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Abstract

Recent Visual Question Answering (VQA) models have

shown impressive performance on the VQA benchmark but

remain sensitive to small linguistic variations in input ques-

tions. Existing approaches address this by augmenting the

dataset with question paraphrases from visual question gen-

eration models or adversarial perturbations. These ap-

proaches use the combined data to learn an answer classi-

fier by minimizing the standard cross-entropy loss. To more

effectively leverage augmented data, we build on the recent

success in contrastive learning. We propose a novel train-

ing paradigm (ConClaT) that optimizes both cross-entropy

and contrastive losses. The contrastive loss encourages rep-

resentations to be robust to linguistic variations in ques-

tions while the cross-entropy loss preserves the discrimina-

tive power of representations for answer prediction.

We find that optimizing both losses – either alternately

or jointly – is key to effective training. On the VQA-

Rephrasings [44] benchmark, which measures the VQA

model’s answer consistency across human paraphrases of

a question, ConClaT improves Consensus Score by 1.63%

over an improved baseline. In addition, on the standard

VQA 2.0 benchmark, we improve the VQA accuracy by

0.78% overall. We also show that ConClaT is agnostic to

the type of data-augmentation strategy used.

1. Introduction

Visual Question Answering (VQA) refers to the task of

automatically answering free-form natural language ques-

tions about an image. For VQA systems to work reliably

when deployed in the wild, for applications such as assist-

ing visually impaired users, they need to be robust to differ-

ent ways a user might ask the same question. For example,

VQA models should produce the same answer for two para-

phrased questions – “What is in the basket?” and “What is

contained in the basket?” since their semantic meaning is

the same. While significant progress has been made towards

building more accurate VQA systems, these models remain

brittle to minor linguistic variations in the input question.

*Correspondence to ysh.kant@gmail.com

Figure 1: We make VQA model robust to question para-

phrases using a training paradigm ConClaT that minimizes

contrastive and cross-entropy losses together. Contrastive

learning step pulls representations of positive samples cor-

responding to paraphrased questions closer together while

pushing those with different answers farther apart. Cross-

entropy step makes these representations discriminative to

help model answer visual questions accurately.

To make VQA systems robust, existing approaches [44,

47] have trained VQA systems [24] by augmenting the

training data with different variations of the input question.

For instance, VQA-CC [44] use a visual question genera-

tion (VQG) model to generate paraphrased question given

an image and answer. Generally, these models fuse im-

age and question features into a joint vision and language

(V+L) representation followed by a standard softmax clas-

sifier to produce answer probabilities and are optimized by

minimizing the cross-entropy loss. Unfortunately, cross-

entropy loss treats every image-question pair independently

and fails to exploit the information that some questions in

the augmented dataset are paraphrases of each other.

We overcome this limitation by using a contrastive loss

InfoNCE [36] that encourages joint V+L (Vision and Lan-

guage) representations obtained from samples whose ques-

tions are paraphrases of each other to be closer while pulling

apart the V+L representations of samples with different an-
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swers. As we operate in a supervised setting, we choose

Supervised Contrastive Loss (SCL) [26] which extends In-

foNCE by utilizing the label information to bring samples

from the same class (ground-truth answer) together. We in-

troduce a variant of the SCL which emphasizes rephrased

image-question pairs over pairs that are entirely different

but have the same answer. Our proposed training paradigm,

ConClaT (Contrast and Classify Training), minimizes SCL

and cross-entropy loss together to learn better vision and

language representations as shown in Fig.1. Minimizing

the contrastive loss encourages representations to be robust

to linguistic variations in questions while the cross-entropy

loss preserves the discriminative power of the representa-

tions for answer classification. Instead of pretraining with

SCL, then fine-tuning with cross-entropy loss as in [26],

we find that minimizing the two losses either alternately

or jointly by constructing loss-specific mini-batches helps

learn better representations. For contrastive loss, we care-

fully curate mini-batches by sampling various types of neg-

atives and positives given a reference sample.

