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Contrast statistics for foveated visual systems:
fixation selection by minimizing contrast entropy
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The human visual system combines a wide field of view with a high-resolution fovea and uses eye, head, and
body movements to direct the fovea to potentially relevant locations in the visual scene. This strategy is sen-
sible for a visual system with limited neural resources. However, for this strategy to be effective, the visual
system needs sophisticated central mechanisms that efficiently exploit the varying spatial resolution of the
retina. To gain insight into some of the design requirements of these central mechanisms, we have analyzed
the effects of variable spatial resolution on local contrast in 300 calibrated natural images. Specifically, for each
retinal eccentricity (which produces a certain effective level of blur), and for each value of local contrast ob-
served at that eccentricity, we measured the probability distribution of the local contrast in the unblurred im-
age. These conditional probability distributions can be regarded as posterior probability distributions for the
“true” unblurred contrast, given an observed contrast at a given eccentricity. We find that these conditional
probability distributions are adequately described by a few simple formulas. To explore how these statistics
might be exploited by central perceptual mechanisms, we consider the task of selecting successive fixation
points, where the goal on each fixation is to maximize total contrast information gained about the image (i.e.,
minimize total contrast uncertainty). We derive an entropy minimization algorithm and find that it performs
optimally at reducing total contrast uncertainty and that it also works well at reducing the mean squared error
between the original image and the image reconstructed from the multiple fixations. Our results show that
measurements of local contrast alone could efficiently drive the scan paths of the eye when the goal is to gain
as much information about the spatial structure of a scene as possible. © 2005 Optical Society of America
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1. INTRODUCTION

Humans, like many other animals, have a retina with
variable spatial resolution. Resolution is highest in a cen-
tral region, the fovea, and declines smoothly in all direc-
tions. High-speed eye movements, and slower head and
body movements, are used to direct the fovea at poten-
tially relevant locations in the retinal image of the visual
scene. This strategy of combining a variable-resolution
retina with eye, head, and body movements is sensible be-
cause it minimizes total neural resources while providing
both a wide field view and high spatial resolution. How-
ever, for this strategy to be effective the visual system
needs sophisticated central mechanisms that take into ac-
count and exploit the continuously varying spatial resolu-
tion of the retina.

There is evidence that visual systems are often
matched to the statistical properties of the natural scenes
to which they are exposedk11 (for reviews see Simoncelli
and Olshausen'? and Geisler and Diehl'®). Therefore, to
gain some insight into the design requirements of the cen-
tral mechanisms of foveated visual systems, we analyzed
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the effects of variable spatial resolution on the statistics
of local contrast in natural images. (Here, we define the
local contrast as the standard deviation of the image in-
tensities within some small region, divided by the mean
intensity within that region, i.e., the local rms contrast.)

Contrast is arguably the most fundamental local image
property encoded by the retina and transmitted to the
brain, and hence its statistics have received considerable
attention. A number of studies have been concerned with
measuring the distributions of local contrast in natural
images and comparing these with the shape of contrast
response functions in the eye,l’6 lateral geniculate
nucleus,'* and primary visual cortex.’>1® Other studies
have characterized the distributions of contrast in differ-
ent environments!” and at the center of gaze.18

Like most other image properties, contrast is encoded
with the greatest precision at the center of the fovea and
with decreasing precision as the distance from the center
of the fovea (the eccentricity) increases. Specifically, as ec-
centricity increases, the center sizes of ganglion cell re-
ceptive fields increase, blurring the retinal image and
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thereby effectively reducing local contrast and increasing
contrast uncertainty. This fact motivated us to directly
measure the effect of retinal blur on large numbers of
natural images in order to determine the statistical rela-
tionship between effective contrast and the true un-
blurred contrast at different retinal eccentricities. Here,
we show that to good approximation the mode (¢) of the
posterior probability distribution of the unblurred con-
trast [i.e., the maximum a posteriori (MAP) estimate] is
given by the simple formula

¢=kce+c, (1)

where ¢ is the retinal eccentricity and % is a constant that
depends on the patch size over which the local contrast (c)
is computed. We also show that the average standard de-
viation (defined later) of the posterior probability distri-
bution is given by

72 = (kece)® + 0'02, (2)

where oy is a small constant, and thus the contrast uncer-
tainty (the differential entropy of the posterior probability
distribution) is given by

h = 3logy(2med?). (3)

These statistical properties of natural images will be de-
rived and explained in Section 2.

