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Abstract: In order to improve contrast and restore color for underwater image captured by camera 

sensors without suffering from insufficient details and color cast, a fusion algorithm for image 

enhancement in different color spaces based on contrast limited adaptive histogram equalization 

(CLAHE) is proposed in this article. The original color image is first converted from RGB color 

space to two different special color spaces: YIQ and HSI. The color space conversion from RGB to 

YIQ is a linear transformation, while the RGB to HSI conversion is nonlinear. Then, the algorithm 

separately operates CLAHE in YIQ and HSI color spaces to obtain two different enhancement 

images. The luminance component (Y) in the YIQ color space and the intensity component (I) in the 

HSI color space are enhanced with CLAHE algorithm. The CLAHE has two key parameters: Block 

Size and Clip Limit, which mainly control the quality of CLAHE enhancement image. After that, 

the YIQ and HSI enhancement images are respectively converted backward to RGB color. When 

the three components of red, green, and blue are not coherent in the YIQ-RGB or HSI-RGB images, 

the three components will have to be harmonized with the CLAHE algorithm in RGB space. 

Finally, with 4 direction Sobel edge detector in the bounded general logarithm ratio operation, a 

self-adaptive weight selection nonlinear image enhancement is carried out to fuse YIQ-RGB and 

HSI-RGB images together to achieve the final fused image. The enhancement fusion algorithm has 

two key factors: average of Sobel edge detector and fusion coefficient, and these two factors 

determine the effects of enhancement fusion algorithm. A series of evaluate metrics such as mean, 

contrast, entropy, colorfulness metric (CM), mean square error (MSE) and peak signal to noise 

ratio (PSNR) are used to assess the proposed enhancement algorithm. The experiments results 

showed that the proposed algorithm provides more detail enhancement and higher values of 

colorfulness restoration as compared to other existing image enhancement algorithms. The 

proposed algorithm can suppress effectively noise interference, improve the image quality for 

underwater image availably.  

Keywords: image enhancement; image fusion; color space; edge detector; underwater image  

 

1. Introduction 

In the digital image application field, images with high contrast and bright colors are the 

crucial prerequisite for good understanding of the real scenes, such as detection and classification 

for underwater dam cracks, and multitarget detection under complex environment [1,2]. The 

images having a higher contrast level usually display a larger degree of color scale difference as 

compared to the lower contrast level ones [3]. Light plays a crucial role in generating images of 

satisfactory quality in photography. Strong light causes an image to have a washed out appearance; 
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on the contrary, weak light leads to an image that is too dark to be visible. In these two cases, the 

contrasts of the images are low and their detailed textures are difficult to discern [4]. The 

underwater images may lose contrast suffering from degradation due to poor visibility conditions 

and effects such as light absorption, light reflection, bending of light and scattering of light, which 

result in dimness and distortion [5]. Furthermore, the poor sensitivity of charge-coupled device 

/complementary-metal-oxide-semiconductor (CCD/CMOS) sensors leads to images with 

excessively narrow dynamic ranges and renders their details unclear [4]. There are heuristically 

serious disagreements existing between the recorded color images and the direct observation of the 

real underwater scenes. The purpose of image enhancement is a process that allows image features 

to show up more visibly details and highlight the useful information by making best use of the color 

presented on the display devices. Image enhancement is used to improve the quality of an image for 

visual perception of human being [6]. Therefore, it is particularly important to design effective 

enhancement algorithms to improve contrast and restore color for the degenerated underwater 

images. 

During the last decade，a large number of enhancement algorithms have been developed for  

contrast enhancement of images in various applications. Several effective image enhancement 

algorithms can be mainly divided into two categories [7]: (1) image restoration based on physical 

models , and (2) image enhancement based on image processing techniques.  

For the first category, the optimal estimate of an improved image is obtained by establishing 

and inverting the process of image degradation. More recently, dark channel prior (DCP) theory 

which was proposed by He et al. directly estimates the depth information based on the comparison 

between the degraded and the clear images [8]. Though some improved algorithms [9-11] based on 

DCP theory have achieved significant performance, results restored from images captured under the 

overcast environment are still unsatisfactory, especially for the images with large amount of 

lightness and cloud zones. 

The second category of image enhancement techniques directly improves contrast and 

highlights details by either global or local pixel processing, regardless of the cause of color cast and 

image degradation.  

Recently, Retinex, Homomorphic and Wavelet Multi-Scale techniques have been popular for 

enhancing images. These methods perform much better than those traditional ones [12]. The Retinex 

theory is firstly introduced to image enhancement by Edwin et al [13]. There are some different 

algorithms based on Retinex theory such as single-scale Retinex (SSR) [14], multi-scale Retinex 

(MSR) [15], multi-scale Retinex with color restoration (MSRCR) [16], and fast multi-scale Retinex 

(FMSR) [17] etc. Among them, the MSRCR method proposes to estimate the illumination of the input 

image using gaussian surround filterings of different scales and conducts enhancement by applying 

color restoration followed by linear stretching to the logarithm of reflectance. Though the MSRCR 

method has demonstrated a strong ability in providing dynamic range compression, color 

restoration and preserving most of details, a large number of parameters are involved and set 

empirically, which limit the generalization ability and often result in pseudo halos and unnatural 

color [18]. 

The classical contrast enhancement is Histogram Equalization (HE) which has good 

performance in ordinary images, such as human portraits or natural images [19]. This method 

increases the contrast of an image globally by spreading out the most frequent intensity values. 

However, it suffers from noise amplification in relatively homogeneous regions. HE has been 

generalized to a local histogram equalization which is known as adaptive histogram equalization 

(AHE) . AHE is based on HE that the adaptive method formulates each histogram of sub-image to 

redistribute the brightness values of the images. AHE is therefore suitable for improving the local 

contrast of an image and bringing out more details [19]. Some AHE algorithms have get important 

progress in suppressing noise and enhancing contrast. The hybrid cumulative histogram 

equalization (HCHE) can improve the enhancement effect on hot objects rather than background 

[20]. The gap adjustment histogram equalization can solve the over-enhancement problem and 

alleviate the feature loss problem in the dark regions of the image [21]. However, the problem 
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remain the same with the global histogram equalization because of amplifying noise in relatively 

homogeneous regions. In order to overcome this problem, contrast limited adaptive histogram 

equalization (CLAHE) was proposed .CLAHE is a well-known block-based processing, and it can 

overcome the over amplification of noise problem in the homogeneous region of image with 

standard histogram equalization. CLAHE algorithm differs from standard HE in the respect that 

CLAHE operates on small regions in the image, called tiles, and computes several histograms, each 

corresponding to a distinct section of the image and use them to redistribute the lightness values of 

the image[22-24].  

The CLAHE enhancement algorithm can be operated in different color spaces such as RGB 

space, YIQ space , HSI space and so on. In RGB color model, a color space is defined in terms of red 

(R), green (G), and blue (B) components. These three components are monochrome intensity images. 

Therefore, RGB model is an ideal tool for color generations, when images are captured by a color 

video camera or displayed in color monitor screen [25]. In RGB color model, CLAHE can be applied 

on all the three components individually. The result of full-color RGB image can be obtained by 

combining the R, G, and B individual components [5]. Although the RGB color space is best suited 

to display color images, this space is not suitable for analysis and processing imaging because of a 

high degree of correlation between these three components. In the YIQ format, image data consists 

of three components: luminance (Y), hue (I), and saturation (Q). The first component, luminance, 

represents grayscale information, while the last two components make up chrominance (color 

information) [3]. The HSI color model describes colors in terms of the Hue (H), Saturation (S), and 

Intensity (I). The dominant description for black and white is the term of intensity. The hue and 

saturation level do not make a difference when value is at max or min intensity level [26] .  