We show the efficacy of our training paradigm across

two rephrasing (i.e., data-augmentation) strategies. Using

rephrasings obtained from a VQG model proposed in [44],

our approach outperforms a baseline that simply treats these

rephrasings as additional samples and ignores the link be-

tween question and its paraphrases. We noticed that the

VQG model fails to produce a diverse set of rephrasings for

a question. Hence, we use Back-translation to obtain ques-

tion rephrasings. Back-translation [15] involves translating

an input sentence from one language to another and then

translating it back into the original language using a pair of

machine translation models (e.g. en-fr and fr-en). We

find that Back-translation preserves the semantic meaning

of the question while generating syntactically diverse ques-

tion. Utilizing the publicly available collection of neural

machine translation models in HuggingFace [52], we gen-

erate numerous rephrasings of every question. Then, we

filter poor/irrelevant rephrasings with a sentence similarity

model [41] and store 3 rephrasings per original question of

VQA v2.0 dataset without any manual supervision.

We extensively ablate ConClaT with alternate [8], joint

and pretrain-finetune [26] training schemes, and compare

with previously proposed triplet [38] and margin-based

losses [58] . We evaluate on the VQA Rephrasings bench-

mark [44] which measures the model’s answer consistency

across several rephrasings of a question. ConClaT improves

Consensus Score by 1.63% over an improved baseline. In

addition, on the standard VQA 2.0 benchmark, we improve

VQA accuracy by 0.78% overall. It is also worth noting that

VQA models trained using ConClaT perform better than

existing approaches across both the aforementioned data-

augmentation strategies – Back-translation and VQG.

2. Related Work

Models for VQA. Several models have been proposed

for Visual Question Answering which fuse CNN grid fea-

tures and LSTM features with different forms of atten-

tion [34, 55, 16, 23]. Bottom-Up and Top-Down [6] pro-

posed to learn attention over object regions obtained from

a pretrained object detector and subsequent works [27, 56,

24] introduced various ways to fuse image and language

representations. Recent works [32, 33, 45, 29, 45, 46, 13]

use multi-modal transformers to learn visuo-linguistic rep-

resentations from object detector features and BERT ques-

tion features [14]. We use the multi-modal transformer ar-

chitecture similar to UNITER [13] for all our experiments.

Robustness of VQA Models. Robustness of VQA mod-

els with respect to multi-modal vision and language input

has been studied in great detail. [18, 57] proposed bal-

anced datasets to ensure models don’t overfit to language

while answering visual questions. C-VQA [4] and VQA-

CP [3] datasets were proposed to test robustness against

changing question-answer distributions. SQUINT [43] en-

couraged consistency between reasoning questions and as-

sociated sub-questions. Our work focuses on robustness to

question paraphrases in VQA-Rephrasings [44] that were

collected from human annotators. VQA-CC [44] trained a

Visual Question Generation (VQG) model to generate para-

phrases of questions to augment the training dataset while

VQA-Aug [47] augmented the training dataset by generat-

ing paraphrases of questions via back-translation. We show

that these data augmentation techniques can be better uti-

lized via ConClaT to build robust and accurate VQA mod-

els. Concurrent to our work, Whitehead et al. [50] propose a

rule-based mechanism to generate question paraphrases for

VQA. They constrain their model architecture to be modu-

lar [7] and use module-level loss to improve consistency. In

contrast, our approach is agnostic to model architecture.

Various works [3, 2, 58, 38] made VQA models ro-

bust to language bias (For example, “What is the color of

x” will always produce ‘blue’ irrespective of x). Recent

works [48, 1, 9, 37] also studied robustness from counter-

factual answering lens – answer should change according

to the change in semantic content of the question or image.

Our work, on the other hand, focuses on robustness to syn-

tactic variations in questions.

Paraphrase Generation in NLP. There has been sig-

nificant work in the area of Natural Language Process-

ing (NLP) for generating paraphrases of a sentence us-

ing LSTM networks [39], Deep Reinforcement Learn-

ing [31], Variational Autoencoders [19] and Transform-

ers [49]. However, these works require supervision in the

form of paraphrase pairs. In order to mitigate this limita-

tion of labelled data, Neural Machine Translation (NMT)

models have been used to generate paraphrases in a self-

supervised fashion via back-translation [35, 51]. We build
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on top of these works and use state-of-the-art NMT models

from HuggingFace [52] to generate paraphrases for visual

questions without any supervision.

