
2032 J. Opt. Soc. Am. A/Vol. 7, No. 10/October 1990

Contrast in complex images
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The physical contrast of simple images such as sinusoidal gratings or a single patch of light on a uniform background

is well defined and agrees with the perceived contrast, but this is not so for complex images. Most definitions assign

a single contrast value to the whole image, but perceived contrast may vary greatly across the image. Human

contrast sensitivity is a function of spatial frequency; therefore the spatial frequency content of an image should be

considered in the definition of contrast. In this paper a definition of local band-limited contrast in images is

proposed that assigns a contrast value to every point in the image as a function of the spatial frequency band. For

each frequency band, the contrast is defined as the ratio of the bandpass-filtered image at that frequency to the low-

pass image filtered to an octave below the same frequency (local luminance mean). This definition raises important

implications regarding the perception of contrast in complex images and is helpful in understanding the effects of

image-processing algorithms on the perceived contrast. A pyramidal image-contrast structure based on this

definition is useful in simulating nonlinear, threshold characteristics of spatial vision in both normal observers and

the visually impaired.

INTRODUCTION

Apparent or perceived contrast is a basic perceptual attri-
bute of an image. Many techniques of contrast manipula-
tion and modification have been developed within the field
of digital image processing. The study of contrast sensitiv-
ity has dominated visual perception research in the past two
decades. However, the measurement and evaluation of con-
trast and contrast changes in arbitrary images are not
uniquely defined in the literature. In this paper I propose a
definition of local band-limited contrast in complex images
that is closely related to the common definition of contrast in
simple pattern tests. The purpose of this new definition is
better to link measured physical contrast with visual con-
trast perception. This definition provides new insights into
the perception of suprathreshold contrast in complex images
and permits better simulations of the effects of the threshold
nonlinear nature of contrast sensitivity on the appearance of
images.

Definitions of Contrast in Simple Patterns

Two definitions have been commonly used for measuring the

contrast of test targets. The contrast C of a periodic pattern

such as a sinusoidal grating is measured with the Michelson
formula'

C Lmax Lmin

Lmax + Lmin

where Lmax and Lmin are the maximum and minimum lumi-

nance values, respectively, in the gratings. The Weber frac-

tion definition of contrast [Eq. (2) below] is used to measure

the local contrast of a single target of uniform luminance

seen against a uniform background:

C AL (2)

where AL is the increment or decrement in the target lumi-

nance from the uniform background luminance L. One usu-

ally assumes a large background with a small test target, in

which case the average luminance will be close to the back-

ground luminance. If there are many targets, or if there is a

repetitive target as in the case of a grating stimulus, these

assumptions do not hold. The processing of images in the

visual system is believed to be neither periodic nor local;

therefore the representation of contrast in images should be

quasi-local as well.
The difference between the two definitions becomes ap-

parent when the Michelson contrast is expressed similarly to

the Weber contrast:

= AL
=L + AL' (3)

where AL = (Lmax - Lmin)/2 and L = Lmin. These two

measures of contrast do not coincide or even share a common

range of values. The Michelson contrast value ranges from

0 to +1.0, whereas the Weber contrast value ranges from

-1.0 to +o. Other definitions of contrast that share similar

problems [for example, C = 2AL/(2L + AL)] have been

presented by Westheimer. 2 However, all the definitions

represent the contrast as a dimensionless ratio of luminance

change to mean background luminance.
0

Previous Definitions of Contrast in Images

Because of the difficulties in defining contrast in images,

many definitions of contrast in a complex scene found in the

literature are restricted to the assessment of contrast

changes in the same image displayed in two different ways.

One such definition of contrast change was given by Gins-

burg.3 For an image spanning the full range of displayed

gray levels (i.e., 0-255 gray levels), the contrast was defined

as 100%, but when the same image was linearly compressed
to span only half of the range (i.e., 0-127), the contrast was

reduced to 50%. With this definition of contrast change, the

mean luminance decreases with contrast and, thus, based on

some of the other definitions, the contrast should be left

unchanged by compression. More commonly, the contrast

change of images was evaluated by using the Michelson
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definition [Eq. (1)]. Image contrast was changed by linear
scaling while the average luminance was held constant.4

This approach appears to assess properly the relative con-
trast change between two presentations of the same image
(difficulties with this are addressed below).

