
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Publications, School of Management School of Management

2005

Contrasting Community Building in Sponsored and Community Contrasting Community Building in Sponsored and Community

Founded Open Source Projects Founded Open Source Projects

Joel West
San Jose State University, joel.west@sjsu.edu

Siobhán O’Mahony
Harvard Business School, somahony@hbs.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/org_mgmt_pub

Recommended Citation Recommended Citation
Joel West and Siobhán O’Mahony. "Contrasting Community Building in Sponsored and Community
Founded Open Source Projects" System Sciences (2005): 196c. https://doi.org/10.1109/HICSS.2005.166

This Article is brought to you for free and open access by the School of Management at SJSU ScholarWorks. It has
been accepted for inclusion in Faculty Publications, School of Management by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/org_mgmt_pub
https://scholarworks.sjsu.edu/org_mgmt
https://scholarworks.sjsu.edu/org_mgmt_pub?utm_source=scholarworks.sjsu.edu%2Forg_mgmt_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/HICSS.2005.166
mailto:scholarworks@sjsu.edu

Contrasting Community Building in
Sponsored and Community Founded Open Source Projects

Joel West
San José State University
<Joel.West@sjsu.edu>

Siobhán O’Mahony
Harvard Business School
<somahony@hbs.edu>

Abstract
Prior characterizations of open source projects

have been based on the model of a community-founded
project. More recently, a second model has emerged,
where organizations spinout internally developed code
to a public forum. Based on field work on open source
projects, we compare the lifecycle differences between
these two models. We identify problems unique to
spinout projects, particularly in attracting and building
an external community. We illustrate these issues with
a feasibility analysis of a proposed open source project
based on VistA, the primary healthcare information
system of the U.S. Department of Veterans Affairs.
This example illuminates the complexities of building
a community after a code base has been developed and
suggests that open source software can be used to
transfer technology to the private sector.

1. Introduction

As the term is commonly used today, “open source”
encompasses both an intellectual property strategy and
a development methodology. However, this term
masks key differences in the ways in which open
source projects are created. Most of the focus of open
source research has been on open source projects such
as Linux, Apache or GNOME which are founded by a
“grass roots” community of user-developers.

However, more recently, companies and even
governments have sought to obtain the benefits of
open source by releasing their proprietary source code
to create new open source projects. Examples of this
include IBM (Eclipse), Sun (OpenOffice) and Netscape
(Mozilla). Conversion of established proprietary
projects face different challenges than previous research
on community-founded projects.

Thus, we examine the different tensions that
community initiated and sponsored projects face when
trying to build an open source community. We
consider the challenges in starting and managing such
projects, focusing on the necessary incentives and
organizing mechanisms. We also consider the
intellectual property implications associated with these
different approaches.

From this analysis, we consider potential
sponsorship by the U.S. Federal government, which is
a major creator, sponsor, and consumer of information
technologies. The government has many systems that
could be converted into open source projects, either to

support technology transfer goals or to incorporate
external contributions to improve system quality. We
analyze one such candidate, the VistA health care
information system from the United States Department
of Veterans Affairs (VA) to illustrate the key issues
sponsors face in creating spinout open source projects.

2. Models of Community Development

The most familiar model of open source
development, popularized by the Linux kernel project,
is publicly initiated by one or more individuals who
recruit developers to contribute to software that is still
in its infancy. In this model, employment relations and
reporting relationships do not guide the development of
code.

Since Netscape publicly released the source code for
its Internet browser, Mozilla, in 1998 an increasing
number of public and private sponsors have released
code created under proprietary conditions in the hope of
growing a community to improve and maintain the
future code base. Sponsors may intend for the
community to either supplant or replace prior
proprietary development efforts. After examining
community initiated projects at their startup and mature
stages, we turn to examine what sponsored projects do
and do not share with them.

2.1 Community-Initiated Projects

Community founded open source projects are
initiated by one or more individuals independent of
their employment context. Familiar examples included
Linus Torvalds’ starting the Linux operating system,
Miguel D’Icaza’s initiating the GNOME desktop
environment project, and the eight developers who
adapted the NCSA web server to become Apache.