Contrastive Learning. There has been recent interest

in the use of Contrastive Learning for learning visual repre-

sentations in a self-supervised manner [53, 22, 21, 10, 12,

11, 40]. Going beyond Image Classification, recently, [20]

used contrastive learning for phrase grounding. They used

the InfoNCE loss [36] to learn a compatibility function be-

tween a set of region features from an image and contextu-

alized word representations. In contrast, we want to learn

representations which are robust to linguistic variations in

the question for VQA.

To utilize label information in contrastive losses, [26]

proposed Supervised Contrastive Learning (SCL) loss for

learning visual representations. We introduce a vari-

ant of the SCL which scales the contributions from aug-

mented positive samples (rephrasings in our case) over

intra-class positive samples (that have the same answer)

using a scaling factor. Morever, our training paradigm

optimizes both (cross-entropy and SCL) losses together,

whereas [26] follow the pretrain-finetune training scheme.

Furthermore, [26] randomly sample positive and negative

pairs based on label information, whereas we carefully cu-

rate batches by sampling hard-negatives from the dataset.

We show how these differences affect performance through

a series of ablations in our experiments section.

3. Preliminaries

In this section, we introduce the VQA task and the stan-

dard cross entropy training of VQA models. We then re-

cap contrastive methods for learning representations [10]

and the recently proposed Supervised Contrastive Learning

(SCL) [26] setup. We describe our approach in section 4.

VQA. The task of Visual Question Answering (VQA) [5,

18] involves predicting an answer a for a question q about

an image v. An instance of this problem in the VQA Dataset

D is represented via a tuple x = (v, q, a), ∀x ∈ D. Recent

VQA models [24, 6, 13] take image and question as input

and output a joint vision and language (V+L) representation

h ∈ Rdh using a multi-modal network f :

h = f(v, q)

The V+L representation h is then used to predict a prob-

ability distribution over the answer space A with a softmax

classifier f c(h) learned by minimizing the cross-entropy:

LCE = −log
exp(f c(h)[a])

∑

a′∈A exp(f c(h)[a′])
(1)

where f c(h)[a] is the logit corresponding to the answer a.

Contrastive Learning. Recent works in vision [10] have

used contrastive losses to bring representations of two aug-

mented views of the same image (called positives) closer

together while pulling apart the representations of two dif-

ferent images (called negatives). The representation h ob-

tained from an image encoder is projected into a dz dimen-

sional hyper-sphere using a projection network g such that

z = g(h) ∈ Rdz . Given a mini-batch of size K, the image

representation h is learned by minimizing the InfoNCE [36]

loss which operates on a pair of positives (zi, zp) and K−1
negative pairs (zi, zk) such that i, p, k ∈ [1,K], k 6= i as

follows:

Li
NCE = − log

exp(Φ(zi, zp)/τ)
∑K

k=1 ✶k 6=i exp(Φ(zi, zk)/τ)
, (2)

where Φ(u,v) = u
⊤
v/‖u‖‖v‖ computes similarity be-

tween u and v and τ > 0 is a scalar temperature parameter.

A generalization of InfoNCE loss to handle more than

one positive-pair was proposed by [26] called Supervised

Contrastive Loss (SCL). Given a reference sample x, SCL

uses class-label information to form a set of positives

X+(x) that contains samples with the same label as x.

X+(x) also contains augmented views of the sample be-

cause they share the same label as x. For a minibatch with

K samples, SCL is defined as:

Li
SC = −

|X+(xi)|
∑

p=1

log
exp(Φ(zi.zp)/τ)

∑K

k=1 ✶k 6=i · exp(Φ(zi.zp)/τ)

LSC =
K
∑

i=1

Li
SC

|X+(xi)|
(3)

Overall, Li
SC tries to bring the representation of samples

in X+(xi) closer together compared to representations of

samples with a different ground-truth label.

