
1

ContractWard: Automated Vulnerability Detection
Models for Ethereum Smart Contracts

Wei Wang, Jingjing Song, Guangquan Xu, Yidong Li, Hao Wang, and Chunhua Su

Abstract—Smart contracts are decentralized applications run-
ning on Blockchain. A very large number of smart contracts
has been deployed on Ethereum. Meanwhile, security flaws
of contracts have led to huge pecuniary losses and destroyed
the ecological stability of contract layer on Blockchain. It is
thus an emerging yet crucial issue to effectively and efficiently
detect vulnerabilities in contracts. Existing detection methods like
Oyente and Securify are mainly based on symbolic execution
or analysis. These methods are very time-consuming, as the
symbolic execution requires the exploration of all executable
paths or the analysis of dependency graphs in a contract. In
this work, we propose ContractWard to detect vulnerabilities
in smart contracts with machine learning techniques. First, we
extract bigram features from simplified operation codes of smart
contracts. Second, we employ five machine learning algorithms
and two sampling algorithms to build the models. ContractWard
is evaluated with 49502 real-world smart contracts running on
Ethereum. The experimental results demonstrate the effectiveness
and efficiency of ContractWard. The predictive Micro-F1 and
Macro-F1 of ContractWard are over 96% and the average
detection time is 4 seconds on each smart contract when we
use XGBoost for training the models and SMOTETomek for
balancing the training sets.

Index Terms—Blockchain, Smart contracts, Vulnerability de-
tection, Machine learning.

I. INTRODUCTION

T
HE concept of smart contract was first proposed by

Nick Szabo in 1990s, defined as “A smart contract is

a computerized transaction protocol that executes the terms

of contract” [1]. Nevertheless, at that time, the exploration

only stayed at theoretical level due to the lack of trusted

execution environments. Since 2009, with the emergence of

blockchain technology that was first applied in Bitcoin [2],

a reliable execution environment has been offered to smart

Wei Wang, Jingjing Song, Yidong Li are with Beijing Key Laboratory of
Security and Privacy in Intelligent Transportation, Beijing Jiaotong University,
100044 Beijing, China (e-mail:{wangwei1, 17120479, ydli}@bjtu.edu.cn).
Wei Wang is also with the Division of Computer, Electrical and Mathematical
Sciences & Engineering (CEMSE), King Abdullah University of Science and
Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Guangquan Xu is with Tianjin Key Laboratory of Advanced Networking,
College of Intelligence and Computing, Tianjin University, 300350 Tianjin,
China (e-mail:losin@tju.edu.cn).

Hao wang is with the Department of Computer Science, Norwegian
University of Science and Technology, 7491 Trondheim, Norway (e-mail:
hawa@ntnu.no).

Chunhua Su is with the Division of Computer Science, University of
Aizu, Aizu-Wakamatsu, Fukushima Pref. 965-8580, Japan (e-mail: suchun-
hua@gmail.com).

The work reported in this paper was supported in part by the Natural
Science Foundation of China, under Grant U1736114, and in part by National
Key R&D Program of China, under Grant 2017YFB0802805.

Corresponding authors: Yidong Li and Guangquan Xu.
Manuscript received September 1, 2019.

contracts. The remote point-to-point value delivery can be

realized without any trusted third party through the integra-

tion of many technologies such as distributed data storage,

consensus protocols and encryption algorithms. However, as

Bitcoin system is not Turing-complete, it is unable to handle

complex business logic via smart contracts.

Inspired by Bitcoin, Vitalik Buterin developed Ethereum [3]

in 2013. Ethereum is an open-source distributed computing

platform and operating system based on blockchain, which

features smart contracts. To meet various demands of business

scenarios, Ethereum provides a Turing-complete Ethereum

Virtual Machine (EVM) [4] that enables developers to deploy

decentralized applications (Dapps) on it. Dapps are also called

smart contracts. They are widely applied in many fields like

financial services [5], infrastructures [6], internet of things

[7], health care [8] [9], and others [10] [11]. By the end

of May 2018, the cryptocurrency market capital has reached

about 35 billion US dollars on Ethereum [12]. Blockchain as

a newly developed technology is vulnerable [13] in terms of

lacking regulations and programmable characteristics. These

vulnerabilities can be easily exploited, resulting huge losses.

For instance, the DAO bug [14] resulted in losses of over 60

million US dollars in June 2016. Besides, Integer Overflow

bug on the BEC campaign caused instantaneous evaporation

of over $900 million.

Different from traditional applications in Andriod, smart

contracts are automatically executed in short codes, and thus

their running process cannot be manually interfered. In ad-

dition, contracts often need to reward miners with cryptocur-

rency [15]. At present there are many types of cryptocurrency

on Ethereum and the economic values of these cryptocurren-

cies are incalculable. Due to running on distributed nodes

on the blockchain, once a contract is executed, it is almost

impossible to upgrade or modify the contract. The data gen-

erated by contracts on blockchain is also hard to be modified.

Therefore, vulnerability detection [16] is indispensable before

the contracts are released. It is tricky to detect vulnerabilities in

smart contracts only through source codes, as source codes of

most contracts are inaccessible. Clearly it is hard to manually

check whether a contract without source codes is vulnerable

and what types of vulnerabilities it has.

Fig. 1 shows an example of a lottery contract [17], written in

Solidity language. The lottery smart contract described in Fig.1

has the Timestamp Dependency vulnerability (explained in

details in Section IV). In line 26, the variable winningNum de-

pends on the timestamp (e.g., BLOCKH ASH & NUMBE R)

of the current block. In line 29, winningNum is used as

the judging condition for users’ self-destruction. The miner

2

can calculate the timestamp that is beneficial to her/him in

advance, and set the timestamp to her/his own favorable time

when mining, in order to delay or advance the user’s self-

destruction. If the miner accelerates the user’s self-destruction,

the cryptocurrency owned by the user will not be able to be

sent out, and all the cryptocurrency the user holds will be

frozen, resulting in pecuniary lose.

Fig. 1. An Example of A Lottery Contract

Based upon mainstream vulnerability detection methods,

such as symbolic execution, formal verification with F* frame-

work and K framework, and symbolic analysis, some tools

have been publicly released. Comparing the detection time

among these tools, Oyente [18], Mythril [19] and Securify

[20] requires around 28 seconds, 60 seconds and 18 seconds,

respectively, to detect vulnerabilities in each contract. We see

that prior tools are time-consuming and may not be suitable

for batch vulnerability detection, as these tools mainly employ

symbolic execution or symbolic analysis that requires the

exploration of all executable paths in a contract or analysis

of dependency graphs of the contract.
In this work, we propose ContractWard in the aim to

improve the efficiency of vulnerabilities detection in smart

contracts on the premise of ensuring accuracy of the detection

based on machine learning techniques. It is able to effectively

and fast detect vulnerabilities based on their patterns learned

from training samples. We build ContractWard in three steps.

First, we collect 49502 verified Ethereum smart contracts with

source codes written in Solidity language [3] in November

2018. We then label the contracts as six types of vulner-

abilities with Oyente. Second, we extract typical features

that describe static characteristics of contracts from operation

codes (opcodes) [21], since source codes of most contracts are

inaccessible. Source codes are complied into bytecodes [22]

and bytecodes are translated into operation codes (opcodes).