Community founded projects remain community
managed, and are usually structured to prevent a
takeover by a firm or other organization. We define a
community managed project as an open source software
project initiated and managed by a distributed group of
individuals who do not share a common employer
(O’Mahony, forthcoming). A firm may sponsor
contributors, but firms typically cannot become
members. Sponsored contributors must earn and
sustain their role on the project under the same terms
as volunteers (O’Mahony, forthcoming).

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

2.1.1 Startup Phase

The maturity of a project’s code base in the startup
phase is a critical dimension which distinguishes
community and sponsored projects. Community
managed projects grow organically: the community and
code scale in parallel. The key design decisions,
prioritization and implementation approaches come
from the founders and slowly scale as other developers
working in tangential areas join the community.

For example, project members may ‘test’ a
newcomer’s ability to contribute to a project by
evaluating their ability to articulate a contribution to
the code base. Potential members create ‘joining
scripts’ specifying a unique contribution to become an
accepted contributing member of the project (von
Krogh, et al, 2003). In this manner, the complexity of
the code grows as new developers join.

As a result, new community members are
incorporated early in the design phase. This can create
confusion and ambiguity in the short term, but enable
a more robust project architecture and greater individual
commitment in the long term. For example, very early
in the development of Linux, Torvalds relied on others
to design and implement crucial networking libraries,
developing the “lieutenant” system of senior technical
leaders that remains today (Moody, 2001). Early
participation in the design phase can increase individual
commitment to the project.

A modular project architecture may also help a
project scale in a decentralized fashion. Baldwin and
Clark (2003) show that projects that are more modular
are better positioned to recruit new contributors. A
greater number of modules can offer more opportunities
for recognition, which can further enhance contributors’
motivations (Baldwin and Clark, 2003).

Contributors to community initiated projects are
motivated by a complex set of personal and career
concerns. Lerner and Tirole (2002) argue that
contributors to community projects participate to
improve the visibility of their skills in the open labor
market. A more recent survey of SourceForge
developers shows that most contributors to community
projects are interested in building their skills and
solving technical problems and that career benefits are
of secondary concern (Lakhani and Wolf, 2003).

The choice of license, intent and control structure
can also affect the ability of a community project to
attract developers. Linux, Apache, GNOME and the
Debian Linux distribution crafted clear statements
about the project’s intent and its boundary with the
commercial world. These projects used the Berkeley
Software Distribution license (BSD) or the GNU
General Public License (GPL), which have been in use
for a long time: their commercial limitations and
affordances were well known. This helped assure
contributors who might otherwise worry that their

work might be distributed under proprietary conditions
(Moglen, 1999; Stallman, 1999) or go unrecognized.

And finally, the reputation of a project’s founder is
also critical to recruiting developers1. Individuals who
were highly respected in the programming community
founded the community projects listed earlier. A solid
track record can enhance potential contributors’
confidence in the project’s viability.

The main disadvantage of the community founded
approach is that startup costs — both organizational
and technical — are fully born by the community. In
its purest form, volunteers establish structure,
collaboration technologies, governance and define roles
for participation all while trying to build a working 1.0
system. Not surprisingly, only a few community open
source projects ever build a complete system or
establish a thriving online community. Two recent
surveys of the SourceForge.net website, the largest
repository of open source software, demonstrate that
community project success is fairly skewed
(Krishnamurthy, 2002; Healy & Schussman, 2003). Of
the 46,356 projects hosted on SourceForge only 75%
of projects had any software in their code repository and
95% of the projects had 5 or fewer registered
contributors (Healy & Schussman, 2003). Less than
2% of projects were classified as mature.

