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ABSTRACT

Motivation: For several decades, free energy minimization methods

have been the dominant strategy for single sequence RNA secondary

structure prediction. More recently, stochastic context-free grammars

(SCFGs) have emerged as an alternative probabilistic methodology for

modeling RNA structure. Unlike physics-based methods, which rely on

thousands of experimentally-measured thermodynamic parameters,

SCFGs use fully-automated statistical learning algorithms to derive

model parameters. Despite this advantage, however, probabilistic

methods have not replaced free energy minimization methods as the

toolof choice for secondarystructureprediction,as theaccuraciesof the

best current SCFGs have yet to match those of the best physics-based

models.

Results: In this paper, we present CONTRAfold, a novel secondary

structure prediction method based on conditional log-linear models

(CLLMs), a flexible class of probabilistic models which generalize

upon SCFGs by using discriminative training and feature-rich scoring.

In a series of cross-validation experiments, we show that grammar-

based secondary structure prediction methods formulated as CLLMs

consistently outperform their SCFG analogs. Furthermore,

CONTRAfold, a CLLM incorporating most of the features found in

typical thermodynamic models, achieves the highest single sequence

prediction accuracies to date, outperforming currently available

probabilistic and physics-based techniques. Our result thus closes

the gap between probabilistic and thermodynamic models, demon-

strating that statistical learning procedures provide an effective

alternative to empirical measurement of thermodynamic parameters

for RNA secondary structure prediction.

Availability:Source code for CONTRAfold is available at http://contra.

stanford.edu/contrafold/.

Contact: chuongdo@cs.stanford.edu

1 INTRODUCTION

In many RNA-related studies—ranging from noncoding RNA

detection [13] to folding dynamics simulations [24] to hybridization

stability assessment for microarray oligo probe selection [19]—

knowing the secondary structure of an RNA sequence reveals

important constraints governing the molecule’s physical properties

and function. To date, experimental assays for base-pairing in

RNA sequences constitute the most reliable method for secondary

structure determination [3]; however, their difficulty and expense

are often prohibitive, especially for high-throughput applications.

For this reason, computational prediction provides an attractive

alternative to empirical discovery of RNA secondary structure [4].

Traditionally, the most successful techniques for single sequence

computational secondary structure prediction have relied on physics

models of RNA structure. Methods belonging to this category

identify candidate structures for an RNA sequence by free energy

minimization [22] through dynamic programming (e.g., Mfold [26]

and ViennaRNA [7]) or alternative optimization schemes (e.g.,

RDfolder [25]).

Parameters used in energy-based methods typically come from

empirical studies of RNA structural energetics. For example, parame-

ters for nearest neighbor interactions in stacking base pairs are

derived from melting curves of synthesized oligonucleotides [23].

In some cases, however, the difficulty of experimental procedures

places severe restrictions on what parameters are measurable, and

hence, the scoring models used. For instance, most secondary struc-

ture programs ignore the sequence dependence of hairpin, bulge,

internal, and multi-branch loop energies due to the inability to

quantify these effects experimentally. Similarly, the energies of

multi-branch loops in modern secondary structure prediction

programs rely on ad hoc scoring rules due to the lack of experimental

techniques for assessing their free energy contribution [11].

Recently, stochastic context-free grammars (SCFGs) have

emerged as an alternative probabilistic methodology for modeling

RNA structure [2,8,9]. These models specify formal grammar rules

that induce a joint probability distribution over possible RNA struc-

tures and sequences. In particular, the parameters of SCFG models

specify probability distributions over possible transformations

that may be applied to a ‘‘nonterminal’’ symbol, and thus are

subject to the standard mathematical constraints of probability

distributions (i.e. parameters may not be negative, and certain sets

of parameters must sum to one). Though these parameters do not

have direct physical interpretations, they are easily learned from

collections of RNA sequences annotated with known secondary

structures, without the need for external laboratory experiments [1].

While fairly simple SCFGs achieve respectable prediction accu-

racies, attempts in recent years to improve their performance using

more sophisticated models have thus far yielded only modest gains.

As a result, a significant performance separation still remains

between the best physics-based methods and the best SCFGs [1].