Absolute measurement of contrast using the Michelson
definition is not appropriate because one or two points of
extreme brightness or darkness can determine the contrast
of the whole image. For example, if a single bright highlight
or an especially dark shadow point is added to a fairly low-
contrast image, the image Michelson contrast increases dra-
matically, but the perceived contrast may be decreased. For
the same reason, comparison of contrast in two different
images, such as two faces, may be affected largely by inciden-
tal occurrences, such as reflections from the cornea or from a
small, dark birthmark.

In studying the effects of masking5 6 by using two different
images superimposed to create an intensity-mixed image,
the relative intensity in percent of each image was used6

instead of contrast. However, even this measure cannot be
used when the two superimposed images are band limited in
two different bands of spatial frequencies. 6 7

A common way to define the contrast in an image so that
the contrast of two different images can be compared is to
measure the root-mean-square (rms) contrast.8 9 The rms is
defined as

rms = [ _ 1 E (xi-x)2] , (4a)

where xi is a normalized gray-level value such that 0 < xi < 1
and x is the mean normalized gray level:

n

x 1 - xi. (4b)
j=1

With this definition, images of different human faces have
the same contrast if their rms contrast is equal.9 The rms
contrast does not depend on spatial frequency content of the
image or the spatial distribution of contrast in the image.

Loshin and Banton,' 0 working with face images, recog-
nized the need to define contrast locally in the images.
They defined a local, low-contrast feature by arbitrarily
measuring a local mean luminance along the chin line rela-
tive to the background and a local high-contrast feature by
measuring a mean luminance of the forehead and the dark
hair above the forehead.

Band-Limited Contrast

The issue of contrast of complex scenes at different spatial
frequencies in the context of image processing and percep-
tion was addressed explicitly by Hess et al." Contrast was
defined in the Fourier domain as

C(u, V) = 2A(u, v) (5)
DC'

where A(u, v) is the amplitude of the Fourier transform of
the image, u and v are the horizontal and vertical spatial
frequency coordinates, respectively, and DC is the zero-fre-
quency component. This definition was applied globally to
the whole image as well as to one-quarter or one-sixteenth
subimages in nonoverlapping windows.

Local Contrast Definitions
The local nature of contrast changes across an image and
spatial frequency content are related and should be consid-
ered together. This is done implicitly when the contrast of a
laser speckle pattern is defined as a local rms contrast. 2 In
this approach, the same definition used in Eqs. (4) over the
whole image is applied locally to a small subimage of the
speckle pattern. Thus for each, possibly overlapping, sub-
image a local rms contrast is defined, which represents the
contrast in the spatial frequency band corresponding to the
speckle spatial period.

Watson et al.'3 defined a contrast at each point for their
test results, which were composed of a sinusoidal grating
patch with a two-dimensional Gaussian envelope. A target
was described generally as

I(x, y) = I[, + C(x, y), (6)

where C(x, y) is the contrast at each point and Io is the
background luminance. For the targets used, which were
band limited, this definition of contrast implicitly addresses
the spatial frequency context and explicitly assigns a con-
trast value to every point in the image. In this scheme,
however, the background luminance was constant, and only
the peak contrast value for each pattern was used.

Badcock14 defined measures of local contrast for his com-
plex grating pattern, composed of first and third harmonics.
These ad hoc measures were based on observers' suggestions
and do not apply to any generalization for other types of
pattern. Hess and Pointer 5 adapted the same definitions,
but they calculated the contrast only around the peaks of the
first harmonic and not around the troughs, thus ignoring the
effect of the local luminance mean on the contrast of the
higher harmonic. This effect is the central issue of the
discussion here.

NEW DEFINITION: LOCAL BAND-LIMITED
CONTRAST

To avoid many of the problems of other definitions of con-
trast as reviewed above, the new definition proposed here
addresses several issues together. Since human contrast
sensitivity is highly dependent on spatial frequency, espe-
cially at threshold, contrast for each spatial frequency band
is calculated separately. The contrast at each point in the
image is calculated separately to address the variation of
contrast across the image. Thus we term the calculated
contrast local band-limited contrast. This local band-limit-
ed contrast corresponds to the quasi-local processing in the
visual system. The most important aspect of the local band-
limited contrast 6 definition proposed here is that the level
of the local luminance mean should be considered in calcu-
lating the contrast at every point.

