
Contrast Preserving Decolorization

Cewu Lu Li Xu Jiaya Jia

Department of Computer Science and Engineering

The Chinese University of Hong Kong

{cwlu, xuli, leojia}@cse.cuhk.edu.hk

Abstract

Decolorization – the process to transform a color im-

age to a grayscale one – is a basic tool in digital printing,

stylized black-and-white photography, and in many single

channel image processing applications. In this paper, we

propose an optimization approach aiming at maximally pre-

serving the original color contrast. Our main contribution

is to alleviate a strict order constraint for color mapping

based on human vision system, which enables the employ-

ment of a bimodal distribution to constrain spatial pixel dif-

ference and allows for automatic selection of suitable gray

scale in order to preserve the original contrast. Both the

quantitative and qualitative evaluation bears out the effec-

tiveness of the proposed method.

1. Introduction

Grayscale is one of the widely used pictorial expressions

in digital printing and photograph rendering. Color-to-gray

conversion is required in many single-channel image pro-

cessing applications. Naturally, this type of conversion is a

task of dimension reduction, which inevitably suffers from

information loss. The general goal is thus to use the lim-

ited range in gray scales to preserve as much as possible

the original color contrast. It is found that intuitive meth-

ods, such as extracting the lightness channel in the CIELab

color space [18, 5], would easily diminish salient chromatic

structures and lose important appearance features. One ex-

ample is shown in Fig. 1(a) and (b).

To preserve color contrast, recent color-to-gray methods

imposed constraints on spatial intensity variation and re-

quired that the grayscale contrast is similar to that of the

color input. In general, signed color difference, as well as

the color order, for neighboring pixels is specified [6, 9] in

decolorization based on the Euclidian color distance in the

CIELab space. With this stringent constraint, selection of

intensity values could lack freedom and suffer from con-

trast loss. Fig. 1(c)-(e) shows the results of state-of-the-art

color-to-gray methods [6, 19, 9]. While details are mostly

(a) Input (b) L of Lab (c) [19]

(d) [6] (e) [9] (f) Ours

Figure 1. Color-to-gray conversion. We propose a new method to

preserve contrast with respect to the original color image.

preserved, visually conspicuous color change between the

sun and sky is not well represented.

In fact, human visual system does not accurately per-

ceive chrominance and lightness. Instead, their relationship

to the adjacent context [13, 4] plays a vital role. The order

of different colors [21] also cannot be defined uniquely by

people, as evidenced in psychology and medical research.

An example is that the lightness channel in the CIELab

color system makes green brighter than blue. But recent

study indicates that people with different culture and lan-

guage background have different senses of brightness with

respect to color. Someone feel just the opposite [16, 23].

Based on these conclusions, we relax the color order

constraint and present a new method seeking better preser-

vation of color contrast and significant enhancement of vi-

sual distinctiveness for edges. These benefits stem from the

new weak color order constraint, which allows for a very

flexible and practical color-to-gray model. For color pairs

without a clear order in brightness, we propose a bimodal

distribution, i.e., mixture of two Gaussians, to automatically

find suitable orders with respect to the visual context in op-

timization.

Our other main contributions include designing a param-

eterized multivariate polynomial function for color mapping



and developing a fixed point iteration solver for the novel

energy function. We also propose a new quantitative metric

to numerically compare the performance of contrast preser-

vation, from a human perceptual point of view. We exten-

sively evaluate our method on a large number of synthetic

and natural images.

2. Related Work

Decolorization can be performed either locally or glob-

ally. Local methods process pixels differently, and usually

rely on local chrominance edges for enhancement. Bala and

Eschbach [1] added high frequency components of chro-

maticity to the lightness channel, in order to enhance color

edges. Neumann et al. [15] locally selected consistent color

gradients and performed fast 2D integration to get the fi-

nal grayscale image. Smith et al. [19] also employed a

local sharpening step after obtaining the grayscale image

by global mapping. Chrominance edges are enhanced by

adaptively-weighted multi-scale unsharp masking. These

mechanisms might occasionally distort the appearance of

constant color regions and produce visual artifacts, as dis-

cussed in [9].