As an example of how these statistical properties of
natural images might be exploited by a foveated visual
system, we have considered the task of selecting fixation
locations, when the organism’s goal is to encode images as
well as possible with just a few fixations. Specifically, us-
ing Eqgs. (1)—(3), we derive and evaluate a fixation selec-
tion strategy based on the principle of picking fixation lo-
cations that minimize the total uncertainty about the
contrasts in the image (i.e., minimize the total contrast
entropy). We decided to explore an algorithm that mini-
mizes total contrast entropy because minimizing entropy
is ideal under some circumstances and has proved useful
in other applications.’®?* We find that our algorithm
works very well at reducing total contrast uncertainty
and also works well at reducing the mean squared error
(MSE) between the original image and the image recon-
structed from the multiple fixations.

2. METHODS AND RESULTS

This section describes the measurements of the contrast
statistics and the algorithm for fixation selection based on
those statistics.

A. Contrast Statistics

The effects of retinal blur on local contrast were measured
using a set of calibrated natural images. The image set
consisted of 300 rural images (i.e., minimum of man-made
objects or animals) obtained from a publicly available im-
age database.” The images were selected to be as diverse
as possible given the data set. The images were obtained
with a Kodak DCS420 digital camera and were calibrated
to result in approximately 12 bit values that are linear
with respect to the luminance. The 1536 by 1024 images
were cropped to the center 1024 by 1024 pixels. Van Hat-
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eren and van der Schaaf’ report that each pixel corre-
sponds to approximately 1 arc min, and thus the cropped
images are approximately 17° X 17°.

The contrast sensitivity functions of the human visual
system, at different retinal eccentricities, have been mea-
sured for transient stimuli.?*>> Measurements made un-
der transient stimulus conditions are appropriate in the
present context because fixation durations are brief (200—
300 ms) under most natural viewing conditions. These
contrast sensitivity functions are adequately described by
the formula®®

82+8>’ (4)

C(f,e)=C, exp(—
€2
where « is a constant (¢=0.1), &, is the retinal eccentric-
ity where spatial resolution falls to half of what it is in the
center of the fovea (¢9=2.3°), and C, is a constant that
controls the maximum contrast sensitivity. The contrast
sensitivity functions described by Eq. (4) are consistent
with the increase in center size of the retinal ganglion
cells (midget ganglion cells) with eccentricity,24’25 and
hence Eq. (4) can be used to estimate the reduction in ef-
fective contrast as function of eccentricity. Note that the
blur produced by the retina (as reflected in ganglion cell
center sizes) is a result of both optical and neural factors.

To simulate the blur produced by the retina at different
eccentricities, we filtered each of the 300 natural images
with radially symmetric transfer functions obtained by
setting Co=1.0 and f=(f;+f})"? in Eq. (4). Specifically, for
each image we padded it appropriately, took the Fourier
transform, multiplied the result by Eq. (4), and then took
the inverse Fourier transform. Blurred images were ob-
tained for eccentricities (¢) of 0, 1, 2, 4, 8, and 16 deg. The
filtered images at an eccentricity of 0 deg were taken to be
the unblurred reference images. This was done because
the optical transfer function of the camera is unknown
(but presumably very good), and hence the raw image
cannot be taken to be the effective retinal image in the
center of the fovea. Because the unblurred image was
taken to be the filtered image with £=0, the value of C is
irrelevant and hence could be set to 1.0, as we did.

In order to characterize the statistical relationship be-
tween effective contrasts at different eccentricities, we
measured local contrasts in each image, for all six levels
of blur. A large number of local contrasts were sampled
randomly from each of the 300 natural images. The loca-
tions of the samples were different for each natural image
but were the same for each level of blur. The local con-
trasts were measured in image patches formed by win-
dowing with a circularly symmetric raised-cosine weight-
ing function:

ar
w; = 0.5 cos —\'(xi—xc)2+(yi—yc)2]+1 , (5
p

where p is the patch radius, (x;,y;) is the location of the
ith pixel in the patch, and (x,,y,) is the location of the cen-
ter of the patch. (Note that the half-height diameter of the
window equals the patch radius.) The results reported
here are for a patch diameter of 32 pixels (0.53 deg), but
similar results are obtained with other patch sizes. The
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Fig. 1. Probability distributions of local rms contrast for various
levels of blur based on the human contrast sensitivity function at
different retinal eccentricities. These distributions were obtained
by randomly sampling small patches from 300 calibrated natural
images.

local contrast was defined by the formula

1 Y (r,-L)?

= [

w; 20
i=1 (L + Lo)

w;
i=1
where N is the number of pixels in the patch; L; is the lu-
minance of the ith pixel; L is the local mean luminance,

1 N
=2 wil; (7)

i=1
E w;
i=1

and Ly is a dark light parameter, chosen to be 7 td
(1 cd/m?, assuming a 3 mm pupil), based on human pho-
topic intensity discrimination data.?” (We note that Ly
had very little effect on the measured contrasts because
the mean luminances of the images were generally much
higher than 1 cd/m?2.)

