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We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continu-
ous quadrature phase amplitude (“position” and “momentum”) measurements. For any quantum state,
this contradiction is lost for situations where the quadrature phase amplitude results are always macro-
scopically distinct. We show that for optical realizations of this experiment, where one uses homodyne
detection techniques to perform the quadrature phase amplitude measurement, one has an amplification
prior to detection, so that macroscopic fields are incident on photodiode detectors. The high effi-
ciencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
[S0031-9007(98)05671-3]

PACS numbers: 03.65.Bz, 42.50.Gy

In 1935 Einstein, Podolsky, and Rosen [1] presented an
argument for the incompleteness of quantum mechanics.
The argument was based on the validity of two premises:
no action at a distance (locality) and realism. Bell [2]
later showed that the predictions of quantum mechanics are
incompatible with the premises of local realism (or local
hidden variable theories). Experiments [3] based on Bell’s
result support quantum mechanics, indicating the failure of
local hidden variable theories.

One feature appears characteristic of all the contradic-
tions of quantum mechanics with local hidden variables
studied to date. The measurements considered have dis-
crete outcomes, for example, being measurements of spin
or photon number. By this we mean specifically that the
eigenvalues of the appropriate system Hermitian operator,
which represents the measurement in quantum mechanics,
are discrete.

In this paper we show how the predictions of quantum
mechanics are in disagreement with those of local hid-
den variable theories for a situation involving continuous
quadrature phase amplitude (“position” and “momentum”)
measurements. By this we mean that the quantum predic-
tions for the probability of obtaining results x and p for
position and momentum (and various linear combinations
of these coordinates) cannot be predicted by any local hid-
den variable theory. This is of fundamental interest since
the original argument [1] of Einstein, Podolsky, and Rosen
was given in terms of position and momentum measure-
ments. The original state considered by Einstein, Podol-
sky, and Rosen, and that produced experimentally in the
realization by Ou et al. [4] of this argument, gives proba-
bility distributions for x and p completely compatible with
a local hidden variable theory.

Second we suggest a new macroscopic aspect to the
proposed failure of local hidden variable theories for the

case where one uses optical homodyne detection to realize
the quadrature phase amplitude measurement [4,5]. The
homodyne detection method employs a second “local-
oscillator” field which combines with the original field to
provide an amplification prior to photodetection. In these
experiments then large field fluxes fall incident on highly
efficient photodiode detectors, in dramatic contrast to the
former photon-counting experiments. A microscopic reso-
lution (in absolute terms) of this incident photon number
is not necessary to obtain the violations with local hidden
variables. This is in contrast to many previously cited
macroscopic proposals [6] for which it appears necessary
to resolve the incident photon number to absolute precision
in order to show a contradiction with local hidden variable
theories.

The high efficiency of detectors available in this more
macroscopic detection regime may provide a way to test
local hidden variables without the use of auxiliary assump-
tions [2,7] which have weakened the conclusions of the for-
mer photon-counting measurements. This high intensity
limit has not been indicated by previous works [8] which
showed contradiction of quantum mechanics with local
hidden variables using homodyne detection, since these
analyses were restricted to a very low intensity of local-
oscillator field.

We consider the following two-mode entangled quan-
tum superposition state [9,10]:

jCl  N
Z 2p

0

jr0eißlAjr0e2ißlB dß . (1)

Here N is a normalization coefficient. The jalA, where
a  r0eiß, is a coherent state of amplitude r0  jaj and
phase ß, for a system at a location A. Similarly jblB, where
b  r0e2iß and r0  jbj, is a coherent state for a second
system at a location B, spatially separated from A. The
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quantum state (1) is potentially generated, from vacuum
fields, in the steady state by nondegenerate parametric
oscillation [10] as modeled by the following Hamiltonian,
in which coupled signal-idler loss dominates over linear
single-photon loss.