The first advantage of YIQ and HSI format is that grayscale information is separated from 

color data, so the same signal can be used for both color and black & white sets. Second advantage 

is that it takes advantage of human color-response characteristics. For the purpose of enhancing a 

color image, it is to be seen that hue should not change for any pixel. If hue is changed then the 

color gets changed, thereby distorting the image. One needs to improve the visual quality of an 

image without distorting it for image enhancement [6]. 

This paper focuses on the improvement of visual quality of underwater color images, especially 

for those captured under the overcast or low-light conditions. To this end, we propose an improved 

CLAHE image enhancement based on adaptive image fusion of YIQ and HSI color spaces. The 

contributions of this paper can be summarized as follows: 

(1) It is proposed to use two different color space transformations for CLAHE enhancement: 

RGB-YIQ linear transformation, and RGB-HSI nonlinear transformation. 

(2) It is proposed to use an improved Euclidean norm to fuse the two individual color spaces 

CLAHE enhancement results: YIQ-RGB and HSI-RGB images.  

(3) It is proposed to use bounded general logarithm ratio (GLR) operation with 4 directions 

Sobel edge detector to enhance the whole contrast of image, and get richer gradient details than 

before.      

The remainder of this paper is organized as follows: In the following section, we first introduce 

related works including CLAHE algorithm, linear transformation of RGB-YIQ model, nonlinear 

transformation of RGB-HSI model, 4 directions Sobel edge detector and bounded GLR operation. 

Section 3 introduces our proposed algorithm, including CLAHE in different color spaces and 

enhancement fusion of YIQ-RGB and HSI-RGB color images. Section 4 presents the experiment 

results and a series of evaluate metrics to show the improvements. Section 5 summarizes our work.  

2. Related Works  

In this section, we introduce the original CLAHE algorithm, different color spaces such as RGB, 

YIQ and HSI, color space transformations of RGB-YIQ and RGB-HSI, improved Sobel edge detector 

and bounded GLR operation. The RGB-YIQ color space conversion is a linear transformation, while 

the RGB-HSI color space conversion is a nonlinear one. The Sobel edge detector describes the 

gradient information of the original image, and the value of gradient changes in different pixel of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2017                   doi:10.20944/preprints201703.0086.v1

http://dx.doi.org/10.20944/preprints201703.0086.v1


 4 of 27 

 

the original image. The Sobel edge detector can be used to enhance contrast for fusion image with 

the help of special bounded GLR operation.   

2.1. CLAHE algorithm 

CLAHE was originally applied for enhancement of low-contrast medical images [23,24]. 

CLAHE differs from ordinary AHE in its contrast limiting. The CLAHE introduced clipping limit to 

overcome the noise amplification problem. The CLAHE limits the amplification by clipping the 

histogram at a predefined value before computing the Cumulative Distribution Function (CDF). In 

CLAHE technique, an input original image is divided into non-overlapping contextual regions 

called sub-images, tiles or blocks. The CLAHE has two key parameters: Block Size (BS) and Clip 

Limit (CL). These two parameters mainly control enhanced image quality. The image is getting 

bright when CL is increased because input image has very low intensity and larger CL makes its 

histogram flatter. As the BS is bigger, the dynamic range becomes larger and the contrast of image 

is also increasing. The two parameters determined at the point with maximum entropy curvature 

produce subjectively good quality of image with using the entropy of image [27]. 

The CLAHE method applies histogram equalization to each contextual region. The original 

histogram is clipped and the clipped pixels are redistributed to each gray level. The redistributed 

histogram is different with ordinary histogram, because each pixel intensity is limited to a selected 

maximum. But the enhanced image and the original image have the same minimum and maximum 

gray values [24,28]. The CLAHE method to enhance the original image consists of the following 

steps: 

Step 1: Dividing the original intensity image into non-overlapping contextual regions. The total 

number of image tiles is equal to NM × , and 88×  is a good value to preserve the image 

chromatic data. 

Step 2: Calculating the histogram of each contextual region according to gray levels present in 

the array image.   

Step 3: Calculating the contrast limited histogram of the contextual region by CL value as  

grayavg NNrYNrXN /)( ×=                                                        (1) 

where avgN  is the average number of pixel, grayN  is the number of gray levels in the contextual 

region,NrX  and NrY  are the numbers of pixels in the X dimension and Y dimension of the 

contextual region. 

The actual CL can be expressed as  

avgclipCL NNN ×=                                                                 (2) 

where CLN  is the actual CL, clipN  is the normalized CL in the range of [0, 1]. If the number of 

pixels is greater than CLN , the pixels will be clipped. The total number of clipped pixels is defined 

as clip
N , then the average of the remain pixels to distribute to each gray level is  

grayclipavggray NNN /=                                                            (3) 

The histogram clipping rule is given by the following statements  

If  CLregion NiH >)(  then  

CLclipregion NiH =)(_                                                            (4) 

Else if CLavggrayregion NNiH >+ ))((  then 

CLclipregion NiH =)(_                                                            (5) 

Else CLregionclipregion NiHiH += )()(_                                                 (6) 

where )(iH region and )(_ iH clipregion are original histogram and clipped histogram of each region at 

i-th gray level. 

Step 4: Redistribute the remain pixels until the remaining pixels have been all distributed. The 

step of redistribution pixels is given by   
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remaingray NNStep /=                                                               (7) 

where remainN  is the remaining number of clipped pixels. Step  is positive integer at least 1. The 

program starts search from the minimum to the maximum of gray level with the above step. If the 

number of pixels in the gray level is less than CLN , the program will distribute one pixel to the 

gray level. If the pixels are not all distributed when the search is end, the program will calculate the 

new step according to Eq.(7) and start new search round until the remaining pixels is all 

distributed .  

Step 5: Enhancing intensity values in each region by Rayleigh transform. The clipped 

histogram is transformed to cumulative probability, )(iPinput , which is provided to create transfer 

function. The underwater image appears to look more natural when the Rayleigh distribution is 

used. Rayleigh forward transform is given by   

)
)(-1

1
ln(2)( 2

min
iP

yiy
input

α+=                                                   (8) 

where miny is the lower bound of the pixel value, and α  is a scaling parameter of Rayleigh 

distribution that is defined depending on each input image. In this study, α value in Rayleigh 

function is set to 0.04. The output probability density of each intensity value can be expressed as  

)
2

))((
exp(

))((
))((

2

2

min

2

min

αα

yiyyiy
iyp

−
−⋅

−
=         for min)( yiy ≥                  (9) 

A higherα value will result in more significant contrast enhancement in the image, meanwhile 

increasing saturation value and amplification of noise levels. 

Step 6: Reducing abruptly changing effect. The output from the transfer function in Eq. (9) is 

re-scaled using linear contrast stretch. The linear contrast stretch can be given as  

minmax

min)(
)(

xx

xix
iy

−

−
=                                                                (10) 

Where )(ix  is the input value from the transfer function, minx and maxx  denote the minimum 

and maximum value of the transfer function. 

Step 7: Calculating the new gray level assignment of pixels within a sub-matrix contextual 

region by using a bi-linear interpolation between four different mappings in order to eliminate 

boundary artifacts.  

2.2. color spaces 

Color spaces provide a method for specifying, ordering and manipulating colors. The goal of a 

color model is to facilitate the specification of colors in a standardized way [29]. In general, a color 

space is a mathematical representation of a set of colors, and they can be classified into three basic 

parts: color spaces based on HVS (e.g. RGB, HVS, HSI and etc.); application specific (e.g. YCbCr, 

JPEG-YCbCr, YUV, YIQ and etc.) and CIE color spaces (e.g. CIELab and etc.) [30,31]. Within the first 

category, the most widely used color space in digital image capturing and displaying is RGB. 