Figure 1 shows the estimated probability distributions
of local contrast for each level of blur. The distributions
have been truncated at a contrast of 0.005 because hu-
mans cannot detect contrasts below that value and be-
cause the measurements become contaminated by camera
or pixel noise. Not surprisingly, as the level of blur (reti-
nal eccentricity) increases, the distributions shift toward
lower contrasts. The rise in the function at low contrasts
appears to be due to the patches of sky in many of the
natural images.

For many visual tasks (including the fixation selection
task), one would like to estimate the unblurred contrast
from the blurred contrast observed at the given retinal ec-
centricity. Thus, the statistics of most relevance are the
conditional probability distributions for the unblurred
contrast given the observed contrast (i.e., the posterior
probability distributions). We computed these distribu-
tions for a wide range of blurred contrasts, for eccentrici-
ties 1, 2, 4, 8, and 16 deg. Several representative distri-
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butions are shown in Fig. 2. Each row shows the
conditional probability distributions for a different eccen-
tricity, and each plot within a row shows the distribution
for a particular value of blurred contrast observed at that
eccentricity. There are several clear trends in the data: (1)
As eccentricity increases, the peaks of the distributions
shift to the right and (2) the widths of the distributions
increase; and (3) as the observed blurred contrast in-
creases, the peaks of the distributions shift to the right
and (4) the widths of the distributions increase.

To quantify these trends, we fit the empirical distribu-
tions with descriptive functions. In general, the distribu-
tions are not Gaussian, but they are nicely fit by Gaussian
distributions with different standard deviations above
and below the mode (skewed Gaussian distributions). The
solid curves show the fits to this sample of empirical dis-
tributions; the quality of these fits is representative of the
whole set. The skewed Gaussian has three parameters:
the mode, which we will label ¢ because it is the MAP es-
timate of the unblurred contrast, and two standard devia-
tions, 0; and o3. Figure 3 plots the mode and the average
standard deviation, (o;+03,)/2, for all eccentricities and
observed levels of blurred contrast. Measurements out-
side these ranges were unreliable because the numbers of
samples became too small. The solid lines in the figure
are best-fitting straight lines through the origin. Al-
though the fits are not perfect, the straight lines summa-
rize the data very well. In other words, to close approxi-
mation, both the mode and the standard deviation of all
the posterior probability distributions increase in direct
proportion to the observed blurred contrast.

What is also clear in Fig. 3 is that the slopes of the best-
fitting lines (the proportionality constants) increase with
retinal eccentricity. Figure 4 plots the estimated slopes for
the modes and the average standard deviations. The
straight line in Fig. 4A is the best-fitting line with a in-
tercept of 1.0, and the straight line in Fig. 4B is the best-
fitting line through the origin. Again, the fits are not per-
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Fig. 2. These plots show examples of the conditional probability
distributions of local rms contrast in unblurred images, given the
local rms contrast in the blurred versions of the images (columns)
and given the retinal eccentricity (rows). The solid symbols are
empirical histograms computed from 300 natural images that
contained no man-made objects. The smooth curves are the best-
fitting skewed Gaussian distribution (a Gaussian with different
standard deviations above and below the mode).
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Fig. 3. Modes and average standard deviations of the condi-
tional probability densities are plotted as a function of blurred
image contrast and retinal eccentricity. The average standard de-
viation is the average of the two standard deviation parameters
in the skewed Gaussian distribution. See Fig. 2 for examples of
the conditional densities and fits of the skewed Gaussian distri-
bution. The curves are best-fitting straight lines through the
origin.

A B
® 25} S5tk
8 25 g15
] »
7]
o 2T 8 11
° . ( J
[¢] ® @
=15} Z05[
1 | | Il 0 I i 1
0 4 8 12 18 60 4 8 12 18
Eccentricity (deg) Eccentricity (deg)

Fig. 4. Slopes of the linear functions in Fig. 3. A, Slope of the
contrast versus mode plot as a function of retinal eccentricity. B,
Slope of the contrast versus average standard deviation plot as a
function of retinal eccentricity. The curves show the predictions
of the linear model: ¢=kec+c and o=kec, where £=0.105.

fect, but they do provide a very good summary of the data.
Taken together, Figs. 2—4 show that the mode across all
conditions is closely approximated by Eq. (1) and the av-
erage standard deviation across all conditions is closely
approximated by Eq. (2), where o=(0y+0y,)/2.