To define local band-limited contrast for a complex image,
we will first obtain a band-limited version of the image in the
frequency domain A(u, v). This can be done by using a
radically symmetric, band-pass filter G(r). The bandpass
profile should approximate the Gaussian envelope of the
Gabor function in the frequency domain. It is appropriate
to select sections of 1-octave bandwidth, because they simu-
late the bandwidth of cortical simple cells,'7 produce an
efficient image code,' 8 and contain roughly equal amounts of
energy in images of natural scenes.' 9 Thus, in the frequency
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domain, the band-limited image can be represented in the

following way:

A(u, v) A(r, 0) = F(r, 0)G(r), (7)

where u and v are the respective horizontal and vertical

spatial frequency coordinates and r and 0 represent the re-

spective polar spatial frequency coordinates: r = Vu
2 + v2

and 0 = tan'I(ulv), and F(r, 0) is the Fourier transform of the

image f(x, y).

In the space domain the filtered image a(x, y) can be

represented similarly, that is, as

a(x, y) = f(x, y) * g(x, y), (8)

where * represents the convolution operator and g(x, y) is

the inverse Fourier transform of the band-pass filter trans-

form G(r). We can also define, for every bandpass-filtered
image, a(x, y), the corresponding local luminance mean im-

age, 1(x, y), which is a low-pass-filtered version of the image

containing all energy below the band. The contrast at the

band of spatial frequencies can be represented as a two-

dimensional array c(x, y):

c(xy) = a(Xy) (9)

where l(x, y) > 0. This definition provides a local contrast

measure for every band that depends not only on the local

energy at that band but also on the local background lumi-

nance as it varies from place to place in the image. See

Appendix A for details of implementation of the contrast

pyramid.

IMPLICATIONS OF THE CONTRAST
DEFINITION

The contrast at a spatial frequency or a band of spatial

frequencies is usually considered to be dependent only on

the local amplitude at that frequency. The contrast in Eq.

(9) depends also on the amplitude at lower spatial frequen-
cies. The effect of this difference can be easily appreciated
with a one-dimensional, two-frequency pattern (Fig. 1):

f(x, y) = Io(l + a, cos wx + a2 cos 8wx), (10)

where Io is the mean luminance and ajlo and a2IO are the

amplitude of the first and eighth harmonics, respectively.

Although the amplitude of the eighth harmonic is con-

stant across the image, the apparent contrast is higher near

Fig. 1. Compound grating image as described in Eq. (10). The
apparent contrast of the high-frequency component changes across
the image although the amplitude is fixed.

Fig. 2. Comparison between bandpass amplitude image (left) and
local band-limited contrast image (right) for two spatial frequen-
cies, 16 (top) and 32 (bottom) cycles per picture. Note the relative
increase of contrast around the eyes and over dark areas in the
original image (at left in Fig. 3 below).

the troughs of the first harmonic than near the peaks, as

predicted by Eq. (9). This observation was recently verified

psychophysically by Thomas.2 0 The contrast of the eighth

harmonic c8 may vary in the range

a2 a2

C8 a
+a, u l-a,

(11)

For low-contrast patterns (i.e., a, << 1) the contrast varia-

tion across the pattern is reduced, and the contrast C8 may be

safely approximated by a2. Thus the analysis of the results

of threshold experiments will not be significantly altered by

this definition of contrast in most cases. Only for high-

contrast images with contrast levels of more than 0.3 should

the analysis consider these local variations and their role in

perception. Such contrast levels are commonly encoun-

tered in everyday images.
Many investigators have evaluated the contrast of face

images and other scenes at various bands by simply band-

pass filtering the image and displaying the band images

added to an arbitrarily selected DC level, the mean lumi-

nance of the image, or the midrange value. However, as can

be seen from Fig. 2, this will result in contrast that is sub-

stantially different from the one calculated by Eq. (9). In

particular, the contrast at high-frequency bands will be

much higher over dark areas of the image. In face images

this frequently implies that the contrast at high-spatial-

frequency bands is higher around the eyes and the mouth

than the corresponding amplitudes of the bandpass-filtered
image (Fig. 2). Details that are subthreshold and therefore

undetected in the bandpass-filtered image and thus as-

sumed to have no relevance to perception2 ' may actually be

suprathreshold in the image, add to image sharpness, and

aid in recognition. The effect of this on the perception of

the image may be simulated by adding in superposition the

various contrast bands rather than the amplitude bands.
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The resultant simulated perceived image (Fig. 3) is much
sharper, has higher contrast, and enhances those details that
occur against darker backgrounds. The details of the filters
used in the generation of the images in Fig. 2 and the recon-
struction in Fig. 3 are given in Appendix A.