Phenomenal colors also form part of this first category incorporating color spaces such as HSV 

(hue-saturation-value) and HSI, which are simply transformations from RGB space [30]. The HSV 

space is more akin to the human conceptual understanding of color [32]. The second category deals 

with application-based color space. This includes CMY (Cyan-Magenta-Yellow) used in printing 

applications and TV-related color spaces such national television system committee (NTSCs) YIQ, 

YUV and YCbCr [30]. The third category deals with the CIE color spaces. International Commission 

on Illumination (CIE) specifies three color spaces: CIE*XYZ, CIE*Lab and CIE*Luv, which CIE*Lab 

and CIE*Luv provide a perceptually equal space [30]. 

Different color spaces usually display different color characteristics suitable for different visual 

tasks, such as detection, indexing, and recognition [33-36]. The choice of a suitable color space for 

color representation remains a challenge for scientists researching color image processing [37,38]. 
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2.2.1. RGB color space 

RGB model is the primary and source color space. In RGB model, a color space is defined in 

terms R, G, and B components, known as the primary colors. These three components are 

monochrome intensity images. In this model, a digital image consists of three planes of 

independent images, each of which stores the values of R, G and B. The RGB model is a 

hardware-oriented color model in which R, G, and B components are equivalent and have strong 

correlation. Thus, the change in one component will affect the others. Therefore, it is an ideal tool 

for color generations, when images are captured by a color video camera or displayed in a color 

monitor screen [25].  

The RGB color space is the most common and often found in computer systems as well as 

television, video and so on, and it is widely used in computer graphics and imaging [39]. The most 

of the color spaces have been developed for specific applications, but all come from the same 

concept: the trichromatic theory of primary colors of R, G and B [40]. Other color spaces are usually 

calculated from the RGB color space via either linear or nonlinear transformations [33-36,41]. 

However, RGB is not very efficient when dealing with “real-world” images. RGB color space is not 

appropriate for the entire spectrum of image processing tasks [39]. The color image processing is 

motivated by two important factors: first, by a similarity to human vision, fully chromatic; and 

second, by the increasing of the information that the chromaticity contributes to the analysis of 

images [29]. 

The RGB model, which is computationally convenient, is not very useful in the specification 

and color recognition [29]. The RGB model is a perceptually nonuniform color space and one of its 

limitations is the fact that the chrominance and intensity components are not explicitly defined [42]. 

The human being does not recognize a color by having an amount of R, G or B components, but 

uses attributes perceptual of hue, saturation and intensity [29]. On the other hand, this RGB model 

has serious disadvantage when you want to perform different types of processing of the images 

such as enhancement, segmentation or classification. Although the RGB model is best suited to 

display color images, the preliminary results obtained shows that this space is not suitable for 

analysis and processing imaging with a high degree of correlation between the components R, G 

and B [29].  

 For the purpose of enhancing a color image, it is to be seen that hue should not change for any 

pixel. If hue is changed then the color gets changed, thereby distorting the image [6]. Thus, all 

colors are seen as variable combination of the three primaries in the RGB color model, which is 

usually used in representing and displaying images. Besides, several color models that decouple 

luminance and chromaticity are briefly described in the following in terms of their relations with 

the RGB model [43]. It is necessary to develop approach extracts the color features using a 

multispace adaptive clustering algorithm, while the texture features are calculated using a 

multichannel texture decomposition scheme. 

2.2.2. YIQ color space 

The YIQ model is the color primary system adopted by NTSC for color television broadcasting. 

Like RGB, the YIQ color space is a device-dependent color space which means the actual color you 

see on your monitor depends on what kind of monitor you are using and what its settings are [44]. 

In the NTSC format, image data consists of three components: luminance (Y), hue (I), and saturation 

(Q). The first component, luminance, represents gray scale information, while the last two 

components make up chrominance (color information) [26]. 

 YIQ Color space is widely used in the NSTC and PAL televisions of different countries. First 

advantages of this format is that gray scale information is separated from color data, so the same 

signal can be used for both color and black & white sets. Second advantage is that it takes 

advantage of human color-response characteristics. The eye is more sensitive to changes in the 

orange-blue (I) range than in the purple-green range (Q), therefore less bandwidth is required for Q 

than for I [3].  
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In this color space, Y-component stands for luminance or brightness, the I-component seems to 

mimic mostly shifts from blue, through purple to red colors (with increasing I), and the 

Q-component seems to mimic mostly the value of green; the I and Q components jointly represent 

the chromatic attributes [44]. 

In addition, the NTSC YIQ representation is optimized with respect to human visual systems 

so that the bandwidths of the I and Q components can be reduced without noticeable loss of visual 

quality [45,46]. 

As mentioned earlier, in the YIQ color representation, the chrominance components are 

separated from the luminance component and as a result the shadows and local inhomogeneities 

are generally better modeled than in the RGB color space. Colors with high degrees of similarity in 

the RGB space may be difficult to distinguish, while the YIQ representation may provide a much 

stronger discrimination [42]. Its purpose is to exploit certain characteristics of the human visual 

system to maximize the use of a fixed bandwidth. 

The YIQ color space is defined by means of a linear transformation from the RGB color space 

[47]. The color space from RGB to YIQ transformation is given as  

































−

−−=

















B

G

R

Q

I

Y

312.0523.0211.0

322.0274.0596.0

114.0587.0299.0

                                           (11) 

The decorrelation of the R, G, and B component images makes the Y, I, and Q component 

images complementary to each other [44]. 

The color space from YIQ backward to RGB transformation is given as  

1.000 0.9562 0.6214

1.000 0.2727 0.6468

1.000 1.1037 1.7006

R Y

G I

B Q

     
     = − −     
     −     

                                          (12) 

For RGB values with a range of 0-255, Y has a range of 0-255, I has a range of 0 to ±152, and Q 

has a range of 0 to ±134. In the NTSC YIQ representation, the restoration of the Y component is 

critical because this component contains 85%-95% of the total energy and has a large bandwidth. 

the bandwidths of I and Q components are much smaller than that of the Y component [48]. 

2.2.3. HSI color space 

HSI model is the most frequently used application-oriented color space. HSI color space is 

based on the human visual perception theory and is suitable for describing, and interpreting color. 

HSI model defines a color space in terms of hue (H), saturation (S), and intensity (I) components. It 

decouples achromatic information (I component) from chromatic information (H and S components) 

in a color image. Thus, each pixel of an image represented in this space has three data: hue and 

saturation which provide information of color, and intensity which describes the brightness. 

Therefore, it is an ideal tool for developing image-processing algorithms based on color 

descriptions that are natural and intuitive to humans [31,49]. 

The HSI color space is very important and attractive color model for image processing 

applications because it represents colors similarly how the human eye senses colors [26,28]. It is an 

application-oriented color model and to some extent H, S, and I components are independent from 

each other. So, one component can be processed separately without affecting the others [50], which 

significantly simplifies the workload of image analysis and image processing [25]. For the purpose 

of enhancing a color image, it is to be seen that hue should not change for any pixel. If hue is 

changed then the color gets changed, thereby distorting the image [6]. 

There are two reasons why the HSI color space is chosen to develop the CLAHE algorithm: 

first, compared with the RGB color space, the HSI color space is much closer to human being’s 

perception to color; second, the intensity component is the weighted average of three color channels 

and is less sensitive to noise [26,51]. 
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The Hue component describes the color itself in the form of an angle between [0, 360] degrees: 

0 degree means red, 120 means green, 240 means blue, 60 is yellow, and 300 is magenta. The 

saturation component signals how much the color is polluted with white color. The saturation 

range is [0, 1]. The Intensity range is between [0, 1], and 0 means black, 1 means white [49]. 