Differential entropy is a fundamental measure of the
uncertainty associated with a probability distribution.?®
In Appendix A we show that the differential entropy of a
skewed Gaussian distribution is equal to Eq. (3), and
hence the differential entropy of the posterior probability
distributions (the contrast uncertainty) for the range of
eccentricities considered here is closely approximated by
substituting Eq. (2) into Eq. (3). The constant 0'02 in Eq.
(2) reflects the fact there must always be some intrinsic
uncertainty about contrast, if for no other reason than
photon and sensor or neural noise. Although the constant
cannot be estimated from the contrast measurements, it
is necessary for it to have a value greater than zero in the
fixation selection algorithm; its specific value is not im-
portant as long as it is small (see Appendix A).

B. Fixation Selection

We have found a surprisingly simple statistical relation-
ship, for natural images, between the contrast observed
at a given retinal eccentricity and the posterior probabil-
ity distribution of the unblurred true contrast at that lo-
cation. This relationship, which is described by Egs.
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(1)—(3), could be exploited by a visual system to efficiently
select fixation locations under certain circumstances. For
example, if the goal in some situations is not to search for
a particular target or set of targets but simply to gain as
much information as possible about the image on each
fixation, then a potentially effective strategy would be to
pick successive fixations that maximally reduce the total
contrast uncertainty about the image. This strategy
might be particularly effective if there is a strong correla-
tion between the uncertainty about local contrast and the
total uncertainty about the local image structure. To be-
gin exploring this possibility, we have developed an algo-
rithm (a model observer) that selects fixations based on
Eq. (1)—(3). Here, we describe the algorithm, then we de-
scribe the algorithm’s fixation selections on some example
images, and finally we compare the algorithm’s absolute
performance to appropriate ground-truth measurements.

1. Contrast Entropy Minimization Algorithm

We assume that the first fixation is at some arbitrary im-
age location (e.g., at the center of the image). On making
this first fixation the observer receives a foveated neural
image, where spatial resolution is highest at the fixation
point and falls off smoothly in all directions. From this
first neural image the observer forms three maps that will
be updated after each fixation. The first is an eccentricity
map, which stores, for each image pixel, the smallest dis-
tance the pixel has been from the center of the fovea. The
second is a contrast map, which stores the local rms con-
trast measured at each pixel, when the pixel was at its
smallest distance from the center of fovea. (The contrast
at a pixel is defined to be the contrast of the patch cen-
tered on that pixel.) The third is an uncertainty map,
which stores the contrast uncertainty (entropy) at each
pixel [given by Eq. (3)], when the pixel was at its smallest
distance from the center of fovea. These three maps cu-
mulate all the relevant information obtained during the
sequence of fixations. The sum of all the uncertainties in
the uncertainty map is the total contrast uncertainty. The
aim of the algorithm is to select the next fixation that will
minimize this total contrast uncertainty. To do this, the
algorithm considers every possible next fixation location.
For each possible fixation location, the algorithm uses the
current maps and its knowledge of the posterior probabil-
ity distributions for contrast [Eqgs. (1)—(3)] to estimate the
reduction in total contrast uncertainty. It then picks the
fixation location with the largest estimated reduction. A
formal derivation of the contrast entropy minimization
(CEM) algorithm is given in Appendix A.

2. Performance of the Contrast Entropy Minimization
Algorithm

The performance of the CEM algorithm was evaluated on
16 natural images selected to be representative of the van
Hateren and van der Schaaf’ data set. Thumbnails of
these images are shown in Fig. 5.

We simulated a foveated visual system that approxi-
mately matched the human visual system by using radi-
ally symmetric transfer functions corresponding to hu-
man contrast sensitivity functions [cf. Eq. (4)]:
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Fig. 5. Images used to test a fixation selection algorithm based on the principle of minimizing contrast entropy.

F(fx,f;,,S) — exp(— o fx2 +fy2‘82 + s) ‘ ®

€9

For each eccentricity the inverse Fourier transform of this
transfer function specifies a linear filter kernel (a Laplac-
ian function) that scales in size with eccentricity.

To speed the calculations, we made use of the fact the
resolution of the human visual system declines smoothly
as a function of eccentricity. By setting the left side of Eq.
(8) to any constant resolution criterion, we see that reso-
lution follows a smooth function of the form

r(e) « .
e+ &9

The greatest eccentricity that needs to be considered for
our 17° images is 12°, and hence the lowest relevant reso-
lution is approximately 17% of the resolution in the fovea.
Therefore, we partitioned the 17%-100% range into eight

evenly spaced resolutions and then determined the eccen-
tricity corresponding to each resolution. We then created
eight transfer functions by substituting the eight eccen-
tricities into Eq. (8). Before running the algorithm on a
natural image, we used the eight transfer functions to ob-
tain eight different resolution versions of the natural im-
age. During the simulation, the foveated (neural) image
at any given retinal eccentricity was obtained by linearly
interpolating the two images whose resolutions bracketed
the resolution at that eccentricity.

