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Abstract—Cardiac function and vascular function are closely related to the flow of blood within. The flow veloci-
ties in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved,
especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced
by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clini-
cal echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/
or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-
frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clini-
cal perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in
human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow
parameters for quantifying cardiac and vascular function. (E-mail: H.Vos@ErasmusMC.nl) © 2020 The
Author(s). Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This
is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Blood flow in large arteries and the left ventricle is

known to be an important determinant of cardiovascular

function. Both the magnitude and spatiotemporal pat-

terns of flow play a significant role in the diagnosis of

vascular abnormalities such as stenosis and aneurysm

formation. Moreover, shear stress on the vascular wall

appears to have significant effects on endothelial cells,

and flow-disturbing or -perturbing geometry such as

bifurcations, stenoses and stents could all induce modi-

fied shear stress or flow reversion caused by vortices

(Ku et al. 1985; Langille and O’Donnell 1986;

Malek et al. 1999). Superficial vessels such as the

carotids and jugular veins have been extensively studied

with Doppler-based echography because of the easy

access and good visibility on conventional echography.

However, detailed imaging of flow patterns in cardiac

cavities as well as in deeper vessels such as the abdomi-

nal aorta, the renal artery or the coronaries is more diffi-

cult. We are considering deep vessels located 3�10 cm

from the skin that can be imaged with external ultra-

sound probes, albeit with disturbing factors such as lim-

ited acoustic windows and bowel gas. In such vessels,

although local magnitudes of flow velocity can be mea-

sured over time with echographic pulsed wave Doppler,

spatially complex patterns cannot be resolved with cur-

rent clinical techniques because of the limited signal lev-

els of the blood scattering.

In more recent years, the use of ultrasound contrast

agents (UCAs) and dedicated flow imaging technology

has been proposed as a method for quantifying and
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visualizing flow dynamics in deep vessels and cardiac

applications. This review presents the state of the art on

such flow imaging applied to high-frame-rate (HFR)

recordings of UCAs in cardiac chambers and deep ves-

sels. We discuss herein the technology, technical realiza-

tion, hardware systems and imaging considerations

specific to this new technology. We also discuss the ben-

efits of HFR imaging of contrast agents to the clinical

needs and the future perspective of full 3-D flow quanti-

fication and visualization.

BLOOD FLOW PATTERNS

Cardiac flow

In cardiac ventricles, flow patterns play a role in the

assessment of valvular (dys)function and the efficiency

of contraction. In a healthy heart, the kinetic energy of

the left ventricular (LV) inflow is conserved by a large

vortex such that upon ejection, blood is more easily

expelled into the aortic root (Kilner et al. 2000;

Pedrizzetti et al. 2014) (Fig. 1). In a diseased heart, these

flow dynamics may be disturbed in a variety of ways,

including reduced vortex strength, reduction in kinetic

energy or even a complete change of rotational direction

(Hong et al. 2008; Abe et al. 2013; Agati et al. 2014).

Moreover, valve leakage can result in high-energy regur-

gitation jets that disturb vortex formation

(Morisawa et al. 2018).

Echocardiography is an important clinical modality

for the assessment of different aspects of cardiac func-

tion, including the effects of a broad range of

cardiovascular diseases. In current clinical routine, LV

systolic and diastolic function is assessed by myocardial

wall motion and deformation and by measuring the

mitral inflow, aortic valve outflow and valvular leakage,

in an apical view. These flows are quantified with spec-

tral, pulsed wave and color Doppler echography, which

are techniques that can only provide the flow velocity

along the axial direction and in a limited field of view.

As such, these conventional Doppler techniques fit, in

apical view, the dominant direction of these conven-

tional flow parameters. However, to represent more com-

plex ventricular blood flows such as listed above, the

unidirectional sensitivity presents limited information

with the possibility of misinterpretation and/or insuffi-

cient sensitivity for detecting abnormal flow.

A potentially complementary approach is to analyze

the full intraventricular blood flow for the assessment of

LV function. Such flow might be parameterized by

assessment of vortex parameters, kinetic energy, pres-

sure gradients and/or principal force axes (Pedriz-

zetti 2019). However, there is no clear understanding of

which parameter should be measured in cardiac diseases

and what the incremental value of, for example, vortex

and energy evaluation is over other echocardiographic

indices and biomarkers. Some studies suggest that intra-

ventricular vortex evaluation could determine the pres-

ence of an abnormal cardiac function (Abe et al. 2013;

Pedrizzetti et al. 2014; Arvidsson et al. 2016). In dilated

cardiomyopathy, where the LV geometry is altered and

the intraventricular vortex is located at the center of the

left ventricle during diastole, is wider and rounder and

persists longer than in healthy patients

(Eriksson et al. 2012). In patients with acute myocardial

infarction, measurements of kinetic energy of the flow

might help in differentiation of left ventricles with differ-

ent infarct extension (Agati et al. 2014). It is also known

that valvular heart disease changes the vortex configura-

tion and increases dissipative energy loss. For example,

diastolic energy loss increases in aortic regurgitation

proportionally to its severity, and the energy loss index

provides independent and prognostic information addi-

tional to that derived from conventional measures of aor-

tic stenosis severity (Pedrizzetti et al. 2010;

Stugaard et al. 2015). Although the intraventricular vor-

tex and the energetic efficiency seem to affect the

patient’s outcome, no clear views on the underlying

mechanisms have yet been presented.

The above calls for accurate imaging and quantifi-

cation of blood flow, such that several characteristic

parameters can be determined from the velocity fields.

Most suitable candidates appear to be vortex position

(the location inside the chamber of the center of the

main vortex); vortex morphology (width, height, sphe-

ricity); vortex strength; vortex direction (clockwise or

Fig. 1. Left ventricular flow patterns as obtained by echocar-
diographic recordings of intraventricular swirling flow in
healthy individuals. Left: Streamlines during late diastolic fill-
ing. The vortex is visible behind the anterior mitral leaflet.
Right: 3-D streamlines reconstructed from multiplane acquisi-
tion at the onset of systole. The streamlines spiral out from the
vortex and are directed toward the outflow tract. Reprinted

with permission from Pedrizzetti et al. (2014).
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anti-clockwise in a particular view); kinetic energy (sys-

tem energy stored in moving blood); kinetic energy dis-

sipation (kinetic energy lost to heat); and local pressure

gradients. However, the currently insufficient frame rates

of clinical machines cause the absolute velocities to be

underestimated. How the sensitivity of these flow param-

eters is affected by this velocity underestimation during

filling and ejection has yet to be evaluated. Important

information relating to clinical outcome may be hindered

by the inaccurate velocity estimation, thus reducing sen-

sitivity to disease initiation or progress.