Consequently, one might assume that such a gap is the inevitable

price to be paid for using easily learnable probabilistic models, which

are unable to provide an adequate representation of the physics under-

lying RNA structural stability. We assert that this is not the case.

In this paper, we present CONTRAfold, a new secondary struc-

ture prediction tool based on a flexible probabilistic model called a

conditional log-linear model (CLLM). CLLMs generalize upon

SCFGs in the sense that any SCFG has an equivalent representation�To whom correspondence should be addressed.
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as an appropriately parameterized CLLM. Like SCFGs, CLLMs

enjoy the ease of computationally-driven parameter learning.

Unlike vanilla SCFGs, however, CLLMs also have the generality

to represent complex scoring schemes, such as those used in modern

energy-based secondary structure predictors such as Mfold.

CONTRAfold, a CLLM based on a simplified Mfold-like scoring

scheme, not only achieves the highest single sequence prediction

accuracies to date but also provides users with a new mechanism for

controlling the sensitivity and specificity of the prediction algorithm.

2 METHODS

In this section, we motivate the use of CLLMs for RNA secondary structure

prediction by showing how they arise as a natural extension of SCFGs. We

then describe the CONTRAfold secondary structure model, which extends

and simplifies traditional energy-based scoring schemes while retaining the

parameter learning ease of common probabilistic methods. Finally, we

describe a maximum expected accuracy decoding algorithm for secondary

structure prediction which allows the user to adjust the desired sensitivity/

specificity of the returned predictions via a single parameter g.

2.1 Modeling secondary structure with SCFGs

In the RNA secondary structure prediction problem, we are given an input

sequence x, and our goal is to predict the best structure y. For probabilistic

parsing techniques, this requires a way to calculate the conditional proba-

bility P(y j x) of the structure y given the sequence x.

2.1.1 Representation Stochastic context-free grammars (SCFGs)

provide a compact representation of a joint probability distribution over

RNA sequences and their secondary structures. An SCFG for secondary

structure prediction defines (1) a set of transformation rules, (2) a probability

distribution over the transformation rules applicable to each nonterminal

symbol, and (3) a mapping from parses (derivations) to secondary structures.

For example, consider the following simple unambiguous SCFG for a

restricted class of RNA secondary structures:

(1) Transformation rules.

S ! aSu juSa jcSg jgSc jgSu juSg j aS jcS jgS juS j e:

(2) Rule probabilities. The probability of transforming a nonterminal

S into aSu is pS!aSu, and similarly for the other transformation rules.

(3) Mapping from parses to structures. The secondary structure y
corresponding to a parse s contains a base pairing between two letters

if and only if the two letters were generated in the same step of the

derivation for s.

For a sequence x ¼ agucu with secondary structure1 y ¼ ((.)), the

unique parse s corresponding to y is

S ! aSu ! agScu ! aguScu ! agucu: ð1Þ
The SCFG models the joint probability of generating the parse s and the

sequence x as

Pðx‚sÞ ¼ pS!aSu · pS!gSc · pS!uS · pS!e: ð2Þ
It follows that2

Pðy j xÞ ¼
X
s2y

Pðs j xÞ ¼
P

s2y Pðx‚sÞP
s02WðxÞ Pðx‚s0Þ ‚ ð3Þ

where W(x) is the space of all possible parses of x.

2.1.2 Parameter estimation One of the chief advantages of SCFGs

as a language for describing RNA secondary structure is the existence of

well-understood algorithms for parameter estimation. Given a set D ¼
fðxð1Þ‚yð1ÞÞ‚ . . . ‚ðxðmÞ‚yðmÞÞg of m pairs of RNA sequences x(i) with

experimentally-validated secondary structures y(i), the training task involves

finding the set of parameters u ¼ {p1, . . . , pn} (i.e., the probabilities for

each of the n transformation rules) that maximize some specified objective

function.

In the popular maximum likelihood approach, u is chosen to maximize the

joint likelihood of the training sequences and their structures,

‘MLðu : DÞ ¼
Ym
i¼1

PðxðiÞ‚yðiÞ; uÞ‚ ð4Þ

subject to the contraints that all parameters must be nonnegative, and certain

group of parameters must sum to one. For unambiguous grammars, the

solution uML to this constrained optimization problem exists in closed

form. Consequently, the maximum likelihood technique is by far the

most commonly used method for SCFG parameter estimation in practice.