On each fixation during the simulation, the local con-
trasts in the neural image were measured using Eq. (6)
for a patch diameter of 32 pixels. To speed the calcula-
tions, we sampled the local contrasts on a square lattice
with a spacing of 16 pixels (the radius of the raised-cosine
window). The overlap of the samples ensured that all im-
age pixels contributed to the local contrast measurements
(however, the algorithm performs similarly if there is no
overlap between samples). The possible fixation locations
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and the three maps (contrast, eccentricity, and uncer-
tainty) also corresponded to the same square lattice (i.e.,
4096 possible fixation locations).

Figures 6A and 6C show the first nine fixations for two
of the natural images. (Recall that the first fixation was
always at the center of the image.) There are several
trends evident in these fixation patterns. First, the fixa-
tions tend to land in or near relatively high-contrast re-
gions. Notice, for example, how there are no fixations into
the sky region of the image in Fig. 6A and how the second
fixation is near a bright flower in Fig. 6B. This occurs be-
cause contrast uncertainty is greater in regions where the
effective contrast is higher [see Egs. (2) and (3)]. Second,
the saccade lengths tend to be relatively large and vari-
able in size; the mean and standard deviation of the sac-
cade length for the 16 test images are 8.9° and 2.5° re-
spectively. The large saccades occur because contrast
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uncertainty increases with eccentricity [see Eqgs. (2) and
(3)]. Third, there are few fixations near the edge of the im-
age. This occurs because fixating near the image bound-
ary tends to reduce the total number of image pixels that
benefit from being seen at a smaller eccentricity. For ex-
ample, a fixation on the boundary implies that half the
fovea falls outside the image, which tends to reduce the
number of image pixels that can benefit from foveal view-
ing.

Figures 6B and 6D show quantitatively how well the
algorithm performs in reducing total contrast uncer-
tainty. The solid circles show the total contrast entropy
predicted by the algorithm before the fixation was made,
where the total contrast entropy has been normalized by
its value after the first fixation in the center of the image.
The open circles show the actual total contrast entropy
observed after the fixation selected by the algorithm is
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Fig. 6. Fixation points selected by the principle of minimizing total contrast entropy (contrast uncertainty), using the average local
contrast statistics of natural images. A, Sequence of nine fixations (eight saccades) for a distant image containing sky, ground, and trees.
B, Relative contrast entropy as a function of fixation number for the image in A (open circles), predicted relative contrast entropy before
the fixation was made (solid circles), and optimal relative contrast entropy that could be obtained (open triangles). C, Sequence of nine
fixations (eight saccades) for a close-up image containing foliage. D, Same type of plot shown in B.
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made. In other words, the predicted entropy is the en-
tropy estimated before the next eye movement is made,
and the observed entropy is the entropy observed or com-
puted after the next eye movement is made. As can be
seen, the predicted and observed entropies are very simi-
lar. The open triangles show the lowest possible total con-
trast entropy that could have been obtained on the fixa-
tion. It was determined by literally making every possible
fixation and computing the observed entropy. The actual
observed entropy obtained by the algorithm is almost in-
distinguishable from optimal. The average results for all
16 images are shown in Fig. 7A. In general, the reduction
in contrast entropy obtained by the CEM algorithm is es-
sentially optimal. This is even more clearly illustrated by
the solid circles in Fig. 7B, which plot the ratio of the op-
timal and observed entropies in Fig. 7A (the first fixation
is excluded from the plot because the ratio is necessarily
1.0).

An obvious question is how well the CEM algorithm
compares with alternatives. We consider two. The first al-
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gorithm tiles the image in a random order without re-
placement. Specifically, the image is divided into nine
square regions (a 3 X 3 grid), and only fixations at the cen-
ters of these regions are allowed. During the scan, each
square region is fixated only once, with the order of fixa-
tions being random. The average performance of this til-
ing algorithm is given by the open circles in Fig. 7B. It
performs substantially worse than entropy minimization.
The second alternative is purely random fixation (fixa-
tions are selected randomly from the 4096 possible loca-
tions). The performance of this algorithm is given by the
open triangles in Fig. 7B. The random algorithm performs
worse than the tiling algorithm. We conclude that the
CEM algorithm does, in fact, optimally reduce the total
contrast entropy on successive fixations for natural im-
ages and that it substantially outperforms some obvious
alternatives.