The HSI space is calculated from the primary RGB color space via nonlinear transformation. 

The conversion formulas of color from RGB space to HSI space are given as [49]  
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If R,G,B have been normalized in range of [0, 1], then S, I are in range of [0, 1], and θ  is the 

angle between the point and the red axis in the HSI color space.  

On the contrary, the conversion formula of color image from HSI space backward to RGB 

space are given as [26]  
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For BR district ( )360240 <≤ H , 
240−= HH  
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2.3. Sobel edge detector 

The importance of edge detection arises from the fact that edges can capture local features and 

provide useful information in an image. In images, edges are marked by discontinuities or 

significant variations in intensity or gray level, providing the location of the object contour [52,53]. 

Edge detection, one of the fundamental and most important problems in the field of lower level 

image processing, plays a very important role in the realization of a complete vision based 
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understanding/monitoring system for automatic scene analysis/monitoring [54]. Quality of detected 

edges plays a very important role in realization of complex automated computer/machine vision 

systems [53,54]. 

An edge is a collection of connected pixels where the intensity level changes abruptly [26]. 

Edges in digital images are defined as the image positions/points where the intensity/brightness of 

two neighboring pixels is significantly different from each other [55]. Edges can usually be found in 

parts of an image where transition occurs, either between different objects, different regions, or 

between objects and the background. In this view, gradients are effective descriptors of edges [53]. 

Edges provide significant and important information related to objects present in the scene. This 

information helps in achieving higher level objectives like segmentation, object recognition, scene 

analysis, and so forth [55]. 

For digital images, derivatives can be approximated with discrete differentiation. Therefore, 

first-order edge detectors are easy to implement and widely used. There are several methods for 

edge detection and extraction, such as Sobel, Roberts operators and Canny algorithm, and so on. 

Prewitt and Sobel operations are examples of the gradient-based edge detectors [56,57]. Among 

them, the Sobel operators are especially preferred because they are nonlinear filters with image 

smoothing, and thus can produce less fragmentary edge images [53]. The Sobel edge detector is 

very popular than simple gradient operators due to its property to counteract the noise sensitivity 

and easier implementation [58]. The Sobel operator is chosen in this paper because it costs low 

computation and can obtain the direction of the edges. 

The Sobel operator is based on computing an approximation of the gradient of the image 

intensity function. The original Sobel filter uses two 3 3× spatial masks which are convolved with 

the original image to calculate the approximations of the gradient [55]. The Sobel edge detector [26] 

performs a spatial gradient measurement on an image and so emphasizes regions of high spatial 

frequency which corresponds to edges. Typically, it is used to find the approximate absolute 

gradient magnitude at each pixel in an input gray-scale image. 

The original Sobel edge detection filter is a commonly used edge detector that computes an 

approximate gradient of the image intensity function. For each pixel in the image, it obtains the 

vertical and horizontal components of the gradient by applying convolution with two 3 3×  spatial 

masks defined as  

1

1 2 1

0 0 0

1 2 1

S

− − − 
 

=  
 
 

                                                             (18) 

2

1 0 1

2 0 2

1 0 1

S

− 
 

= − 
 − 

                                                               (19) 

where 1S  is the vertical spatial mask in 
90 direction , while 2S is the horizontal one in 

0  

direction.  

The accuracy of the Sobel operator for edge detection is relatively low because it uses only two 

masks which detect the edges in horizontal and vertical directions. This problem can be overcome 

by using the Sobel compass operator which uses a larger set of masks with narrowly spaced 

orientations. It uses four masks (
0 ,

45 ,
90 and

135 ) each providing edge strength along one of 

the four possible directions of the compass [26,53,55]. The other two directions spatial masks can be 

expressed as  

3

0 1 2

1 0 1

2 1 0

S

 
 

= − 
 − − 

                                                            (20) 
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4

2 1 0

1 0 1

0 1 2

S

 
 

= − 
 − − 

                                                            (21) 

where 3S  is the spatial mask in 45
direction , while 2S  is the another one in 135

 direction.  

Therefore, to find the edges in all possible directions, the four masks (
0 , 

45 ,
90 and 

135 ) 

must be applied to each pixel of the input image.                                                         

Supposing ( , )Z i j  denotes the 3 3× image neighbourhood of pixel ( , )i j , then ( , )Z i j  can 

be expressed as  

( )
( 1, 1) ( 1, ) ( 1, 1)

, ( , 1) ( , ) ( , 1)

( 1, 1) ( 1, ) ( 1, 1)

z i j z i j z i j

Z i j z i j z i j z i j

z i j z i j z i j

− − − − + 
 = − + 
 + − + + + 

                               (22) 

where ( , )z i j  denotes the original gray value of pixel ( , )i j . 

These compute the average gradient components across the neighboring lines or columns, 

respectively. The local edge strength is defined as the gradient magnitude given by the 
2L  norm 

of the corresponding gradient vector (gradient magnitude). Then the gradient vector in the 4 directions 

can be respectively expressed as  
2 2

0 0

( , ) ( 1, 1) ( , )   1,2,3,4k k

m n

G i j z i m j n S m n k
= =

= + − + − × =                         (23) 

The gradient image of the pixel ( , )i j  can be defined as  

4
2

1

( , ) ( , )k

k

g i j G i j
=

=                                                             (24) 

The gradient image is normalized as follows 

1

2

log( ( , ) 1 )
( , )

log(max( ( , )) )
n

g i j
g i j

g i j

δ

δ

+ +
=

+
                                        (25) 

where 1δ  and 2δ are small positive disturbance quantities to ensure the result of ng ∈(0,1). 

With the abundant gradient information, the adaptive gain of pixel ( , )i j can be expressed as [59] 
[ ( , )]

( , ) 2 na g i j
i j bλ ×= +                                                            (26) 

where a  and b are adjustable positive quantities to ensure the average of λ  in the range: 

λ ∈(1,4). 

2.4. GLR Model in Bounded Operate 

The value domains of input and output are in closed range in boundary operates, which can 

solve the problem of overstepping the boundary. Three GLR models in bounded operation are 

introduced in this section, including add, subtraction and multiplication models [59]. Consider the 

gray value of image is defined as ),( jiI , then the normalized gray value is given by 
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where: 1δ  and 2δ are small positive disturbance quantities, 256=M  for 8-bit gray image. The 

normalized gray value )1,0(),( ∈= jiIx n , nonlinear transform 
x

x
xp

−
=

1
)( , logarithmic 

transform )(xφ  and its inverse logarithmic transform )(1- xφ  are expressed as   
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xφ                           (29) 

The symbols of ⊕ , ◎ and ⊗  are adopted to define as add, subtraction and multiplication 

operation of GLR model, and the definition are expressed as  
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φ φ−⊗ = =

+
                                  (32) 

where 1x  and 2x  are two channels signal of input image, r  is arbitrary real number. The three 

GLR model operations are presented in Figure 1. 

 
(a)  (b) (c) 

Figure 1. GLR model operations: (a) GLR add operation, y x r= ⊕ ; (b) GLR subtraction operation, 

xy = ◎ r ; (c) GLR multiplication operation, y x r= ⊗ . 

The add and subtraction operations are inverse operations to each other in GLR model. These 

two operations can adjust the brightness of the image either in low value gray segment or high 

value gray segment, but the adjustments are not symmetrical for the two segments.  

In the multiplication operation of GLR model, in the condition of 1r > , the pixel values in the 

zero point of GLR model ( 0.5x = ) are stretched, while other pixel values far away from the zero 

point are compressed [59]. This multiplication operation can adjust the brightness of the image both 

in low value gray segment and high value gray segments, and the adjustments are symmetrical for 

the two segments, which is very different from the above add and subtraction operations. This 

operation effects will not be realized by the traditional multiplication operation. The GLR operates 

are boundary operates with closure, and can solve the problem of overstep the boundary. Which 

makes the details of the enhanced image more clear and the overall contrast higher than others.  

