.

Their purpose is to characterize the weakly and strongly extended Modal Interfaces in

terms of their sets of environments and implementations. For both extensions, allowed

output actions of the implementations are augmented whereas mandatory actions are

not. For the weak extension, legal environments are not modified in that no additional

output action is allowed for them. In contrast, for the strong extension, legal environ-

ments are allowed to submit any additional output action. These observations justify

the other formulas. �
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5.5 Restricting to a sub-alphabet, application to contract decom-

position

A difficult step in the management of contracts was illustrated in Figure 2 of Sec-

tion 2.1. It consists in decomposing a contract C into a composition of sub-contracts

⊗
i∈I

Ci � C (60)

where sub-contract Ci has alphabet Σi = Σ
in
i
⊎ Σout

i
. As a prerequisite to (60), the

designer has to guess some topological architecture by decomposing the alphabet of

actions of C as

Σ =
⋃

i∈I Σi , Σi = Σin
i
⊎ Σout

i (61)

such that composability conditions regarding inputs and outputs hold. Guessing archi-

tectural decomposition (61) relies on the designer’s understanding of the system and

how it should naturally decompose—this typically is the world of SysML. Finding de-

composition (60) is, however, technically difficult in that it involves behaviors [143]. It

is particularly difficult if C is itself a conjunction of viewpoints or requirements, which

typically occurs in requirements engineering, see companion paper [30]:

C =
∧

k∈K Ck (62)

The algorithmic means we develop in the remaining part of this section will be instru-

mental in solving (60). They will be used in the Parking Garage example of companion

paper [30].

Let C be a Modal Interface with alphabet Σ = Σin ∪ Σout and let (Σ′in,Σ′out) be two

input and output sub-alphabets such that Σ′in ⊆ Σin and Σ′out ⊆ Σout. Set Σ′ = Σ′in⊎Σ′out

and define the restriction of C to Σ′, denoted by C↓Σ′ via the procedure shown in

see Table 4. Observe that the states of the restriction correspond to sets of states of

the original Modal Interface. The restriction aims at avoiding incompatibilities when

considering the composition, as the following lemma shows:

Lemma 16 If C is consistent, then so are C↓Σ′ and the compatible quotient C //C↓Σ′ .

(See Definition 13 for the compatible quotient.) Proof: Consider two alphabets Σ ⊇ Σ′,

and a consistent C on alphabet Σ, such that C↓Σ′ is also consistent. The only case

where quotient produces inconsistent states is whenever there exists an action e and

a state pair (q,R) in C //C↓Σ′ , such that e has modality must in q and does not have

modality must in R. We prove by contradiction that no such reachable state pair (q,R)

and action e exist. Remark that by definition of the restriction, q ∈ R. The restriction

is assumed to be in reduced form, meaning that it does not contain inconsistent states.

Two cases have to be considered:

1. Action e has modality cannot in R. Several sub-cases have to be considered,

depending on the i/o status of e and on the fact that the reduction of the restriction

has turned a may modality for e into a cannot. In all cases, action e has modality

cannot or may in q, which contradicts the assumption.

2. Action e has modality may in R. This implies that e also has modality may in q,

which contradicts the assumption.
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input: C ,Σin,Σout,Σ′in,Σ′out; output: C ′

let order({cannot,may,must},≤in) = cannot ≤in may ≤in must

order({cannot,may,must},≤out) =

{
must ≤ may

cannot ≤ may

in let rest(X) =

if X has not been visited,

then

1. mark X visited

2. for every α ∈ Σ′ do

2.1 let Y = ε-closure(Σ − Σ′, next(α, X))

2.2 let m = Op{mC (q, α) | q ∈ X}

where Op = if α ∈ Σ′in then ∨in else ∨out

2.3 add to C ′ a transition (X, α,Y) with modality m

2.4 rest(Op,Y)

done

let restrict(C ) =

1. let X0 = ε-closure(Σ − Σ′, q0)

2. set initial state of C ′ to X0

3. rest(Op, X0)

4. return C ′

Table 4: Algorithm for computing the restriction C↓Σ′ .

This finishes the proof of the lemma. � The following properties hold by Lemma 15:

C↓Σ′ ⊗ (C //C↓Σ′ ) � C ;

C //C↓Σ′ has no inconsistent state;(
C↓Σ′ ,C //C↓Σ′

)
has no incompatible pair of states.

(63)

Decomposition (63) can be used while sub-contracting through the following algo-

rithm:

Algorithm 1 We are given some system-level contract C . The top-level designer guesses

some topological architecture according to (61). Then, she recursively decomposes:

C = C0 � C0↓Σ1
⊗ C1

� C0↓Σ1
⊗ C1↓Σ2

⊗ C2

...

� C0↓Σ1
⊗ . . . ⊗ Cn−1↓Σn

=def C (Σ1) ⊗ . . . ⊗ C (Σn)

(64)

which ultimately yields a refinement of C by a compatible composition of sub-contracts.

5.6 Observers

Here we develop observers for a Modal Interface C = (Σin,Σout,Q, q0,→,d) having

no inconsistent state, meaning that→⊆d. With this consistency assumption in force,

observers are then obtained as follows, with reference to Definition 2:
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• Condition 2 of Definition 8 boils down to requiring that E × C must simulates E.

Simulation testing can thus be used to check this; call bE

C
(E) the corresponding

verdict.