2.2 From SCFGs to CLLMs

Like SCFGs, conditional log-linear models (CLLMs) are probabilistic

models which have the goal of defining the conditional probability of an

RNA secondary structure y given a sequence x. Here, we motivate the

CLLM framework by comparison to SCFGs.

2.2.1 Representation To understand how CLLMs generalize upon the

representation of conditional probabilities for SCFGs, we first consider a

feature-based representation of SCFGs that highlights several important

assumptions made when modeling with SCFGs. Removing these assump-

tions leads directly to the CLLM framework.

For a particular parse s of a sequence x, let Fðx‚sÞ 2 R
n be an

n-dimensional feature vector (where n is the number of rules in the grammar)

whose ith dimension, Fi(x,s), indicates the number of times the ith trans-

formation rule is used in parse s. Furthermore, let pi denote the probability

for the ith transformation rule. We rewrite the joint likelihood of the

sequence x and its parse s in log-linear form as

Pðx‚sÞ ¼
Yn
i¼1

p
Fiðx‚sÞ
i ¼ exp ln

Yn
i¼1

p
Fiðx‚sÞ
i

 ! !

¼ exp
Xn
i¼1

Fiðx‚sÞln pi

 !
¼ expðwTFðx‚sÞÞ‚ ð5Þ

where wi ¼ ln pi. Substituting this form into equation 3,

Pðy j xÞ ¼
P

s2y expðwTFðx‚sÞÞP
s02WðxÞ expðwTFðx‚s0ÞÞ : ð6Þ

In this alternate form, we see that SCFGs are actually log-linear models

with the restrictions that

(1) the parameters w1, . . . ,wn correspond to log probabilities and hence

obey a number of constraints (e.g., all parameters must be negative), and

(2) the features F1(x,s), . . . ,Fn(x,s) derive directly from the grammar;

thus the types of features are restricted by the complexity of the

grammar.

In both cases, the imposed restriction is unnecessary if we simply wish

to ensure that the conditional probability in equation 6 is well-defined.

Removing these restrictions, thus, is the basis for the CLLM framework.

More generally, CLLMs are probabilistic models defined by equation 6,

in the case that the parameters w1, . . . ,wn may take on any real values,

and the feature vectors are similarly unrestricted.3

1The secondary structure of a sequence can be represented in nested

parenthesis format, in which pairs of matching parentheses represent

base pairings in the sequence.
2Here, we regard y as a ‘‘set’’ of parses s sharing the same secondary

structure. Note that in ambiguous grammars, the mapping from parses to

secondary structures may be many-to-one.

3Note that conditional random fields (CRFs) are a specialized class of

CLLMs whose probability distributions are defined in terms of graphical

models [10].
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2.2.2 Parameter estimation By definition, CLLMs parameterize the

conditional probability P(y j x) as a log linear function of the model’s

features F(x, s), but they provide no manner for calculating P(x, y). As a

side effect, straight maximum likelihood techniques, which optimize this

joint probability, do not apply to CLLMs.

Instead, CLLM training relies on the conditional maximum likelihood

principle, in which one finds the parameters wCML 2 R
n that maximize

the conditional likelihood4 of the structures given the sequences,

‘CMLðw : DÞ ¼
Ym
i¼1

PðyðiÞ j xðiÞ; wÞ: ð7Þ

Arguably, for prediction problems, conditional likelihood (or discriminative)

training is more natural than joint likelihood (or generative) training as it

focuses on finding parameters that give good predictive performance without

attempting to model the distribution over input sequences x.

The mechanics of performing the probabilistic inference tasks required in

the optimization of equation 7 follow closely the traditional inside and

outside algorithms for SCFGs [2].

2.3 From energy-based models to CLLMs

Converting an SCFG to a CLLM by removing restrictions on the parameter

vector w and training via conditional likelihood allows SCFGs to obtain

many of the benefits of the discriminative learning approach. Straightfor-

ward conversions of this sort are routine in the machine learning literature

and have recently been applied to RNA secondary structure alignment [21].