3. Proposed Algorithm  

An algorithm to enhance underwater image captured by CCD/CMOS camera sensors has to 

improve contrast and restore the chromatic information without suffering from color cast and 

deficiency in detail enhancement. In this algorithm, at first, the underwater image is converted from 

RGB color space to YIQ color space with linear transformation and HSI color space with nonlinear 

transformation. The chromatic information (hue and saturation) and the brightness information are 

independent in YIQ and HSI color spaces. Secondly, the brightness information is employed to 

enhance the contrast by using Rayleigh CLAHE, while the chromatic information are preserved. 

The illuminance component (Y) in YIQ image is enhanced with Rayleigh CLAHE to get improved 

illuminance component (Y1), and the intensity component (I) in HSI image is enhanced with 

Rayleigh CLAHE to get improved intensity component (I1). Then, the enhanced YIQ space and HSI 

space images are transformed backward to RGB space images to achieve enhanced YIQ-RGB and 

HSI-RGB images. When the three components of red, green, and blue are not coherent in the 

YIQ-RGB or HSI-RGB images, the three components will have to be harmonized. Finally, the 
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YIQ-RGB image and HSI-RGB image are combined to enhancement fusion RGB image in adaptive 

Euclidean norm by using GLR multiplication operation with Sobel edge detector. The pipeline of 

our proposed algorithm is shown in Figure 2. 

 

Figure 2. The pipeline of the proposed algorithm 

3.1. CLAHE in different color spaces 

3.1.1. CLAHE in RGB color space 

In RGB color model, a digital image consists of three planes of independent images, each of 

which stores the values of R, G and B. The algorithm of CLAHE in RGB color space could include 

the following steps: at first, the original image is divided into three independent images as R, G and 

B images; Then, the three independent images are respectively enhanced with Rayleigh CLAHE to 

achieve improved R, G and B images; Finally, the improved R, G and B images are combined into 

enhanced CLAHE RGB color image.  

The algorithm of CLAHE in RGB color space is not very difficult, and a more coherent and 

chromatic image can be achieved in the end. This algorithm is really useful to harmonize the color 

image while the three components of R, G and B are seriously unbalanced of the original image. 

But, the enhancement effects such as contrast and information entropy are very limited.      

3.1.2. CLAHE in YIQ color space 

The YIQ color space is defined by means of a linear transformation from the RGB color space. 

In the YIQ model, image data consists of three components: Y, I , and Q. The first component, Y, 

represents gray scale information, while the last two components make up chrominance (color 

information). Because the YIQ representation is optimized with respect to human visual systems, 

the YIQ Color space is widely used in the NSTC and PAL televisions of different countries [26] . 

The algorithm of CLAHE in YIQ color space could include the following steps:  

Step 1: The three components of R, G and B in RGB image are normalized to the range of 

[0,  1]  as 
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                                                        (33) 

Step 2: Linear transformation from RGB color space to YIQ color space  

0.299 0.587 0.114
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n n

n n

n n

Y R

I G

Q B

    
    = − −    
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                                       (34) 

Step 3: The illuminance component ( nY ) in YIQ image is enhanced with Rayleigh CLAHE to 

get improved illuminance component ( nY ′ ); 

Step 4: Linear transformation from YIQ color space backward to RGB color space  

1.000 0.9562 0.6214

1.000 0.2727 0.6468

1.000 1.1037 1.7006

n n

n n

n n

R Y

G I

B Q

 ′′        ′ = − −          ′ −     

                                      (35) 

Step 5：Normalized RGB image backward to the range of [0,  255]   

255

255

255

n

n

n

R R

G G

B B

′ ′= ×


′ ′= ×
 ′ ′= ×

                                                                (36) 

Step 6：Final output RGB image can be calculated as  

min
1

max min

min
1

max min

min
1

max min

R R
R

R R

G G
G

G G

B B
B

B B

 ′ ′−
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 ′ ′−
=

′ ′−
 ′ ′−

=
′ ′−

                                                             (37) 

where min min{ }R R′ ′= , max max{ }R R′ ′= ; min min{ }G G′ ′= , max max{ }G G′ ′= ; min min{ }B B′ ′= , 

max max{ }B B′ ′= . 

The CLAHE enhanced output RGB image in YIQ color space is defined as YIQ-RGB image, 

and the three components of the YIQ-RGB image is defined as 1R , 1G  and 1B .  

3.1.3. CLAHE in HSI color space 

The HSI space is calculated from the primary RGB color space via nonlinear transformation. 

HSI color space is based on the human visual perception theory and is suitable for describing, and 

interpreting color. HSI model defines a color space in terms of H, S, and I components. It decouples 

achromatic information (I component) from chromatic information (H and S components) in a color 

image [49]. Compared with the RGB color space, the HSI color space is much closer to human 

being’s perception to color. On the other hand, the intensity component is the weighted average of 

three color channels and is less sensitive to noise [51]. So the HSI model is the most frequently used 

application-oriented color space.  

The algorithm of CLAHE in HSI color space could include the following steps:  
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Step 1: The three original components of R , G and B  in RGB image are normalized to nR , 

nG  and nB , the normalization equation is as same as Eq. (33); 

Step 2: Nonlinear transformation from RGB color space to HSI color space  

1
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3

3
1 [min( , , )]

               

360       

nn n n n

n n n n
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                                (39) 

Step 3: The intensity component ( nnI ) in HSI image is enhanced with Rayleigh CLAHE to get 

improved intensity component ( nnI ′ ); 

Step 4: Nonlinear transformation from HSI color space ( n n nnH S I ′ ) backward to RGB color 

space ( n n nR G B′′ ′′ ′′ ), reference to Eq.(15-17):  

Step 5：Normalized RGB image backward to the range of [0,  255]  
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255

255

n

n

n
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′′ ′′= ×
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                                                               (40) 

Step 6：Final output RGB image can be calculated as  

min
2

max min

min
2

max min
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2

max min

R R
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R R
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B B
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                                                             (41) 

where min min{ }R R′′ ′′= , max max{ }R R′′ ′′= ; min min{ }G G′′ ′′= , max max{ }G G′′ ′′= ; min min{ }B B′′ ′′= , 

max max{ }B B′′ ′′= . 

The CLAHE enhanced output RGB image in HSI color space is defined as HSI-RGB image, and 

the three components of the HSI-RGB image is defined as 2R , 2G  and 2B .  

3.2. Enhancement fusion of YIQ-RGB and HSI-RGB images 

Both CLAHE enhanced images of YIQ-RGB and HSI-RGB are integrated using a Euclidean 

norm [5], then the fusion image is enhanced by GLR multiplication operation with Sobel edge 

detector. The algorithm of CLAHE enhancement fusion could include the following steps:  

Step 1: The fusion image in RGB color space can be calculated in a Euclidean norm as 

2 2 2 2 2 2

1 2 1 2 1 2, ,fRGB R R G G B Bγ  = ⋅ + + +                                    (42) 

where γ  is the fusion coefficient of the images fusion, and γ  is in the range of [0.50,0.95] . The 

three components of the YIQ-HSI fusion image is defined as 
fR , 

fG  and 
fB . 

fR , 
fG  and 
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fB are in the range of [0,  255] . The fusion coefficient γ  is chosen to ensure the Mean of the 

enhancement fusion image in the range of [128-5,  128+5] . The enhancement fusion image is 

getting brighter when γ  is increased.   