• To test for implementations, we first construct the maximal environment EC and

apply testing to check simulation of EC ×M by C may, call bM

C ,1
the corresponding

verdict. Performing this requires maintaining pairs of states ((qE , qM), (qE , q)) in

simulation relation: (qE , qM)≤(qE , q). For any such pair of states, let bM

C ,2
denote

the verdict answering whether (qE , qM)
α
→EC×M holds each time q

α
→ holds, for

any α ∈ Σout. The overall verdict for implementation testing is then

bM

C ,1(EC × M) ∧ bM

C ,2(EC × M)

Lemma 2 for generic observers specializes to the following, effective, semi-decision

procedure:

Lemma 17

1. If bE

C
outputs f, then C is incompatible;

2. If bM

C ,1
∧ bM

C ,2
outputs f, then C is inconsistent.

5.7 Using Modal Interfaces to support Assume /Guarantee Con-

tracts

In this section we explain how to represent, using Modal Interfaces, Assume /Guarantee

contracts of the form C = ({Ai, . . . An},G), where the assumptions Ai and the guarantee

G are Modal Interfaces. Regarding the i/o status of the assumptions and the guarantee,

the following holds:

• The guarantee G specifies the expected behavior of a component. We assume

that its i/o alphabet is ΣG = Σ
in
G
⊎ Σout

G
.

• Assumptions Ai adopt the conjugate point of view, since they specify expected

properties of the environment. Hence, for i = 1. . .n, the i/o alphabet ΣAi
=

Σin
Ai
⊎ Σout

Ai
of assumption Ai, should be such that:

Σin
Ai
∩ Σout

A j
= ∅ for all j = 1 . . . n

Σin
Ai
∩ Σin

G
= ∅ and Σout

Ai
∩ Σout

G
= ∅

The next question is: How several assumptions shall be combined together? How do

guarantees and assumptions interact?

5.7.1 A vending machine example

These questions are first answered in the context of a simple example: a vending ma-

chine serving tea or coffee. This is an academic example distributed as part of the

MICA tool [55], an implementation of the Modal Interface theory, supporting contract-

based reasoning. This example relates the design of a system with three input actions

?coin, ?tea req, and ?coffee req, and two output actions !tea and !coffee.

Question and exclamation marks are only a reminder of the i/o status of the action:
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Figure 4: On the left, assumption A1, “users shall not insert more than one coin per

transaction”. On the right, assumption A2, “users shall not press on more than one

button per transaction”. In both modal specification the initial state is labeled 0 and has

a losange shape.
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Figure 5: On the left, guarantee G1, “the machine shall not deliver any beverage before

having received payment”. In the middle, guarantee G2, “the machine can not deliver

tea when coffee has been requested and deliver coffee when tea has been requested”.

On the right, guarantee G3, “the machine must be receptive to input events”.

! stands for output, and ? is for input. Assumptions, for this particular example,

have no may transitions. The reason is twofold: The environment has no control on

the output actions of the vending machine, hence ?tea and ?coffee transitions have

the modality must. Regarding the actions under control of the environment, !coin,

!tea req and !coffee req, the most permissive environment is considered, which

explains that these transitions also have a must modality.

The behavior of the vending machine is specified as a set of assumptions and guar-

antees, and a set of contracts relating the previously defined assumptions/guarantees.

The assumptions defined in Figures 4 state that the user is expected to insert not more

than one coin (assumption A1) and press more than one button (assumption A2) per

transaction. The expected behavior of the vending machine is also specified in a mod-

ular way, with the modal interfaces in Figure 5. These specifications will be used as

guarantees, to be paired with assumptions. Guarantee G1 states that the machine shall

not deliver any beverage before having received payment. Guarantee G2 expresses

that the machine can not deliver tea when coffee has been requested and deliver coffee

when tea has been requested. Guarantee G3 simply states that the vending machine

must be receptive to its input actions, meaning that it can not refuse ?coin, ?tea req,

?coffee req.

Three contracts are considered: Ci = ({A1, A2},Gi), i = 1 . . . 3. Contract Ci states

that Gi must hold, under the assumption that both A1 and A2 hold. We capture this

by stating that assumptions compose using the conjunction operator, to form a global

assumption shown in Figure 6, on the top left:

A =def A1 ∧ A2.

Consider guarantee G1. Although their alphabets are compatible, specifications G1

and A have different alphabets, and, thus, the issue of alphabet equalization must be

considered. It turns out that alphabet equalization is not performed in the same way for
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Figure 6: Top left, global guarantee A = A1 ∧ A2. Top right, G1 ⋉ A, guarantee G1 put

in the context of assumption A. Bottom, contract C1 = (G1 ⋉ A)/A

guarantees and assumptions.

• Regarding assumptions:

Σ′
A

in
= Σin

A
∪ Σout

G

Σ′
A

out
= Σout

A
∪ Σin

G

Strong equalization is used on assumptions, meaning that self-loop transitions

with a must modality are inserted in every state of the assumption and for every

action in the alphabet of the guarantee that is missing in the alphabet of the

assumption. Remark that, for the particular instance of assumption A in our

vending machine example, no equalization needs to be performed, and A′ = A

as a result of equalization.

• Regarding guarantees:

Σ′
G

in
= Σin

G
∪ Σout

A

Σ′
G

out
= Σout

G
∪ Σin

A

The same operation applies to the guarantee, using however weak equalization,

where may self-loops are inserted. The rationale for using weak equalization on

guarantees is simply that the equalized guarantee G′
1

should be neutral to actions

that are not observable by the guarantee.