4. Approach

We now describe our approach, ConClaT, which uses

contrastive and cross-entropy training to learn VQA mod-

els robust to question paraphrases.

4.1. Augmented Dataset with Backtranslation

We augment the train set with question paraphrases using

88 different MarianNMT [25] Back-translation model pairs

released by HuggingFace [52]. We produce 27 unique

rephrasings per question with cosine similarity of 0.88 on

average, the similarity is calculated by first encoding the

questions via Sentence-BERT [41]. We only select para-

phrases that have ≥ 0.95 similarity with the original ques-

tion and choose three unique paraphrases randomly from

this subset. We use three paraphrases to keep the compute

manageable. Overall, our augmented train set consists of ∼
1.6M samples.
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Figure 2: Overview of ConClaT. (a) We augment the VQA dataset by paraphrasing every question via Back-translation

or Visual Question Generation. (b) We carefully curate a contrastive batch by sampling different types of positives and

negatives to learn joint V+L representations by minimizing scaled supervised contrastive loss LSSC. (c) Cross Entropy loss

LCE is optimized with LSSC.

For a sample x = (v, q, a) ∈ D, let’s denote a set of

paraphrases for question q by Q(q) and the corresponding

set of VQA triplets as:

X+
para(x) = {(v, q′, a) | q′ ∈ Q(q)} (4)

As shown in Figure 2(a), we augment the VQA dataset

D with multiple paraphrased samples of a given question

and denote the augmented dataset Daug as:

Daug = D
⋃

x∈D

X+
para(x) (5)

4.2. Scaled Contrastive Loss for VQA

We would like our VQA model to produce the same and

correct answer for a question and its paraphrase given an

input image. This motivates us to map joint vision and lan-

guage (V+L) representations of an original and paraphrased

sample closer to each other. Moreover, since we operate in

a supervised setting, following SCL [26] we also pull the

joint representations for the questions with the same answer

(intra-class positives) closer together while pulling apart the

representations of questions with different answers. We de-

fine the set of all samples with the same ground truth answer

as x by:

X+(x) = {(v̂, q̂, â) ∈ Daug | â = a} (6)

Note that X+
para(x) ⊂ X+(x) as all question para-

phrases have the same answer for a given image but not all

questions with the same answer are paraphrases. We refer

to samples in set X+
cls(x) = X+(x) − X+

para(x) as intra-

class positives and set X+
para(x) as paraphrased positives

w.r.t. x as depicted in Figure 2(b).

Following Eq. (3), all the samples in X+(xi) in LSC are

treated the same. That is, representations from both the

paraphrased positives and intra-class positives are brought

closer together. To emphasize on the link between ques-

tion and its paraphrase, we propose a variant of the SCL

in Eq. (7) which assigns higher weight to paraphrased posi-

tives X+
para(x) over intra-class positives X+

cls(x). We intro-

duce a scaling factor αip in the SCL (Eq. (3)) for a sample

xi as follows:

Li
SSC = −

|X+(xi)|
∑

p=1

αip · log
exp(Φ(zi.zp)/τ)

∑K

k=1 ✶k 6=i · exp(Φ(zi.zp)/τ)

(7)

LSSC =

K
∑

i=1

Li
SSC

∑

p αip

(8)

The scaling factor αip assigns a higher weight s > 1
to positive samples corresponding to question paraphrases

compared to other intra-class positives. Intuitively, be-

cause of the higher weight, the loss will penalize the model

1607



Algorithm 1 ConClaT with alternate LSSC and LCE

input: steps N ; constant Nce; data Daug; networks f, g
for all i ∈ {1, . . . , N} do

B = φ
if i (mod Nce) = 0 do

# sscl iteration

B = CURATE(Nr, Daug, w); L = LSSC

else do

# ce iteration

B∼Daug; L = LCE

update f(.), g(.) networks to minimize L over B
return network f(.); throw away g(.)

strongly if it fails to bring the representations of a question

and its paraphrase closer. We define αip as:

αip =

{

s if xp ∈ X+
para(xi),

1, otherwise
(9)

4.3. Training with LSSC and LCE

We experiment with various schemes of combining su-

pervision from LSSC and LCE losses. Specifically, we try

– alternate (Algorithm 1), joint, and pretrain-finetune [26]

training schemes.