We have demonstrated that the average contrast statis-
tics of natural images can be used to sequentially select
fixations that optimally reduce the total contrast uncer-
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Fig. 7. Average fixation selection performance for the 16 test images in Fig. 5. A, Relative contrast entropy as a function of fixation
number (open circles), predicted relative contrast entropy before the fixation was made (solid circles), and optimal relative contrast en-
tropy that could be obtained (open triangles). B, Ratio of the optimal contrast entropy that could be obtained to the contrast entropy that
was obtained: CEM algorithm (solid circles), tiling algorithm (open circles), random algorithm (open triangles). C, Relative mean squared
error (MSE) between the original (unblurred) image and the image reconstructed from the fixations up to and including the fixation
number given on the horizontal axis: CEM algorithm (solid circles), optimal (open circles). D, Ratio of optimal MSE that could be ob-
tained to the MSE that was obtained: CEM algorithm (solid circles), tiling algorithm (open circles), random algorithm (open triangles).
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tainty for individual images. Although this is a remark-
able fact, contrast is just one local image property. Pre-
sumably, humans make fixations not just to reduce
uncertainty about contrast but also to reduce uncertainty
about many of the other image properties that determine
local image structure (e.g., orientation, phase, and spatial
frequency). It is not possible to measure the statistics for
all local image properties in natural images, and hence it
is not practical to develop a rigorous algorithm that se-
lects fixations to reduce total image uncertainty. On the
other hand, it is possible that uncertainty in contrast is
strongly correlated with uncertainty for other image prop-
erties. For example, Schwartz and Simoncelli?’ found
that the variances of many local image properties are
strongly correlated, even for orthogonal image properties.
Therefore, it is possible that minimizing contrast uncer-
tainty would do a good job of minimizing uncertainty
about many local image properties.

To evaluate this possibility, we used the mean squared
error (MSE), between the original (unblurred) image and
the image reconstructed from the sequence of fixations, as
a measure of the total image uncertainty. The recon-
structed image was obtained using the eccentricity map
(the map showing the smallest distance that each pixel
has been from the center of the fovea). Specifically, each
pixel in the reconstructed image was set to the image
gray level that was observed at that pixel for the eccen-
tricity given in the eccentricity map. Thus, in the recon-
structed image, every pixel keeps the highest resolution
that has occurred so far in the sequence of fixations. (We
note that for image reconstruction the eccentricity map
was computed for all the 1024 X 1024 pixels’ locations in
the image; also, the MSE between the original and recon-
structed images was computed over all 1024
X 1024 pixels.)

For each fixation made by the CEM algorithm, we com-
puted the relative MSE (the MSE after the fixation di-
vided by the MSE after the first fixation). The solid circles
in Fig. 7C show the relative MSE as a function of fixation
number, averaged across the 16 test images. For ground-
truth comparison, we determined, for each fixation made
by the CEM algorithm, the fixation that would have mini-
mized the MSE (this was done by making every possible
next fixation and computing the resulting MSE). The
open circles in Fig. 7C show the optimal values of the
MSE that could have been obtained. The solid circles in
Fig. 7D show the ratios of the optimal MSE to the ob-
served MSE obtained with the CEM algorithm. The aver-
age ratio is 0.9 (i.e., the obtained MSE is about 10%
higher than optimal). The open circles and triangles show
that the tile and random algorithms perform considerably
worse than the CEM algorithm; the average ratio for the
tile algorithm is 0.72 and for the random algorithm is
0.59. Thus, it appears that the CEM algorithm does a re-
spectable job of selecting fixations that minimize total im-
age uncertainty.

3. DISCUSSION

To gain insight into the design requirements of visual sys-
tems with foveated retinas, we measured the joint distri-
bution of the local contrast in 300 natural images before
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and after blurring by amounts corresponding to different
retinal eccentricities in the human visual system. The
joint distribution at each retinal eccentricity is given by
the marginal distribution of the blurred contrast (e.g., one
of the distributions in Fig. 1) and by the distributions of
the unblurred contrast conditional on the blurred con-
trast (e.g., one of the rows of distributions in Fig. 2). We
find that the conditional distributions are described quite
well by very simple formulas: The mode of the conditional
distribution increases in proportion to the blurred con-
trast and the eccentricity [Eq. (1)], the average variance
of the conditional distribution increases in proportion to
the square of the blurred contrast and the square of the
eccentricity [Eq. (2)], and the differential entropy of the
conditional distribution increases in proportion to the
logarithm of the average variance [Eq. (3)].