The equalized guarantee G′
1

and assumption A′ are composable and their composition

G1 ⋉ A =def G′1 ⊗ A′ (65)

(see Figure 6, top right) is the guarantee G1 put in the context of assumption A. It

specifies the set of compositions of a system satisfying the guarantee G1, with an envi-

ronment satisfying assumption A. The contract is then computed by releaving G1 ⋉ A

of the assumption A. This is defined using the quotient operator, shown at the bottom

of Figure 6:

C1 =def (G1 ⋉ A)/A (66)

Contracts C2 = (G2 ⋉ A)/A and C3 = (G3 ⋉ A)/A are defined in the same way and are

shown the top and middle of Figure 7. The global contract is the conjunction of the

three contracts C =def C1 ∧C2 ∧C3, shown at the bottom of Figure 7. This contract is

clearly incomplete, since it allows implementations of the vending machine that output

!tea or !coffee without any request ?tea req or ?coffee req. Completing the

specification of the vending machine with a fourth contract is an easy exercice, left to

the reader.
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Figure 7: Top, contract C2. Middle, contract C3. Bottom, global contract C = C1 ∧

C2 ∧ C3

5.7.2 Comparison with A/G contracts of Section 4

Modal A/G contracts developed in Section 5.7.1 bear many similarities with the A/G

contracts detailed in Section 4. In this section we show how A/G contracts can be

mapped to Modal A/G contracts in such a way that some, but not all properties of

the A/G contract algebra are preserved. Before doing this, we observe the following

discrepancies, which prevent a perfect matching:

• The A/G contracts of section 4 are oblivious to event I/O orientation, while in

Modal Interfaces, events are either an output or an input, and this plays an im-

portant role in the theory.

• A second difference is that A/G contracts are based on a dataflow or synchronous

semantics, where behavior is defined as streams of values, one per variable, or

as a sequence of partial assignments of the variables. This differs from Modal

Interfaces, where behavior is defined as sequences of events taken in a finite

alphabet. So far the above two discrepancies can be seen to be technical. The

next one, however, is more fundamental.

• In A/G contracts C = (A,G), the assumption A is handled in a rigid way: E |=e C

amounts to E ⊆ A, and, as a consequence, C ′ � C requires A′ ⊇ A. In contrast,
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Figure 8: Assumption and guarantee S 1 is shown on the far left. The ∗ symbol stands

for any element of alphabet Σ. This is a trivial assertion by which every behavior of the

system is permitted. The resulting Modal Interface contract C1 = (S 1⋉S 1)/S 1 is shown

on the center left. It is a trivial interface, satisfied by every transition system on alphabet

Σ. Assumption and guarantee S 2 is shown at the center right. Its meaning is that “no

event shall happen in the system”. The resulting Modal Interface contract C2 = (S 2 ⋉

S 2)/S 2 si shown at the far right. As a matter of fact, C1 and C2 are equivalent, meaning

that they refine one-another. Nevertheless, the A/G contracts (S i, S i) are incomparable

wrt. contract refinement.

formula C = (G ⋉ A)/A does not define A uniquely and, thus, refinement cannot

constrain A directly.

These discrepancies explain why the two theories cannot perfectly match, an one can

only hope for a partial embedding of A/G contracts in the Modal Interface theory. This

is detailed below. In this development, we use the subscripts AG and MI to distinguish

contract relations or operations according to the A/G contract and Modal Interface

frameworks.

We are given a finite alphabet Σ and we consider the A/G contract (A,G), where A

and G are non-empty prefix-closed regular subsets of Σ⋆.30 A and G are the languages

of deterministic finite transition systems, which we also denote by A = (Σ,QA, qA
0
,→A )

and G = (Σ,QG, qG
0
,→G ). Assumptions and guarantees are mapped to Modal Inter-

faces:

Am = (Σin = ∅,Σout = Σ,QA, qA
0 ,→

A,→A )

Gm = (Σin = ∅,Σout = Σ,QG, qG
0 , ∅,→

G )

meaning that assumptions are mapped to rigid interfaces, where all transitions are must

transitions and all actions are outputs, whereas guarantees are mapped to relaxed inter-

faces with output actions and only may transitions. Recall that Modal A/G contracts

are given by:

C = (Gm ⋉ Am)/Am

The so defined mapping (A,G)→ C preserves refinement:

Theorem 5 (A1,G1) �AG (A2,G2) implies C1 �MI C2.

The converse implication does not hold in general, as shown by the counter-example

of Figure 8. The reason is that A/G contract refinement requires that assumptions

A1 and A2 are comparable, while they are not directly related by the Modal Interface

refinement relation.

30With reference to Section 4 and particularly formula (19), we consider sets of behaviors for a singleton

variable v whose domain is Dv = Σ.
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Proof: We use notations from Section 4. Denote by Mi the language of the maximal

implementations of Ci. Observe that Gi ⋉ Ai has an empty must transition relation.