Our alternate training scheme is summarized in Algo-

rithm 1. Specifically, given N total training iterations, we

update our model with LSSC after every Nce−1 updates with

LCE, where Nce is a hyper-parameter . In the joint training

scheme, we curate loss-specific batches for LSSC and LCE

but jointly update the model by accumulating the gradients

of these two losses. Training alternately or jointly with the

two losses simplifies the optimization procedure compared

to two-stage training (pretrain-finetune as in [26]) which re-

quires double the hyper-parameters and longer training iter-

ations. Figure 2 depicts ConClaT training.

4.4. Negative Types and Batch Creation

SCL operates with multiple negative samples. For a

given reference sample x = (v, q, a) ∈ Daug, we define a

corresponding set of negatives as samples with ground truth

different than the reference x:

X−(x) = {(v̄, q̄, ā) ∈ Daug | ā 6= a}

We carefully curate batches for LSSC by sampling dif-

ferent types of negatives. We classify a negative sample

x̄ = (v̄, q̄, ā) ∈ X−(x) into one of three negative categories

defined below.

• Image Negatives, X−
img(x): Image negatives are sam-

ples that have the same image (v = v̄) as the reference

(x) but different answer. Since VQA dataset has mul-

tiple questions (∼ 5.4) per image, finding image nega-

tives is trivial.

Algorithm 2 Batch Curation Strategy for LSSC

input: number of references Nr; data D; weights w

function CURATE(Nr, D, w)

B = φ,Br = φ # initialize batches

for all i ∈ {1, . . . , Nr} do

xi∼D # reference

x̂i∼X+
cls(xi) # intra-class positive

t∼Cat(T |w) # negative type

x̄i∼X−
t (xi) # negative

append B = B ∪ {xi, x̂i, x̄i}
for all i ∈ {1, . . . , |B|} do

x′
i∼X+

para(xi) # paraphrased positive

append Br = Br ∪ {x′
i}

return B ∪ Br

• Question Negatives, X−
que(x): Question negatives are

samples that have questions similar to the reference but

different answer. We measure the similarity between

the questions by computing their cosine distance in the

vector space of the Sentence-BERT [41] model, i.e.

sim(q, q̄) > ǫ, where ǫ is a similarity threshold.

• Random Negatives, X−
rand(x): Random negatives are

samples that do not fall under either Image or Ques-

tion negative categories i.e. any image and question

pair that has a different answer than the reference.

We hypothesize that discriminating between joint V+L

representations of above negatives and the reference would

lead to more robust V+L representations as it requires the

model to preserve relevant information from both modali-

ties in the learnt representation. Negative samples belong-

ing to each of the above types are depicted in Figure 2(b).

Batch Curation. To create mini-batches for LSSC, as de-

scribed in Algorithm 2, we start by filling our batch with

triplets of reference xi, a intra-class positive x̂i and a neg-

ative sample x̄i of type t. The negative type t is sam-

pled from a categorical distribution Cat(T |w) where w =
(wimg, wque, wrand) are the probability weights of selecting

different types of negatives defined by T = {que, img,

rand}. This procedure is repeated for specified number

of times Nr to create a batch B. Finally, for every sample

in B we add a corresponding paraphrased positive x′
i sam-

ple. For LCE, we sample mini-batches randomly from the

dataset Daug.

Importance of Scaling Factor. VQA Dataset has a skewed

distribution of answer labels and since we sample refer-

ences for SCL minibatch independently of each other (see

Algorithm 2) quite often we end up with multiple intra-class

positives but only a single paraphrased positive for given

a reference in a minibatch. To balance this trade-off we

choose to scale the loss corresponding to paraphrased pos-
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itive sample from the intra-class positive samples. We call

this loss Scaled Supervised Contrastive Loss (LSSC).