Finally, we employ machine learning algorithms to detect

vulnerabilities in smart contracts. We adopt two sampling algo-

rithms, namely, Synthetic Minority Oversampling Technique

(SMOTE) [23] and SMOTETomek [24], to balance the training

data sets, as the data is class-imbalance. We then employ

five machine learning algorithms, namely, eXtreme Gradient

Boosting (XGBoost) [25], adaptive boosting (AdaBoost) [26],

Random Forest (RF) [27], Support Vector Machine (SVM)

[28] and k-Nearest Neighbor (KNN) [29] to detect whether a

test smart contract is vulnerable or not.

We make the following contributions:

• We propose a system called ContractWard for large-scale

and automated vulnerability detection on Ethereum smart

contracts with machine learning algorithms. Different

from the existing work that mainly relies on symbolic

execution, ContractWard learns the patterns of vulnerable

contracts in training samples for the detection.

• To better characterize features of smart contracts, we

collect 49502 real-world smart contracts from Ethereum

official website [30]. We further extract 1619 dimen-

sional bigram features from simplified operation codes

to construct a feature space.

• ContractWard detects six vulnerabilities of smart con-

tracts quickly, effectively and automatically. We run

ContractWard on real contracts and the predictive recall

and precision of the system reach over 96%. In addition,

its detection time is about 4 seconds per contract. Con-

tractWard is proven to be time-saving and suitable for

batch detection of vulnerabilities in smart contracts.

The remainder of this paper is organized as follows. Related

work is summarized in Section II. We then briefly introduce

some concepts about Ethereum and smart contracts in Section

III. Next we review six well-known vulnerabilities in Section

IV. Section V provides the description of the data, features and

models. Experiments and results are presented in Section VI.

Discussion and analysis are provided in Section VII. Section

VIII concludes this paper.

II. RELATED WORK

The security issues of smart contracts have drawn public

attentions [16]. The work on formal verification can be traced

back to 2016 when Hirai [31] used the Isabelle proof as-

sistant to formally verify contracts. Grishchenko et al. [32]

defined formal semantics for contract source codes with F∗

framework, and Hildenbrandt et al. [33] defined it with K

framework. These semantics were executable. However, they

are not fully automated as they only focused on arbitrary

properties. Then Tsankov et al. [20] proposed an automated

security tool called Securify. Bhargavan et al. [33] provided

a strategy to verify contracts through putting source codes

and bytecodes into an existing verification system. However,

they did not measure their tool on real-world contracts. The

prototype of ZEUS [34] claimed that it was a sound analyzer

with zero false negatives by translating contracts into LLVM

framework. Jiang et al. [35] provided ContractFuzzer to test

Ethereum smart contracts whether they are vulnerable or not.

Due to random generation of test Oracle, the system could not

3

cover all paths and thus it was difficult to find all potential

vulnerabilities.

Based upon symbolic execution, there are some popular

automated security tools for contracts, including Oyente [18],

Maian [36] and Mythril [19]. The main idea of symbolic

execution was to replace arbitrary uncertain variables in

source codes, such as environmental variables and formal

parameters, with symbolic values in the process of analysis.

Symbolic execution is a powerful generic method to detect

vulnerabilities. However, it may not cover all execution paths,

resulting in false negatives. In addition, it is time-consuming

for exploration of all the executable paths. In our previous

work [37], we proposed an efficient vulnerability detection

model for smart contract. In this work, we extend our previous

work by proposing ContractWard that is an automated vulner-

ability detection model based on machine learning techniques.

Compared with these tools, ContractWard learns the patterns

of vulnerable contracts in training samples. It does not need

to repeatedly execute the same opcodes, and thus can be

time-saving. In our previous work, we detected anomalies

or malware with static [38]–[42] or dynamic analysis [43]–

[45] or with network traffic [46]–[49]. While our previous

work detected potential malicious behaviors in systems or

networks, in this work, we mainly focused on the detection of

vulnerabilities in the smart contracts running on blockchain.

III. BACKGROUND

We briefly introduce Ethereum and smart contracts in this

section. The discussion of smart contracts is confined to

Ethereum while the language for contract source codes is

restricted to Solidity language.

A. Ethereum in a Nutshell

Ethereum is the most popular second-generation blockchain

platform that features smart contracts. In essence, Ethereum is

a distributed (also decentralized) ledger that takes blockchain

as its basic support technology like Bitcoin. It supports exe-

cution and invocation environment of smart contracts through

a Turing-complete machine that is called Ethereum Virtual

Machine (EVM) [50]. EVM makes it easy for developer

to construct decentralized applications on Ethereum. It thus

greatly expands application scope on blockchain. EVM ex-

plains how to change system state given a series of instructions

and a small part of environmental data [51]. The word size

of the EVM (hence the size of the stack item) is 256 bits,

which facilitates KECCAK256 hash scheme and elliptic curve

calculation [51]. EVM has a simple stack structure with a

maximum stack size of 1024. If call count is over 1024, the

Callstack Attack may take place.

From the theoretical standpoint, Ethereum is bound to face

a problem of consistency due to its distributed characteristics,

and the solution is consensus [51]. At present, the proof of

work (PoW) algorithm as a consensus is used on Ethereum.

When a contract receives a message call, its codes will be

executed on EVM of each node simultaneously, and finally the

consensus is reached on the execution results. The main idea of

the consensus is to encourage nodes to pay contribution to the

system with economic incentives, and to prevent nodes from

doing evil with economic punishment. In order to embolden

more nodes to participate in consensus, the system rewards

cryptocurrency to the contributing nodes.

B. The Bytecodes and Operation Codes of Smart Contracts

On EVM, it works with three steps to deploy a contract

[25]. First, source codes are written in high-level language

(e.g., Solidity) by developers. Second, the source codes are

compiled into bytecodes with a compiler. Bytecodes (or called

EVM code) are byte arrays encoded by hexadecimal digits.

Finally, the bytecodes are uploaded to EVM with an Ethereum

client. On basis of one byte, the bytecodes can be translated

into EVM instructions or operation codes (opcodes). In accor-

dance with Ethereum Yellow Paper, there are 135 operation

instructions with 10 functions, namely, stop and arithmetic

operations, comparison and bit-wise logic operations, SHA3

operations, environment information operations, block infor-

mation operations, stack, memory, storage and flow operations,

push operations, exchange operations, logging operations and

system operations [50].

Currently some instructions are not defined and they

will be defined only for future expansion. As a large

number of man-made variables are defined in source codes,

analyzing smart contracts with source codes may not be

appropriate. For example, there are two contracts named

A and B where the function declaration of contract A

is ‘ f unction trans f er(address _to, uint256 _value)’,

while the function declaration of contract B is

‘ f unction trans f er(address _receiver, uint256 _token)’.

They look quite different from source codes, but are similar

in opcodes. Clearly it would be easier to analyze smart

contract with opcodes. Fig. 2 illustrates the relationships

among source codes, bytecodes and opcodes.

Fig. 2. The Relationships among Source Codes, Bytecodes and Opcodes

IV. SIX TYPES OF SECURITY VULNERABILITIES IN SMART

CONTRACTS

In this section, we briefly describe the six types of contract

vulnerabilities that appeared in this work.