One interpretation is that the Sourceforge hosting
site serves as an incubator for fledgling ideas that
might become projects. In such a forum, starts and
failures are, naturally, more visible. Not all of these
projects are of the same scope nor will they all share
the same potential to scale as projects like Linux.
However, with an increase in the number of projects in
incubation, there is likely greater competition for
donated labor. Furthermore, the continued reference to
the same handful of successful projects (notably Linux
and Apache) suggests that there is tremendous difficulty
building projects this way.

2.1.2 Mature Phase

Mature community managed projects have
developed a series of major releases. They have defined
membership criteria or boundaries: contributors know
whether they are in or out of the project. Mature
projects have adopted governance mechanisms that
enable representation in commercial and legal settings.
They also have an ecology of institutions that support
and/or extend their work. These institutions may be
non-profit organizations such as the Open Source
Development Lab, firms developing complementary
products, or other community projects with which they
collaborate.

Mature community projects founded prior to the
popularization of open source software in 1998 had an

1 We thank Patrick Wagstrom for pointing this out.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

advantage that community projects founded later lack.
These projects grew out of the limelight of commercial
attention. Slow growth allowed them to develop a core
of contributors to diffuse project norms and help adapt
to later internal and external pressures associated with
growing commercial interest in open source software.

For example, when mature projects such as Apache,
GNOME, and Debian achieved global recognition for
their work, the number of potential contributors soon
outpaced the projects’ ability to welcome them in the
informal capacity that marked their organic growth.
Attention from investors, analysts, the media, and
potential commercial collaborators brought new types
of list subscribers, inquiries and contributors. Project
members found some of their informal decision
mechanisms inadequate for making formal
commitments, guiding the project’s direction, and
legally representing the project (O’Mahony, 2002).

Apache, Debian, and GNOME responded to these
challenges by designing formal membership criteria and
application processes to manage an onslaught of new
recruits. Under a deluge of applicants, Debian
temporarily closed its doors to new members to design
a membership process (O’Mahony and Ferraro,
forthcoming). Projects also adopted more formalized
governance mechanisms embodied in non-profit
foundations that help oversee project direction but not
day-to-day technical decision making (O’Mahony,
2002). Since 1997, 20 community managed projects
have created nonprofit foundations.

Mature community managed projects evolved
through a process of slow organic growth and then
experienced a spike of rapid growth. What may be
unique to community managed projects, is that the
formal governance mechanisms designed, at their roots,
reflect longstanding project norms. The governance
mechanisms that emerged on projects like Apache,
Debian, and GNOME were conceived to correct current
problems — or to reflect the way the project was
currently working and help it continue on that same
path. Governance was not imposed, but emerged out of
shared perceived need.

The collective design of these governance
mechanisms also enabled later project entrants who did
not have a voice in the project’s technical design, to
participate in the design of the project’s organization
and governance. This could have a similar effect of
amplifying individual commitment to the project.

2.2 Spinout Projects

An alternative open source project model is a sponsored
or spinout model (West and Gallagher, 2004). A
sponsor of an internally developed software project
releases its code to the public under an open source
software license, inviting the external community to

join the project. The sponsor could be a firm,
government agency or a non-profit organization.

Two of the earliest sponsored projects were founded
in 1998 when Netscape formed the Mozilla project and
when IBM released its Java compiler to create the Jikes
project. Table 1 lists some spinout projects.

2.2.1 Startup Phase

Why do firms release their code to form an open
source project? West (2003) identifies two reasons: to
win adoption, or to gain development assistance on
non-critical areas. What would motivate external users
to adopt the technology or make contributions?

First, a sponsored open source project starts with
considerable investment from sponsors prior to the
launch of an open source project, and presumably, as it
progresses. This can provide a solid technical
foundation for large-scale innovation. These resources
reduce the risk that community members will someday
find the project defunct before its software is usable.

Second, the ongoing role of a formal sponsor can
reduce ambiguity and provide structure to keep the
project going forward. There is clearly someone
“in charge,” which may enable potential contributors to
more easily find their role. On-going sponsorship
provides resources, legitimacy and technical capabilities
to improve the odds of project success.