Linear scaling of an image gray scale, a common image-
enhancement technique, is frequently used to modify images
to study the effect of contrast.5 91 0 It is usually assumed
that linear resealing will change the contrast of all frequen-
cies in the same way. Indeed, the amplitudes of all frequen-
cies will be modified linearly by the same amount, but the
contrast as defined by Eq. (9) will change differently for
different spatial frequencies. For example, if in Eq. (10) we
multiply a, and a2 by k, the new contrast for the first har-
monic will be kal, but the contrast of the eighth harmonic
will span a new range:

ka 2 ka 2

1 +kaj 1-kal
(12)

This effect is illustrated in Fig. 4. Each of the two images
at the right has two sinusoidal components of the same
amplitude with the higher component of equal spatial fre-
quency on both images. The images at the left represent
equal linear resealing of the two images at the right but
result in a noticeable difference in the apparent contrast of
the higher-frequency components in the two images. Thus
linear resealing of gray levels actually increases the contrast
of high spatial frequencies more over dark areas than it does
for the same spatial frequency over light areas, and both are
changed differently from the amount of change in the con-
trast of low spatial frequencies.

Reverse scaling or polarity inversion of the display is
sometimes used for image enhancement.2 2 The fact that
such a process results in enhancement of details is usually
attributed to the nonlinearity of the display. However, even
with a linear display, an improvement in details may be
observed with such processing, while at the same time the
visibility of other details is reduced. These results are clear-
ly understandable within the framework of the contrast defi-
nition proposed here. Reversing the polarity of the display
will not change the magnitude of the local high-frequency
information. Contrast, on the other hand, will be increased
in areas transferred from higher to lower local luminance
mean and will be lower for areas transferred from low to high
luminance mean.

Changing the polarity of text from black on white to white

Fig. 3. Simulation of the perceived contrast image. This image
was reconstructed by adding the local band-limited contrast images
(right) instead of the original bandpass-filtered images (left).

Fig. 4. Illustration of the different effects of linear resealing on
patterns of different spatial frequency composition. The com-
pound gratings at the right were linearly scaled equally (2X), result-
ing in their respective gratings on the left. The amplitudes of the
two sinusoidal components in each image pair are equal, and the
high-frequency component is of the same period in all images. Note
the relative increase in contrast of this component in the lower-left-
hand image compared with the upper-left-hand image.

on black has little effect on normal reading. Legge et al.
2 3

have shown that some low-vision observers read as much as
50% faster with reversed contrast text. These effects, which
have been known clinically for many years, are usually at-
tributed to abnormal light scatter in eyes with cloudy media.
Part of the effect may be explained by the change in contrast
at the critical band of frequencies that occurs with change in
polarity. The contrast at a 1-octave-wide band of spatial
frequencies, extending upward from the fundamental fre-
quency of the letters, has been shown to contain sufficient
information for fast reading. The contrast of details at this
band will change substantially with a change of polarity
from black-on-white to white-on-black text, according to our
definition. Thus a patient's reading performance that de-
clines with a decrease in contrast at high contrast levels will
improve with the reversal of text polarity irrespective of the
nature of the patient's disability. This indeed appears to be
true for the two cases reported by Rubin and Legge.24 Since
for many low-vision patients performance becomes depen-
dent on contrast only at fairly low contrast levels, this effect
is apparent only with a small portion of the population.
Pelli25 analyzed similarly the contrast of lines of text in the
two polarities on a video display. His patterns, however,
span different nonoverlapping luminance ranges and thus
had different contrasts globally (defined by Michelson con-
trast) as well as locally. Only this global difference was
considered in his case.

APPLICATION: SIMULATIONS OF THE
APPEARANCE OF IMAGES

In this section two applications of the pyramidal image con-
trast structure described in Appendix A are illustrated.
This type of processing enables us to implement the nonlin-
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ear response of the visual system locally. This application
was not possible until now.