A. Integer Overflow and Integer Underflow Vulnerabilities

The value of integer type in computer language has a range

of maximum (max) and minimum (min) number. The integer

type is unsigned on blockchain and thus the minimum is

0. Suppose a scenario where unsigned integer is 8 bits, the

maximum is thus 28. Integer Overflow and Integer Underflow

Vulnerabilities arise when calculation exceeds max or is below

min because of max + 1 → min or min − 1 → max.

4

B. Transaction-Ordering Dependence (TOD)

On blockchain, the performance of smart contracts varies

with different transaction sequences. Unfortunately, the se-

quences may be manipulated by miners. Consider a case where

the pending transaction pool (txpool for short) has two new

transactions (e.g., T ; Ti) and the blockchain is at state S,

and the state S can be transformed into state S1 only if the

transaction T is handled. Originally, T should be processed

at state S, and thus the state is from S into S1. But miners

can deal with the transaction Ti prior to T in accordance with

their own wishes, and then the state is from S into S2 rather

than from S into S1. Therefore if T is processed at this time,

the state will be changed into another new state S3. In the

aforementioned case, T is processed in different block states

and vulnerabilities result from the changes of the expected

transaction sequences.

C. Callstack Depth Attack Vulnerability

On Ethereum, a contract can invoke other contracts via

some instructions, such as .send(), .call(), .delegatecall()

and .trans f er(). Nevertheless, if the depth of call stack goes

beyond the threshold (e.g., 1024), the instructions will not

throw an exception but return false except .trans f er(). If the

return values are unchecked, the caller does not realize the

failure of calling. Therefore, contracts should check the return

values of instructions to determine whether the execution is

on schedule.

D. Timestamp Dependency

This vulnerability happens when a contract uses block

variables as a call condition to perform some critical op-

erations (e.g., sending tokens) or as a seed to generate

random numbers. Some variables root in block header, includ-

ing BLOCKHASH, TIMESTAMP, NUMBER, DIFFICULTY,

GASLIMIT and COINBASE, and therefore, in principle, they

can be effected by miners. For instance, miners have right

to set the block TIMESTAMP within 900 seconds offset. If

cryptocurrency is transferred based on block variables, miners

can exploit the vulnerability by tampering with them.

E. Reentrancy Vulnerability

Reentrancy vulnerability is a notorious vulnerability. Smart

contracts feature to invoke and utilize codes from external

contracts. The performance of triggering an external contract

or sending cryptocurrency to an account requires to submit

an external call. The external call may be hijacked by an

attacker to force the contracts to execute reentrant codes

including calling back themselves. Therefore, the same codes

are executed repeatedly like the indirect recursive function

calls in the programming language. The vulnerability was

discovered in the DAO contract in 2016.

V. DETECTION MODELS

As shown in Fig. 3, ContractWard is built with six steps.

First, we collect a big number of fresh and verified smart

contracts from the official website of Ethereum. Second,

source codes are transformed into operation codes (opcodes)

(as described in Fig. 2). Then opcodes are simplified. Third,

we extract 1619 dimensional bigram features from simplified

contract opcodes and label contracts with six types of vulner-

abilities (discussed in Section IV). Fourth, we employ One

vs. Rest (OvR) algorithms for multi-label classification where

C1, C2, C3, C4, C5 and C6 correspond to Integer Overflow

vulnerability (Overflow), Integer Underflow vulnerability (Un-

derflow), Transaction-Ordering Dependence (TOD), Callstack

Depth Attack vulnerability (Calltack), Timestamp Dependency

(Timestamp) and Reentrancy vulnerability (Reentrancy). Fifth,

for balanced examples like C1 vs. the rest or C2 vs. we perform

the classification directly. For the remaining four types of

vulnerabilities, we need to employ sampling algorithms to

balance them before classification because of class imbalance

[52]. Finally, we build detection models on the balanced

training sets for the detection.

A. Data Sets, Labels and Feature Space

1) Data Sets: We collect 49502 smart contracts with source

codes from the official website of Ethereum, where smart

contracts has been verified before September 2018. The data

is clearly reliable, authoritative and comprehensible. The data

sets contain contracts with the six types of vulnerabilities. The

description of data sets are shown in Table I. For Integer

Overflow vulnerability and Integer Underflow vulnerability,

the ratios of negative (invulnerable) to positive (vulnerable)

examples are balanced. For remaining four types of vulnera-

bilities, the ratios of negative to positive examples are quite

imbalanced, even up to 100:1, where negative examples are in

the majority class and positive examples are in the minority

class without exception. In general, if the ratio of one category

to another is over 5:1, the examples are considered to be class-

imbalance.

TABLE I
THE DESCRIPTION OF DATA SETS

Type
Number

This Type (Vulnerable) The Rest (Invulnerable) Total

Overflow 22128 27374 49502

Underflow 9699 39803 49502

TOD 1436 48066 49502

Callstack 192 49310 49502

Timestamp 477 49025 49502

Reentrancy 100 49402 49502

2) Labels: We employ Oyente [18] to label all the con-

tracts, and each contract is with six labels. Then we manually

check the correctness of the labels. The labels are independent

from each other in each type of vulnerability. For instance,

an example with the multi-label vector like [1 0 1 0 0 0]

demonstrates that it has the first and the third vulnerabilities

and an example with [0 0 0 0 0 0] has no vulnerability,

theoretically.

Oyente has been updated in July 2018 [53], including

but not limited to (1) reducing false positives of Reen-

trancy vulnerability by adding a threshold to the sending

5

Fig. 3. The Process of Training Models

amount (e.g., sending gas > 2300 and sending tokens >

depositing tokens); (2) newly adding Callstack vulnerability,

Integer Overflow vulnerability and Integer Underflow vulner-

ability detection; and (3) considering a revertible overflow as

a false positive of Overflow vulnerability. Meanwhile, many

papers (e.g., [21], [34], [35]) have used Oyente as a benchmark

for comparison. We assume that the labels generated by

Oyente are reliable.

3) Feature Space: We employ n-gram algorithm [54] for

feature extraction. N-Gram refers to n words that appear

continuously in text. It is a probabilistic language model in

view of first-order Markov Chain hypothesis where words are

only related to those few in front of them and thus there is

no need to trace back to the first opcode in smart contracts.

Through a sliding window of binary-byte size, opcodes are

segmented into massive n-grams [54]. In particular, unigrams,

bigrams and trigrams are examples of n-gram, where n is 1, 2

and 3, respectively. In other words, the next word appears

depending on the word before it, which is called bigram,

while the next word appears depending on the two words that

precede, which is called trigram. We use bigrams as features

in this work. According to our statistics, the opcode length of

each contract is about 4364 on average and there are more

than 100 types of opcodes in total. Therefore directly using

n-gram algorithm to extract features may lead to the curse of

dimensionality caused by excessive number of features.

In order to reduce the dimensionality of the features, we

simplify opcodes by dislodging the operands and classifying

functionally similar opcodes into one category. In details,

each push instruction is followed by an operand, which can

be removed. For block information instructions, a simplified

opcode is acted as the substitution for six opcodes, which have

the same impact on Timestamp vulnerability. Thus after the

processing, there are only about 50 opcodes remained. The

simplified rules of opcodes are described in Table II.