In global mapping, Gooch et al. [6] enforced color con-

trast between pixel pairs. Rasche et al. [17] defined con-

straints directly on different color pairs. A linear color map-

ping is adopted for acceleration. Kuk et al. [10] extended

the idea of [6] by considering both the global and local con-

trasts. Grundland and Dodgson [7] proposed a fast linear

mapping algorithm that adds a fixed amount of chrominance

to the lightness, where the original lightness and color order

can be better preserved by restraining the added chromi-

nance. A parametric piecewise linear mapping is used to

convert color to gray.

Kim et al. [9] proposed a non-linear parametric model

for color-to-gray mapping. The parameters are estimated

by minimizing the cost function that aims to preserve color

difference computed in the CIELab color space. Song et

al. [20] incorporated three visual cues in a global energy

function, optimized using a variational approach. Lee et al.

[12] performed decolorization by adding contrast informa-

tion back to luminance. Lau et al. [11] defined their energy

function on a clustered color image. This method is able to

perform transformation between different color spaces.

In short, to preserve color contrast, most of the previous

methods explicitly specify color order. This strategy may

shrink the space for optimally picking grayscale values and

lead to less optimal solutions in terms of retaining originally

prominent contrast.

3. Parametric Color-to-Gray Model

Our decolorization function is defined as g = f(c).
For each input RGB vector c = (r, g, b), function f pro-

mean variance

Nayatani model 1.28 × 10−2 2.61 × 10−3

L channel of Lab 3.20 × 10−3 8.71 × 10−3

Y channel of YUV 0 0

Table 1. Mean and variance of the fitting errors when using our

method to approximate other widely adopted models. All gray

levels are mapped into range [0, 1].

duces g, the corresponding gray-scale value. We adopt a

global mapping scheme where all color pixels in the input

are converted to grayscale using the same mapping function

f . Therefore, two pixels with the same color will have the

same gray scale.

In our method, we adopt a finite multivariate polynomial

function for mapping. Mathematically, we define the poly-

nomial space of color c with its degree n as

Πn = span{rd1gd2bd3 : di = 0, 1, 2, ..., d1+d2+d3 ≤ n},
(1)

where Πn is a polynomial space spanned by a family of

monomials. The mapping function is thus expressed as

f(r, g, b; ω) =
∑

i

ωimi, (2)

where mi is the ith monomial basis of Πn. The mapping

function is uniquely determined by weights {ωi}. Empiri-

cally, we use degree n = 2, which means the total number

of {ω} is 9 and the mapping function is a linear combination

of elements in {r, g, b, rg, rb, gb, r2, g2, b2}.

We note that the polynomial form is actually a general-

ization of common linear and nonlinear color-to-gray map-

ping functions. To verify it, we experiment with the im-

age set [2], which contains 24 color images. We first gen-

erate grayscale images using common methods, including

the lightness of CIELab [8], intensity in the YUV space

[18, 5], and the Nayatani model [14]; the last one is known

as highly nonlinear. We then fit our model to approximate

these grayscale images using quadratic regression, i.e., by

minimizing ‖f(c, ω)−g′‖2, where g′ denotes the grayscale

results. Table 3 lists the fitting errors. They are all very

small, indicating that our parametric model is capable to

work the same way as these color-to-gray linear and non-

linear mappings.

4. Bimodal Contrast-Preserving Objective

Function

We describe in this section our color contrast preserving

objective function based on a weak color order constraint.

To begin with, We revisit the energy used in previous ap-

proaches for contrast preserving decolorization. The gray

scales for pixels x and y, denoted by gx and gy respectively,



are estimated by minimizing energy function

min
g

∑

x,y

(gx − gy − δx,y)
2, (3)

where the result g could be with [9] or without [6] a para-

metric form. x and y index an ordered pixel pair. δx,y is the

color contrast, having a signed value indicating the differ-

ence of a color pair. Based on the Euclidian distance in the

CIELab color space, color contrast is generally expressed

as

|δx,y| =
√

(Lx − Ly)2 + (ax − ay)2 + (bx − by)2,

which represents the color dissimilarity in the human vi-

sion system [22]. The sign of δx,y is typically determined

by the sign in the L channel, i.e. sign(Lx − Ly). As dis-

cussed in Section 1, enforcing this type of order for color

pairs could cause the contrast-loss problem. Also, it may

not be in obedience to human visual perception, where or-

ders are ambiguous. In our method, the condition is loosen

by encouraging a bimodal selection mechanism.