Therefore, the must transition relation of Ci is also empty. Therefore C1 �MI C2 reduces

to M1 ⊆ M2. Denote by G′
i
= (Gi ∪ ¬Ai)

↓ the saturated guarantee. Recall that G′
i

is

the largest prefix-closed language contained in Gi∪¬Ai. By construction, the language

of the may transition relation of Gm

2
⋉ Am

i
is Gi ∩ Ai. Therefore the language of the

may transition relation of Ci is equal to ((Gi ∩ Ai) ∪ ¬Ai)
↓ = G′

i
. Hence C1 �MI C2 iff

G′
1
⊆ G′

2
, which concludes the proof. � Regarding

contract composition, the following theorem states that the Modal Interface image of

the composition of two contracts (Ai,Gi), i = 1, 2 is equivalent to the composition of

the images of the two contracts. Define the images of the three A/G contracts as Modal

Interfaces:

(A0,G0) = (A1,G1) ⊗AG (A2,G2), and

Ci = (Gm

i ⋉ Am

i )/Am

i for i = 0, 1, 2

For C = (Σin,Σout,Q, q0,→,d) a Modal Interface, we define its dual C obtained by

exchanging, in C , the input/output status.

Theorem 6 Modal Interfaces C0 and C1 ⊗MI C2 refine one-another.

Proof: Modal Interfaces Ci, i = 0 . . . 2 are consistent and their must transition

relations are empty. Denote by Mi the maximal implementation of Ci. Using the same

reasoning as in the previous proof, C0 ≡ C1 ⊗ C2 reduces to M0 = M1 ∩ M2. By

definition of contract composition G0 = G′
1
∩G′

2
and A0 = max{A | A = A↓, A ∩G′

2
⊆

A1, A ∩ G′
1
⊆ A2}, where G′

i
= (Gi ∪ ¬Ai)

↓, i = 1, 2 are the saturated guarantees. By

construction, Mi = (Gi∪¬Ai)
↓. Using the fact that G0 is saturated, the definition of M0

expands to: M0 = (G1 ∪ ¬A1)↓ ∩ (G2 ∪ ¬A2)↓ = M1 ∩ M2.

5.8 Bibliographical note

As explained in [84, 63, 139, 96, 182, 183], Interface Theories make no explicit dis-

tinction between assumptions and guarantees. These notions are implicitly supported,

however, through the particular semantics of these models.

Interface Automata, variants and extensions: Interface Automata were proposed by

de Alfaro and Henzinger [84, 82, 6, 61] as a candidate theory of interfaces. In these

references, Interface Automata focused primarily on parallel composition and compat-

ibility. Quoting from [84]: “Two interfaces can be composed and are compatible if

there is at least one environment where they can work together”. The idea is that the

resulting composition exposes as an interface the needed information to ensure that

incompatible pairs of states cannot be reached. This can be achieved by using the pos-

sibility, for a component, to refuse selected inputs from the environment at a given

state [84, 63]. In contrast to our development in Section 5.2, no sets of environments

and implementations are formally associated to an Interface Automaton in the original

developments of the concept. A refinement relation for Interface Automata was defined

in [84]—with the same definition as ours—it could not, however, be expressed in terms

of sets of implementations. Properties of interfaces are described in game-based logics,

e.g., ATL [10], with a theoretical high-cost complexity. The original semantics of an

Interface Automaton was given by a two-player game between: an input player that

represents the environment (the moves are the input actions), and an output player that
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represents the component itself (the moves are the output actions). Finally, the recent

work [51] revisits the foundations of Interface Automata.

In [96], the framework of Synchronous Interfaces was enriched with a notion of

conjunction (called shared refinement). This development was further elaborated in [90]

for the topic of time-triggered scheduling. Synchronous Relational Interfaces [199,

200] have been proposed to capture functional relations between the inputs and the

outputs associated to a component. More precisely, input/output relations between

variables are expressed as first-order logic formulas over the input and output vari-

ables. Two types of composition are then considered, connection and feedback. Given

two relational interfaces C1 and C2, the first one consists in connecting some of the out-

put variables of C1 to some of the input variables of C2 whereas feedback composition

allows one to connect an output variable of an interface to one of its own inputs. The

developed theory supports refinement, compatibility and also conjunction. The recent

work [124] studies conditions that need to be imposed on interface models in order to

enforce independent implementability with respect to conjunction.

An algebraic theory of interface automata was recently proposed in [67] following

a line similar to [68]. Specifications (called “components” in that reference) are charac-

terized by two sets of observable and inconsistent prefix-closed abstract sets of traces

constituting the interface of the specification. Refinement, conjunction and disjunc-

tion, parallel composition, and quotient, are provided, thus offering a comprehensive

framework.

Sociable Interfaces [83] combine the approach presented in the previous paragraph

with interface automata [84, 85] by enabling communication via shared variables and

actions31. First, the same action can appear as a label of both input and output tran-

sitions. Secondly, global variables do not belong to any specific interface and can

thus be updated by multiple interfaces. Consequently, communication and synchro-

nization can be one-to-one, one-to-many, many-to-one, and many-to-many. Symbolic

algorithms for checking the compatibility and refinement of sociable interfaces have

been implemented in TICC [5]. Software Interfaces were proposed in [62], as a push-

down extension of interface automata (which are finite state). Pushdown interfaces are

needed to model call-return stacks of possibly recursive software components. This pa-

per contains also a comprehensive interface description of Tiny OS,32 an operating sys-

tem for sensor networks. Moore machines and related reactive synchronous formalisms

are very well suited to embedded systems modeling. Extending interface theories to

a reactive synchronous semantics is therefore meaningful. Several contributions have

been made in this direction, starting with Moore and Bidirectional Interfaces [63]. In

Moore Interfaces, each variable is either an input or an output, and this status does not

change in time. Bidirectional Interfaces offer added flexibility by allowing variables

to change I/O status, depending on the local state of the interface. Communication

by shared variable is thus supported and, for instance, allows distributed protocols or

shared buses to be modeled. In both formalisms, two interfaces are deemed compat-

ible whenever no variable is an output of both interfaces at the same time, and every

legal valuation of the output variables of one interface satisfies the input predicate of

the other. The main result of the paper is that parallel composition of compatible in-

terfaces is monotonic with respect to refinement. Note that Moore and Bidirectional

Interfaces force a delay of at least one transition between causally dependent input and

output variables, exactly like Moore machines. Reference [60] develops the concept

31This formalism is thus not purely synchronous and is mentioned in this section with a slight abuse.
32http://www.tinyos.net/
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of simulation distances for interfaces, thereby taking robustness issues into account by

tolerating errors. Finally, Web services Interfaces were proposed in [41].