Vascular flow

Another important area in which flow visualization

using ultrasound is a trusted tool is within the field of vascu-

lar surgery. The technique is heavily applied throughout the

pre-, peri- and post-operative stages, and treatment deci-

sions are in part based on the outcome of ultrasound meas-

urements; however, the limitations of cardiac ultrasound

also apply to the vascular setting, hampering a detailed

analysis. For the flow in the vascular system, the relation

between hemodynamic forces and (patho)physiologic

remodeling has been known for more than a century

(Langille and O’Donnell 1986). Pathophysiology is attrib-

uted mainly to the development of aneurysms and athero-

sclerosis (Zarins et al. 1983). Atherosclerosis is associated

with multiple systemic risk factors, but it is geometrically

predisposed, that is, more likely to occur in regions with

complex geometries such as bifurcations

(Malek et al. 1999). Blood flow creates a frictional force

(because of its viscous properties) on the vessel wall,

known as wall shear stress (WSS). Low and oscillatory val-

ues of WSS are atherogenic and thrombogenic, while high

values are atheroprotective. Mapping between atheroscle-

rotic lesions and areas of low and oscillatory WSS have

confirmed this link throughout the vascular tree, including

the abdominal aorta (Ku et al. 1985). Identifying and moni-

toring these areas in patients could help to optimize local-

ized-treatment planning. Furthermore, monitoring WSS

post-intervention could indicate areas vulnerable to resteno-

sis. While pioneering lab work has been done using inva-

sive measurement methods, a reliable clinically applicable

method (at low cost per scan) for obtaining WSS values

before or after treatment is required. Measurement of WSS

in vivo is vulnerable to errors, as sampling of low blood

flow velocities near the walls is a challenge (Poelma 2017).

Therefore, as an intermediate step, surrogate measures such

as blood residence time, recirculation and platelet activation

potential could serve as indicators for lesion progression or

stent failure. In addition, blood flow quantification could

play a substantial role in predicting the development of

thrombus formation in abdominal aortic aneurysms.

Thrombus formation has recently been introduced as a pre-

dictor for increased risk of aneurysm rupture, because

oxygenated arterial blood cannot reach the inner layer of

the vessel wall, in turn creating vessel wall hypoxia and fur-

ther weakening of the vessel wall. The formation of throm-

bus has been linked to a combination of vessel geometry

and blood flow perturbations (Hathcock 2006). Therefore,

quantifying blood flow in patients at an early stage is of

high value while it can provide risk assessment for develop-

ing thrombus formation and in turn increased rupture risk at

an early stage. This requires blood flow visualization (pref-

erably in three dimensions) with a high spatial and temporal

resolution.

NATIVE BLOOD FLOW IMAGING

Currently, non-contrast ultrasound techniques are

being developed to depict the flow structure in the lateral

direction in the left ventricle (Garcia et al. 2018) and in

larger, superficial vessels (Jensen et al. 2016a, 2016b). For

clarity, in the course of this review, we refer to any tech-

nique that supplies two- or three-component velocities (2-C

or 3-C) over a plane (2-D) or volume (3-D) as a vector flow

imaging technique; these are differentiated from standard

ultrasound Doppler approaches in which only the axial

component (1-C) is measured, even if this component is

measured over a whole 2-D plane (Bercoff et al. 2011) or

3-D volume (Provost et al. 2014; Holbek et al. 2018).

For vector flow imaging, currently, there is one non-

contrast technique using magnetic resonance imaging

(MRI) based on phase contrast MRI (PC-MRI) and four

primary non-contrast echographic techniques: vector

Doppler, transverse oscillations, vector flow mapping

(VFM) and blood speckle tracking (BST).

MRI-based flow measurements are the reference

standard for assessing intracardiac and vascular flow pat-

terns and velocities without contrast medium. It can pro-

vide detailed flow fields over time in both two

dimensions (usually referred to as PC-MRI) and three

dimensions (called 4-D-flow MRI), and the blood flow

velocities can be measured in all three spatial dimen-

sions. However, its temporal resolution is usually limited

(»20�30 phases per heartbeat) and patterns are aver-

aged over many (100+) cardiac cycles.

Vector Doppler, in its initial form

(Kripfgans et al. 2006; Tortoli et al. 2015;

Jensen et al. 2016a), uses two steered ultrasound beams to

measure the blood flow velocity components along these

two directions. The vector field can then be triangulated

using the different angled Doppler estimates

(Tortoli et al. 2015; Au et al. 2019; Saris et al. 2019). Vec-

tor Doppler has also been extended to use an arbitrary num-

ber of transmit/receive angles, where a least-squares fitting

of the computed directional Doppler velocities is used to

generate the 2-D (Yiu and Yu 2016) or 3-D

(Correia et al. 2016) velocity fields. However, vector
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Doppler is limited in depth because of loss of lateral veloc-

ity accuracy as the depth of interest increases relative to the

limited aperture size, reducing the angle between different

directional Doppler acquisitions. Human blood flow imag-

ing studies have been performed in the femoral artery

(Au et al. 2019) and the carotid artery (in two dimensions

[Tortoli et al. 2015; Saris et al. 2019; Au et al. 2020] and

three dimensions [Correia et al. 2016]). Vector Doppler has

also been used in combination with ultrasound contrast

agent microbubbles to image urinary flow dynamics

(Ishii et al. 2020).