The Fourier analysis of images in the context of image

perception has frequently been interpreted to imply that the
contrast sensitivity function measured at various spatial fre-

quencies can be implemented as a modulation transfer func-

tion of the system in the Fourier domain for filtration of
images.3 26-28 In most cases, such applications were limited

to increasing or decreasing the amplitudes at various spatial

frequencies without explicit reference to the possible inter-

actions among amplitudes at different frequencies. When
applied to the simulation of appearances of images to ob-
servers with normal3 or abnormal2 8 vision, this linear process
ignores the highly nonlinear characteristics of the visual
system. Despite large differences in contrast sensitivity
thresholds for different frequencies at different eccentrici-
ties, appearances of superthreshold images are constant or
almost constant.2 9 30 Hess et al."1 included this nonlinear

Fig. 5. Simulation of the appearance of a face image (spanning 4 deg of visual angle) to a low-vision patient whose contrast sensitivity function

is illustrated in Fig. 6. Top left, the original image; top right, the simulated appearance of the same image to the patient. The three rows of

four images represent processing at different spatial frequencies on the pyramid. The far-left-hand image in each row is the bandpass-filtered
image obtained from the original image. The second column shows the corresponding low-pass-filtered version for the same scale, i.e., all the

energy below the band represented in the first column, or the local luminance mean. The third column represents the contrast images.

Contrast arrays are bipolar, and a DC level of 128 has been added arbitrarily to present those arrays as images. Images in the fourth column on

the far-right-hand side represent the thresholded, bandpass-filtered images. For each image in the third column, each point was tested against

the threshold value illustrated in Fig. 6 for the corresponding spatial frequency. If the contrast of the image at that point is above threshold,

the corresponding point from the far-left image is reproduced in the far-right column. If the contrast at a certain point is below threshold, the

corresponding point is set to zero (gray) in the far-right image. The simulated appearance image (top right) is generated by summing all the
images in the far-right column. Actual processing included two more rows at 2 and 32 cycles per picture (not shown).
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Fig. 6. Contrast detection thresholds (dotted curve) of a low-vision
patient with central scotoma owing to age-related maculopathy used
in the simulation of Fig. 5. Contrast detection thresholds of 15
normal observers are illustrated by the thick curve. The thin curve
represents mean, radially averaged contrast spectra of five different
faces.

characteristic in their simulation of vision in amplyopes by
applying the threshold in the Fourier domain. Such global
processing is insufficient, as it does not address the local
variability of contrast across the image. To improve their
simulation, they have also applied the same process to sub-
images.

The pyramidal image contrast structure described in Ap-
pendix A enables us to use nonlinear processing to simulate

the appearance of images for normal- and low-vision observ-
ers point by point and for every spatial frequency in the
image. An example of this process is illustrated in Fig. 5.
The contrast sensitivity function of a patient with a central
scotoma due to macular disease was measured, using 1-oc-
tave-bandwidth sinusoidal patches of grating in a two-di-
mensional Gaussian envelope. 31 The patient's contrast de-
tection thresholds used in the processing of Fig. 5 are illus-
trated, together with the mean response of 15 normal
observers, in Fig. 6. Thus the final image in Fig. 5, top right,
represents the appearance of the original image to this pa-
tient. The original image was processed with the stipulation
that the face span 4 deg of visual angle. On this scale, this
patient's visual loss had little effect on information at 4
cycles per picture (top row of four images), a minimal effect
on information at 8 cycles per picture (middle row), and a
substantial effect on information at 16 cycles per picture
(bottom row). Full processing included also the bands of 2
and 32 cycles per picture (both not shown). This simulation
differs from previous such simulations3 2 8 because supra-
threshold contrast features retain their contrast and are not
washed out by the processing as with other techniques.
Thus the simulated image maintains the full contrast ap-
pearance reported by patients with central visual loss and
clear media and is not faded or washed away, as the appear-
ance of images seen through cataracts may be.26

The same pyramidal image contrast structure also enables
us to simulate the appearance of images with a nonuniform
retina. Using data on the contrast threshold at different
spatial frequencies at different eccentricities on the retina,2 9

we can simulate the appearance of images to the nonhomo-
geneous visual system by selecting a center of fixation repre-
senting the foveal position on the image and then comparing
the local threshold at each spatial frequency and each eccen-