As shown in Table III, after simplification, we extract

bigram features from a simplified opcodes fragment. Each

distinct bigram is a feature and ultimately we extract 1619

dimensional features, which are used to identify vulnerabili-

ties. We construct a feature space (FS) where each contract

TABLE II
THE SIMPLIFICATION RULES

Substituted Opcodes Original Opcodes

ARITHMETIC_OP ADD MUL SUB DIV SDIV SMOD

MOD ADDMOD MULMOD EXP

CONSTANT1 BLOCKHASH TIMESTAMP NUMBER

DIFFICULTY GASLIMIT COINBASE

CONSTANT2 ADDRESS ORIGIN CALLER

COMPARISON LT GT SLT SGT

LOGIC_OP AND OR XOR NOT

DUP DUP1-DUP16

SWAP SWAP1-SWAP16

PUSH PUSH5-PUSH32

LOG LOG1-LOG4

TABLE III
THE BIGRAMS EXTRACTED FROM OPCODES

A Simplified Opcodes Fragment The Bigrams

PUSH1, CALLDATALOAD, _, PUSH1;

PUSH, SWAP, ARITHMETIC, PUSH1, CALLDATALOAD;

PUSH4, LOGIC_OP CALLDATALOAD, PUSH;

PUSH, SWAP;

SWAP, ARITHMETIC;

ARITHMETIC, PUSH4;

PUSH4, LOGIC_OP;

LOGIC_OP, _;

has its corresponding feature vector. Each feature value in a

feature vector is calculated as the ratio of the number of each

bigram to the number of bigrams occurred in the contract. The

feature space (FS) is defined in Equation 1.

FS =

©­­­­­­­­«

f11 f12 · · · · · · f1,1619

f21 f22 · · · · · · f2,1619

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.

fi1 · · · fi j · · · fi,1619

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.

ª®®®®®®®®¬
(1)

where fi j is the feature frequency of the ith bigram in the jth

6

contract, a decimal number between 0 and 1. We define ni,c j
as the number of the ith bigram occurrences in the jth contract

and define nall,c j as the sum of all bigram occurrences in the

same contract. Then we define fi j in Equation 2 as

fi j =
ni,c j

nall,c j

(2)

Note that if a bigram feature does not appear in the contract,

the corresponding fi j is 0.

B. Training Sets

In general, training sets can include up to 70% samples

randomly selected from the whole data sets in supervised clas-

sification. However, in this work, as mentioned, the training

sets are imbalanced because classification categories are not

roughly equally represented. As an example, a typical imbal-

anced data sets might contain 97% invulnerable examples and

3% vulnerable examples. If all the examples are identified as

invulnerable examples (the majority class), the accuracy of the

guessing would be 97%. However, the vulnerability detection

aims to gain high recall (R) and precision (P) in vulnerable

examples (the minority class). For the imbalanced data sets,

only high accuracy is obviously not appropriate.

In our training sets, for some types of vulnerabilities,

the ratios between negative and positive examples are quite

imbalanced, even up to 100:1. To deal with this problem,

we take a measure to diminish the class-imbalance impact

in the training sets. In details, we adopt Synthetic Minority

Oversampling Technique (SMOTE) [23] and the combina-

tion of SMOTE and TomekLinks (SMOTETomek for short)

[55] to extend the number of minority class to be similar

to that of the majority class. SMOTE is an oversampling

technique, interpolating between the minority class to generate

extra ones. When SMOTE algorithm is used, samples with

invalid information may be generated, thus increasing the

overlap in the minority class. However, SMOTETomek is a

combined sampling technique. Its oversampling using SMOTE

is followed by undersampling that can remove samples with

neighborhood relations (Tomek’s links). Therefore it can delete

useless samples during sampling. Both of them support multi-

label resampling. The ratio of original training sets, the ratio

of training sets balanced with SMOTE and the ratio of

training sets balanced with SMOTETomek among categories

are described in Table IV. We employ five supervised learning

algorithms based on the balanced data sets to achieve multi-

label classification.

TABLE IV
THE RATIOS OF POSITIVE TO NEGATIVE SAMPLES AFTER SAMPLING

Categories Origin SMOTE SMOTETomek

TOD vs.The Rest 3:100 1:1 1:1

Callstack vs. The Rest 1:250 1:1 1:1

Timestamp vs. The Rest 1:100 1:1 1:1

Reentrancy vs. The Rest 1:500 1:1 1:1

C. Classification Algorithms

In our training sets where yi ∈ {C1,C2,C3,C4,C5,C6} and

D = {(x1, y1), (x2, y2), ..., (xi, yi), ..., (xk, yk)}, the multi-label

classification task is realized by splitting, that is, dividing a

multi-label classification task into several binary classification

tasks. A classifier is trained for each binary classification task

and finally six classifiers are trained. The classification results

of these binary classifiers are integrated to provide the final

results of multi-label classification. We employ One vs. Rest

(OvR) strategy, one of the most classic splitting strategies,

to fulfill multi-label classification. The main idea of OvR is

to train six binary classifiers in the condition of taking one

category as positive class and the other categories as negative

class. In the process of training, if a sample is predicted as

positive in some of the six categories, then the corresponding

labels would be 1, which means the sample has vulnerabilities

in these categories.

Ensemble learning algorithms are employed in each binary

classification task to obtain better generalization performance

than a single learner. To facilitate comparison, single learning

algorithms are also employed. The ensemble learning algo-

rithms accomplish learning tasks by combining multiple base

learners and we use Decision Tree (DT) in this work. In

general, the ensemble learning algorithms are of two kinds

on the whole: Boosting and Bagging, where the former is

a serialization method with strong dependence among base

learners that have to be generated serially, while the latter

is a parallelization method with the weak dependence among

learners that can be generated simultaneously. From the per-

spective of bias-variance, Boosting aims to reduce bias, so it

can set up a strong ensemble learner on the base learners with

relatively weak generalization ability.

Based on the feature space and labels of training sets, we

employ eXtreme Gradient Boosting (XGBoost) to develop

ContractWard to detect vulnerabilities in smart contracts. We

also adopt Adaptive Boosting (AdaBoost), Random Forest

(RF), Support Vector Machine (SVM) and k-Nearest Neighbor

(KNN) for the detection for comparison.

• eXtreme Gradient Boosting (XGBoost): XGBoost is an

efficient Boosting algorithm. In order to realize fast fit,

the learner should minimize the difference between pre-

dicted values and factual values (e.g., residual errors),

and form the regularized loss function. Finally, the

prediction is the summation of all the learners. XG-

Boost draws on the column sampling similar to RF to

reduce the variance. Compared to AdaBoost, XGBoost

is efficient as it supports parallel processing at feature

granularity instead of the learner granularity.

• Adaptive Boosting (AdaBoost): AdaBoost is a represen-

tative of Boosting algorithms. It starts establishing its

first learner with the initial training sets. In the process

of re-weighting, it increases the weights of the samples

that are correctly classified or predicted while reduces

the weights of the samples that are incorrectly classified

and predicted. After the weights of the samples are

redistributed, the next weak learner training is carried out

[56]. This is repeated until the number of base learners

7

reaches the pre-set value. Finally, the strong learner can

be obtained by combining multiple weak learners. After

the training process of each weak classifier, the weight

of the weak classifier with small classification error rate

is increased, so that it plays a greater decisive role in

the final classification functions. In contrast, the weight

of the weak classifier with large classification error rate

is reduced, so that it plays a smaller decisive role in the

final classification functions.