A similar technique is called transverse oscillations,

which transmits a single beam and then generates a

transversely oscillating field by applying two separated

apodization functions in receive (Jensen and Munk

1998). Both the axial and lateral velocity components

can then be extracted based on axial and lateral phase

changes. In principle, the technique requires a relatively

large transducer aperture to allow sufficient distance

between the separate virtual apertures. Transverse oscil-

lations has been reported to achieve accurate results in

superficial vessels and has been used to study flow in

varicose veins (Bechsgaard et al. 2018), the ascending

aorta (peri-operatively) (Hansen et al. 2013, 2020), the

carotid artery (in two dimensions [Jensen et al. 2018]

and three dimensions [Holbek et al. 2016, 2017]) and the

femoral artery (Hansen et al. 2019). The smaller foot-

print of phased array transthoracic probes might hamper

its use in echocardiography, although phased array

implementations have been developed but use focused

transmit beams, reducing the achievable frame rate

(Pihl et al. 2012; Holbek et al. 2018).

Vector flow mapping (VFM) in echocardiography

uses standard color Doppler acquisitions and (optionally)

LV wall motion segmentations, and assumes various conti-

nuity assumptions, such as fluid incompressibility and

mass conservation (Assi et al. 2017) to calculate the lateral

velocity components in the left ventricle (Ohtsuki and

Tanaka 2006; Garcia et al. 2010; Uejima et al. 2010). VFM

has the advantage that data can be acquired using standard

clinical ultrasound scanners and post-processed offline.

However, an important limitation is the assumption of min-

imal out-of-plane flow, which only holds for certain planes

(three-chamber view [Garcia et al. 2010]) in non-disease

situations. Furthermore, careful attention must be paid

when choosing wall filter and velocity cutoff settings of the

color Doppler data to prevent erroneous VFM results.

VFM is sensitive not only to out-of-plane flow but also to

boundary conditions (wall motion and blood�wall interac-

tion) (Assi et al. 2017).

Blood speckle tracking (BST) estimates 2-D or 3-D

blood velocities by tracking blood speckle patterns over

time, generally by block matching (Jensen et al. 2016a;

Poelma 2017). Blood speckle consists of the weak

interference pattern caused by the summation of the scat-

tering of the red blood cells, acting as sub-resolution

scatterers (Wagner et al. 1983). The displacement of the

speckle pattern is assumed to reflect the underlying

motion of the blood cells (Swillens et al. 2010). BST has

been used to image cardiac blood flow patterns in neo-

nates (Fadnes et al. 2014), pediatric patients

(Fadnes et al. 2017) and even adults

(Takahashi et al. 2014), and to image flow patterns in the

great saphenous vein (Lee et al. 2018). BST has also

been performed in three dimensions in the left ventricles

of volunteers using a matrix transducer

(Wigen et al. 2018). However, BST is challenging

because the use of HFR imaging results in poor signal-

to-noise ratio (SNR) (Ekroll et al. 2018) and increased

clutter levels (high-intensity signal in the blood arising

from surrounding tissues) (Fadnes et al. 2015). The

lower SNR is a result of the spreading of the acoustic

energy over the wider field of view. BST has been imple-

mented commercially as “blood speckle imaging” in the

GE Vivid E95 system, but it is recommended that depth

be limited to <8 cm (Nyrnes et al. 2020), reducing its

value for adult cardiac imaging.

The ability to perform vector flow imaging has been

accompanied by new methods of visualization, such as

vector projectile imaging (Yiu et al. 2014) and flow path

(Yiu and Yu 2016; Wigen et al. 2018) visualization,

which aid with interpretation of the complex spatiotem-

poral flow measurements.

ULTRASOUND CONTRAST-ENHANCED BLOOD

FLOW IMAGING

Ultrasound contrast agents as tracers

To overcome clutter and improve visualization of the

blood pool, UCAs have been developed. These agents con-

sist of micrometer-sized coated bubbles that are injected

intravenously. The gas inside has much larger compress-

ibility than blood and tissue, and the microbubbles respond

to ultrasound with resonant volumetric oscillations, thus

strongly scattering the ultrasound as a secondary source.

As microbubbles respond non-linearly to the ultrasound

field, contrast detection sequences have been developed to

further separate the microbubble signals from tissue. In this

way, ultrasound systems can enhance the contrast signals

and provide a clear opacification of the LV cavity or vascu-

lar lumen (Whittingham 2005; Averkiou et al. 2020). At

lower contrast agent concentrations, the contiguously

enhanced area of contrast signal breaks up into a rough pat-

tern or even isolated scatterers. These intensity patterns

flow with the blood, thus providing a potential mechanism

to qualify and quantify blood velocity vectors in the left

ventricle (Fig. 1) and vessels. This idea has led to auto-

mated tracking of these patterns through application of
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echo particle image velocimetry (echoPIV, also called

echo-PIV, e-PIV or ultrasound image velocimetry) over the

past 15 y (Kim et al. 2004; Zheng et al. 2006;

Sengupta et al. 2007; Hong et al. 2008; Liu et al. 2008;

Westerdale et al. 2011; Poelma et al. 2011;

Zhang et al. 2011; Piro et al. 2012; Prinz et al. 2012;

Poelma and Fraser 2013).

Echo-particle image velocimetry

Echo particle image velocimetry or speckle tracking

estimates the local flow motion via optical flow

(Qu�enot et al. 1998; Ruhnau et al. 2005) or block matching

(Trahey et al. 1987). The latter is most commonly used as

it performs better for larger displacements. The basic prin-

ciple of echoPIV tracking is illustrated in Figure 2. Two

subsequent images are divided into small interrogation win-

dows (sub-images) and a similarity measure is computed

between subsequent windows to reveal the average dis-

placement in each window. The similarity measure used

differs from study to study, but 2-D cross-correlation is

most often performed because of its computationally effi-

cient implementation in the frequency domain (sum of

square differences is another popular measure). Although

the average displacement (in pixels) between two windows

can be determined by locating the peak in the correlation

map, subpixel displacement estimation is normally

achieved by a peak fitting algorithm based on a parabolic,

Gaussian or centroid profile (Raffel et al. 2007). This is

essentially the PIV algorithm in its most basic form, which

considers only a linear translation and no rotation. The

flow directions can be recovered by this first-order estima-

tion. To refine the tracking accuracy and deal with higher-

order deformation, several advanced techniques developed

in Optical PIV (Scarano 2002) have been adapted to ultra-

sound, including multigrid and/or multipass interrogation,

window deformation and ensemble correlation

(Liu et al. 2008; Zhang et al. 2011; Leow et al. 2015;

Leow and Tang 2018). Other techniques that involve flow-

field regularization through Navier�Stokes regularization

(Gao et al. 2015) or mass conservation assumption

(Zhou et al. 2019a) have also been reported to enhance the

robustness of speckle tracking.