Fig. 7. Simulation of the appearance of an image to a normal observer including the nonuniform characteristic of the visual system.
Simulation is carried out with the assumption of fixation at the center of the image. The technique applied is similar to the one used for Fig. 5,
except that for every point in the contrast image the distance from the center of fixation in degrees of visual angle was calculated, and the con-
trast detection threshold corresponding to spatial frequency and retinal eccentricity was used in thresholding the images. The image at the left
represents processing when the scene was considered to span 32 deg of visual angle. The image at the right represents the same image
processed as if it spanned only 2 deg of visual angle. The most striking effect is the small variability across the visual field in both cases. Note
that more heterogeneity is expressed over the image at the right (2 deg of visual angle).
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tricity with the measured value. Images shown in Fig. 7
illustrate the appearance of the same image when it spans 2

and 32 deg of visual angle, respectively. The relatively small
effect of the nonuniform retina in the appearance of both
images is striking. The effect is much smaller than the
effect previously simulated by Schwartz and colleagues, us-

ing cortical surface data3 2 33 or an arbitrarily selected non-

uniform function.3 4 The same simulation may be expanded
to represent the full visual field, as data for the lower spatial
frequencies and the higher eccentricities were recently pub-
lished by Pointer and Hess.35

DISCUSSION

The basic assumption of this study was that image contrasts
should be expressed as the dimensionless ratio of the local
amplitude and the local average luminance similarly to that
expressed in the definition of Michelson contrast or Weber
fraction. The use of such a ratio implies that the human
sensitivity to amplitude of change in luminance varies with
the adaptation level associated with the local average lumi-
nance.36 This is known to be the case for threshold contrast

sensitivity at all spatial frequencies at high luminance levels.
For low frequencies (<4 cycles/deg), the same relation is true
for a large portion of the photopic range.37 For the rest of
the spatial frequencies and luminance ranges, the DeVries-
Rose law applies, representing only partial adaptation.

Partial adaptation may be included in the present defini-
tion of contrast simply by reducing the effect of the local
luminance mean on the high-frequency contrast to some
degree. Such reduction may actually be necessary to avoid
phase inversions in extreme cases. Low-pass-filtered ver-

sions of an image may, in extreme but possible images, con-
tain negative values, even if the image is defined as positive
only. Such negative values indicate the existence of nega-
tive values of the filters. In the visual system such values
exist and are referred to as areas of inhibition in the recep-
tive field or the filter's point-spread function. These nega-
tive values may result in an inversion of the contrast as
defined here, an undesirable result. However, if partial
adaptation is applied, it can be adjusted easily to reduce the
magnitude of such discontinuities.

The degree or level of local luminance adaptation in su-
prathreshold contrast sensitivity has, to our knowledge, not
been determined. Experiments using a dichoptic presenta-
tion found that contrast matching at high-contrast levels
indeed approximated contrast as defined by the ratio of
amplitude to local luminance mean. 38 Although the meth-
odology used cannot be applied directly to normal viewing of
an image, the ability to set the contrast for apparent match
under such diverse conditions suggests that similar results
may be obtained with monocular viewing of multiple targets
over a variable local luminance mean. We are currently
attempting to measure directly the level of local luminance
adaptation within one image.

Enhancement of images and deblurring in the visual sys-
tem have been discussed by various authors. Mechanisms
such as lateral inhibition or the transfer function calculated
from the contrast sensitivity function were used to explain

these enhancement effects. Active enhancement using

adaptive gain control in different spatial frequency channels

was proposed by Georgeson and Sullivan.38 Enhancement
or sharpening of the image reconstructed from contrast rath-
er than amplitude components is proposed here as a local
mechanism for enhancement of complex images but cannot
explain the experimental results obtained with single sinus-
oidal targets. Thus it could be postulated that such local
enhancement occurs in addition to the reported global
sharpening. If such local enhancement does occur, it should
be measurable.

The same enhancement that occurs in the visual system
may be useful in image-processing algorithms. Indeed, the
enhancement capabilities of similar pyramids of contrast-
related images have been used in image-processing applica-
tions.3 9 40 In both, the pyramids were of ratios of low-pass-
filtered versions of the image at different scales, and in both
cases the visual contrast sensitivity was cited as the motiva-
tion. Toet et al.

3 9 used a ratio of 2-octave-spaced low-pass
images to merge visual-optical and thermal images. Their
contrast ratio was defined as

ri(x, y) = l A ( ) (X, y ) + 1.
=c.(x y)+l. (13)

They argued that the contrast-related bandpass-filtered im-
age version of the optical image is more appropriate to use
since it more closely represents visually important features.