Step 2: The three components of 
fR , 

fG  and 
fB  in RGB image are normalized as 
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=




=



=


                                                          (43) 

Step 3: The three normalized components of fnR , fnG  and fnB  in RGB image are carried 

out GLR multiplication operation with Sobel edge detector independently  
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      (44) 

where ( , )x yλ  is the adaptive gain in Sobel edge detector of pixel ( , )x y . The average Sobel edge 

detector is expressed as λ . 

Step 4：Normalized RGB image which is given as 
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                                                                 (45) 

Step 5：Final output RGB image can be calculated as  

min

max min
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                                                            (46) 

where min min{ }R R=  , max max{ }R R=  ; min min{ }G G=  , max max{ }G G=  ; min min{ }B B=  , 

max max{ }B B=  . 

The three components of CLAHE enhanced fusion image are outR , outG  and outB , which 

combine into final output RGB image as outRGB . 

4. Simulation Results and Discussions 

To evaluate the proposed CLAHE fusion algorithm quantitatively, simulation experiments on 

different underwater images were carried out. 
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4.1. Quantitative Metrics 

In order to demonstrate the performance of the proposed CLAHE enhancement fusion 

algorithm, it is tested on different underwater sensing images. The proposed algorithm and other 

existing algorithms such as He’s DCP, MSR, MSRCR, RGB-CLAHE, YIQ-CLAHE and HSI-CLAHE 

are implemented using MATLAB software (MATLAB 7.11, release 2010b), and 4GB RAM with I3 

processor. A series of quantitative metrics such as Mean, Contrast, Entropy and colorfulness metric 

(CM) for single enhanced color image were used to assess the enhancement algorithms. The Mean is 

the average brightness of the enhanced image. The higher values of Contrast, Entropy and CM 

imply that the visual quality of the enhanced image is good. These four quantitative metrics are 

defined in Eq. (47) to Eq. (50).  

( )
1

3
R G BMean µ µ µ= + +                                                        (47) 

where Rµ , Gµ and Bµ are the means of the improved image in the three components of R, G and B.  

3 1 1
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= = =

= −                                     (48) 
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k i j

Entropy P i j d P i j dθ θ
− −

= = =

= −                              (49) 

where ( , ; , )kP i j d θ  is the gray-level co-occurrence matrix (GLCM) of the image. L  is the gray levels of 

the image ( =256L  in 8-bit image), d is the distance of two pixels ( 1d = ), and kθ  is the direction 

between two pixels ( ( 1)*45k kθ = − 
, 1,2,3,4k = ).                                                 

CM is no-reference image quality metric. It is suggested by Susstrunk and Winkler [60]. CM is 

the quality in terms of color enhancement. The metric is defined in the RGB color space as below. 

Let the three components of a color image be denoted by R, G and B, respectively [61]. Consider 

R Gα = −  and ( + ) / 2R G Bβ = − , then the colorfulness of the image is defined as   

2 2 2 20.3CM α β α βσ σ µ µ= + + × +                                               (50) 

where ασ  and βσ  are standard deviations of α  and β , respectively. Similarly, αµ  and βµ  

are their means. 

The Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) are the two error metrics 

used to compare the quality of improved underwater images. The MSE represents the cumulative 

squared error between the improved image and the original image, whereas PSNR represents a 

measure of the peak error. The good method can be described if it produces lower MSE and higher 

PSNR values[5].  

The MSE is calculated using the following equation as 

2

1 0

1 1

1
( ( , ) ( , ))

*

H W

x y

MSE I x y I x y
H W = =

= −                                         (51) 

where 1I  and 0I  denotes the improved image and the original image, respectively. The two 

images must be same and denote by H W× . 

To calculate the PSNR, we can use the MSE in Eq. (51). The following equation defines PSNR  
2

10

( 1)
10log  ( )

L
PSNR dB

MSE

 −
=  

 
                                                (52) 

where L  is the gray levels of the image ( =256L in 8-bit image). In general, a improved image is 

acceptable by human perception if its 30 ( )PSNR dB> .  

4.2. Experimental Original Images 
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There are 3 original underwater images chosen for this enhancement algorithm. The 3 original 

images are shown in Figure 3, and the characteristics information of these images are presented in 

Table 1. The characteristics information include image size, mean, contrast, entropy and CM. The 3 

original underwater images are landscape wall, power remains and coral branches. Underwater 

images normally exhibit a high percentage of blue, followed by green and red. Therefore, most 

underwater images appear bluish or greenish [62], given that blue and green are the dominant color 

channels forming the overall image color. Red is the inferior color channel, and its percentage is 

generally lower than those of the other two color channels. The images appear greenish in Figure 

3(a), but bluish in Figure 3(b) and 3(c). The characteristics of the 3 original images can be expressed 

as follows [62,63]: 

(a) The landscape wall image 

 The landscape wall is a typical underwater construction, this image is taken in the 

archaeological site of Baia (Naples-Italy) at the depth of about 5 m underwater. Two fishes are 

swimming around the wall, but the fishes could not be distinguished from the background because 

they are both in almost the same color. The color cast is unusually serious, and the image appears 

greenish.    

 The brightness is good. The contrast and entropy are both the highest in these 3 images,  but 

almost all the details have been submerged in the greenish image. 

(b) The power remains image 

 The power remains are in the bottom of ocean, and a diver is trying to enter into the cockpit. 

The mean of the image is very low, so that the image looks really a little dark. The wheel hubs of the 

power almost could not be recognized from the degrade image. 

 The image could not provide more detail information than landscape wall image, since the 

contrast and entropy are both the medium in the 3 images .  

(c) The coral branches image 

 The coral is typical ocean biology. The image is degraded seriously, the coral branches almost 

could not be recognized from the background, because they are both in the same brightness and 

color.  

The contrast and entropy are both the lowest in the 3 images. The color cast is unusually 

serious. The whole image is in acute dimness.  

 
(a)  (b)  (c)  

Figure 3. The original underwater images: (a) The landscape wall image; (b) The power remains 

image; (c) The coral branches image.   

Table 1. The 5 quantitative metrics of the original images. 

 Image size Mean Contrast Entropy CM 

 Landscape wall 624*413 120.30 842.26 7.64 37.55 

Power remains 624*413 64.84 250.60 6.73 53.00 

Coral branches 692*460 107.73 5.13 5.96 24.33 

4.3. Simulation Results 

4.3.1 Enhancement results of landscape wall image 

The different enhancement results of the original landscape wall image are shown in Figure 4. 

The enhancement algorithms includes DCP, MSR, MSRCR, RGB-CLAHE, YIQ-CLAHE and HSI- 
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CLAHE. The 6 quantitative metrics of enhancement results for the image according to Figure 4 are 

shown in Table 2. The quantitative metrics includes mean, contrast, entropy, CM, MSE and PSNR. 

The contrast and entropy are both very high, the traditional image enhancement algorithms such as 

DCP, MSR and MSRCR may have really weak effect for this original underwater image. 

 The proposed enhancement algorithm results of the original landscape wall image with 

different CL and BS are shown in Figure 5. The 6 quantitative metrics of our proposed enhancement 

results according to Figure 5 are shown in Table 3. The relationships of Contrast, Entropy and CM 

v.s. the average of Sobel detector λ for fused CLAHE landscape wall image (BS=8*8, 

CL=0.006, 0.57γ = ) are shown in Figure 6. The relationships of Contrast, Entropy and CM v.s. the 

fusion coefficient γ for fused CLAHE landscape wall image (BS=8*8, CL=0.006, 1.1420λ = ) are 

shown in Figure 7. 

 
(a)  (b)  (c)  

 
(d) (e) (f)  

Figure 4. The different enhancement results for original landscape wall image: (a) DCP; (b) MSR; (c) 

MSRCR; (d) RGB-CLAHE; (e) YIQ-CLAHE; (f) HSI-CLAHE. 