Modal Interfaces, variants and extensions: Properties expressed as sets of traces can

only specify what is forbidden. Unless time is explicitly invoked in such properties, it

is not possible to express mandatory behaviors for designs. Modalities were proposed

by Kim Larsen [142, 12, 49] as a simple and elegant framework to express both allowed

and mandatory properties. Modal Specifications basically consist in assigning a modal-

ity may or must to each possible transition of a system. They have been first studied in

a process-algebraic context [142, 137] in order to allow for loose specifications of sys-

tems. Since then, they have been considered for automata [140] and formal languages

[180, 181] and applied to a wide range of application domains (see [12] for a complete

survey). Informally, a must transition is available in every component that realizes the

modal specification, while a may transition needs not be. A modal specification thus

represents a set of models—unfortunately, models of modal transition systems are of-

ten call “implementations” in the literature, which is unfortunate in our context. We

prefer keeping the term “model” and reserve the term “implementation” for the entities

introduced in Sections 5.2 and 5.3. Modal Specifications offer built-in conjunction of

specifications [141, 184]. The expressiveness of Modal Specifications has been char-

acterized as a strict fragment of the Hennessy-Milner logic in [49] and also as a strict

fragment of the mu-calculus in [104]. The formalism is rich enough to specify safety

properties as well as restricted forms of liveness properties. Modal Interfaces with

a correct notion of compatibility were introduced in [182, 183] and the problem of

alphabet equalization with weak and strong alphabet extensions was first correctly ad-

dressed in the same references. In [22], compatibility notions for Modal Interfaces with

the passing of internal actions are defined. Contrary to the approach reviewed before,

a pessimistic view of compatibility is followed in [22], i.e., two Modal Interfaces are

only compatible if incompatibility between two interfaces cannot occur in any environ-

ment. A verification tool called MIO Workbench is available. The quotient of Modal

Specifications was studied in [136, 181]. Determinism plays a role in the modal the-

ory. Non-deterministic Modal Interfaces have possibly non-deterministic i/o-automata

as class of components. Their corresponding computational procedures are of higher

complexity than for deterministic ones. A Modal Interface is said to be deterministic

if its may-transition relation is deterministic. For nondeterministic Modal Interfaces,

modal refinement is incomplete [140]: there are nondeterministic Modal Interfaces C1

and C2 for which the set of implementations of C1 is included in that of C2 without

C1 being a modal refinement of C2. Hence refinement according to the meta-theory is

not exactly instantiated but only approximated in a sound way. A decision procedure

for implementation inclusion of nondeterministic Modal Interfaces does exist but turns

out to be exptime-complete [13, 23] whereas the problem is ptime-complete if deter-

minism is assumed [184, 24]. The benefits of the determinism assumption in terms of

complexity for various decision problems on modal specifications is underlined in [24].

With the aim to preserve deadlock freedom, [52] defines a new refinement relation for

modal transition systems (MTS). This refinement “supports itself” e.g. in the sense of

thoroughness - in contrast to the standard modal refinement. Finally, the longstanding

conflict between unspecified inputs being allowed in Interface Automata but forbidden

in MTS is resolved in [50]. The “merge” of non-deterministic Modal Specifications

regarded as partial models has been considered in [201]. This operation consists in

looking for common refinements of initial specifications and is thus similar to the con-

junction operation presented here. In [201, 105], algorithms to compute the maximal
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common refinements (which are not unique when non-determinism is allowed) are

proposed. They are implemented in the tool MTSA [95]. Assume/guarantee contracts

viewed as pairs of Modal Specifications were proposed in [109]. It thus combines

the flexibility offered by the clean separation between assumptions and guarantees and

the benefits of a modal framework. Several operations are then studied: refinement,

parallel composition, conjunction and priority of aspects. This last operation com-

poses aspects in a hierarchical order, such that in case of inconsistency, an aspects of

higher priority overrides a lower-priority contract. The synthesis of Modal Interfaces

from higher-level specifications has been studied for the case of scenarios. In [194],

Existential Live Sequence Charts are translated into Modal Specifications, hence pro-

viding a mean to specify modal contracts. It was recently shown in [149, 148] that

the proposed model of Modal Interface Automata (MIA), a rich subset of Input-Output

Modal Transition Systems (IOMTS) [138] featuring explicit output-must-transitions

while input-transitions are always allowed implicitly, indeed possesses a conjunction.

MIA are not restricted to be deterministic and revisit the model of IOMTS.