Conventional echoPIV

Originally, echoPIV was applied to ultrasound

images acquired using line scanning of focused

Fig. 2. Principle underlying conventional particle image velocimetry: Two consecutive ultrasound images are divided
into several interrogation windows. For each window, cross-correlation analysis is performed to compute a local velocity
displacement. The location of the peak within the correlation map is identified and displayed on the velocity map.

Reprinted with permission from Leow et al. (2015).
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transmissions. This limited the maximum frame rates

attainable and hence the maximum measurable velocities

(as discussed in the next section). There are several

review articles dealing with echoPIV using current clini-

cally achievable frame rates of up to 100 frames/s

(Sengupta et al. 2012; Rodriguez Mu~noz et al. 2013;

Pedrizzetti et al. 2014; Poelma 2017; Mele et al. 2019).

There currently are two commercial echoPIV pack-

ages for analyzing the images of LV flow: the Omega

Flow (Siemens, Mountain View, CA, USA) and Hyper-

Flow software (Advanced Medical Imaging Develop-

ment, Sulmona, Italy) (Abe et al. 2013;

Goliasch et al. 2013; Agati et al. 2014; Kutty et al. 2014;

Pedrizzetti et al. 2014; Mele et al. 2019). They have

been validated in several studies (Kheradvar et al. 2010;

Gao et al. 2012; Prinz et al. 2012). In these validation

studies, one of the main results was the underestimation

of high velocity values, especially >40 cm/s (cf. Fig. 3),

present during the filling and ejection periods of the car-

diac cycle. The most accurate results were obtained with

a compromise between frame rate and image quality,

with a recommended frame rate �60 frames per cardiac

cycle. Moreover, the imaging parameters should be set

such that the contrast microbubbles appear homo-

geneously distributed within the region of interest.

HFR ECHOPIV

Frame rate requirements

EchoPIV poses certain conditions on the flow and

frame rate for an accurate outcome. The technique relies

on relatively small displacements of the scatterers between

two consecutive frames and on a preserved speckle pattern

(e.g., Adrian and Westerweel [2011, Ch. 8]). Thus, large

displacements and/or high gradients in the flow will be

more challenging for a system with limited frame rate, as

the scatterer distribution can change significantly between

two subsequent frames, and consequently, the speckle pat-

tern will be significantly different.

The correlation between the patterns in the subse-

quent frames is also lost if particle displacement is too

large between frames so that the algorithm cannot track

the correct velocity magnitudes (Kheradvar et al. 2010;

Gao et al. 2012; Prinz et al. 2012). Figure 3 illustrates

this effect; higher velocities (“cutoff velocity” in

Fig. 3a) can be tracked with higher frame rates. Veloci-

ties above this cutoff are tracked with severe underesti-

mation. The underestimation can easily occur when

attempting to quantify the transmitral inflow jet (having

velocities of about 1 m/s) with frame rates of around

100 frames/s, which is the current state of the art in clini-

cal applications. Moreover, various diseases (aortic and

mitral regurgitations, stenotic lesions in the arterial sys-

tem) lead to higher flow velocities, which are thus even

more difficult to detect.

The beam-sweeping process of a conventional line-

by-line scanning ultrasound system and the sweeping

direction have been reported to introduce significant

errors into flow velocity estimation using echoPIV

(Zhou et al. 2013). This is caused by speckle elongation

for lateral flow that travels with the beam scan direction

and speckle shortening for lateral flow in the opposite

direction. Thus, velocity is overestimated when the

beam sweeps in the same direction as the flow direction,

whereas underestimation occurs in the opposite case. A

correction method for steady flow has been proposed

(Zhou et al. 2013); however, this cannot be applied to a

physiologic flow that is pulsatile and multidirectional.

Higher flow velocities can be detected by increasing

the frame rate, up to about 5000 frames/s in cardiac and

8000 frames/s in vascular, which is the theoretical frame

rate limit based on the round-trip time of the ultrasound

echoes in echocardiography (depth limit of about 15 cm)

or vascular echography (depth limit of about 10 cm).

However, such high frame rates can only be attained

with a single-shot single-image approach, as opposed to

the conventional line-by-line scanning. Single-shot sin-

gle-image systems require specialized detection schemes

with a massive amount of data acquisition and process-

ing.

Fig. 3. Maximal velocities trackable by echo particle image
velocimetry (echoPIV) for different frame rates. (a) Blue curve
indicates transmitral jet velocity acquired with pulse-wave
Doppler. EchoPIV-derived velocities (green curves) are more
accurate for higher frame rates, as seen by better agreement
between the blue and green curves from left to right. (b) Corre-
lation between maximum trackable velocity (using echoPIV)
and acquisition frame rate. Adapted with permission from

Prinz et al. (2012).
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HFR systems

Advances in micro-electronics have allowed for

introduction of several experimental and commercial

systems that capture all data from the ultrasound probe

and process those data with massive parallel computing

power either online or offline (Boni et al. 2018) to form

one full image per shot. With such systems, the frame

rates can reach values close to the theoretical limit at suf-

ficient spatial resolution. These systems typically use

unfocused wave transmission and parallel receiving to

form one single image from the received echoes. The

surge of interest in HFR contrast-enhanced ultrasound

relies on the use of open platforms that support arbitrary

sequencing of transmit and receive on each channel.

Several custom platforms have been developed

(Boni et al. 2018), as have several commercial systems

(V1 and Vantage by Verasonics Inc., Kirkland, WA,

USA; Prodigy and Prospect T1 by S-Sharp Corp., New

Taipei City, Taiwan; SonixRP and SonixTOUCH with

external SonixDAQ by Ultrasonix/BK Medical, Rich-

mond, BC, Canada). Albeit more expensive than regular

mass-produced clinical systems, the programmability

and availability of these systems have accelerated the

studies on and with HFR echography. A key technical

challenge in the clinical roll-out of HFR ultrasound

imaging is the sheer volume of sampled data being

received from the transducer that needs temporary stor-

age and further real-time processing of data captured in

a few seconds. The real-time processing would respect

the goal of producing continuous real-time vector flow

imaging to improve workflow in the clinical routine.