The image statistics reported here are for one particu-
lar analysis patch size (a width of 32 pixels). We find that
Egs. (1)—(3) also summarize the conditional probability
distributions for other patch sizes quite well. However, as
patch size decreases, the estimated value of the propor-
tionality constant £ in Eqgs. (1)—~(3) increases.

To explore how these natural scene statistics might be
exploited by central perceptual mechanisms, we consid-
ered the task of selecting successive fixation points to op-
timize the total contrast information gained about the im-
age (i.e., minimize total contrast entropy). On the basis of
the average scene statistics represented by Eqgs. (1)—(3),
we derived a novel fixation selection algorithm: the CEM
algorithm. Remarkably, we found that the average scene
statistics for natural images (represented in the CEM al-
gorithm) are sufficient to achieve nearly optimal fixation
sequences for individual natural images (see Figs. 6, TA,
and 7B). Presumably, this optimal performance is
achieved because each fixation is based on a global pool-
ing of local contrasts from the entire image. In other
words, even though there is considerable uncertainty
about how much the contrast entropy will be reduced at
any particular image location, there is little uncertainty
about how much the average contrast entropy from all lo-
cations will be reduced. We also examined how well the
CEM algorithm performed at reducing the MSE between
the original image and the image reconstructed from the
sequence of fixations. The MSE serves as a measure of to-
tal uncertainty about the original image. We find that the
CEM algorithm also does quite well at reducing total un-
certainty in individual images: The MSE values average
about 10% higher than optimal (see Figs. 7C and 7D).

Although the CEM algorithm is quite simple and is
based only on contrast statistics, it performs remarkably
well at reducing total image uncertainty, and hence it
may be of practical value in certain surveillance and ro-
botic applications involving foveated imaging. For ex-
ample, if there is time to make only a few fixations with a
remote robotic or surveillance camera, then the CEM al-
gorithm could be used to select those few fixations, as-
suming the goal is to reconstruct the image as accurately
as possible. The algorithm is amenable to parallel com-
puting and runs at a respectable speed (a fixation every
couple of seconds) on a standard personal computer.

What are the implications of our results for under-
standing human fixation patterns? The first thing to point



Raj et al.

out is that human fixation patterns are highly task de-
pendent. In reading, saccade lengths tend to be short and
the fixation patterns stereotypical because, for the most
part, words must be read sequentially for the communi-
cation to be understood.?! In search tasks where the ob-
server is trying to find a specific target or class of targets,
saccade lengths tend to be longer and the fixation pat-
terns more random than in reading because the eye is
drawn to any likely target location in the image.’®*! In
general, human fixation patterns are probably different
for every kind of perceptual or cognitive task that is
performed.32

A class of tasks where the CEM algorithm might be a
plausible model of human fixation patterns is scene
memorization tasks. In such tasks, the goal is to learn as
much as possible about a scene in a few fixations, so that
the scene can be distinguished from other scenes at a
later time. Picking fixations that minimize contrast en-
tropy is a relatively simple and efficient way to gain in-
formation about the scene because the fixation selection
requires no encoding of spatial structure, no pattern rec-
ognition, and little other high-level processing. Minimiz-
ing contrast entropy involves only encoding local con-
trasts and pooling them in a way that is weighted by the
eccentricity and the contrast. This is the kind of process-
ing that could be done in a fairly low level and automatic
way, without placing great demands on high-level pro-
cesses that require more attentional resources. What
makes minimizing contrast entropy particularly appeal-
ing for this class of task is that it also does a good job of
reducing total uncertainty about the image. Thus, select-
ing fixations by minimizing contrast entropy will, to good
approximation, maximize the amount of image structure
available to the cortex for extraction and storage in
memory. The CEM algorithm makes detailed predictions
about the statistics of fixation patterns in scene memori-
zation tasks, and hence it should be testable.

A rational survival strategy for an organism might be
to continuously work at gaining as much general informa-
tion as possible about the local environment until situa-
tions arise where the organism needs to be engaged in a
particular task or until the organism detects a particu-
larly significant object. This background of information
could provide the grist for efficient performance in many
of the organism’s specific tasks. If this principle is correct,
then a fixation selection mechanism based on minimizing
contrast entropy might work well as an automatic back-
ground or default mechanism that is overridden or modu-
lated by more specific task demands or by particularly
significant high-level content extracted during the fixa-
tions. Obviously, this is speculation, but it points to the
real possibility that, in many cases, adequate models of
human fixation patterns will require two or more very dif-
ferent fixation selection modules that interleave over
time.