Table 2. The 6 quantitative metrics of enhancement results for landscape wall image in Figure 4. 

(CLAHE: BS=8*8, CL=0.005) 

 Mean Contrast Entropy CM MSE PSNR 

DCP 115.90 885.18 7.58 38.82 9.17 41.48 

MSR 181.49 609.33 6.39 36.83 5742.39 10.77 

MSRCR 129.13 930.63 7.01 36.27 1287.02 20.05 

RGB-CLAHE 118.20 1250.99 7.62 38.75 412.36 23.04 

YIQ-CLAHE 117.95 1581.14 7.70 41.11 868.59 20.06 

HSI-CLAHE 119.37 1654.87 7.66 42.67 738.63 20.11 

 

 
(a)  (b) (c) 
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(d) (e)  (f)  

Figure 5. The proposed algorithm results for original landscape wall image( =0.57γ , 1.1420λ = ): (a) 

Fused image (BS=8*8, CL=0.004); (b) Fused image (BS=8*8, CL=0.006); (c) Fused image (BS=8*8, 

CL=0.008); (d) Fused image (CL=0.006, BS=5*5); (e)Fused image (CL=0.006, BS=10*10); (f) Fused 

image (CL=0.006, BS=20*20). 

Table 3. The 6 quantitative metrics of proposed algorithms for landscape wall image in Figure 5. 

   Mean Contrast Entropy CM MSE PSNR 

(a) Fusion image 124.80 1949.72 7.82 48.23 1029.12 18.73 

(b) Fusion image 127.15 2232.36 7.83 51.28 1373.88 17.56 

(c) Fusion image 127.86 2311.85 7.82 51.68 1510.23 17.16 

(d) Fusion image 127.25 2085.20 7.83 52.02 1283.02 18.02 

(e) Fusion image 126.62 2332.77 7.83 50.55 1414.06 17.30 

(f) Fusion image 125.63 2495.89 7.82 47.67 1396.77 17.20 

 

 
(a)  (b) (c) 

Figure 6. The relationships of Contrast, Entropy and CM v.s. λ  for fused CLAHE landscape wall 

image (BS=8*8, CL=0.006, 0.57γ = ): (a) Contrast v.s. λ ; (b) Entropy v.s. λ ; (c) CM v.s. λ . 

 
(a)  (b) (c) 

Figure 7. The relationships of Contrast, Entropy and CM v.s. γ  for fused CLAHE landscape wall 

image (BS=8*8, CL=0.006, 1.1420λ = ): (a) Contrast v.s. γ ; (b) Entropy v.s. γ ; (c) CM v.s. γ . 

The data cursors ordinates of Contrast, Entropy and CM in Figure 6 are as same as Figure 

7, which are the quantitative metrics data according to Table 3(b). 0.57γ =  and     1.1420λ =  

may be the best choice to ensure the enhancement fusion image in biggest Contrast, Entropy 

and CM, and smallest MSE. 
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4.3.2 Enhancement results of power remains image 

The different enhancement results of the original power remains image are shown in Figure 8. 

The enhancement algorithms includes DCP, MSR, MSRCR, RGB-CLAHE, YIQ-CLAHE and HSI- 

CLAHE. The 6 quantitative metrics of enhancement results for the image according to Figure 8 are 

shown in Table 4. The quantitative metrics includes mean, contrast, entropy, CM, MSE and PSNR.  

The proposed enhancement algorithm results of the original power remains image with 

different CL and BS are shown in Figure 9. The 6 quantitative metrics of our proposed enhancement 

results according to Figure 9 are shown in Table 5. The relationships of Contrast, Entropy and CM 

v.s. the average of Sobel detector λ  for fused CLAHE power remains image (BS=8*8, CL=0.008, 

0.78γ = ) are shown in Figure 10. The relationships of Contrast, Entropy and CM v.s. the fusion 

coefficient γ  for fused CLAHE power remains image (BS=8*8, CL=0.008, 1.0625λ = ) are shown in 

Figure 11. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 8. The different enhancement results for original power remains image: (a) DCP; (b) MSR; (c) 

MSRCR; (d) RGB-CLAHE; (e) YIQ-CLAHE; (f) HSI-CLAHE. 

Table 4. The 5 quantitative metrics of enhancement results for power remains image in Figure 8. 

(CLAHE: BS=8*8, CL=0.007) 

 Mean Contrast Entropy CM MSE PSNR 

DCP 64.86 251.25 6.73 53.04 0.03 67.70 

MSR 148.72 865.95 6.88 33.13 8995.05 8.68 

MSRCR 128.20 1015.25 7.33 49.75 7000.91 11.30 

RGB-CLAHE  81.46 548.26 6.59 35.65 856.92 19.13 

YIQ-CLAHE 103.97 803.57 7.38 38.86 3219.56 13.76 

HSI-CLAHE  96.99 913.11 7.01 41.27 2552.30 14.32 

 

 
(a) (b) (c) 
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(d) (e) (f) 

Figure 9. The proposed algorithm results for original power remains image( 0.78γ = , 1.0625λ = ): (a) 

Fused image (BS=8*8, CL=0.006);(b) Fused image (BS=8*8, CL=0.008); (c) Fused image (BS=8*8, 

CL=0.010);(d) Fused image (CL=0.008, BS=6*6);(e)Fused image (CL=0.008, BS=12*12); (f) Fused image 

(CL=0.008, BS=24*24). 

Table 5. The 6 quantitative metrics of proposed algorithms for landscape wall image in Figure 9. 

 Mean Contrast Entropy CM MSE PSNR 

(a) Fusion image 120.98 1067.62 7.40 51.02 4771.91 11.44 

(b) Fusion image 129.37 1337.58 7.49 54.94 6375.61 10.23 

(c) Fusion image 135.10 1532.84 7.53 57.69 7649.06 9.49 

(d) Fusion image 131.97 1127.37 7.45 57.18 6562.71 10.10 

(e) Fusion image 128.62 1553.56 7.49 53.14 6404.10 10.21 

(f) Fusion image 128.80 1923.10 7.50 50.37 6588.51 10.09 

 

 
(a)  (b) (c) 

Figure 10. The relationships of Contrast, Entropy and CM v.s. λ  for fused CLAHE power remains 

image (BS=8*8, CL=0.008, =0.78γ ): (a) Contrast v.s. λ ; (b) Entropy v.s. λ ; (c) CM v.s. λ . 

 
(a)  (b) (c) 

Figure 11. The relationships of Contrast, Entropy and CM v.s. γ  for fused CLAHE power remains 

image (BS=8*8, CL=0.008, 1.0625λ = ): (a) Contrast v.s. γ ; (b) Entropy v.s. γ ; (c) CM v.s. γ . 

The data cursors ordinates of Contrast, Entropy and CM in Figure 10 are as same as 

Figure 11, which are the quantitative metrics data according to Table 5(b). 0.78γ =  and     

1.0625λ =  may be the best choice to ensure the enhancement fusion image in biggest Contrast, 

Entropy and CM, and smallest MSE. 
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4.3.3 Enhancement results of coral branches image 

The different enhancement results of the original coral branches image are shown in Figure 12. 

The enhancement algorithms includes DCP, MSR, MSRCR, RGB-CLAHE, YIQ-CLAHE and HSI- 

CLAHE. The 6 quantitative metrics of enhancement results for the image according to Figure 12 are 

shown in Table 6. The quantitative metrics includes mean, contrast, entropy, CM, MSE and PSNR.  