• Random Forest (RF): RF is an extended variant of

Bagging algorithms. The training sets are composed of n

examples using random sampling algorithm with replace-

ment to sample n times from the data sets, repeatedly,

until t number of training sets are obtained. And then

t base learners are trained, respectively. Next, in the

process of prediction, classification decision depends on

a majority vote. Random attribute selection is used in the

process of training.

• Support Vector Machine (SVM): SVM is the widely used

classification method. Its goal is to find a hyper-plane to

segment samples into positive or negative samples, so

there is a maximum margin between the two categories,

where the classifier has high reliability and good gener-

alization ability for new samples.

• k-Nearest Neighbr (KNN): KNN is also very widely

used classification algorithm. It is simple but efficient.

Given a test sample, k training samples closest to the

sample are found based on some distance measure, and

then the prediction is gained on the information of the k

neighbors. According to majority vote, the most frequent

category labels in k samples are selected as the prediction

results.

D. Model Selection

The classification results vary greatly with hyper-parameters

for the same learning algorithm. Hyper-parameters are param-

eters whose values should be set before learning, instead of

parameters that can be obtained through training. Therefore, in

the model selection, hyper-parameters of algorithms should be

adjusted, which is commonly called hyper-parameters tuning.

The models are trained with pre-set hyper-parameters, and then

the hyper-parameters of the optimal model are obtained by

parameter tuning.

In addition, the decision threshold is also adjusted in ac-

cordance with data distribution called threshold moving. In

general, if the prediction value is over the threshold with 0.5

as default, the sample is discriminated as positive, or it is

negative, conversely. Through above methods, the problem of

over-fitting and under-fitting in classifiers can be well averted

in the training process. In our work, we do not employ the

n-fold cross-validation in training processing.

VI. EVALUATION

In this section, we conduct comprehensive experiments on

the test sets to achieve triple targets. First, we compare the

sampling methods with five classifiers to verify the necessity of

sampling methods. Second, we use F1-score, Micro-F1 value,

Macro-F1 value to measure the performance of the classifiers.

Based on the evaluation results, we use XGBoost classifier

trained on the balanced training sets with SMOTETomek in

our ContractWard. Finally we analyze the classification results

of ContractWard in details.

A. Experimental Setup

The experiments are preformed based on a large number of

data sets, and thus have high requirements for CPU perfor-

mance, hard disk capacity and memory size of experimental

device. Our experiment environment is described in Table V.

TABLE V
THE EXPERIMENT ENVIRONMENT

Software and Hardware Configurations

Server Model Lenovo ThinkServer RD640

Operating System Ubuntu 18.04

CPU Xenon E5-2680 v2

Memory Size 320GB

Disk Capacity 3.3TB

B. Test Sets

In the experiments, 70% of data sets are used as training

data. If the remaining 30% is used as test data directly,

the results of classification may not be good enough on

imbalanced test sets. It is essential to balance the test sets

without incorporating the authenticity of samples.

As mentioned, in order to balance the test sets, we adopt

random sampling method to select samples from around 15K

real-world smart contracts. For four types of vulnerabilities,

namely, TOD, Callstack vulnerability, Timestamp vulnerability

and Reentrancy vulnerability, we randomly select samples

from the majority class, and the number of samples that are

selected from the majority class is five times as many as the

number of the minority class. We then combine the samples

selected from the majority class and all the samples of the

minority class to form the test sets that finally contain enough

samples without fictitious samples.

C. The Comparison of Sampling Methods

We evaluate our methods on real-world smart contracts.

We use five classifiers, namely, XGBoost classifier, AdaBoost

classifier, RF classifier, SVM classifier and KNN classifier

on the same test sets and each classifier is trained by three

distinct training sets, namely, original training sets, training

sets balanced with SMOTE and training sets balanced with

SMOTETomek as shown in Table IV. We choose Micro-F1

and Macro-F1 as evaluation indices of classification. Micro-

F1 and Macro-F1 are measurements used to evaluate multi-

label classification. When calculating Micro-F1, the value is

susceptible to the classification results of categories with many

samples. When calculating Macro-F1, the weights of each

category are equal regardless of the number of samples in each

8

0.9

0.9848 0.9798

0.72

0.9641 0.9618

0.6

0.7

0.8

0.9

1

Origin SMOTETomek SMOTE

D
et

ec
ti

o
n

 r
at

e

The state of training sets

XGBoost Classifier

Micro-F1 Macro-F1

(a) XGBoost

0.89

0.9822 0.9725

0.7

0.9511 0.9509

0.6

0.7

0.8

0.9

1

Origin SMOTETomek SMOTE

D
et

ec
ti

o
n

 r
at

e

The state of training sets

AdaBoost Classifier

Micro-F1 Macro-F1

(b) AdaBoost

0.87

0.9718 0.9698

0.69

0.9358 0.9303

0.6

0.7

0.8

0.9

1

Origin SMOTETomek SMOTE

D
et

ec
ti

o
n

 r
at

e

The state of training sets

RF Classifier

Micro-F1 Macro-F1

(c) RF

0.87

0.9687 0.9618

0.69

0.9305 0.9268

0.6

0.7

0.8

0.9

1

Origin SMOTETomek SMOTE

D
et

ec
ti

o
n

 r
at

e

The state of training sets

SVM Classifier

Micro-F1 Macro-F1

(d) SVM

0.85

0.9604 0.9558

0.68

0.9281 0.9237

0.6

0.7

0.8

0.9

1

Origin SMOTETomek SMOTE

D
et

ec
ti

o
n

 r
at

e

The state of training sets

KNN Classifier

Micro-F1 Macro-F1

(e) KNN

Fig. 4. The Comparison of Sampling Methods with Five Classifiers.

category. Micro-F1 and Macro-F1 are defined in the following

Equations:

macro − P =
1

n

n∑
i=1

Pi, macro − R =
1

n

n∑
i=1

Ri (3)

macro − F1 =
2 × macro − P × macro − R

macro − P + macro − R
(4)

micro − P =
TP

TP + FP
, micro − R =

TP

TP + FN
(5)

micro − F1 =
2 × micro − P × micro − R

micro − P + micro − R
(6)

where True Positives (TP) is the number of positive samples

correctly classified as positive samples; True Negatives (TN)

is the number of negative samples correctly classified nega-

tive samples; False Positives (FP) is the number of negative

samples incorrectly classified as positive samples and False

Negatives (FN) is the number of positive samples incorrectly

classified as negative samples. TP, FP and FN are the mean

values of TP, FP and FN , respectively.

Fig. 4 demonstrates that the predictive Micro-F1 and Macro-

F1 values of each classifier trained on training sets balanced

with SMOTE or on training sets balanced with SMOTETomek

are larger than those of each classifier trained on the original

training sets. More concretely, SMOTETomek is more efficient

than SMOTE in five classifiers to balance our data and Micro-

F1 and Macro-F1 can both reach over 96% within XGBoost

classifier. Therefore SMOTE and SMOTETomek methods can

successfully solve the problem of weak generalization ability

of classifiers caused by class imbalance.