Such conversions, however, do not take full advantage of the expressivity of

CLLMs. In particular, the ability of CLLMs to use generic feature repre-

sentations means that in some cases, CLLMs can conveniently represent

models which do not have compact parameterizations as SCFGs.

For example, the QRNA algorithm [18] attempts to capture the salient

properties of standard thermodynamic models for RNA secondary structure,

such as loop lengths and base-stacking, via an SCFG. This conversion,

however, is only approximate. In particular, the usual energy rules [23,11]

contain terminal mismatch terms describing the interaction between closing

base pairs of helices and nucleotides in the adjacent loop. These interactions

are ignored in QRNA, and more generally, are difficult to incorporate in

SCFG models without considerably increasing grammar complexity. As the

authors themselves note, QRNA underperforms compared to standard fold-

ers, highlighting the difficulty of building SCFGs on par with energy-based

methods [18].

Contrastingly, the complex scoring terms of thermodynamic models trans-

fer to CLLMs with no difficulties. In the standard model, the energy of a

folding s decomposes as the sum of energies for hairpin, interior, bulge,

stacking pair, and multi-branch loops. In turn, the energy of each type of loop

further decomposes as the sum of interaction energies over individual features

of the sequence x and its parse s. Thus, in the CLLM equivalent of standard

thermodynamic scoring, the parameters w1, . . . ,wn replace the interaction

energy contributions for various secondary elements, and the features

F1ðx‚sÞ‚ . . . ‚Fnðx‚sÞ count the number of times a particular interaction

term appears in the parse s. This procedure is illustrated in Figures 1 and 2.

2.4 The CONTRAfold model

The CONTRAfold program implements a CLLM for RNA secondary struc-

ture prediction, following the general strategy for model construction out-

lined in the previous section. The features in CONTRAfold (see Figure 3)

include:

(1) base pairs,

(2) helix closing base pairs,

(3) hairpin lengths,

(4) helix lengths,

(5) bulge loop lengths,

(6) internal loop lengths,

(7) internal loop asymmetry,

(8) full two-dimensional table of internal loop scores,

(9) helix base pair stacking interactions,

(10) terminal mismatch interactions,

(11) single (dangling) base stacking,

(12) affine multi-branch loop scoring, and

(13) free bases.

To a large extent, the features above closely mirror the features employed

in traditional thermodynamic models of RNA secondary structure. We point

out a few key differences:

(1) CONTRAfold makes use of generic feature sets without incorporating

‘‘special cases’’ typical of complex thermodynamic scoring models,

such as the popular Turner energy rules [11]. For instance, CONTRA-

fold

– omits the bonus free energies for special case hairpin loops

(specifically items (d) through (f) from the list in Figure 2).

– does not contain a table exhaustively enumerating all possible

1 · 1, 1 · 2, 2 · 2, and 2 · 3 internal loops.
While such features may be useful, they are more likely to lead to

overfitting due to the large number of parameters that must be

trained.5 Incorporation of a small number of specially selected

interactions which are known to be particularly important a priori

is more feasible.

(2) Internal and bulge loop lengths are scored separately as a function

of the lengths ‘1 and ‘2 of each side of the loop:

f single lengthð‘1‚‘2Þ ¼
wbulge length½‘1 þ ‘2� if ‘1‘2 ¼ 0

winternal length½‘1 þ ‘2� otherwise
þ winternal asymmetry½|‘1 � ‘2|�
þ winternal correction½‘1�½‘2�:

8><
>: ð8Þ

In most thermodynamic models, only bulge and internal loop length

score tables exist, whereas internal loop asymmetry is scored accord-

ing to the Ninio equations [14]. Here, CONTRAfold learns an explicit

scoring table winternal asymmetry [·] for internal loop asymmetry in addi-

tion to a two-dimensional correction matrix winternal correction [·] [·]

for representing dependencies not captured by total loop length and

asymmetry alone.

Fig. 1. Positions in a sequence of length L ¼ 10. Here, let xi denote the ith

nucleotide of x. For ease of notation, we say that there are L + 1 positions
corresponding to x—one position at each of the two ends of x, and L � 1

positions between consecutive nucleotides of x. We assign indices ranging

from 0 to L for each position.