Open ultrasound platforms suitable for HFR imag-

ing can be grouped into two types. The software-based

open platforms (Boni et al. 2018) implement fast image

reconstruction through multipurpose computer process-

ing units, that is, central processing unit (CPU) or

graphics processing unit (GPU). When transmitting

unfocused plane/diverging waves, the acceleration with

a GPU enables continuous real-time beamforming

(Boni et al. 2018). The hardware-based open platforms

(Boni et al. 2018) use specialized hardware for data proc-

essing. For example, by exploiting the computing capa-

bility of onboard field programmable gate array and

digital signal processor devices that are programmed by

firmware, HFR ultrasound imaging with the vector flow

overlay could be performed in real time without any

acquisition interruption (Ricci et al. 2017;

Boni et al. 2018).

Vascular HFR echoPIV

In the current workflow for vascular pathology,

UCAs are used regularly by bolus injection, mostly post-

interventional to check for leaks around the stent graft

(endoleaks). It has been reported that the sensitivity and

specificity for detecting endoleaks with contrast-

enhanced echography outperform those of CT angiogra-

phy-based analysis (Lowe et al. 2017). Other applica-

tions include imaging of the vasa vasorum for assessing

plaque vulnerability and diagnosis of intestinal ischemia.

Also, peri-operative usage is starting to emerge

(Mehta et al. 2017). As in cardiac applications, auto-

mated tracking of the contrast pattern is emerging. These

include imaging of the carotid bifurcation in humans

(Zhang et al. 2011) and the abdominal aorta in animals

(Leow et al. 2015) and assessment of WSS in vitro

(Leow and Tang 2018) and in human volunteers

(Gurung et al. 2017). Another recent study reported the

feasibility, in human volunteers, of acquiring full flow

fields in the abdominal aorta (Fig. 4)

(Engelhard et al. 2018). As Gurung et al. (2017) reported

for the carotids, this study also found good agreement of

echoPIV with phase contrast MRI measurements for the

temporal center velocity profiles and the radial velocity

profiles. Contrast agent-specific settings have been stud-

ied in the abdominal aorta as well

(Voorneveld et al. 2018a).

Fig. 4. Streamline representation of blood flow velocities dur-
ing early diastole of the abdominal aorta of a volunteer. Left:
High-frame-rate contrast-enhanced echography. Right: Phase
contrast magnetic resonance imaging. Similar flow patterns
can be observed, including a slow (counterclockwise) recircu-
lation zone near the origin of the left common iliac artery.
Dashed lines indicate estimated delineation of the vessel wall.
echoPIV = echo particle image velocimetry; Reprinted with

permission from Engelhard et al. (2018).
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Note that the frame rate using line scanning could be

increased by reducing the field of view (depth and width)

as well as the line density (within the limits of the clinical

ultrasound machine). By limiting the field of view, some

studies have been able to accurately measure high flow

velocities but noted that careful optimization was required

to obtain accurate near-wall velocities for WSS calculation

(Zhang et al. 2011; Poelma et al. 2012; Walker et al. 2014).

However, reducing the field of view is not a viable option

for cardiac and deep vessel imaging.

Left-ventricular HFR echoPIV

Toulemonde et al. (2018a) were the first to report that

HFR contrast-enhanced echocardiography could produce

images of superior quality to conventional line-scanning

contrast-enhanced echocardiography, in the left ventricle of

a sheep. Toulemonde et al. (2018b) obtained similar results

in human volunteers but also found that HFR echoPIV was

feasible with the data. The accuracy of HFR echoPIV for

LV applications has been studied in vitro using a dynamic

LV phantom, where it was found that the high velocities

expected in the transmitral jet (»1 m/s) could be measured

accurately (Voorneveld et al. 2018b). Voorneveld

et al. (2019) used HFR echoPIV in a patient, where the

measured transmitral jet velocities corresponded to pulsed

wave-Doppler measurements used as reference (Fig. 5).

Validation techniques

Validation of echoPIV is a critical step for its

clinical translation and acceptance, although this is

Fig. 5. High-frame-rate echoPIV in the left ventricle. (a) Mean echoPIV velocity (red) overlaid on pulsed-wave Doppler
spectrogram obtained in the mitral valve region (see PW in b). (b�d) Velocity map visualization during diastolic filling
(temporal locations marked in a), revealing the high-velocity transmitral jet entering the ventricle (b) and central clock-
wise vortex (*) that starts basally and migrates apically (c, d). MV =mitral valve, LVOT = left ventricular outflow tract.
A female patient with dilated cardiomyopathy and dual-chamber pacemaker defibrillator (DDD-ICD); frame

rate = 1225 Hz. Reprinted with permission from Voorneveld et al. (2019).
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not a straightforward task given that reference veloc-

imetry techniques might have their own limitations.

The most convenient method for validation is simula-

tion studies, as the true velocity distributions are

known exactly and precise alignment of the measured

and expected velocity values makes bias and variance

estimation straightforward (Leow and Tang 2018).

However, the transferability of findings to clinical

conditions is relatively weak for simulation studies,

which often do not model many of the complex physi-

cal phenomena present in biological systems.

Alternatively, in vitro models have been used to

perform validation studies, such as simple laminar (Pois-

euille) flow phantoms (Kim et al. 2004;

Voorneveld et al. 2016), or pulsatile (Womersley) flow

phantoms (Leow et al. 2015), where analytical solutions

of the flow profile can be calculated using a measured

flow rate. More representative flow dynamics have been

produced using anatomically realistic models, such as

carotid bifurcation phantoms (Zhang et al. 2011;

Leow and Tang 2018) and left ventricle phantoms

(Kheradvar et al. 2010; Gao et al. 2012;

Voorneveld et al. 2018b). However, the use of more real-

istic models comes at the cost of more complicated

methods of acquiring the true velocity data (such as opti-

cal PIV and numerical modeling) and less certainty in

the alignment and/or accuracy of the ground truth values.