D. The Comparison of Classifiers

We conduct comprehensive experiments in the aim to com-

pare the performance based on the five multi-label classifiers,

namely, XGBoost classifier, AdaBoost classifier, RF classifier,

SVM classifier and KNN classifier, together with two sam-

pling methods, namely, SMOTE and SMTOETomek. F1-score,

Micro-F1, Macro-F1 are used to measure the performance of

the classifiers. F1-score is a measure used to evaluate binary

classifiers and it is defined as a weighted harmonic mean of

recall (R) and precision (P). Compared with geometric mean

(G-mean), it attaches more importance to the positive class

and is defined in Equation 7 as

F1 − score =
2 × P × R

P + R
(7)

In Table VI, it is seen that XGBoost classifier produces

higher F1-score values than AdaBoost classifier, RF classifier,

SVM classifier and KNN classifier in each binary classification

task. The predictive Micro-F1 value and Macro-F1 value of

XGBoost multi-label classifier are the highest among the five

classifiers, and they all reach over 96%. Ensemble learning

classifiers perform better than SVM and KNN classifiers in

our multi-label classification. Micro-F1 value is larger than

Macro-F1 value, because the number of test samples for both

Overflow and Underflow Vulnerabilities are large and F1-score

values to these two categories are high. Comparing Table VI

and Table VII, it is clear that the performance of XGBoost

classifier trained by training sets balanced with SMOTETomek

is better as expected. Thus we choose XGBoost classifier

together with SMOTETomek method in our models called

ContractWard.

E. The Analysis of Our ContractWard

We analyze the effectiveness of ContractWard in details.

1) The ROC Curves: Receiver Operating Characteristic

(ROC) curves are used to measure the performance of Con-

tractWard by trading off relative costs of True Positive Rate

(TPR) and False Positive Rate (FPR) where TPR = TP/(TP+

FN) and FPR = FP/(T N + FP). On ROC curves, FPR

is represented as X-axis and TPR is represented as Y-axis.

9

TABLE VI
THE DETECTION PERFORMANCE COMPARISON OF FIVE CLASSIFIERS TRAINED BY TRAINING SETS BALANCED WITH SMOTETOMEK

Classifiers
F1-score

Micro-F1 Macro-F1
Overflow Underflow TOD Callstack Timestamp Reentrancy

XGBoost 0.99 0.99 0.96 0.97 0.95 0.95 0.9848 0.9641

AdaBoost 0.98 0.98 0.95 0.93 0.93 0.94 0.9822 0.9511

RF 0.98 0.98 0.93 0.91 0.91 0.92 0.9718 0.9358

SVM 0.98 0.97 0.92 0.91 0.91 0.92 0.9687 0.9305

KNN 0.97 0.97 0.92 0.91 0.91 0.91 0.9604 0.9281

TABLE VII
THE DETECTION PERFORMANCE COMPARISON OF FIVE CLASSIFIERS TRAINED BY TRAINING SETS BALANCED WITH SMOTE

Classifiers
F1-score

Micro-F1 Macro-F1
Overflow Underflow TOD Callstack Timestamp Reentrancy

XGBoost 0.99 0.99 0.97 0.97 0.95 0.94 0.9798 0.9618

AdaBoost 0.98 0.98 0.95 0.93 0.93 0.94 0.9725 0.9509

RF 0.98 0.98 0.94 0.91 0.92 0.90 0.9698 0.9303

SVM 0.97 0.97 0.92 0.92 0.91 0.91 0.9618 0.9268

KNN 0.97 0.97 0.92 0.90 0.91 0.91 0.9558 0.9237

Theoretically, the ideal point would be (0,1), which means all

positive samples and negative samples are classified correctly,

respectively. Thus the point closer to top left indicates that

classification results are better. The ROC curve of Contract-

Ward with XGBoost classifier is shown in Fig. 5.

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01

1.03

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

T
P

R

FPR

ROC Curves

Callstack

Reentrancy

Timestamp

TOD

Underflow

Overflow

Fig. 5. The ROC Curves of ContractWard with XGBoost classifier.

2) TPRs, FNRs, TNRs and FPRs: As presented in Fig. 6,

Over f low vs. T he Rest means T he Rest is invulnerable and

Over f low is short for Integer Overflow vulnerability. All the

TPRs are over 94% and the TNRs are over 97% for each

type of vulnerability. High TPR and TNR demonstrate that

the effectiveness of ContractWard in terms of classification.

In particular, ContractWard is successfully detecting the

vulnerabilities of BEC contracts and DAO contracts that have

resulted in huge economic losses.

3) The Comparison in Detection Time: As mentioned,

ContractWard takes three steps to detect the six types of

vulnerabilities of smart contracts: (1) compiling contracts

from source codes into bytecodes and then translating the

Fig. 6. TPRs, FNRs, TNRs and FPRs of ContractWard

bytecodes into opcodes (C& T for short); (2) constructing 1619

dimensional bigram features from each contract; (3) predicting

whether there are vulnerable and what kinds of vulnerabilities

in the contracts. In the experiments, approximate 3K real-

world smart contracts are detected by ContractWard. Accord-

ing to the statistics, ContractWard spends about 4 seconds in

detecting a contract, which is much faster than Oyente and

Securify. Oyente takes about 28 seconds and Securify takes

about 18 seconds to detect vulnerabilities on per contract.

The comparison of vulnerability detection time among them

is shown in Table VIII.

TABLE VIII
THE COMPARISON IN DETECTION TIME (SECONDS)

ContractWard
Oyente Securify

C&T Extracting Predicting

Times 3.90 0.02 0.15 28.50 18.40

10

VII. ANALYSIS AND DISCUSSION

We extract 1619 dimensional bigram features from each

smart contract. These features are independent with high-

level programming languages for writing smart contracts on

Ethereum. Therefore, they can effectively describe the static

characteristics of contracts. We also extract unigram features

and trigram features for comparison. As an unigram feature

only contains one operation instruction, it does not reflect the

connection between instructions. As a result, the predictive

precision and recall of the model based on unigram features

is lower than those of the models based on bigram features.

In contrast, based on trigram features, the classification results

of the model are not better than the model based on bigram

features. At the same time, the model based on trigram

features are inefficient, because excessive features increase

the difficulty of constructing the model and manual tuning

of hyper-parameters. Therefore, based on bigram features,

ContractWard is time-saving. It also has high precision and

recall in vulnerability detection in smart contracts.

ContractWard is very efficient in the detection of vulnerabil-

ities in smart contracts. First, we simplify opcodes. Therefore,

the number of features extracted with n-gram (n = 2) is

decreased. In other words, the input data of ContractWard

is simplified. Second, the essence of the supervised machine

learning algorithm is to train an objective function, which can

describe the mapping relationships between feature space and

the labels of samples. In the process of training, ContractWard

acquires the parameters of the objective function through

progressive iteration and update. In the process of prediction,

ContractWard can thus directly predict whether a new sample

is vulnerable or not and what types of vulnerabilities it belongs

to with the parameters learned during the training. There

are two typical tools for detecting vulnerabilities in smart

contracts. Oyente is a tool to detect contract vulnerabilities

based on symbol execution. In the process of detection, it

requires the exploration of all executable paths in a contract.

Meanwhile, loop body needs to be iterated. It is thus time-

consuming. Securify is another tool to detect vulnerabilities.