Eq. (3) can be interpreted in view of probabilistic infer-

ence. It implies that the grayscale difference of two pixels x

and y follows a Gaussian distribution with mean δx,y. Min-

imizing Eq. (3) is thus equivalent to maximizing likelihood

∏

x,y

G(δx,y, σ2) ∝
∏

x,y

exp {−
|∆gx,y − δx,y|2

2σ2
}. (4)

The Gaussian distribution has a single mode peaked at δx,y ,

which implies not only the contrast is constrained, but also

the sign of gray-level difference is determined. It is note-

worthy that the sign does not embody an exact physical

meaning. So the difference is allowed to be either +δx,y

or −δx,y, which gives rise to a flexible and proper contrast

preserving constraint. This motivates our work, which uses

a bimodal distribution to automatically select color orders.

Weak Color Order Some color pairs can be clearly or-

dered in terms of brightness. For example, absolute white

is always brighter than other colors in common sense. For

these color pairs, a single-peak distribution like the one in

Eq. (4) is a natural choice, indicating an unambiguous prior.

We treat color pairs that satisfy the following constraint as

unwavering:

cx ≤ cy ⇐⇒ rx ≤ ry & gx ≤ gy & bx ≤ by. (5)

If Eq. (5) is satisfied, the sign of δx,y directly applies to

gx − gy . Otherwise, we do not specify the sign in prior but

instead propose a selection procedure to optimally find the

suitable color order. Our likelihood term for one pixel pair

is therefore defined as

1

2

{

G(δx,y, σ
2) + G(−δx,y, σ

2)
}

. (6)

Given the above two types of order definition, we build a

map to distinguish them. It is constructed as

αx,y =

{

1.0 if rx ≤ ry, gx ≤ gy, bx ≤ by

0.5 otherwise
(7)

If αx,y = 1, we apply prior G(δx,y, σ
2) for unambiguous

color order enforcement. Otherwise, we let the color dif-

ference follow a bimodal distribution, which allows for se-

lection of the positive or negative sign optimally. The final

objective function is written as
∏

(x,y)∈N

{αx,yG(δx,y, σ
2) + (1 − αx,y)G(−δx,y, σ2)}. (8)

(x, y) ∈ N , where N is the four-neighbor set.
Maximizing Eq. (8) is equivalent to minimizing its neg-

ative logarithm, expressed as

E(g) = −
∑

(x,y)∈N

ln
{

αx,yG(δx,y , σ
2) + (1 − αx,y)G(−δx,y, σ

2)
}

.

(9)

Substituting in Eq. (9) the parametric gray model described

in Section 3, a function is formed consisting of unknown

coefficients {ωi}. As the global non-linear mapping is used,

only nine parameters need to be estimated.

The difference of two gray pixels can then be expressed

with respect to the parameters {ωi}:

∆gx,y = gx − gy

= f(rx, gx, bx) − f(ry, gy, by)

=
∑

i

ωi(mix − miy). (10)

We further denote li(x,y) := mix − miy , which can be di-
rectly computed given the color of pixels x and y. The en-
ergy function w.r.t. parameter set ω is finally written as

E(ω) = −
∑

(x,y)∈N

ln

{

αx,y exp{−
|
∑

i
ωili(x,y) − δx,y |

2

2σ2
}+

(1 − αx,y) exp{−
|
∑

i
ωili(x,y) + δx,y|

2

2σ2
}

}

. (11)

We describe in the next section the numerical solver.