At the same time, introducing a community in an
established project raises new challenges: technical,
relational and legal. Instead of evolving with the code,
the external community must be introduced post hoc to
the existing technology. The community has not had a
chance to grow with the code as it matures, but instead
the infant community is presented with a large
complex system that may be hard to decipher at macro
and micro levels. The code will be even more difficult
to learn if it was developed by a single author or a
small team, in which the overall architecture and design
goals remain unspoken tacit knowledge.

Even without these problems, new communities
face considerable problems of motivation and
coordination. The external community may have
trouble developing a sense of ownership for the
technology, and does not benefit from the (often
crucial) intrinsic motivation that comes from building
a complete system from the ground up. Also, such
projects face an ongoing struggle for control of the
project’s future, as the sponsor and community may
have different visions, goals and priorities.

In some cases, the result resembles proprietary
development conducted within a glass house, in which
outsiders observe but only participate at the margins of
the sponsor’s development efforts. This is most
common when the sponsor fails to relinquish control
of the project’s direction and priorities. An example of
this is the Darwin project, where Apple released part of

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

its OS X as open source but kept key components
proprietary (West, 2003).

Sponsors that seek greater external participation
must expend considerable time and money on
community development. This includes marketing to
and recruiting potential contributors, integrating their
efforts into the project, and developing a governance
structure compatible with commercial and non-
commercial constituents. Examples of such
communities that are currently under development
include Sun’s sponsorship of OpenOffice productivity
software, and IBM’s sponsorship of Eclipse
development tools.

Finally, contributors to sponsored projects may be
more likely to worry about their future legal rights to
use, modify and distribute the code they have helped
develop. Since the open source definition was drafted in
1998, the Open Source Initiative (OSI) has approved
54 licenses that meet the 10 requirements of an open
source license (OSI, 2004). Fifteen of these open
source licenses could be identified as firm specific and
14 as product specific. The average contributor is
unlikely to understand all the nuances of these licenses
regarding attribution, modification and distribution.

Even the most popular license2, the GNU’s General
Public License (GPL), has not been fully tested in a
court of law, leaving senior legal counsel of large I.T.
companies uncertain as to its enforceability. Neither
community nor corporate contributors know how their
respective code contributions could be distributed
should conflict ensue. Under these conditions,
individual programmers are likely to rely on trust, as
demonstrated by a corporate sponsor’s actions to create
usage and contribution rights for the community.

2.2.2 Mature Phase

Without much empirical work on mature sponsored
projects to draw from, we hypothesize four scenarios.

If the sponsor retains a heavy hand controlling
software development, the project may remain a closed
development effort, albeit with greater transparency to
outsiders such as those that supply complements. This
is particularly true if (to use the terminology of West
2003), the sponsor is only “opening parts,” disclosing
a subset of the technologies that most users would
want to build a complete working system. A related
but distinct example of ongoing proprietary control can
be found in “dual license” open source projects such as
MySQL. The company (MySQL AB) gains revenues
from selling commercial licenses to firms but also
licenses their software under the GPL on terms that are
acceptable to individuals and non-profit users
(Välimäki, 2003). The company retains full control of

2 In mid-2004, the GNU GPL was used by 96% of 56,839
projects reporting a license on www.SourceForge.net.

its development but may be more successful in
attracting contributors from those users (such as
universities) who receive full value from the restricted
license. Similar provisions apply to “partly open”
models such as Microsoft’s Shared Source (West,
2003).

Alternatively, a tightly controlled but transparent
development process could help sponsored projects
transition to a more open development environment.
For example, Chandler, a personal information
manager open source project led by the non-profit Open
Source Application Foundation, is developed entirely
in-house, but uses a transparent development
environment specifically to betterprepare a community
of potential future contributors.

A third example is when the sponsoring
organization withdraws active participation and turns
over control to the community. The project — whether
mature or fledgling — must be supported by the
community or it will die. Examples of this include
both the Mozilla browser and Jikes compiler (West &
Gallagher, 2004). Without a sponsor, these projects
may in time become indistinguishable from
community-founded projects, but today there are too
few examples from which to generalize.