It extracts precise semantic facts by symbolically analyzing

dependency graphs of contracts, and uses these facts to match

compliance and violation patterns. It is also time-consuming

in constructing dependency graphs and matching patterns.

The accuracy of vulnerability detection with ContractWard

depends on the authenticity of labels generated by Oyente.

Oyente has few false positives for vulnerability detection, as

it has made a series of updates as described in Section V. We

also manually check the labels to ensure the correctness of the

labeling information. ContractWard is based on the training

of existing knowledge in vulnerable contrasts. Therefore, the

vulnerabilities that have not been learned, or undefined new

vulnerabilities cannot be recognized with ContractWard.

VIII. CONCLUSION

To secure the contract layer on Ethereum and purify Dapps

markets, in this work, we propose ContractWard that is a

model for effectively and efficiently detecting six types of

vulnerabilities of smart contracts based on extracted static

characteristics. We employ three supervised ensemble classi-

fication algorithms, namely, XGBoost, AdaBoost and RF, and

two simple classification algorithms, namely, SVM and KNN,

together with two sampling methods, namely, SMOTETomek

and SMOTE to conduct comparative experiments. Finally,

we select the model that takes XGBoost as the multi-label

classifier and takes SMOTETomke as the sampling method

in our ContractWard. The experimental results demonstrate

the effectiveness and efficiency of ContractWard. First, the bi-

gram features extracted from simplified opcodes systematically

represent static features of contracts. Second, ContractWard

is appropriate for rapid batch detection of vulnerabilities in

smart contracts, and its detection speed is about 4 seconds

on a smart contract on average, much more quickly than

Oyente and Securify. Finally, ContractWard is reliable with the

predictive Micro-F1 and Macro-F1 over 96%. ContractWard

can be applied to detect vulnerabilities in smart contracts

written in all high-level languages such as Solidity, Serpent

and LLL, because high-level languages can all be converted

into opcodes.

In future work, in order to improve the performance of

ContractWard, we will explore more effective features to

describe the characteristics of smart contracts. Designing

anomaly detection models to detect novel vulnerabilities in

smart contracts is also being investigated.

REFERENCES

[1] N. Szabo, “Smart contracts: building blocks for digital markets,” EX-

TROPY: The Journal of Transhumanist Thought,(16), vol. 18, p. 2, 1996.
[2] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”

[online] Available: https://bitcoin.org/bitcoin.pdf, 2008.
[3] C. Dannen, Introducing Ethereum and Solidity. Springer, 2017.
[4] V. Buterin et al., “A next-generation smart contract and decentralized

application platform,” white paper, vol. 3, p. 37, 2014.
[5] Z. Wan, Z. Guan, and X. Cheng, “Pride: A private and decentralized

usage-based insurance using blockchain,” in 2018 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing

and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1349–
1354, IEEE, 2018.

[6] Y. Zhang, J. Zhang, W. Gao, X. Zheng, L. Yang, J. Hao, and X. Dai,
“Distributed electrical energy systems: Needs, concepts, approaches and
vision,” Acta Automatica Sinica, vol. 43, no. NREL/JA-5D00-70646,
2017.

[7] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.

[8] A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman, “A case study
for blockchain in healthcare: “medrec” prototype for electronic health
records and medical research data,” in Proceedings of IEEE open & big

data conference, vol. 13, p. 13, 2016.
[9] A. A. Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto, and M. S.

Rahman, “Privacy-friendly platform for healthcare data in cloud based
on blockchain environment,” Future Generation Comp. Syst., vol. 95,
pp. 511–521, 2019.

[10] M. S. Rahman, A. A. Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto,
and G. Wang, “Accountable cross-border data sharing using blockchain
under relaxed trust assumption,” IEEE Transactions on Engineering

Management, pp. 1–15, 2020.
[11] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang,

“Creditcoin: A privacy-preserving blockchain-based incentive announce-
ment network for communications of smart vehicles,” IEEE Trans.

Intelligent Transportation Systems, vol. 19, no. 7, pp. 2204–2220, 2018.
[12] B. Scott, “How can cryptocurrency and blockchain technology play a

role in building social and solidarity finance?,” tech. rep., UNRISD
Working Paper, 2016.

[13] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and
challenges.,” IJ Network Security, vol. 19, no. 5, pp. 653–659, 2017.

11

[14] M. del Castillo, “The dao attacked: Code issue leads to $60 million ether
theft,” Saatavissa (viitattu 13.2. 2017): http://www. coindesk. com/dao-

attacked-code-issue-leads-60-million-ether-theft, 2016.

[15] H. Nabilou, “How to regulate bitcoin? decentralized regulation for a
decentralized cryptocurrency,” Decentralized Regulation for a Decen-

tralized Cryptocurrency (March 26, 2019), 2019.

[16] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts sok,” in Proceedings of the 6th International Conference

on Principles of Security and Trust - Volume 10204, (Berlin, Heidelberg),
pp. 164–186, Springer-Verlag, 2017.

[17] “A lottery contract example.” https://ethereum.stackexchange.com/
questions/52159/lottery-contract-for-an-erc20-token. Accessed June 10,
2019.

[18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security, pp. 254–269, ACM, 2016.

[19] “Mythril project.” https://github.com/ConsenSys/mythril. Accessed July
14, 2019.

[20] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, pp. 67–82, ACM, 2018.

[21] “Ethereum virtual machine operation codes.” https://ethervm.io. Ac-
cessed June 21, 2019.

[22] M. Suiche, “Porosity: A decompiler for blockchain-based smart con-
tracts bytecode,” DEF con, vol. 25, p. 11, 2017.

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-

ligence research, vol. 16, pp. 321–357, 2002.

[24] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages

and Analysis for Security, pp. 91–96, ACM, 2016.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, pp. 785–794, ACM, 2016.

[26] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer

and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[27] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[28] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[29] T. M. Cover, P. Hart, et al., “Nearest neighbor pattern classification,”
IEEE transactions on information theory, vol. 13, no. 1, pp. 21–27,
1967.

[30] “Ethereum official website.” https://etherscan.io. Accessed July 14,
2019.

[31] Y. Hirai, “Defining the ethereum virtual machine for interactive theorem
provers,” in International Conference on Financial Cryptography and

Data Security, pp. 520–535, Springer, 2017.

[32] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Inter-

national Conference on Principles of Security and Trust, pp. 243–269,
Springer, 2018.

[33] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, et al., “Kevm: A complete
formal semantics of the ethereum virtual machine,” in 2018 IEEE 31st

Computer Security Foundations Symposium (CSF), pp. 204–217, IEEE,
2018.

[34] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.,” in NDSS, 2018.

[35] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, pp. 259–
269, ACM, 2018.

[36] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the

34th Annual Computer Security Applications Conference, pp. 653–663,
ACM, 2018.

[37] J. Song, H. He, Z. Lv, C. Su, G. Xu, and W. Wang, “An efficient vulner-
ability detection model for ethereum smart contracts,” in Network and

System Security - 13th International Conference, NSS 2019, Sapporo,

Japan, December 15-18, 2019, Proceedings, pp. 433–442, 2019.

[38] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang,
“Constructing features for detecting android malicious applications:
Issues, taxonomy and directions,” IEEE Access, vol. 7, pp. 67602–67631,
2019.

[39] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1869–1882, 2014.