The proposed enhancement algorithm results of the original coral branches image with different 

CL and BS are shown in Figure 13. The 6 quantitative metrics of our proposed enhancement results 

according to Figure 13 are shown in Table 7. The relationships of Contrast, Entropy and CM v.s. the 

average of Sobel detector λ  for fused CLAHE coral branches image (BS=8*8, CL=0.012, =0.71γ ) are 

shown in Figure 14. The relationships of Contrast, Entropy and CM v.s. the fusion coefficient γ  for 

fused CLAHE coral branches image (BS=8*8, CL=0.012, 1.0073λ = ) are shown in Figure 15. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 12. The different enhancement results for original coral branches image: (a) DCP; (b) MSR; (c) 

MSRCR; (d) RGB-CLAHE; (e) YIQ-CLAHE; (f) HSI-CLAHE. 

Table 6. The 6 quantitative metrics of enhancement results for coral branched image in Figure 12. 

(CLAHE: BS=8*8, CL=0.011) 

 Mean Contrast Entropy CM MSE PSNR 

DCP 109.83 7.46 6.11 25.30 37.03 43.39 

MSR 115.22 40.21 6.78 56.08 7343.69 31.92 

MSRCR 127.39 119.44 7.54 45.29 4065.14 17.71 

RGB-CLAHE  108.70 29.36 6.74 21.63 901.84 32.61 

YIQ-CLAHE  107.50 104.69 7.20 28.65 1299.24 21.29 

HSI-CLAHE  108.87 107.83 7.37 32.12 1252.03 20.41 

 

 
(a) (b) (c) 
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(d) (e) (f) 

Figure 13. The proposed algorithm results for original coral branches image( 0.71γ = , 1.0073λ = ): (a) 

Fused image (BS=8*8, CL=0.010); (b) Fused image (BS=8*8, CL=0.012); (c) Fused image (BS=8*8, 

CL=0.014); (d) Fused image (CL=0.012, BS=5*5); (e)Fused image (CL=0.012, BS=10*10); (f) Fused 

image (CL=0.012, BS=20*20) 

Table 7. The 6 quantitative metrics of proposed algorithms for coral branches image in Figure 13. 

 Mean Contrast Entropy CM MSE PSNR 

(a) Fusion image 125.54 133.15 7.43 41.55 1865.39 16.69 

(b) Fusion image 128.76 170.89 7.53 45.25 2508.40 15.60 

(c) Fusion image 130.94 200.17 7.59 47.57 2990.98 14.97 

(d) Fusion image 127.94 136.09 7.56 47.82 2493.84 15.30 

(e) Fusion image 126.51 172.90 7.47 43.81 2096.31 16.06 

(f) Fusion image 132.49 219.89 7.39 41.35 2507.79 15.87 

 

 
(a)  (b) (c) 

Figure 14. The relationships of Contrast, Entropy and CM v.s. λ  for fused CLAHE coral branches 

image (BS=8*8, CL=0.012, =0.71γ ): (a) Contrast v.s. λ ; (b) Entropy v.s. λ ; (c) CM v.s. λ . 

 
(a)  (b) (c) 

Figure 15. The relationships of Contrast, Entropy and CM v.s. γ  for fused CLAHE coral branches 

image (BS=8*8, CL=0.012, 1.0073λ = ): (a) Contrast v.s. γ ; (b) Entropy v.s. γ ; (c) CM v.s. γ . 

The data cursors ordinates of Contrast, Entropy and CM in Figure 14 are as same as 

Figure 15, which are the quantitative metrics data according to Table 7(b). 0.71γ =  and     

1.0073λ =  may be the best choice to ensure the enhancement fusion image in biggest Contrast, 

Entropy and CM, and smallest MSE. 

4.4. Discussions 

The enhancement effect of DCP algorithm for underwater image is very limited, especially in 

term of contrast improvement. The MSR enhancement algorithm can improve contrast only for 
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original image with low contrast, but it could lead to serious color cast. The MSRCR enhancement 

algorithm can improve contrast, entropy, and restore color, but further improvement may be very 

difficult. The MSR and MSRCR algorithms suffer from noise amplification in relatively local regions, 

which may lead to serious color mottles. The CLAHE-YIQ and CLAHE-HSI algorithms can produce 

better enhancement effects than the ahead three enhancement algorithms in terms of contrast and 

entropy improvements. The CLAHE-RGB algorithm can produce higher PSNR for human 

perception than others except DCP. 

The enhancement image is getting bright, and the contrast, entropy, and CM are increasing 

when CL is increased because input image has very low intensity and larger CL makes its 

histogram flatter. As the BS is bigger, the dynamic range becomes larger and the contrast of image 

is also increasing, but the entropy and CM decreasing. The image quality mainly depends on the CL 

rather than BS.  

The quantitative metrics of contrast, entropy and CM in enhancement fusion image are getting 

bigger when average Sobel edge detector increases, but the metric of MSE may appear valley value. 

The quantitative metrics of contrast and CM in enhancement fusion image are getting bigger when 

the fusion coefficient increases, but the metric of Entropy may appear peak value. The average 

Sobel edge detector and the fusion coefficient must be chosen reasonably to ensure the 

enhancement fusion image in biggest Contrast, Entropy and CM, and smallest MSE. 

In a word, there are two key parameters in CLAHE algorithm: BS and CL, another two key 

parameters in fusion enhancement algorithm: average Sobel edge detector and fusion coefficient. 

These four key parameters affect the quality of the final CLAHE enhancement fusion image, which 

should be chosen in a reasonable range. The quantitative metrics are integrated factors to assess the 

enhancement image, and these factor should be considered in a whole rather than only one or two.       

5. Conclusions  

Contrast improving and color restoring is an important but difficult task for underwater image 

application. Underwater images may lose contrast suffering from degradation because of poor 

visibility conditions and effects such as light absorption, light reflection, bending of light and 

scattering of light, which lead to dimness and distortion. Existing image enhancing algorithm may 

not be able to improve contrast and restore color efficiently for the underwater image. Thus, this 

paper proposes an CLAHE enhancement fusion algorithm for underwater image. The proposed 

algorithm consists of four steps: from RGB to YIQ and HSI color spaces, CLAHE enhancement in 

YIQ and HSI color spaces, from YIQ and HSI backward to RGB color space, and two improved RGB 

images fusion in Euclidean norm and GLR operation. Based on experimental results obtained by 

processing various underwater images with different mean, contrast and entropy, the contrast 

improving and color restoring can be effectively achieved by using the proposed algorithm which 

outperforms existing state-of-the-art image enhancement algorithm in visual performance and 

quantitative evaluation. 

The main contributions of the proposed algorithm include that this study proposed two 

different color spaces transformations for CLAHE enhancement: RGB-YIQ and RGB-HSI, an 

improved Euclidean norm to fuse the two individual color spaces CLAHE images, an improved 4 

directions Sobel edge detector and GLR operation. These are four key parameters should be chosen 

to achieve high contrast and entropy for the final CLAHE enhancement fusion image, which are BS 

and CL in CLAHE algorithm, average Sobel edge detector and fusion coefficient in fusion 

enhancement algorithm. The image enhancement effectiveness could be proven by the objective 

quality metrics. For the underwater image with high contrast and entropy, the contrast and entropy 

could be improved at least 131.25% and 2.36%; for the image with low contrast and entropy, these 

two ratios were 2495.52% and 24.66%, respectively. These results indicates that our algorithm could 

provide underwater image enhancement with the highest quality. 

The proposed algorithm is applicable for degraded underwater image and other remote 

sensing image for visual enhancement of contrast and entropy. However, the main limitation is that 

it is sometimes more time-consuming than the existing algorithm, and the PSNR is less than 30 dB 
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which is not really acceptable by human perception. Therefore, our future work will focus on the 

acceleration of our CLAHE enhancement fusion algorithm, and also focus on the CLAHE fusion 

algorithm optimization applications in underwater image balancing of uneven illumination 

environment. 
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