Regarding extensions, Acceptance Interfaces were proposed by J-B. Raclet [180,

181]. Informally, an Acceptance Interface consists of a set of states, with, for each

state, a set of ready sets, where a ready set is a set of possible outgoing transitions

from that state. Hence, each state of Acceptance Interfaces is labeled with a set of

sets of transitions which explicitly specifies its set of possible models. Acceptance

Interfaces are more expressive than Modal Interfaces but at the price of a prohibitive

complexity for the various relations and operators of the theory. Modal Interfaces have

been enhanced with marked states by Caillaud and Raclet [25]. Having marked states

significantly improves expressiveness. It is possible to specify that some state must

be reachable in any implementation while leaving the particular path for reaching it

unspecified. As an example of use, Modal Interfaces with marked states have been

applied in [31] to the separate compilation of multiple clocked synchronous programs.

Regarding extensions dealing with time, Timed Automata [7] constitute the basic

model for systems dealing with time and built on top of automata. In words, timed

automata are automata enhanced with clocks. Predicates on clocks guard both the

states (also called “locations”) and the transitions. Actions are attached to transitions

that result in the resetting of some of the clocks. Event-Clock Automata [8, 9, 38]

form a subclass of timed automata where clock resets are not arbitrary: each action

α comes with a clock hα which is reset exactly when action α occurs. The interest

of this subclass is that event-clock automata are determinizable, which facilitates the

development of a (modal) theory of contracts on top of event-clock automata, seen as

corresponding components. A first interface theory able to capture the timing aspects

of components is Timed Interfaces [86]. Timed Interfaces allows specifying both the

timing of the inputs a component expects from its environment and the timing of the

outputs it can produce. Compatibility of two timed interfaces is then defined and refers

to the existence of an environment such that timing expectations can be met. The Timed

Interface theory proposed in [80] fills a gap in the work introduced in [86] by defin-

ing a refinement operation. In particular, it is shown that compatibility is preserved by

refinement. This theory also proposes a conjunction and a quotient operation and is

implemented in the tool Ecdar [81]. Timed Specification Theories are revisited from

a linear-time perspective in [69]. The first timed extension of modal transition systems

was published in [59]. It is essentially a timed (and modal) version of the Calculus

of Communicating Systems (by Milner). Based on regions tool support for refinement

checking were implemented and made available in the tool Epsilon [108]. Another

timed extension of Modal Specifications was proposed in [39]. In this formalism, tran-
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sitions are equipped with a modality and a guard on the component clocks, very much

like in timed automata. For the subclass of modal event-clock automata, an entire alge-

bra with refinement, conjunction, product, and quotient has been developed in [36, 37].

[135] addresses the problem of robust implementations in timed specification theories.

Resources other than time were also considered—with energy as the main target.

Resource Interfaces [64] can be used to enrich a variety of interface formalisms (Inter-

face Automata [84], Assume/Guarantee Interfaces [85], etc.) with a resource consump-

tion aspect. Based on a two player game-theoretic presentation of interfaces, Resource

Interfaces allow for the quantitative specification of resource consumption. With this

formalism, it is possible to decide whether compositions of interfaces exceed a given

resource usage threshold, while providing a service expressed either with Büchi condi-

tions or thanks to quantitative rewards. Because resource usage and rewards are explicit

rather then being defined implicitly as solutions of numerical constraints, this formal-

ism does not allow one to reason about the variability of resource consumption across

a set of logically correct models. Weighted modal transition systems are proposed

in [128, 20], in which each transition is decorated with a weight interval that indicates

the range of concrete weight values available to the potential implementations. In this

way resource constraints can be modeled using the modal approach. In the same di-

rection, [21] proposes a novel formalism of label-structured modal transition systems

that combines the classical may/must modalities on transitions with structured labels

that represent quantitative aspects of the model. Last, the issue of contracts for het-

erogeneous systems is addressed in [144, 145] by building on top of the tag machine

component model [27].

Interfaces theories encompassing probability have been more recently proposed.

Like the Interval Markov Chain (IMC) formalism [127] they generalize, Constraint

Markov Chains (CMC) [56] are abstractions of a (possibly infinite) sets of Discrete

Time Markov Chains. Instead of assigning a fixed probability to each transition, tran-

sition probabilities are kept symbolic and defined as solutions of a set of first order

formulas. Variability across implementations is made possible not only with symbolic

transition probabilities, but also thanks to the labeling of each state by a set of val-

uations or sets of atomic propositions. This allows CMCs to be composed thanks to

a conjunction and a product operators. While the existence of a residuation operator

remains an open problem, CMCs form an interface theory in which satisfaction and

refinement are decidable, and compositions can be computed using quantifier elimina-

tion algorithms. In particular, CMCs with polynomial constraints form the least class of

CMCs closed under all composition operators. In [92], the complexity of several prob-

lems for IMCs is studied. The complexity gap for thorough refinement of two IMCs

and for deciding the existence of a common implementation for an unbounded number

of IMCs is closed by showing that these problems are EXPTIME-complete. Abstract

Probabilistic Automata (APA) [91] is another specification algebra with satisfaction

and refinement relations, product and conjunction composition operators. Despite the

fact that APAs generalize CMCs by introducing a labeled modal transition relation, de-

terministic APAs and CMCs coincide, under the mild assumption that states are labeled

by a single valuation.

Features of our presentation: The presentation of interface theories in this paper is new

in many aspects. For the first time, all interface theories are clearly cast in the abstract

framework of contracts following our meta-theory. In particular, the association, to an

interface C , of the two sets E
C

andM
C

is new. It clarifies a number of concepts. In

particular, the interface theories inherit from the properties of the meta-theory without
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the need for specific proofs. The restriction operator for Modal Interfaces is new and so

is its use in decomposing a contract into an architecture of sub-contracts. The encod-

ing of Assume/Guarantee reasoning in the framework of Modal Interfaces is also new.