4In practice, we avoid overfitting by placing a zero-mean Gaussian regular-

ization prior on the parameters, and selecting the variance of the prior using

holdout cross-validation on training data only (see Results).

5This may be considered an advantage of physics-based methods; a hybrid

approach which combines machine learning with physics-based prior knowl-

edge may help alleviate the burden on the learning algorithm.
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(3) Unlike typical energy minimization schemes, the energy of a helix

consists not only of stacking interactions but also direct base

pair interactions. Also, all combinations of nucleotide pairs are

allowed, unlike the standard nearest neighbor model in which only

canonical Watson-Crick or wobble gu pairs are permitted. Finally,

CONTRAfold introduces new scoring terms for helix lengths (via an

explicit scoring table for helices of length up to 5 and affine after-

wards), which are not part of the standard nearest neighbor model.

(4) Since little is currently known about the energetics of free bases

(bases which do not belong to any other loop in the secondary

structure), they are typically ignored by energy-based folders. Here,

CONTRAfold introduces two scoring parameters: wouter unpaired for

scoring each free base, and wouter paired for scoring each base pair

adjacent to a free base.

(5) For simplicity, CONTRAfold scores terminal mismatches for

hairpins, bulges, and internal loops using the same parameters.

CONTRAfold also does not account for coaxial stacking depend-

encies when scoring multi-branch loops. Like the special case hairpin

loops mentioned earlier, making more specific scoring models by

differentiating between these terminal mismatches may improve

prediction accuracy.

2.5 Maximum expected accuracy parsing with

sensitivity/specificity tradeoff

Most physics-based approaches to secondary structure prediction use

dynamic programming to recover the structure with minimum free energy

[26,7]. For probabilistic methods, the Viterbi algorithm (known as the CYK

algorithm [2] for SCFGs) fulfills this function by finding the most likely

parse,6

ŝsviterbi ¼ arg max
ŝs2WðxÞ

Pðŝs | x; wÞ: ð9Þ

Fig. 2. The construction of a CLLM from an energy-based model. In short, the conversion process involves expressing the total energy of a parse s as a linear

function of counts for joint features Fi(x, s) of the sequence x and the parse s. Once this is done, substituting into equation 6 gives a probabilistic model whose

Viterbi parse is the minimum energy parse.

6For unambiguous grammars, the most likely parse is also the most likely

secondary structure; however, this is not the case for ambiguous

grammars [1,16].
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Here, we describe an alternative scheme that, for a given setting of a

sensitivity/specificity tradeoff parameter g, identifies the structure with

maximum expected accuracy.

In particular, for a candidate structure ŷy with true structure y, let

accuracygðŷy‚yÞ denote the number of correctly unpaired positions in ŷy

(with respect to y) plus g times the number of correctly paired positions

in ŷy. Then, we wish to find,

ŷymea ¼ arg max
ŷy

Ey½accuracygðŷy‚yÞ�‚ ð10Þ

where the expectation is taken with respect to the conditional distribution

over structures of the sequence x.

Fig. 3. Correspondence between energy-based model scoring and CLLM potentials in CONTRAfold. In each diagram, the nucleotides comprising the indicated

RNA secondary structure element are shown in red. Green dotted lines indicate the groups of nucleotides involved in the terminal mismatch, helix stacking,

or single base stacking interactions considered by CONTRAfold.
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To do this, let pij denote the conditional probability that the ith and jth
nucleotides of sequence x base pair. Similarly, let qi ¼ 1 �

P
j pij be the

conditional probability that the ith nucleotide is unpaired. The following

recurrence computes M1‚L ¼ maxyðEy½accuracygðŷymea‚yÞ�Þ:

Mi‚ j ¼ max

qi if i ¼ j
qi þMiþ1‚ j if i < j
qj þMi‚ j�1 if i < j
g · 2pij þMiþ1‚ j�1 if iþ 2 � j
Mi‚ k þMkþ1‚ j if i � k < j:

8>>>><
>>>>:

ð11Þ

Including the traceback for recovering the optimal structure, the parsing

algorithm takes O(L3) time and O(L2) space.