5. Numerical Solution

In the energy function (11), taking partial derivatives
with respect to {ωi} and setting them to zeros yield an equa-
tion system. To simplify presentation, we define

βx,y :=
αx,yG(δx,y, σ2)

αx,yG(δx,y , σ2) + (1 − αx,y)G(−δx,y, σ2)
. (12)

With a few algebraic operations, the partial derivative on

ωj , i.e.
∂E(ω)
∂ωj

, can be expressed as

∑

(x,y)∈N

∑

i

ωili(x,y)lj(x,y) + (1 − 2βx,y)lj(x,y)δx,y = 0.

(13)



Algorithm 1 Weak-Order Decolorization

1: input: color image c = (r, g, b)
2: initialize ω0

i , k ← 0;

3: compute δx,y and li(x,y) for each neighboring pixel

pair;

4: repeat

5: compute βk given ωk;

6: solve for ωk+1;

7: k ← k + 1;

8: until k > kmax

9: g = f(c; ωk);
10: map g back to the range [min(c), max(c)];
11: output: grayscale image g

By setting
∂E(ω)
∂ωj

to zeros, we obtain a total of 9 equations.

The difficulty in solving it stems from the terms βx,y, which
contain nonlinear functions about ω. We apply the fix-point
iteration strategy on ω to linearize the corresponding equa-

tions. Specifically, to solve for ωk+1
i in the k+1th iteration,

we use the previously estimated ωk
i to generate the nonlin-

ear term βk
x,y, which yields equations

∑

(x,y)∈N

∑

i

ω
k+1
i li(x,y)lj(x,y) = (2β

k
x,y − 1)lj(x,y)δx,y. (14)

Now the unknowns only exist in the left hand side of Eq. (5)

and we have 9 equations in the form of Eq. (5) by varying

j. In each iteration, the system is linear w.r.t. {ωk+1
i } and

thus can be solved easily. In implementation, we use the

backslash operator “\” in Matlab.

Our computation framework is sketched in Algorithm 1.

We first initialize {ω0
i } as {0.33, 0.33, 0.33, 0, 0, 0, 0, 0, 0},

for simplicity’s sake. Then the weights are iteratively up-

dated. The maximum number of iterations kmax is set to 15

empirically. Fig. 2 shows an example where the grayscale

image is updated in iterations. The corresponding 9 coeffi-

cients {ωi} are listed in Table 2. It converges quickly. To

make the resulting grayscale image g viewable, we linearly

scale values with respect to the largest and smallest values

max(c) and min(c) in the original color image. To process

a 600 × 600 color image, our Matlab implementation takes

0.8s on a desktop PC equipped with an Intel Core i7-2600

CPU. The source code is downloadable from our project

website1.

6. Experimental Results

We compare our method with state-of-the-arts [6, 19, 9].

Note that the method of [19] combines global and local op-

erations; in [6] and [9], global methods are employed with

and without a parametric color-to-gray mapping function.

1http://www.cse.cuhk.edu.hk/%7eleojia/projects/color2gray

Input Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Iteration 13 Iteration 14 Iteration 15

Figure 2. Results in iterations.

iter. r g b rg rb gb r2 g2 b2

1 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00

2 0.97 0.91 0.38 -3.71 2.46 -4.01 -0.42 4.00 0.79

3 1.14 -0.25 1.22 -1.55 1.53 -3.51 -1.18 3.32 0.69

4 1.33 -1.61 2.10 1.35 -0.36 -1.61 -1.69 1.70 0.29

5 1.52 -2.25 2.46 2.69 -1.38 -0.30 -1.95 0.79 -0.02

6 1.64 -2.59 2.65 3.50 -1.99 0.59 -2.13 0.18 -0.27

11 1.94 -3.21 2.98 5.61 -3.22 2.55 -2.80 -1.33 -0.87

12 1.96 -3.26 3.00 5.80 -3.31 2.70 -2.87 -1.46 -0.92

13 1.98 -3.29 3.02 5.94 -3.38 2.81 -2.91 -1.56 -0.96

14 1.99 -3.31 3.03 6.03 -3.42 2.89 -2.95 -1.62 -0.98

15 2.00 -3.32 3.04 6.10 -3.45 2.94 -2.98 -1.67 -1.00

Table 2. Computed coefficients ω in different iterations.