Note that this deeply relies on the meta-theory for its justification—inasmuch as the

proposed formula provides a valid coding only under specific conditions regarding the

tuple (A1, . . . , An; G). Casting interface theories into the meta-theory was developed

for the basic interface theories only. It would be useful to extend this to the different

variants and see what the benefit would be. Benoı̂t Caillaud has developed the MICA

tool [55], which implements Modal Interfaces with all the operations and services dis-

cussed in this section.

6 Conclusion

This paper presented past and recent results as well as novel advances in the area of

contracts and their theory. By encompassing (functional and non-functional) behaviors,

the notion of contract we considered here represents a significant step beyond the one

originally developed in the software engineering community.

6.1 What contracts can do for the designer

This paper demonstrates that contracts offer a number of advantages:

Contracts offer a technical support to legal customer-supplier documents: Concur-

rent development, both within and across companies, calls for smooth coordination

and integration of the different design activities. Properly defining and specifying the

different concurrent design tasks is and remains a central difficulty. Obligations must

therefore be agreed upon, together with suspensive conditions, seen as legal documents.

By clearly establishing responsibilities, our formalization of contracts constitutes the

technical counterpart of such legal documents. Contracts are an enabling technology

for concurrent development.

Contracts offer support to certification: By providing formal arguments that can as-

sess and guarantee the quality of a design throughout all design phases (including early

requirements capture), contracts offer support for certification. By providing sophisti-

cated tools in support of modularity, reuse in certification is made easier.

Contracts comply with formal and semi-formal approaches: The need for being “com-

pletely formal” has hampered for a long time formal verification in many industrial

sectors, in which flexibility and intuitive expression in documentation, simulation and

testing, were and remain preferred. As the Autosar use case of companion paper [30]

demonstrates, using contracts makes semi-formal design safer. Small analysis steps

are within the reach of human reasoning. In contrast, lifting a combination of small

local reasoning steps to a system-wide analysis—as required when virtually exploring

system integration—is difficult and error prone as it involves the risk of wrong circular

reasoning. Relying on contracts provides the formal guidance and support for a correct

system integration analysis.

Contracts improve requirement engineering: As illustrated in the Parking Garage ex-

ample of companion paper [30], contracts are instrumental in decoupling top-level sys-

tem architecture from the architecture used for sub-contracting to suppliers. Formal

support is critical in choosing alternative solutions and migrating between different
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architectures with relatively small effort. Of course, contracts are not the only impor-

tant technology for requirements engineering—traceability is essential and developing

domain specific ontologies is also important.

Contracts can be used in any design process: Contracts offer an “orthogonal” sup-

port for all methodologies and can be used in any flow as a supporting technology in

composing and refining designs.

6.2 Status of research

The area of contracts benefits from many advances in research that were not targeted to

it. Interface theories were developed by the community of game theory—component

and environment are seen as two players in a game. Modalities aimed to offer more ex-

pressive logics were born at the boundary between logics and formal verification. Con-

tracts as a philosophy originated both from software engineering and formal verifica-

tion communities, with the paradigms of Pre-condition/Post-condition or Assume/Guarantee.

It is not until the 2000’s that the concept of contracts presented here as a tool to support

system design emerged. In this evolution, various formalisms and theories were bor-

rowed to develop a rigorous framework. This paper was intended to show the power of

a unified theoretical background for contracts, the use of contracts in present method-

ologies and the challenges for its effective applications in future applications. The

mathematical elegance of the concepts underpinning this area provides confidence in a

sustained continuation of the research effort.

6.3 Status of practice

The use of contract-based techniques in system design is in its infancy in industry.

First experiments with this concept showed that following the discipline of making as-

sumptions versus guarantees explicit is by itself already a considerable clarification in

requirement engineering, regardless of the formal support provided in addition. Re-

garding the formal support provided, further maturation is still needed for the for-

mal concepts behind contracts to be well supported by tools and clear enough to be

widely accepted by engineers in their day-to-day work. While powerful contract-based

proof-of-concept tools are being experimented—some of them were presented in this

paper—the robustness of the tools and the underlying techniques is still weak, and

contract-based design flows and methodologies are not yet fully developed nor mature.

6.4 The way forward

The ability of contracts to accommodate semi-formal and formal methodologies should

enable a smooth and rapid migration from theory and proof-of-concepts to robust flows

and methodologies. The need for jointly developing new systems while considering

issues of intellectual property will make it attractive to rely on contracts in supplier

chains. In our opinion, contracts are primarily helpful for early stages of system de-

sign and particularly requirement engineering, where formal methods are desperately

needed to support distributed and concurrent development by independent actors.

We have illustrated in this paper how suppliers can be given sub-contracts that are

correct by construction and can be automatically generated from top-level specifica-

tion. We believe, however, that the semi-assisted/semi-manual use of contracts such
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as examplified by our Autosar case study is already a significant help, useful for re-

quirements engineering too. Altogether, a contract engine (such as the MICA tool [55]

presented in companion paper [30]) can be used in combination with both manual rea-

soning and dedicated formal verification engines—e.g., for targeting the timing view-

point or the safety viewpoint. This would provide a smooth transition path to contract

based design in practice.
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Marcelo Götz, Achim Rettberg, Mauro Cesar Zanella, and Franz J. Rammig,

editors, Embedded Systems: Design, Analysis and Verification - 4th IFIP TC 10

International Embedded Systems Symposium, IESS 2013, Paderborn, Germany,

June 17-19, 2013. Proceedings, volume 403 of IFIP Advances in Information

and Communication Technology, pages 181–192. Springer, 2013.