Note that in the above algorithm, g controls the balance between the

sensitivity and specificity of the returned structure—i.e., higher values of

g encourage the parser to predict more base pairings whereas lower values

of g restrict the parser to predicting only base pairs for which the algo-

rithm is extremely confident. When g ¼ 1, the algorithm maximizes the

expected number of correct positions and is identical to the parsing

technique used in Pfold [9]. As shown in the Results section, by allowing

g to vary, we may adjust the sensitivity and specificity of the parsing

algorithm as desired.

3 RESULTS

To assess the suitability of CLLMs as models for RNA secondary

structure, we performed a series of cross-validation experiments

using known consensus secondary structures of noncoding

RNA families taken from the Rfam database [5,6]. Specifically,

version 7.0 of Rfam contains seed multiple alignments for 503

noncoding RNA families, and consensus secondary structures

for each alignment either taken from a previously published

study in the literature or predicted using automated covariance-

based methods.

To establish ‘‘gold-standard’’ data for training and testing, we

first removed all seed alignments with only predicted secondary

structures, retaining the 151 families with secondary structures

from the literature. For each of these families, we then projected

the consensus family structure to every sequence in the alignment,

and retained the sequence/structure pair with the lowest combined

proportion of missing nucleotides and non-{au, cg, gu} base pairs.

The end result was a set of 151 independent examples, each taken

from a different RNA family.

3.1 Comparison to generative training

In our first experiment, we took nine different grammar-based

models (G1-G8, G6s) from a recent study by Dowell and Eddy

on the performance of simple SCFGs for RNA secondary structure

prediction [1]. For each grammar, we took the original SCFG

and constructed an equivalent CLLM. We then applied a two-

fold cross-validation procedure to compare the performance of

SCFG (generative) and CLLM (discriminative) parameter learning.

In particular, we partitioned the 151 selected sequence-structure

pairs randomly into two approximately equal-sized ‘‘folds.’’ For

any given setting of the MEA trade-off parameter g, we used

parameters trained on sequences from one fold7 to perform

predictions for all sequences from the other fold. For each tested

example, we computed sensitivity and specificity (PPV)8, defined as

sensitivity ¼ number of correct base pairings

number of true base pairings
ð12Þ

specificity ¼ number of correct base pairings

number of predicted base pairings
: ð13Þ

By repeating this cross-validation procedure for values of g 2
{2k: �5 � k � 10}, we obtained a receiver operating characteristic

(ROC) curve for each grammar. We report the estimated area

under each curve (see Table 1). In 7 out of 9 grammars, the

CLLM outperforms its SCFG counterpart.

Using a similar cross-validation protocol, we also found that

MEA parsing outperforms the Viterbi algorithm on average for

both the generative and discriminative models. In particular,

when an algorithm A achieves better sensitivity and specificity

than algorithm B, we say that A dominates B. On 7 out of

9 generatively-trained grammars and 9 out of 9 discriminatively-

trained grammars, we found a g for which the MEA parsing

algorithm dominates the Viterbi algorithm (see Table 2).

3.2 Comparison to other methods

Next, we compared the performance of CONTRAfold with a num-

ber of leading probabilistic and free energy minimization methods.

In particular, we benchmarked Mfold v3.2 [26], ViennaRNA v1.6

[7], PKNOTS v1.05 [17]9, Pfold v3.2 [9], and ILM [20], using

default parameters for each program.10 Whenever a program

returned multiple possible structures (e.g., Mfold), we scored

only the structure with minimum predicted free energy.

Table 1. Comparison of generative and discriminative model structure

prediction accuracy.

Grammar Generative Discriminative Difference

G1 0.0392 0.2713 +0.2321

G2 0.3640 0.5797 +0.2157

G3 0.4190 0.4159 �0.0031

G4 0.1361 0.1350 �0.0011

G5 0.0026 0.0031 +0.0005

G6 0.5446 0.5600 +0.0154

G7 0.5456 0.5582 +0.0126

G8 0.5464 0.5515 +0.0051

G6s 0.5501 0.5642 +0.0141

Each number in the table represents the area under the ROC curve of an MEA-based

parser using the indicated model. As seen below, the discriminative model consistently

outperforms its generative counterpart.

7To determine smoothing parameters (for SCFGs) or regularization con-

stants (for CLLMs), we used conditional log-likelihood on a holdout set

taken from the training data as an estimate of the generalization ability of the

learned model, and found the optimal setting of the desired parameter using a

golden section search [15].