Obviously, clinical applicability is still not perfect where

physiologic conditions, such as temperature, pressure,

acoustic attenuation and aberrations, are not often taken

into account.

In vivo validation of vector flow imaging is not triv-

ial as a perfect ground truth reference is not available.

PC-MRI is capable of measuring all three components of

blood velocity over a large region of interest in either a

2-D slice or 3-D volume, but requires hundreds of heart-

beats to produce a single acquisition, thus averaging out

cycle-to-cycle variations that may be present in echoPIV

recordings. In addition, PC-MRI has limited temporal

resolution (<30 phases per heartbeat), which also makes

comparison with HFR echoPIV difficult. Nevertheless,

in vivo comparison has been performed between HFR

echoPIV and PC-MRI in the abdominal aortas of healthy

volunteers (Engelhard et al. 2018). The disadvantage of

using PC-MRI in this case was that the echoPIV scans

and MRI scans were performed on different days and so

there is a chance that blood flow differed between

acquisitions, confounding analysis. However, the results

indicated good agreement on the major flow aspects

between these two techniques (cf. Fig. 4). An alternative

method is to use pulsed wave Doppler echography in

key locations and compare the results with the echoPIV-

derived values in those same locations (Voorneveld

et al. 2019). This has the advantage that data are acquired

in close succession and, thus, under similar physiologic

conditions, but it limits the scope of comparison to sev-

eral points of interest only and generally to a single

direction. Another alternative may be patient-specific

computational modeling of the flow, if accurate bound-

ary conditions can be acquired, but this technique

requires validation first.

Contrast-specific pulse sequences

Contrast/speckle detection schemes may differ

depending on how the ultrasound images were acquired.

Studies of HFR echoPIV have been performed in vivo

using both linear fundamental (B-mode) imaging

(Zhang et al. 2011; Engelhard et al. 2018) and contrast-

specific imaging (Leow et al. 2015;

Toulemonde et al. 2018a; Voorneveld et al. 2018a)

approaches. The speckle generated from the microbub-

bles can be readily distinguished from the tissue signal

when contrast-specific imaging is used, whereas addi-

tional clutter filtering is needed to extract the contrast/

blood signal from surrounding tissue in B-mode imag-

ing. On the other hand, a higher temporal resolution can

be achieved by B-mode imaging as the number of trans-

mitted pulses per B-mode image is usually two to three

times less than that in contrast-specific imaging; this is

caused by the contrast-specific sequencing methods,

which generally take two or three pulses to suppress lin-

ear tissue response while maintaining the non-linear con-

trast signal.

Microbubble concentration

Next to the imaging frame rate and details in image

reconstruction, microbubble concentration is another

parameter that could potentially affect the velocity esti-

mation of HFR echoPIV. Too low a concentration could

result in blind areas not covered by the microbubbles,

while too high a concentration may cause multiple scat-

tering and non-linear artifacts (Stride and Saffari 2005;

Tang and Eckersley 2006) and acoustic shadowing. It is

difficult to formulate straightforward guidelines as the

concentration of microbubbles changes as a function of

time, and the response of microbubbles changes with

ambient pressure. For conventional line scanning (low

frame rate) echoPIV, the optimal concentration for in

vitro experiments was found to be in the range of 103

microbubbles/mL, whereas the concentration for in vivo

experiments was in the range of 105 microbubbles/mL

(Kim et al. 2004; Niu et al. 2011). However, for HFR

echoPIV, there is no consensus on the optimal microbub-

ble concentration to use, and there is limited information

on the effect of microbubble concentration on the track-

ing results. Leow et al. (2015) used a 0.1-mL bolus injec-

tion of SonoVue (Bracco Imaging, Geneva, Switzerland)

in a rabbit model for aortic imaging, which equates to
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about 105 microbubbles/mL—assuming a 260-mL blood

volume and a bolus of 100�500 million microbubbles/

mL. However, Engelhard et al. (2018) used a 0.25-mL

bolus injection of SonoVue in human volunteers for

abdominal aortic imaging (roughly 104 microbubbles/

mL, assuming a 4.7-L blood volume).

Toulemonde et al. (2018b) used a continuous infusion of

SonoVue at 1.2 mL/min (»105 microbubbles/mL¢min)

in human volunteers for cardiac imaging.

Voorneveld et al. (2018a) tested four bolus volumes

(0.25, 0.5, 0.75 and 1.5 mL) of SonoVue for abdominal

aortic imaging in healthy human volunteers and used the

average tracking correlation value as a measure for opti-

mization. The effect of bolus volume on the correlation

values was relatively minor, but it was noted that for fast

flows during systole, lower correlations were observed

for higher bolus volumes, whereas for slow flows during

diastole, higher bolus volumes resulted in higher correla-

tion values. It was noted that lower bolus volumes would

result in zones without any microbubbles during diastole

because of microbubble destruction during the slow flow

periods, when less replenishment from upstream occurs

than during systole.

The administration of UCA can be done either by

bolus injection or by continuous intravenous infusion at

low doses, where bolus injection is practically simpler to

realize but the UCA concentration must be monitored to

ensure that data are acquired at the desired concentration.

Continuous infusion requires specialized contrast pumps

(e.g., VueJect BR-Inf 100, Bracco Imaging), but has the

advantage that optimal UCA concentration, when known,

can be held constant over longer scan durations.

The aforementioned values might serve as a starting

point for first choice of concentration when new applica-

tions of HFR echoPIV are explored; however, it is

strongly recommended that a pilot study be executed first

to establish the range of UCA concentration for good

performance of echoPIV processing.

Acoustic pressure

For echoPIV analysis, acoustic pressure as parameter-

ized in the mechanical index (MI) needs to be controlled to

maintain microbubble concentration over time. Microbub-

ble destruction can have a strong impact on echoPIV mea-

surement as both the signal amplitude decreases and the

speckle changes. In HFR imaging, the microbubbles are

irradiated more often than in the conventional line scanning

method. The combined effect calls for a relatively low MI.