[187] Philipp Reinkemeier and Ingo Stierand. Real-Time Contracts - A Contract

Theory Considering Resource Supplies and Demands. Reports of SFB/TR 14

AVACS 100, SFB/TR 14 AVACS, July 2014. http://www.avacs.org.

[188] Richard Payne and John Fitzgerald. Evaluation of Architectural Frameworks

Supporting Contract-Based Specification. Technical Report CS-TR-1233, Com-

puting Science, Newcastle University, UK, Dec 2010. available from http:

//www.cs.ncl.ac.uk/publications/trs/papers/1233.pdf.

[189] Robert W. Floyd. Assigning meaning to programs. In J.T. Schwartz, editor,

Proceedings of Symposium on Applied Mathematics, volume 19, pages 19–32,

1967.

[190] A. Sangiovanni-Vincentelli, S. Shukla, J. Sztipanovits, G. Yang, and D. Math-

aikutty. Metamodeling: An emerging representation paradigm for system-level

design. IEEE Design and Test of Computers, 26(3):54–69, May/June 2009.

RR n° 8759

http://www.cs.ncl.ac.uk/publications/trs/papers/1233.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1233.pdf


Contracts for System Design 86

[191] Alberto Sangiovanni-Vincentelli. Quo vadis, SLD?: Reasoning about the trends

and challenges of system level design. Proc. of the IEEE, 95(3):467–506, 2007.

[192] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Tam-

ing Dr. Frankenstein: Contract-based design for cyber-physical systems. Euro-

pean Journal of Control, 18(3):217–238, 2012.

[193] D. Schmidt. Model-driven engineering. IEEE Computer, pages 25–31, February

2006.

[194] German Sibay, Sebastian Uchitel, and Vı́ctor Braberman. Existential Live Se-

quence Charts Revisited,. In ICSE 2008: 30th International Conference on

Software Engineering. ACM, May 2008.

[195] Joseph Sifakis. Component-Based Construction of Heterogeneous Real-Time

Systems in Bip. In Giuliana Franceschinis and Karsten Wolf, editors, Petri Nets,

volume 5606 of Lecture Notes in Computer Science, page 1. Springer, 2009.

[196] Eugene W. Stark. A proof technique for rely/guarantee properties. In S. N. Ma-

heshwari, editor, FSTTCS, volume 206 of Lecture Notes in Computer Science,

pages 369–391. Springer, 1985.

[197] Ingo Stierand, Philipp Reinkemeier, and Purandar Bhaduri. Virtual integra-

tion of real-time systems based on resource segregation abstraction. In Formal

Modeling and Analysis of Timed Systems - 12th International Conference, FOR-

MATS 2014, pages 206–221, Florence, Italy, September 8-10, 2014.

[198] Ingo Stierand, Philipp Reinkemeier, Tayfun Gezgin, and Purandar Bhaduri.

Real-time scheduling interfaces and contracts for the design of distributed em-

bedded systems. In 8th IEEE International Symposium on Industrial Embedded

Systems, SIES 2013, pages 130–139, Porto, Portugal, June 19-21, 2013.

[199] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. On

relational interfaces. In Proc. of the 9th ACM & IEEE International conference

on Embedded software (EMSOFT’09), pages 67–76. ACM, 2009.

[200] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. A

theory of synchronous relational interfaces. ACM Trans. Program. Lang. Syst.,

33(4):14, 2011.

[201] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural models. In

Proc. of the 12th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (SIGSOFT FSE’10), pages 43–52. ACM, 2004.

[202] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting

Your Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2nd edition, 2003.

[203] Elizabeth S. Wolf. Hierarchical Models of Synchronous Circuits for Formal

Verification and Substitution. PhD thesis, Department of Computer Science,

Stanford University, October 1995.

RR n° 8759



RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399


	Introduction: why contract based design?
	Contracts: what? where? and how?
	Contract based design
	A primer on contracts
	Components, Environments, and Contracts
	Contract Operators

	Bibliographical note
	Contracts in SW engineering
	Our focus—contracts for systems and CPS


	A Mathematical Meta-Theory of Contracts
	Components and their composition
	Contracts
	Refinement and conjunction
	Contract composition
	Quotient
	Observers
	Abstractions
	Concluding discussion regarding contract abstraction

	Bibliographical note

	Specializing to Assume/Guarantee contracts
	Dataflow A/G contracts
	Capturing exceptions
	Dealing with variable alphabets
	Synchronous A/G contracts
	Observers
	Abstractions
	Discussion
	Bibliographical note

	Specializing to Interface theories
	Components as i/o-automata
	Interface Automata with fixed alphabet
	Modal Interfaces with fixed alphabet
	Modal Interfaces with variable alphabet
	Restricting to a sub-alphabet, application to contract decomposition
	Observers
	Using Modal Interfaces to support Assume/Guarantee Contracts
	A vending machine example
	Comparison with A/G contracts of Section 4

	Bibliographical note

	Conclusion
	What contracts can do for the designer
	Status of research
	Status of practice
	The way forward