5. Experiments

5.1. Datasets and Metrics

We use the VQA v2.0 [18] and the VQA-

Rephrasings [44] datasets for experiments. VQA contains

nearly 443K train, 214K val and 453K test instances.

VQA-Rephrasings was collected to evaluate the robustness

of VQA models towards human rephrased questions.

Specifically, the authors collected 3 human-provided

rephrasings for 40k image-question pairs from the VQA

v2.0 validation dataset.

Shah et al. [44] also introduced Consensus Score (CS)

as an evaluation metric to quantify the agreement of VQA

models across multiple rephrasings of the same question.

Amongst all subsets of paraphrased questions of size k, the

consensus score CS(k) measures the fraction of subsets in

which all the answers have non-zero VQA-Score. For a set

of paraphrases Q, the consensus score CS(k) is defined as:

CS(k) =
∑

Q′⊂Q,|Q′|=k

S(Q′)
n

Ck

(10)

S(Q′) =

{

1 if ∀q ∈ Q′, VQA-Score(q) > 0,

0 else

(11)

Where
n

Ck is number of subsets of size k sampled from

a set of size n. CS(k) is zero for a group of questions Q
when the model answers at least k questions correctly.

When reporting results on the val split and VQA-

Rephrasings, we train on the VQA 2.0 train split and when

reporting results on the VQA 2.0 test-dev and test-std we

train on both VQA 2.0 train and val splits. The VQA

Rephrasings dataset [44] is never used for training and used

only for evaluation.

5.2. Baselines and Training Details

VQA Model. For f , we use a multimodal transformer

(MMT) inspired from [13], with 6 layers and 768-dim em-

beddings. It takes as input two different modalities. The

question tokens are encoded using a pre-trained three layer

BERT [14] encoder which is fine-tuned along with the mul-

timodal transformer. Object regions are encoded by ex-

tracting features from a frozen ResNeXT-152 [54] based

Faster R-CNN model [42]. The projection module g con-

sists of two linear layers and a L-2 normalization function.

We choose MMT as representative of current SoTA mod-

els [23, 32, 13, 30, 17] in VQA that rely heavily on some

form of multi-modal transformer architecture. Also note

that our approach (ConClaT) is agnostic to the choice of

the model.

Question Paraphrases using VQG. Apart from training

with question paraphrases generated via Back-translation,

we also experiment with generating question paraphrases

using the VQG module from [44]. We input the VQG mod-

ule with 88 random noise vectors to keep the generation

comparable with Back-translation approach. For filtering,

we use the gating mechanism used by the authors and sen-

tence similarity score of ≥ 0.85 and keep a maximum of 3

unique rephrasings for each question.

Training Details. We train our models using Adam opti-

mizer [28] with a linear warmup and with a learning rate of

1e-4 and a staircase learning rate schedule, where we mul-

tiply the learning rate by 0.2 at 10.6K and at 15K iterations.

We train for 5 epochs of train + augmented dataset on 4

NVIDIA Titan XP GPUs and use a batch-size of 420 when

using LSSC and LCE both and 210 otherwise. We put re-

maining hyperparameters in the supplementary.

Existing state-of-the-art methods. Previous work [44]

in VQA-Rephrasings trained a VQG model using a cycle-

consistent training scheme along with the VQA model. The

approach involved generating questions by a VQG model

such that the answer for the original and the generated ques-

tion are consistent with each other. For their experiments,

they build on top of Pythia [24] and BAN [6] as base VQA

models. We treat these approaches as baselines.

6. Results

In this section, we carefully ablate each component of

ConClaT, and also compare results with previous methods

(Pythia+CC, BAN+CC) from [44].

6.1. ConClaT

Our baseline architecture MMT without any additional

data (Table 2, Row 5) and trained using cross-entropy (LCE)

outperforms previous best (BAN+CC, Table 2, Row 4) by

+3.64% on CS(4) while being -0.31% worse on VQA 2.0

validation. Training MMT with Back-translated data (Ta-

ble 2, Row 8) using only LCE further improves CS(4) by

+0.54% while slightly degrading performance on VQA 2.0

by -0.15%, we treat this as our new baseline.