H  ih̄Esâ
y
1 b̂

y
1 2 â1b̂1d 1 â1b̂1Ĝy 1 â

y
1 b̂

y
1 Ĝ . (2)

The â
y
1 and â1, and b̂

y
1 and b̂1, are the usual boson cre-

ation and destruction operators for the two spatially sepa-
rated systems (for example, field modes) at locations A,
and B, respectively. In many optical systems the â1 and
b̂1 are referred to as the signal and idler fields, respec-
tively. Here E represents a coherent driving source which
generates signal-idler pairs, while Ĝ represents reservoir
systems which give rise to the coupled signal-idler loss.
The Hamiltonian preserves the signal-idler photon num-

ber difference â
y
1 â1-b̂

y
1 b̂1, of which the quantum state (1)

is an eigenstate, with eigenvalue zero. We note the anal-
ogy here to the single-mode “even” and “odd” coherent

superposition states N
1y2
6 sjal 6 j 2 ald [where a is real

and N21
6  2f1 6 exps22jaj2dg ] which are generated by

the degenerate form (put â1  b̂1) of the Hamiltonian
(2). These states for large a are analogous to the famous
“Schrodinger-cat” states [11] and have been recently ex-
perimentally generated [12].

Consider the experimental situation depicted in Fig. 1.
Measurements are made of the field quadrature phase am-
plitudes X

A
u at location A, and X

B
f at location B. Here

we define X
A
u  â1 exps2iud 1 â

y
1 expsiud; and X

B
f 

b̂1 exps2ifd 1 b̂
y
1 expsifd. Where our system is a har-

monic oscillator, we note that the angle choices u (or f)
equal to zero and py2 will correspond to position and mo-
mentum measurements, respectively. The result for the
amplitude measurement X

A
u is a continuous variable which

we denote by x. Similarly the result of the measurement
X

B
f is a continuous variable denoted by y.

We formulate a Bell inequality test for the experiment
depicted by making the simplest possible binary classifica-
tion of the continuous results x and y of the measurements.
We classify the result of the measurement to be 11 if the
quadrature phase result x (or y) is greater than or equal
to zero, and 21 otherwise. With many measurements we
build up the following probability distributions: PA

1sud for
obtaining a positive value of x; PB

1sfd for obtaining a
positive y; and PAB

11su, fd, the joint probability of obtain-
ing a positive result in both x and y.

If we now postulate the existence of a local hidden vari-
able theory, we can write the probabilities Pu,fsx, yd for
getting a result x and y, respectively, upon the simulta-
neous measurements X

A
u and X

B
f in terms of the hidden

variables l as follows:

Pu,fsx, yd 

Z

rsldpA
x su, ldpB

y sf, ld dl . (3)

The rsld is the probability distribution for the hidden
variable state denoted by l, while pA

x su, ld is the proba-

bility of obtaining a result x upon measurement at A of X
A
u ,

given the hidden variable state l. The pB
y sf, ld is defined

similarly for the results and measurement at B. The inde-
pendence of pB

x su, ld on f, and pB
y sf, ld on u, is a con-

sequence of the locality assumption that the measurement
at A cannot be influenced by the experimenter’s choice of
parameter f at the location B (and vice versa) [13]. It fol-
lows that the final measured probabilities PAB

11su, fd can
be written in a similar form:

PAB
11su, fd 

Z

rsldpA
1su, ldpB

1sf, ld dl , (4)

where we have simply pA
1su, ld 

R

x>0 pA
x su, ld dx, and

similarly for pB
1sf, ld. It is well known that one can now

deduce [2] the following “strong” Bell-Clauser-Horne
inequality.

S 

PAB
11su, fd 2 PAB

11su, f0d 1 PAB
11su0, fd 1 PAB

11su0, f0d

P
A
1su0d 1 P

B
1sfd

# 1 . (5)

FIG. 1. Schematic representation of a test of the Bell’s inequality. Balanced homodyne detection allows measurement of the
quadrature phase amplitudes X

A
u and X

B
f.
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The calculation of the quantum prediction for S for the
quantum state (1) is straightforward. We note certain
properties of the distribution PAB

11su, fd: it is a function
only of the angle sum x  u 1 f so we can abbrevi-
ate PAB

11su, fd  PAB
11sxd; PAB

11sxd  PAB
11s2xd; and

the marginals satisfy PA
1sud  PB

1sfd  0.5. Results
for S are shown in Fig. 2, for the choice of measure-
ment angles u 1 f  u0 1 f0

 2su0 1 fd  py4,
u 1 f0

 3py4 (for example, put u  0, f  2py4,
u0

 py2, and f0
 23py4). This choice allows the

simplification S  3PAB
11spy4d 2 PAB

11s3py4d. It can be
shown that for small r0 (less than about 1.5) this angle
choice maximizes S.