The fourth possibility is that an active sponsor and
vibrant external community share ongoing control and
responsibility for developing a complex evolving
system. A successful sponsored community project
would utilize a broad base of contributors, be vendor
neutral and self-sustaining. Such goals are often stated
by sponsors spinning out source projects, but are less
often realized. Why? Perhaps sponsors are still learning
how to adapt open source to meet hybrid proprietary-
community needs and have yet to identify best practices
in community building. Alternately, inherently
conflicting goals of the internal and external actors may
make such hybrids an unstable and fleeting form.

2.3 Research Questions

Our review of research on community initiated and
sponsored open source projects shows that researchers
know much more about community initiated projects
than about sponsored projects. We have highlighted
some differences between the two models that affect
their ability to recruit developers, coordinate, and
develop software. In doing so, we have identified an
implicit trade-off between the degree of control a
sponsor is ability to exert and a sponsor’s ability to
attract volunteer contributors.

We theorize that a more closed development
process, sponsor specific legal terms, and ambiguous
community leadership will impair a sponsor’s ability
to grow an open source community. Alternatively,
firms that operate with a completely open development
process, laissez-fair governance or abdicate community

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

leadership may unintentionally waste resources, hurt
their ability to appropriate returns or advance their
competition Therefore, we are interested in how
sponsored open source projects can best utilize their
resources while still managing to grow a diverse
external community of contributors. Within this broad
question, we consider how the role of individual
contributors and sponsors changes over time. Our aim
is to conduct comparative research on sponsored
projects at different stages of development.

Next, we explore possible answers to this question
by examining VistA, a federally sponsored healthcare
information system that is currently a candidate for an
open source project. Although VistA differs from the
sponsored open source projects initiated to date, by
exploring an extreme case, we can anticipate possible
issues that may affect future field research.

3. VistA: Public Domain to Open Source

While Federal sponsorship of the Internet is well-
known, government agencies have also paid to develop
internal systems which could potentially become
spinout open source projects. Such projects could
improve the economic value created by tax dollars,
both by transferring public technology to the private
sector, and by incorporating external contributions to
improve internal system quality.

Since 1985, the Federal government has deployed
multiple versions of the United States Veterans
Administration VistA health care information system.
As public domain software, it has also been used
outside the federal government, but without the
multilateral collaborative development processes that
characterize open source. Today, VistA is code without
a cohesive development community.

In mid-2003, the authors were commissioned to
study how the FOIA code could be used to create an
open source project. From our prior research on open
source projects, we developed a draft action plan (West
& O’Mahony, 2003), which was circulated to key
stakeholders inside and outside the Federal government.
In response, the VA developed a plan for cooperating
with an open source community. In March 2004,
WorldVista (a user organization) began to discuss what
such a community would look like.

3.1 History

In 1982, the Veterans Health Administration (VHA)
of the U.S. Veterans Administration began an effort to
automate more than 150 medical centers. It deployed its
first system in 1985. Between 1985 and 1996, the
VHA created an improved version with a graphical user
interface, called VistA (Veterans Health Information
Systems and Technology Architecture) which debuted
in 1996. Today, the integrated VistA system includes

more than 2 million lines of code and about 140
modules. It is used by the VHA to deliver health care
to nearly 5 million patients across 1,300 sites in the
U.S. (VA, 2003; Marshall 2003; Medsphere, 2003).

Because the Federal government cannot, by law,
hold a copyright on software developed with tax
dollars, the VistA source code is in the public domain.
Since the early 1980s, nonprofit, commercial and
foreign entities have used the 1966 Freedom of
Information Act (FOIA) to obtain copies of the VistA
source code. Through such FOIA requests, versions of
VistA are in active use in Finland, Germany, Egypt
and Latin America, as well as in a number of state and
local health care systems in the United States.