We find that alternate training (ConClaT) (Table 2, Row

9) improves CS(4) by +1.63% and VQA Accuracy by +0.67

% on validation. ConClaT outperforms previous SoTA ap-

proach BAN+CC by +5.81% on CS(4) while being compet-

itive on VQA 2.0 validation (+0.22%) and test-dev (-0.07%)

splits. We present this as our main result, which shows that

training with both the losses together leads to models that

are accurate (higher VQA score) and robust (higher Con-

sensus score).

We ablate the model architecture, and test ConClaT with
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Model Loss(es) Scaling N-Type Train Scheme CS(3) CS(4)
VQA

val

1 MMT LCE - - - 55.53 52.36 66.31

2 MMT LSSC & LCE ✓ R Alternate 56.53 53.42 66.62

3 MMT LSC & LCE ✓ RQ Alternate 56.88 53.77 66.97

4 MMT LSSC & LCE ✓ RI Alternate 56.91 53.79 66.93

5 MMT LSSC & LCE ✓ QI Alternate 57.00 53.90 66.95

6 MMT LSSC & LCE ✓ RQI Alternate 57.08 53.99 66.98

7 MMT LSC & LCE ✗ RQI Alternate 56.49 53.36 66.60

8 MMT LSSC & LCE Dynamic (Eq. 12) RQI Alternate 57.01 53.92 66.95

9 MMT LSSC & LCE ✓ RQI Joint 56.59 53.63 66.23

10 MMT LSSC →LCE [26] ✗ RQI Pretrain-Finetune 52.63 49.20 64.21

11 MMT LDMT [58] & LCE ✗ RQI Alternate 56.23 53.10 66.59

Table 1: Ablations Study. Scaling denotes whether scaling factor α (defined in Eq. 9 or Eq. 12) was used. N-Type defines

the type of negatives used from Image (I), Question (Q) and Random (R). All experiments are run with Back-translation data.

Model DA

Consensus Scores VQA Scores

CS(3) CS(4) val test-dev test-std

1 Pythia [24] - 45.94 39.49 65.78 68.43 -

2 BAN [27] - 47.45 39.87 66.04 69.64 -

3 Pythia + CC [44] - 50.92 44.30 66.03 68.88 -

4 BAN + CC [44] - 51.76 48.18 66.77 69.87 -

4 Pythia [44] BT 51.76 48.18 66.77 69.87 -

5 MMT - 55.10 51.82 66.46 - -

6 MMT VQG [44] 54.92 51.85 64.50 - -

7 MMT + ConClaT VQG [44] 55.33 52.31 64.74 - -

8 MMT BT 55.53 52.36 66.31 69.51 69.22

9 MMT + ConClaT BT 57.08 53.99 66.98 69.80 70.00

10 Pythia∗ [24] BT 51.20 47.87 63.14 - -

11 Pythia∗ [24] + ConClaT BT 56.59 53.63 63.31 - -

Table 2: ConClaT vs existing methods / baselines on VQA-

Rephrasings and VQA 2.0. DA denotes the source of aug-

mented data from either Back Translation (BT) or Visual

Question Generation (VQG). For test-dev and test-std, we

train our model on train+val set of VQA 2.0. Pythia∗ de-

notes an in-house implementation without the bells and

whistles used in original work.

an in-house implementation of Pythia [24] (Table 2, Rows

10, 11). We find that using ConClaT improves CS(4) by

1.42% and VQA accuracy by .17%,

ConClaT with VQG data. We also experiment by aug-

menting the data generated from VQG model of [44]. Sim-

ilar to Back-translation data, we find that using ConClaT

(Table 2, Row 7) leads to +0.46% and +0.24% gains on

CS(4) and VQA 2.0 validation over the baseline (Table 2,

Row 8). We attribute the relatively smaller gains from VQG

data to the lower quality and lesser quantity of paraphrases

generated by the VQG module. We discuss more about the

quality of generated data in Supplementary Section 5.