8We considered only au, cg, and gu base pairs since many of the energy-

based folders cannot predict other types of base pairings as a consequence of

the nearest neighbor model.
9Because of the large size of some of the sequences in our dataset, we

disabled pseudoknot prediction for PKNOTS.
10Note that while all tools listed support single sequence RNA secondary

structure prediction, not all were designed specifically for single sequence

prediction. Pfold, for instance, was developed in the context of multiple

sequence structure prediction; similarly, ILM and PKNOTS were developed

for prediction of RNA structures with pseudoknots, and so might fare better

on sequences where pseudoknot interactions play a more important role.
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Unlike the other programs in our comparison, CONTRAfold’s

use of the maximum expected accuracy algorithm for parsing allows

it to optimize for either higher sensitivity or higher specificity via

the constant g. In Figure 4, we varied the choice of g for the parsing

algorithm so as to allow CONTRAfold to achieve many different

trade-offs between sensitivity and specificity; some of these trade-

offs allow for unambiguous comparisons between CONTRAfold

and existing methods.

As shown in Tables 3 and 4, CONTRAfold outperforms existing

probabilistic and energy-based structure prediction methods without

relying on the thousands of experimentally measured parameters

common among free energy minimization techniques. For g ¼ 6 in

particular, CONTRAfold achieves statistically significant improve-

ments of over 4% in sensitivity and 6% in specificity relative to the

best current method, Mfold. This demonstrates not only the quality

of the underlying model but also the effectiveness of the parsing

mechanism for providing a sensitivity/specificity trade-off.

3.3 Feature assessment

To understand the importance of various features to the

CONTRAfold model, we performed an abrasion analysis in

which we removed various sets of features from the model and

assessed the change in total ROC area for the MEA parser. As

seen in Table 5, the performance of CONTRAfold degrades as

features are removed from the model.

Interestingly, even the weakest model from Table 5, which

includes only features for hairpin, bulge, internal, multi-branch

loops (without accounting for internal loop asymmetry), helix clos-

ing base pairs, and helix base pairs, achieves a respectable ROC area

of 0.6003. In fact, this crippled version of CONTRAfold, which

does not even account for helix stacking interactions, manages to

obtain sensitivity and specificity values of 0.7006 and 0.6193,

respectively, accuracy statistically indistinguishable from Mfold.

3.4 Learned versus measured parameters

In many respects, the general techniques employed by CLLMs are

reminiscent of many previously described algorithms. For instance,

Table 2. Comparison of generative and discriminative model structure pre-

diction accuracy

Grammar Generative Discriminative

Viterbi MEA Viterbi MEA

Sens (spec) Sens (spec) Sens (spec) Sens (spec)

G1 0.41 (0.27) 0.18 (0.11) 0.40 (0.28) 0.48 (0.33)

G2 0.53 (0.36) 0.53 (0.36) 0.63 (0.48) 0.67 (0.64)

G3 0.46 (0.48) 0.56 (0.51) 0.45 (0.46) 0.54 (0.53)

G4 0.21 (0.17) 0.33 (0.23) 0.21 (0.17) 0.34 (0.23)

G5 0.03 (0.04) 0.06 (0.04) 0.02 (0.03) 0.06 (0.04)

G6 0.60 (0.61) 0.62 (0.63) 0.61 (0.62) 0.62 (0.67)

G6s 0.60 (0.62) 0.62 (0.64) 0.62 (0.63) 0.65 (0.65)

G7 0.58 (0.63) 0.63 (0.63) 0.58 (0.62) 0.63 (0.67)

G8 0.58 (0.60) 0.63 (0.62) 0.58 (0.61) 0.65 (0.62)

In each case, g was adjusted for MEA parsing to allow a direct comparison with Viterbi,

and the dominant parsing method is shown in bold. Finally, note that the results for MEA

reflect only a single choice of g rather than the entire ROC curve, so one should refer to

Table 1 for a more reliable comparison of generative and discriminative MEA accuracy.