Because of regular tissue attenuation and the broader

beams used in HFR echography, the acoustic pressure near

the probe—typically the apex in an apical cardiac view—is

much higher than deeper in the tissue. Thus, the microbub-

bles close to the probe can be more significantly disrupted

at an acoustic MI >0.1 (Toulemonde et al. 2017). In

abdominal imaging, it has been reported that significant

microbubble destruction can even occur with MIs >0.06

(Engelhard et al. 2018; Voorneveld et al. 2018a). These are

relatively low MI values, at which level system noise is a

dominant factor for loss of contrast, thus reducing image

quality and sensitivity to the UCA signal

(Voorneveld et al. 2018a). As this noise is highly uncorre-

lated it can be somewhat suppressed through singular value

decomposition filtering (Voorneveld et al. 2018a).

Improving sensitivity and resolution

The sensitivity and resolution of HFR imaging can be

increased by combining multiple plane waves or diverging

waves transmitted at several angles. The approach that

combines multiple low-resolution images to form a high-

resolution image is known as coherent compounding and

was been first found by Montaldo et al. (2009) to improve

image quality at the cost of lower frame rate. Thus, a trade-

off between the number of compounding/averaging frames

and achievable frame rate should be carefully considered.

Similarly, for flow tracking using HFR echoPIV, the image

quality is important as the correlation analysis is improved

by the better SNR and resolution of the flow speckle after

compounding. However, large motion can make coherent

compounding less effective as such compounding techni-

ques assume stationary targets and large displacements will

generate decorrelation artifacts, degrading image quality

(Nie et al. 2019; Stanziola et al. 2019). To avoid speckle

decorrelation, particularly under fast and accelerating flow

conditions, the incoherent ensemble correlation (also called

correlation compounding) approach has been proposed.

Instead of cross-correlating the compounded images, it per-

forms cross-correlation between the uncompounded images

per angle and compounds the cross-correlation maps to

generate a sharp displacement peak. It has been reported

(Figs. 6 and 7) to enhance the robustness of echoPIV track-

ing (Leow and Tang 2018; Toulemonde et al. 2018a;

Voorneveld et al. 2018b). Comparison in a carotid flow

phantom (Fig. 6) reveals that the incoherent ensemble cor-

relation leads to higher tracked velocities in high-velocity

flow regions than the coherent ensemble correlation. Like-

wise, Figure 7 illustrates that tracked peak mitral inflow

velocity is higher with compounding in the correlation

domain than in the spatial domain.

Another approach to deal with tissue and microbubble

motion and their effect on coherent compounding is motion

correction/compensation. Such algorithms correct for the

incoherence in summation between steered transmissions

induced by the motion of the scatterers. For HFR contrast-

enhanced echocardiography using diverging waves, meth-

ods based on image registration (Stanziola et al. 2019) and

cross-correlation (Nie et al. 2019) have been investigated

to correct for motion between different steering angles. At

each steering angle, the motion artifacts within the
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multipulse packet based on pulse inversion or amplitude

modulation can be removed, as reported by

Nie et al. (2019). The motion field calculated for motion

compensation can be encoded and superimposed on its ana-

tomic background. With the same pulse sequence, simulta-

neous HFR contrast-enhanced echocardiography and VFM

at 250 Hz have been achieved (Nie et al. 2019).

CLINICAL RELEVANCE

The HFR techniques that have emerged provide the

opportunity to study the relationship between cardiovascu-

lar disease progression and flow-derived parameters, such

as vorticity, residence time and WSS. Other opportunities

are more accurate methods for stenosis grading, based on

transfer of energy to the recirculating flow distal to the ste-

nosis. A first attempt to capture this in a flow parameter is

the introduction of vector complexity or vector concentra-

tion (in short, the deviation of a vector from a straight line)

for more accurate stenosis grading (Hansen et al. 2019;

Saris et al. 2019). Furthermore, abdominal aneurysm rup-

ture risk using blood flow-based prediction of thrombus

formation in aneurysms could be a relevant application.

The fact that the velocity fields obtained can be measured

in a single cardiac cycle, compared with interleaved (or

gated) MRI scans, also allows analysis with respect to vari-

ability of flow over several heartbeats.

With respect to the technical implementation in clini-

cal equipment, the current echoPIV algorithms require

much longer processing times compared with Doppler-

based techniques which contain much smaller numbers of

operations. Doppler techniques can be implemented in real-

time on current systems, which facilitate real-time feedback

on data quality and first interpretation of measurement

results. In current implementations, echoPIV algorithms

take at least minutes to process a low-frame-rate data set,

which quickly grows to hours in case of a HFR data set of

several cardiac cycles. Although some waiting time to

Fig. 6. Flow tracking in a phantom mimicking a healthy carotid. Comparison of the flow velocity mapping at peak sys-
tole reveals the robustness of the incoherent ensemble correlation approach to track highly accelerated flow when a simi-
lar number of high-resolution images (N) are used to estimate the flow velocity. Note that the coherent ensemble
correlations are estimated from the final compounded images (N), but the incoherent ensemble correlations are computed
on the multiple low-resolution images (M £ N) used to construct the same compounded images. Reprinted with permis-

sion from Leow and Tang (2018).
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process data with the echoPIV techniques might be accept-

able even in clinical routine, speeding up the processing by

massively parallel computing and/or refinement of the algo-

rithms themselves might improve clinical acceptance.

The relationship between pressure and volume in

the left ventricle contains a wealth of information on car-

diac health and is visualized with a pressure�volume

loop. Pressure�volume loops are currently obtainable

only in the clinic using invasive catheterization proce-

dures. However, recent research has explored non-inva-

sive calculation of PV loops using numerical models and

MRI-measured LV volumes over time

(Seemann et al. 2019). These methods can be further

improved using 3-D flow data from 3-D echoPIV (or

PC-MRI) to calculate local pressure gradients within the

left ventricle.