A primary aim of this study was to measure the con-
trast statistics of natural images for foveated visual sys-
tems. We have focused on the relevance of these statistics
for fixation selection, but it is obvious that they must be of
at least some relevance for many tasks that involve infor-
mation integration or comparison across the visual field.
The fact that the posterior probability distribution of the
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true unblurred local contrast is characterized by very
simple formulas should make it possible to incorporate
these natural scene statistics into various Bayesian mod-
els of perceptual performance.

APPENDIX A

1. Skewed Gaussian Probability Function

We define the skewed Gaussian to be a Gaussian with dif-
ferent standard deviations above (o) and below (o;) the
mode (u):

1 _—(x—u)z_
ex
,—(0’1+G’h> P 20’l2 xXsu
N2 .
< 2
g(x’u’a-ba-h)_ 1 (x_u)g
exp 2
o+ 0, 20 x>u
2
\

(A1)

2. Differential Entropy of the Skewed Gaussian
Distribution

The differential entropy of a probability density function
is defined by the integral

h(p) = f p)In[p(x)]dx. (A2)

Substituting Eq. (Al) into Eq. (A2) and letting ¢;(x) and
¢n(x) be Gaussian density functions with means u and
standard deviations of o; and o0}, we have
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3. Contrast Entropy Minimization Algorithm

Here we formalize the CEM algorithm. To begin with, let
(x;,y;) represent the location of the ith pixel in the image,
and let C; be the true (unblurred) rms contrast at that lo-
cation. We note that the term image location refers to a
scene location expressed in degrees of visual angle in the
horizontal and vertical directions.

Consider a series of fixations, t=1, 2,.... Let the location
of fixation number ¢ be x;, y,, and let the observed local
rms contrast at the ith pixel, on that fixation, be ¢;;. The
retinal eccentricity, ¢;;, of the ith pixel location is

£ = N (x — )%+ (v, - 32 (A3)

Thus, if the observer is currently on fixation number 7,
then the current eccentricity map is given by

Si(T) =min &t (A4)
t<T

(Note that new values appear in the eccentricity map only
if a new fixation happens to bring a pixel closer to the
fovea than it has been before.) The current contrast map,
¢;(T), is defined to be the contrast that was observed when
the eccentricity was at its minimum value, as given by the
eccentricity map [Eq. (A4)]. The uncertainty map is given
by

h(T) = Jlogy@me{lke,(T)c, D+ 0?)).  (A5)

The total uncertainty after fixation number 7' is made is

U(T) = 2 hy(T). (A6)

i=1

To select the next fixation, the observer considers each
possible location (xp,1,y7,1) for fixation T+1, estimates
the total contrast uncertainty that will be obtained if that
fixation is made, and then picks the location (£7,1,774+1)
with the minimum estimated total uncertainty:

Ere1,9rer) =arg max [U(T+1,xp,0,57.0)], (A7)

XT+1:YT+1

where

A

UT + Lxp,,yr) = 2 (T + Lxpa,ym,1),  (A8)
i=1

A

hi(T + 1,x7,1,y741) = %IOg2(27Te{[k8i(T+ Lxrin,y7e1)
XE(T + 1,xpe1,y7:) P+ 007 (A9)

To evaluate Eq. (A9), we note that the eccentricity map
e/(T+1,x7,1,y7,1) for fixation location (x7,1,yr.1) is ob-
tained directly from Eqgs. (A3) and (A4). The estimated
contrast map, ¢;,(T+1,x7,1,y7.+1), can be obtained from
text equation (1). Specifically, Eq. (1) gives the maximum
a posteriori (MAP) estimate of the true contrast, C;(T), for
each location in the current contrast map:

CA(T) = ke(T)eT) +c(T). (A10)

If this MAP estimate is relatively stable and unbiased,
then approximately the same MAP estimate will be ob-
tained after the next fixation is made,
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CAT) = keT + 1,27,1,y 12 )&l T+ 1,257,1,5741)
+ Ci(T+ l,xT+17yT+1); (All)

and therefore our prediction of the observed contrast after
the next fixation is

Ci(T)
ke (T + 1,x7,1,y741) + 1

(T + L,xpy1,y741) = . (A12)

In sum, Eq. (A3), (A4), (A7T)—(A9), and (A12) can be used to
estimate the fixation that will maximally reduce the total
contrast uncertainty. In practice, we find that this esti-
mate of the optimal fixation location is quite accurate.

A minor technical issue that arises in evaluating the
CEM algorithm is that differential entropy can be nega-
tive. Therefore, we convert the differential entropy into
discrete entropy by finely sampling the Gaussian distri-
bution to obtain a discrete probability distribution. Using
this discrete distribution guarantees that the uncertainty
map is always nonnegative.
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