The main difference between their definition and the one
used here is that in their contrast there is no sign change to
distinguish between objects that are darker or brighter than
the background. The importance of this sign change in the
visual system has been reported by Shapley and Enroth-
Cugell.

4
1

Schenker et al.40 used a similar ratio of two low-pass fil-
tered images and compressed the output by a logarithmic
transformation in an algorithm used to detect image edge
structure. In our notation it can be written as

I0,(x, y) = n 1 (x Y) (14)

Logarithmic transformation restores the sign change and
also results in relative enhancement of negative contrast or
in increased sensitivity to decrements versus increments as
found commonly in psychophysical experiments.4 2 Hilsen-
rath and Zeevi43 implemented a similar process of adapta-
tion in one scale only for designing an adaptive, locally gain-
controlled detector. Such adaptation permits imaging over
wider dynamic ranges than is possible with standard cam-
eras.

Contrast measured by filtering as suggested here defines
only incremental or decremental changes from local back-
ground. This is analogous to the symmetric (cosine phase)
responses of mechanisms or cells in the visual system. An-
other type of contrast may be defined as a transition from
low to high luminance, or vice versa, in a band-limited signal.
The latter may be viewed as the response of the antisymmet-
ric (sine phase) mechanisms. A complete description of

contrast in a complex image should include both of these
contrast representations. 44 Incorporation of these addi-
tions in a one-dimensional case, using oriented filters, is
straightforward.4 5 Complete two-dimensional application
is difficult owing to the lack of definition of Hilbert's trans-

form for the two-dimensional case.46
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APPENDIX A: PYRAMIDAL STRUCTURE

USED IN ANALYSIS AND SIMULATIONS

A pyramidal image transform was calculated in the frequen-

cy domain. 47 For digital processing of images, it is conve-

nient to select center frequencies (in cycles per picture) that

are a power of 2 for each segment. Thus the image in the

frequency domain may be represented as

n-1

F(u, v) = F(r, 0) = Lo(r, 0) + , Ai(r, 0) + Hn(r, 0), (Al)
i=1

where Lo and Hn represent the low and high residuals, re-

spectively. They contain the energy in the low and high

frequencies after the various bandpass layers, Ai, have been

subtracted from the image. The low residual is essential in

our application and therefore is maintained. The high re-

sidual has little information, and in most applications it may

be discarded without any perceptual change in the image.4 8

Although the use of a Gaussian filter is attractive because

of the mathematical convenience in transformation from the

frequency to the spatial domain, this filter has several short-

comings. 9 48 To obtain an approximation to the shape of a

Gaussian and at the same time to satisfy the requirement of

symmetrical shape on a log frequency axis, together with the

requirement that the image must be able to be reconstructed

from the various segments by simple addition,4 8 we have

used cosine log filters (Fig. 8). A cosine log filter of (1-

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1 1 0 1 00

Spatial Frequency [cycles/picture]

(a)

1 .2 -

Center Freq.

1.0 0

0.84

0.6 -- 16
sum

0.4

0.2

0.0-
1 ~~~~1 0 1 00

frequency

(b)

Fig. 8. Comparison of Gaussian (Gabor filters) with the cosine log
filters used here. (a) Filter bank of 1-octave-wide Gaussian filters
and the sum of all filters. (b) Filter bank of l-octave-wide cosine log
filters. Here the summation of all the filters adds to the unity.
Note also the symmetry of the cosine log filters on a logarithmic
scale.

octave) bandwidth centered at frequency 2i cycles/picture is

expressed as

Gi(r) = 1/211 + cos(7r log2 r -ri)]. (A2)

The small difference between these functions and the com-
monly used Gabor filters or derivatives of Gaussians is of

little consequence for the concept described here and its

potential applications.
Thus Ai is obtained by multiplying the Fourier transform

of the image with a torus-shaped dome filter described in Eq.

(A2). The filtered image is transformed back to the space

domain, where it can be represented as

n-1

f(x, y) = lo(x, y) + Z ai(x, y) + hn(X, y)

i=1

(A3)

The residual lo is calculated simply to maintain the ease of

reconstruction with simple addition, but hn is not used in our
model. For every ai(x, y), the corresponding li(x, y) is

i-l

l(x, Y) = lo(x, y) + E aj(x, y),
j=i

and ci(x, y) is calculated as in Eq. (9):

ai(x, y)

1i (XY)A=-

(A4)

(A5)
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