Violations of the Bell inequality, and hence contradic-
tion with the predictions of local hidden variables, are in-
dicated for 0.96 & r0 & 1.41, the maximum violation of
S ø 1.0157 6 0.001 being around r0 ø 1.1. This is a
substantially smaller violation than obtained in the dis-
crete case (where S ø 1.2) of spin measurements, consid-
ered originally by Bell. The choice of Bell inequality and
quantum state to give a violation may not be optimal, but
nevertheless the possibility of a contradiction of quantum
mechanics with local hidden variables is established.

We note that the violations are lost at large coherent
amplitudes r0. In this limit the quantum probability distri-
butions for x and y show two widely separated peaks (as
indicated by Fig. 3), the 11 and 21 results of the mea-
surement then corresponding to macroscopically distinct
outcomes, resembling the “alive” and “dead” states of the
Schrodinger cat [11]. We obtain asymptotic (large r0) ana-
lytical forms for the probability distributions which allow
a complete search for all angles. Results indicate no vio-
lations of the Bell inequality (5) possible.

In fact it can be demonstrated that, for any quantum
state, there is no incompatibility with local hidden vari-
ables for the case where the quadrature phase amplitude
results x and y only take on values which are macroscopi-

FIG. 2. Plot of S versus r0, for the angle values indicated in
the text.

cally distinct. In this case, the addition of a noise term
of order the standard quantum limit (this corresponds to a
variance D2x  1) to the result of quadrature phase ampli-
tude measurement will not alter the 11 or 21 classification
of the result. Yet it can be shown that the quantum predic-
tions for the results of such a noisy experiment are given
by the quantum Wigner function WsxA

0 , x
A
py2, x

B
0 , x

B
py2d

for the state (1), convoluted by the Gaussian noise term
s1y4p2d exps2fsxA

0 d2 1 sxA
py2d2 1 sxB

0 d2 1 sxB
py2d2gy2d.

This new Wigner function is always positive [14] and can
then act as a local hidden variable theory which gives
all the predictions in the truly macroscopic dead or alive
classification limit.

An examination, however, of the homodyne method of
measurement of the quadrature phase amplitudes reveals
a macroscopic aspect to the experiment proposed here for

FIG. 3. Representation of the quantum prediction for the
probability Pu,fsx, yd of getting a result x (horizontal axis) and
y (vertical axis), respectively, upon the simultaneous measure-
ments X

A
u and X

B
f, where u  f: (a) r0  1.1; (b) r0  2.5

showing the increasing separation of peaks and the interference
fringes characteristic of quantum superposition states.
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optical fields. The optical realization [4,5] of the quadra-
ture phase amplitude measurement (see Fig. 1) involves
local oscillator fields at A and B, which we designate by
the boson operators â2 and b̂2, respectively. The mea-
surement of X

A
u proceeds when the local oscillator field at

A is combined with the field â1 using a beam splitter to
form two combined fields ĉ6  fâ2 6 â1 exps2iudgy

p
2.

A variable phase shift u allows choice of the particular ob-
servable to be measured. Direct detection, using two pho-

todetectors, of the intensities ĉ
y
6ĉ6 of the combined fields

and subtraction of the two resulting photocurrents results in

measurement of ID  ĉ
y
1ĉ1 2 ĉy

2ĉ2  s
A
u , where s

A
u 

â
y
2 â1 exps2iud 1 â2â

y
1 expsiud. In the limit where the lo-

cal oscillator fields are very intense one may replace the
boson operators â2 and b̂2 by classical amplitudes EA and
EB, respectively. Assuming EA  EB  E, where E is
real, we see that s

A
u  EX

A
u . The X

B
f are measured simi-

larly to X
A
u using a second beam splitter [to give fields

d̂6  fb̂2 6 b̂1 exps2ifdgy
p

2] and a pair of photodetec-
tors, at location B.

The important point is that the local oscillator acts as

an amplifier prior to detection, the operators s
A
u , ĉ

y
6ĉ6

and d̂
y
6d̂6 being photon number operators which have a

macroscopic scaling in the very intense local oscillator
limit [15]. Thus in these experiments large intensities
fall incident on the photodetectors, and it is not necessary
to determine these photon numbers with a microscopic
uncertainty in order to arrive at the conclusion that local
hidden variable theories are invalid [16]. This is in contrast
with the previous photon-counting experiments, and also
many previous macroscopic proposals, for which it appears
that an absolute resolution of the incident photon number
is necessary in order to show failure of local hidden
variables. Our result then opens possibilities for testing
quantum mechanics against local hidden variable theories
in a loophole-free way using very efficient photodiode
detectors.
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