6.2. Ablations

Training schemes. We try three different ways of com-

bining LCE and LSSC losses. Training alternately performs

the best (Table 1, Row 6), whereas training jointly performs

worse by -0.36% and -0.75% on CS(4) and VQA valida-

tion accuracy respectively (Table 1, Row 9). Following the

approach taken in [26], we try pre-training the model with

LSSC and then finetuning it on LCE (Table 1, Row 10) and

we find this to perform the worst with -4.79% and -2.77%

in CS(4) and VQA validation accuracy respectively .

Contrastive vs Triplet Losses. Previous works have ex-

plored the use of triplet losses [58, 38] for learning robust

VQA models. Specifically, we experiment by replacing our

LSSC with Dynamic-margin Triplet loss (LDMT) proposed

in [58] for mitigating the tendency of VQA models to ig-

nore the image and rely solely on question for answering

(also known as knowledge-inertia) . It is also worth noting

that LDMT is an improved version of the vanilla triplet loss

used in [38]. We find that ConClaT outperforms this abla-

tion (Table 1, Row 11) by +0.89% and +0.39% CS(4) and

VQA validation accuracy respectively.

Scaling in LSSC. We see improvement on both VQA vali-

dation (+0.56%) and CS(4) (+0.35%) when using our pro-

posed variant Scaled Supervised Contrastive Loss (LSSC)

when compared to using unscaled LSC (Table 1, Rows 6,

7). Beyond the constant scaling factor defined in Eq. 9, we

also experimented with using a dynamic scaling factor de-

fined as follows:

αip =

{

s.Φ(zi.zp) if xp ∈ X+
para(xi),

Φ(zi.zp), otherwise
(12)

Where Φ(u,v) = 1 − u
⊤
v/‖u‖‖v‖ computes the co-

sine distance between u and v. We did not find significant

improvements using dynamic scaling (Table 1, Row 8).

Negative Sampling Strategy. Furthermore, we find that

our proposed negative sampling strategy (Algorithm 2) (Ta-

ble 1, Row 6) helps improve CS(4) (+0.57%) and VQA

1610



Figure 3: Qualitative Examples. Predictions of ConClaT vs baseline (Table 1, Rows 1 vs 6) on several image-question pairs

and their corresponding rephrased questions. Average Consensus Scores (k=1-4) are at the bottom (higher the better).

accuracy (+0.36%) over random-sampling (Table 1, Row

2). We find that adding either que-type negatives (Table 1,

Row 3) or img-type negatives(Table 1, Row 4) lead to gains

in CS(4) and VQA validation accuracy.

6.3. Qualitative Analysis

We qualitatively visualize few samples in Figure 3. We

compare ConClaT with our baseline (Table 1, Rows 6 vs

1). ConClaT improves the consistency in answers across

the rephrasings. (2,2) shows an interesting example where

ConClaT yields a singular answer for one question para-

phrase and produces the original plural answer for other

paraphrased question. In (2,3), baseline incorrectly answers

the original question but correctly answers some of the

rephrasings whereas ConClaT gets all the questions right.

(2,4) illustrates a failure case where both the approaches fail

to answer all the paraphrased questions correctly.

7. Conclusion

To summarize, we have three main contributions. First,

we propose a novel training paradigm (ConClaT) that opti-

mizes contrastive and cross-entropy losses to learn joint vi-

sion and language representations that are robust to question

paraphrases. Minimizing the contrastive loss encourages

representations to be robust to linguistic variations in ques-

tions while the cross-entropy loss preserves the discrimina-

tive power of the representations for answer classification.

Second, we introduce Scaled Supervised Contrastive Loss

(LSSC), that assigns higher weight to positive samples as-

sociated with question paraphrases over samples that just

have the same answer boosting the performance further. Fi-

nally, we propose a negative sampling strategy to curate

loss-specific batches which improves performance over ran-

dom sampling strategy. Compared to previous approaches,

VQA models trained with ConClaT achieve higher consis-

tency scores on the VQA-Rephrasings dataset as well as

higher VQA accuracy on the VQA 2.0 dataset across a va-

riety of data augmentation strategies. We also qualitatively

demonstrate that our approach yields correct and consistent

answers for VQA questions and their rephrasings.
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