Intracardiac echoPIV can improve our understand-

ing of the cardiac physiology and mechanism of the

pathophysiology in different cardiac diseases, including

valvular leakage (Morisawa et al. 2018). Current imag-

ing techniques such as Doppler echocardiography and

MRI have limited ability to provide prognostic informa-

tion. In the future, intracardiac blood flow analysis may

improve the predictive ability of cardiac imaging in, for

example, heart failure patients, and play a role in appro-

priate targeting of new therapies to those patients most

at risk of complications. However, validation studies are

necessary to further evaluate the advantages of intracar-

diac blood flow analysis over conventional echocardio-

graphic parameters in the diagnosis, prognosis and

treatment of cardiac disease. This also includes our

assessment that the intraventricular flow patterns of

healthy volunteers and patients should be re-evaluated

using HFR echoPIV. Healthy hearts have been examined

with conventional line-scanning echoPIV

(Cimino et al. 2012), but re-examination of healthy LV

dynamics at the frame rates permitted by HFR echoPIV

is required for future comparison in patients.

The need for ultrasound contrast agent injection

limits the use of echoPIV as an early-stage screening

tool for heart and arterial diseases because of the

increased cost and expertise required for contrast agent

administration. In patients or situations where the SNR

is unproblematic, other vector flow imaging techniques,

such as VFM, blood speckle tracking, vector Doppler

and transverse oscillation, can work without the need for

contrast administration (Jensen et al. 2016a, 2016b).

THE FUTURE: 3-D ECHOPIV?

The current main efforts are focused on 2-D flow

analysis, which prohibits physical quantification of flow

such as energy conservation, instead of full 3-D flow

analysis. Several studies have worked on extending

echoPIV to three dimensions. Poelma et al. (2011)

obtained a 3-D region by sweeping a linear array along

the elevational direction and combining the 2-D echoPIV

results from each plane. However, out-of-plane velocity

components would not have been measurable using this

technique, so they effectively captured two components

of the velocity field in three dimensions of space.

Sengupta et al. (2012) used biplanar acquisitions so that

echoPIV could be performed in orthogonal directions,

but all three velocity components were only acquired at

the intersection of the two planes. More recently, full 3-

D flow field reconstruction with all three components

has been found to be possible using divergence-free

interpolation of multiple 2-D scan planes taken at angles

over the 3-D region of interest; however, this technique

requires precise knowledge of the transducer scan loca-

tions and orientations (Zhou et al. 2019a, 2019b).

Separately, Poelma et al. (2011) found that the out-

of-plane displacement magnitude (not direction) could

be estimated using the decorrelation of the speckle pat-

tern with a known elevational beam profile.

Zhou et al. (2018) used this idea to measure blood flow

in the abdominal aorta of a rabbit but they noted that pre-

cise perpendicular alignment to the flow was required to

avoid bias, and the direction once again was not measur-

able. In further extension of the method,

Zhou et al. (2019c) described a tilt of the view angle

with respect to the cross-section of the vessel so that the

direction could also be determined using in-plane echo-

PIV.

Alternatively, Gao et al. (2013) simulated a multi-

line acquisition using a matrix transducer to measure

blood flow in a simulated left ventricle, finding that high

Fig. 7. Flow tracking in a phantom mimicking a healthy left
ventricle, revealing the effect of compounding angular acquisi-
tions in the correlation domain (a) and the spatial domain (b).
When angles are averaged spatially after beamforming (coher-
ent compounding), fast-moving scatterers decorrelate as in (b),
degrading the signal for echoPIV analysis. AoV = aortic valve;
MV =mitral valve. Reprinted with permission from

Voorneveld et al. (2018b).
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velocities were underestimated because of the low frame

rate (113 Hz). In an in vitro LV phantom,

Voorneveld et al. (2020) studied the accuracy of HFR 3-

D echoPIV using a prototype matrix transesophageal

transducer at 1000 volumes/s. It was found that high

flow rates were accurately measured close to the probe;

loss of lateral resolution at depth resulted in underesti-

mation of the transmitral jet velocities.

The translation to truly volumetric (3-D) echoPIV

would allow for assessment of interesting fluid dynamics

parameters with minimal assumptions, such as kinetic

energy and its dissipation, pressure gradients and blood

washout rate. The development of vortices in the heart

could be studied in three dimensions, removing planar

flow assumptions present in current 2-D studies. These

parameters are currently evaluated by PC-MRI but at

limited temporal resolution (20�30 phases per cycle).

Through use of 3-D echoPIV, this could be increased by

one or two orders of magnitude, potentially revealing

transient flow patterns and fast events that are not visible

using PC-MRI (Chnafa et al. 2016). Yet, scaling HFR

ultrasound platforms to 3-D imaging is even more chal-

lenging. The increased channel count poses additional

burden on probe development, system cost, data acquisi-

tion, data transfer and data processing. Recent examples

of volumetric flow tracking with fully populated matrix

probes include 3-D super-resolution imaging

(Heiles et al. 2019) and VFM (Correia et al. 2016). To

reduce the channel count for HFR 3-D ultrasound imag-

ing, the employment of sparse (Harput et al. 2018) and

row�column arrays (Holbek et al. 2016) is being inten-

sively investigated. In an alternative route, compressive

3-D ultrasound imaging by use of a single sensor was

recently reported by Kruizinga et al. (2017). A plastic

coding mask was placed in front of the ultrasound sen-

sor, ensuring a unique compressed measurement for

each voxel. This technique could provide an alternative

to HFR 3-D contrast-enhanced ultrasound that uses 2-D

matrix arrays.

CONCLUSIONS

This review has described the technical implemen-

tations and feasibility of high-frame-rate flow tracking

with UCAs from first principles up to performance in

patient studies. The high frame rates, compared with

conventional frame rates, allow quantification of higher

flow velocities using echoPIV, which is highly beneficial

in tracking blood flow in ventricles and arteries. Very

recent studies indicate a trend toward implementation of

the techniques into 3-D imaging, such that all compo-

nents of the flow can be captured, and thus, physical

flow quantities can be extracted. However, we also iden-

tify that there is no clear view yet on what physical flow

quantities would characterize cardiac and vascular func-

tion best. A translation to clinical routine, therefore,

would benefit from an increase in clinical pull. Yet,

given the quickly rising availability of advanced systems

capable of obtaining and processing the high frame rates

needed for tracking physiologic flows, more clinical

studies are expected in the near future to prove clinical

relevance and thus motivate the clinical pull.
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