[40] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting android ma-
licious apps and categorizing benign apps with ensemble of classifiers,”
Future Generation Computer Systems, vol. 78, pp. 987–994, 2018.

[41] W. Wang, M. Zhao, and J. Wang, “Effective android malware detection
with a hybrid model based on deep autoencoder and convolutional neural
network,” J. Ambient Intelligence and Humanized Computing, vol. 10,
no. 8, pp. 3035–3043, 2019.

[42] X. Wang, W. Wang, Y. He, J. Liu, Z. Han, and X. Zhang, “Characterizing
android apps’ behavior for effective detection of malapps at large scale,”
Future Generation Comp. Syst., vol. 75, pp. 30–45, 2017.

[43] X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, “Privacy risk analysis
and mitigation of analytics libraries in the android ecosystem,” IEEE

Transactions on Mobile Computing, 2020.
[44] W. Wang, X. Guan, X. Zhang, and L. Yang, “Profiling program behavior

for anomaly intrusion detection based on the transition and frequency
property of computer audit data,” Computers & Security, vol. 25, no. 7,
pp. 539–550, 2006.

[45] X. Liu, J. Liu, W. Wang, Y. He, and X. Zhang, “Discovering and
understanding android sensor usage behaviors with data flow analysis,”
World Wide Web, vol. 21, no. 1, pp. 105–126, 2018.

[46] W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “Botmark: Automated
botnet detection with hybrid analysis of flow-based and graph-based
traffic behaviors,” Information Sciences, vol. 511, pp. 284–296, 2020.

[47] W. Wang, X. Guan, and X. Zhang, “Processing of massive audit data
streams for real-time anomaly intrusion detection,” Computer Commu-

nications, vol. 31, no. 1, pp. 58–72, 2008.
[48] W. Wang and R. Battiti, “Identifying intrusions in computer networks

with principal component analysis,” in Proceedings of the The First

International Conference on Availability, Reliability and Security, ARES

2006, April 20-22 2006, Austria, pp. 270–279, 2006.
[49] W. Wang, X. Guan, and X. Zhang, “A novel intrusion detection method

based on principle component analysis in computer security,” in Ad-

vances in Neural Networks - ISNN 2004, International Symposium on

Neural Networks, Dalian, China, August 19-21, 2004, Proceedings, Part

II, pp. 657–662, 2004.
[50] G. Wood et al., “Ethereum: A secure decentralised generalised transac-

tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–
32, 2014.

[51] L. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of
blockchain consensus algorithms,” in 2018 41st International Conven-

tion on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), pp. 1545–1550, IEEE, 2018.
[52] J. Bi and C. Zhang, “An empirical comparison on state-of-the-art multi-

class imbalance learning algorithms and a new diversified ensemble
learning scheme,” Knowledge-Based Systems, vol. 158, pp. 81–93, 2018.

[53] “Oyente project.” https://github.com/melonproject/oyente. Accessed
June 10, 2019.

[54] W. B. Cavnar, J. M. Trenkle, et al., “N-gram-based text categorization,”
in Proceedings of SDAIR-94, 3rd annual symposium on document

analysis and information retrieval, vol. 161175, Citeseer, 1994.
[55] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior

of several methods for balancing machine learning training data,” ACM

SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004.
[56] J. Friedman, T. Hastie, R. Tibshirani, et al., “Additive logistic regression:

a statistical view of boosting (with discussion and a rejoinder by the
authors),” The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

12

Wei Wang is a full professor in the Department
of Information Security, Beijing Jiaotong University,
China. Currently he is also affiliated with Division
of Computer, Electrical and Mathematical Sciences
& Engineering (CEMSE), King Abdullah University
of Science and Technology (KAUST), Saudi Arabia.
He earned his Ph.D. degree in control science and
engineering from Xi’an Jiaotong University, in 2006.
He was a postdoctoral researcher in University of
Trento, Italy, from 2005 to 2006. He was a post-
doctoral researcher in TELECOM Bretagne and in

INRIA, France, from 2007 to 2008. He was a European ERCIM Fellow in
Norwegian University of Science and Technology (NTNU), Norway, and in
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University
of Luxembourg, from 2009 to 2011. He has authored or co-authored over 80
peerreviewed papers in various journals and international conferences. He is
an Editorial Board member of Computers & Security and a Young AE of
Frontiers of Computer Science. His main research interests include mobile,
computer and network security.

Jingjing Song received the B.S. degree from Yan-
shan University, China, in 2017. She is currently
pursuing the M.S. degree with the Beijing Key
Laboratory of Security and Privacy in Intelligent
Transportation, Beijing Jiaotong University, China.
Her main research interests lie in Ethereum security.

Guangquan Xu is a Ph.D. and full professor at the
Tianjin Key Laboratory of Advanced Networking
(TANK), College of Intelligence and Computing,
Tianjin University, China. He received his Ph.D. de-
gree from Tianjin University in March 2008. He is a
member of the CCF and IEEE. His research interests
include cyber security and trust management.

Yidong Li is the Vice-Dean and a professor in the
School of Computer and Information Technology
at Beijing Jiaotong University. Dr. Li received his
B.Eng. degree in electrical and electronic engineer-
ing from Beijing Jiaotong University in 2003, and
M.Sci. and Ph.D. degrees in computer science from
the University of Adelaide, in 2006 and 2010, re-
spectively. Dr. Li’s research interests include big
data analysis, privacy preserving and information
security, data mining, social computing and intel-
ligent transportation. Dr. Li has published over 80

research papers in various journals (such as IEEE Trans. on Information
Forensics & Security, IEEE Trans. on Intelligent Transportation Systems),
and refereed conferences. He has also co-authored/co-edited 5 books (includ-
ing proceedings) and contributed several book chapters. He has organized
several international conferences and workshops and has also served as a
program committee member for several major international conferences such
as PAKDD, NFOSCALE, WAC, SAC, PDCAT, DANTH, and PAAP.

Hao Wang received the B.Eng. and Ph.D. degrees
in computer science and engineering from the South
China University of Technology, Guangzhou, China,
in 2006. He is currently an Associate Professor
with the Norwegian University of Science and Tech-
nology, Trondheim, Norway. He has authored or
co-authored 80+ papers in reputable international
journals and conferences. His current research inter-
ests include big data analytics, industrial internet of
things, high performance computing, safety-critical
systems, and communication security.

Dr. Wang is a member of the IEEE IES Technical Committee on Industrial
Informatics. He served as a TPC Co-Chair for the IEEE DataCom 2015,
IEEE CIT 2017, and ES 2017. He served as a reviewer for journals such as
the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEER-
ING, the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, the
IEEE TRANSACTIONS ON BIG DATA, the IEEE TRANSACTIONS ON
EMERGING TOPICS IN COMPUTING, the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, the IEEE INTERNET OF
THINGS JOURNAL, and ACM Transactions on Multimedia Computing,
Communications, and Applications.

Chunhua Su received the BS degree for Beijing
Electronic and Science Institute, in 2003 and re-
ceived the MS and PhD degree in computer science
from Faculty of Engineering, Kyushu University, in
2006 and 2009, respectively. He is currently working
as an assistant professor in School of Information
Science, Japan Advanced Institute of Science and
Technology. His research areas include algorithm,
cryptography, data mining and RFID security &
privacy.