Specificity

Fig. 4. ROC plot comparing sensitivity and specificity for several RNA

structure prediction methods. CONTRAfold performance was measured

at several different settings of the g parameter, which controls the

tradeoff between the sensitivity and specificity of the prediction algorithm.

As shown above, CONTRAfold achieves the highest sensitivity at each level

of specificity.

Table 3. Accuracies of leading secondary structure prediction methods

Method Sensitivity Specificity Time (s)

CONTRAfold (g¼6) 0.7377 0.6686 224

Mfold 0.6943 0.6063 62

ViennaRNA 0.6877 0.5922 8

PKNOTS 0.6030 0.5269 460

ILM 0.5330 0.4098 22

CONTRAfold (g ¼0.75) 0.5540 0.7920 224

Pfold 0.4906 0.7535 22

Table 4. Performance of CONTRAfold relative to leading secondary struc-

ture prediction methods

Sensitivity Specificity

Method + � p-value + � p-value

Mfold 34 69 0.00081 51 77 0.0271

ViennaRNA 30 72 4.9 · 10�5 44 82 0.00098

PKNOTS 17 94 5.5 · 10�13 26 104 1.5 · 10�11

ILM 20 101 3.6 · 10�13 12 126 6.8 · 10�22

Pfold 38 72 0.0017 41 64 0.0318

Mfold, ViennaRNA, PKNOTS, and ILM were compared to CONTRAfold (g¼ 6). Pfold

was compared to CONTRAfold (g¼ 0.75). The numbers in the+/� columns indicate the

number of times the method achieved higher (+) or lower (�) sensitivity/specificity than

CONTRAfold. p-values were calculated using the sign test.
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the inside-outside algorithms inspired by SCFGs bear close relation

to McCaskill’s procedure for computing base-pairing probabilities

via the partition function [12]. Indeed, one may be tempted to draw

direct analogies between the parameters of energy-based models

and the parameters learned by the CLLM (appropriately scaled by

�RT, the negated product of the universal gas constant and

absolute temperature).

As shown in Figure 5, in some cases one can find a good cor-

relation between parameters learned by CONTRAfold and those

measured experimentally. Differences between learned parameters

and measured values, however, are not necessarily diagnostic of

errors in the laboratory measurements. Roughly speaking, the

parameters learned by CLLMs reflect the degree of enrichment

of their corresponding features in training set secondary structures.

Therefore, parameters which do not appear often in training set

structures will have smaller parameter values, regardless of their

actual energetic contribution to real RNA structures. Additionally,

Gaussian prior regularization (see footnote to Section 2.2.2),

reduces the magnitude of less confident parameters to prevent over-

fitting. Finally, CLLM learning compensates for dependencies

between parameters so as to maximize the overall conditional like-

lihood of the training set; thus, the values learned for one parameter

will depend greatly on the other parameters in the model.

4 DISCUSSION

In this paper, we presented CONTRAfold, a new RNA secondary

structure prediction method based on conditional log-linear models

(CLLMs). Like previous structure prediction methods based on

probabilistic models, CONTRAfold relies on statistical learning

techniques to optimize model parameters according to a training

set. Unlike its predecessors, however, CONTRAfold uses a dis-

criminative training objective and flexible feature representations

in order to achieve accuracies exceeding those of the current best

physics-based structure predictors.

As a modeling framework for RNA secondary structure predic-

tion, CLLMs provide many advantages over physics-based models

and previous probabilistic approaches, ranging from ease of

parameter estimation to the ability to incorporate arbitrary features.

It is only natural, then, to suspect that these advantages will carry

over to related problems as well. For instance, most current methods

for multiple sequence RNA secondary structure prediction either

take a purely probabilistic approach or attempt to combine physics-

based scoring with covariation information in an ad hoc way. In

contrast, the CLLM methodology provides a principled framework

for combining the rich feature sets of physics-based methods with

the predictive power of sequence covariation.

To date, SCFGs and their extensions provide the foundation for

many standard computational techniques for RNA analysis, ranging

from modeling of specific RNA families to noncoding RNA detec-

tion to RNA structural alignment. In each of these cases, CLLMs

provide principled alternatives to SCFGs which take advantage of

complex features of the input data when making predictions.

Extending the CLLM methodology to these cases provides an excit-

ing avenue for future research.
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