We evaluate our algorithm on the publicly available color-

to-gray benchmark dataset [2], where results of many other

methods are available. Fig. 3 shows a few representative

images. Our results, shown in the second column, preserve

very well color contrast presented in the original images.

For the images shown in the first, third and fifth rows, our

results have quite different color orders compared with oth-

ers. It bears out the fact that during decolorization, for

neighboring pixels with similar brightness, color difference

preservation and enhancement is very important.



(a) Input (b) Ours (c) L of Lab (d) Smith et al. [19] (e) Gooch et al. [6] (f) Kim et al. [9]

Figure 3. Comparison with other decolorization methods.

Quantitative Evaluation To quantitatively evaluate the

decolorization algorithms in terms of contrast preserving,

we propose a new metric. It is based on the finding that

if the color difference δ is smaller than a threshold τ , it

becomes nearly invisible in human vision. The task of

contrast-preserving decolorization is therefore to maintain

color change that is perceivable by humans. We define a

color contrast preserving ratio (CCPR) as

CCPR =
#{(x, y)|(x, y) ∈ Ω, |gx − gy| ≥ τ}

‖Ω‖
, (15)

where Ω is the set containing all neighboring pixel pairs

with their original color difference δx,y ≥ τ . ‖Ω‖ is the

number of pixel pairs in Ω. #{(x, y)|(x, y) ∈ Ω, |gx −
gy| ≥ τ} is the number of pixel pairs in Ω that are still

distinctive after decolorization.

Based on CCPR, we quantitatively evaluate different

methods using the 24 images in the dataset [2]. We cal-

culate the average CCPR for the whole dataset by varying τ

from 1 to 152. Average CCPRs for other methods [6, 19, 9]

2It is suggested in [3] that color difference δ < 6 is generally imper-

ceptible.



are also collected. They are listed in Table 3. The quanti-

ties indicate that our method can preserve satisfactorily the

color distinctiveness.

τ CIE [19] [6] [9] Ours

1 0.66 0.70 0.69 0.72 0.76

2 0.62 0.66 0.66 0.68 0.73

3 0.61 0.64 0.64 0.67 0.72

4 0.59 0.62 0.63 0.65 0.72

5 0.59 0.61 0.63 0.64 0.72

6 0.57 0.59 0.61 0.62 0.70

7 0.56 0.58 0.60 0.60 0.69

8 0.55 0.57 0.58 0.58 0.68

9 0.54 0.56 0.57 0.57 0.67

10 0.53 0.55 0.55 0.56 0.66

11 0.52 0.54 0.54 0.54 0.65

12 0.52 0.53 0.53 0.53 0.64

13 0.51 0.52 0.52 0.52 0.63

14 0.51 0.52 0.51 0.51 0.62

15 0.50 0.51 0.50 0.50 0.61

Table 3. Color contrast preserving ratio (CCPR) comparison.

More Results We show more natural image results in Fig.

4. The commonly used “rgb2gray” results are shown in (b)

while ours are in (c). Note that the lightness channels in dif-

ferent color spaces, such as the L channel in “Lab”, cannot

preserve correct color contrast for many examples. When

replacing these channels by our computed grayscale image,

a contrast boosting effect can be yielded. As shown in Fig.

4(d), edges, patterns, and textures, after contract boosting,

are getting more distinct.

7. Concluding Remarks

We have presented a new color-to-gray method that can

well maintain or enhance the original color contrast. We

leverage a weak color constraint to allow for very flexible

and optimal grayscale representation, based on the fact that

human perception has limited ability in determining order

of color with respect to brightness. So rather than intu-

itively defining the sign of gray scale difference, we propose

a mixture of Gaussian function to increase the search space

in optimization. This strategy enables automatically finding

suitable gray scales and preserves significant color change.

Note that people may have different feelings when seeing

gray scales in different orders, as it is very subjective visual

experience. It is thus necessary to provide mechanisms to

flexibly manipulate color orders when users want to. We

remark it is not a problem in our framework. Individual

users can finely adjust the results produced by our method

by adding their own color pairs that should satisfy specified

orders to the constraint set.
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