The VistA code has been attractive to external users
for two reasons. The first is the price, which is free.
But the second is the system architecture: VistA
provides a single integrated system that manages all
patient transactions in a clinical and hospital setting,
while commercial packages tend to focus on specific
tasks and require manual data transfer (or duplicate data
entry) as a patient moves within a healthcare system.

The VHA continues to actively develop VistA to
meet its own needs. VistA has also influenced federal
efforts to develop standards for a planned National
Healthcare Information Infrastructure. In March 2003,
various federal agencies announced a Consolidated
Health Informatics initiative to promulgate VistA’s
record formats for use in Medicare, Medicaid and
Department of Defense patient records.

3.2 Limits to the Public Domain Model

The periodic FOIA releases over the past 20 years
provided static snapshots later modified by recipients to
meet local needs. A few recipients applied subsequent
patches distributed by the VHA, but only a handful of
changes by the external developers have been
incorporated by the VHA. Although VistA is in the
public domain, the VHA’s development processes
remain closed. External developers also rarely integrate
and share their code improvements among themselves.

Despite the widespread diffusion of the code, there
is, as of yet, no cohesive open source community
around VistA. Instead, there are dozens (if not hundreds)
of disparate code variants, an extreme example of
“forking”. As a consequence, there is considerable
duplicated effort for external users that do not benefit
from the improvements of others.

While VHA programmers improve the core product,
the VHA could also benefit from changes made by
external users. For example, the operational VHA
systems use a proprietary HP (née DEC) platform,
while many external sites have modified the VistA code
to use with Linux on commodity Intel-based hardware.
Similarly, external efforts to abstract the VistA design
could provide a single code base for the VHA and other

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

Federal agencies using derivative code, such as the
Departments of Defense and Indian Health Services.

3.3 Creating a Spinout Open Source Project

The VHA could benefit from an open source
project, but has restrictions on how it interacts with
firms. The VHA cannot compete with the private
sector and must avoid favoritism in its dealings. An
independent non-profit foundation for VistA users could
provide a mechanism for the VHA to transfer
technology to governmental and commercial users,
while offering a neutral forum for coordinating
disparate interests.

From a technical standpoint, such a project could
eliminate redundant development labor by integrating
external programming efforts into a single unified copy
of the FOIA source code, allowing both parties to work
from a common code repository. External users would
have access to the latest internal innovations and the
VHA could incorporate innovations and improvements
which their programmers either did not consider or did
not have the resources to pursue.

At the same time, there are several key issues that
must be addressed to create an effective VistA open
source community. These fall into four areas: creating
a technical infrastructure; establishing governance
mechanisms that meet the concerns of a wide range of
stakeholders; considering the role of domain
knowledge; and intellectual property licensing.

3.4 Enabling Technical Collaboration

To enable collaborative software development
among the sponsor’s programmers and the external
community, three major types of technical
infrastructure are required. The first and most obvious
is the source code repository, which allows all to view
the code and trusted participants to change it. Secondly,
the project needs an issue tracking database for
monitoring software defects, “to do” lists, and desired
enhancements. Finally, projects need discussion
groups, typically implemented using e-mail lists.

Levels of authority, access rights, and participation
should be scoped to increase as people gain experience
with the project. For example, the Apache project
distinguishes betweens user, developers, committers,
lead committers and foundation members (Apache
2003). Any project must have criteria for membership,
as well as opportunities for participants to assume
greater responsibilities (von Krogh et al, 2003).

Finally, the project must establish formal release
processes. Community projects often take a long time
to herd volunteer contributors to create software that
can be deployed in a usable form. Contributors from
inside and outside the VA are likely to weigh the trade-
offs of features, timeliness and quality differently. This

tension, inherent in all spinout projects, may be
attenuated on a project with a public sponsor as it faces
less pressure to meet revenue-driven deadlines.

A large code base is difficult to govern as an
indivisible whole, so VistA would need to be
partitioned into subprojects with separate programmer
communities. This would also enable decentralized and
well defined access rights to control the technical
architecture for different sections of the project. Such
an architecture would be well suited for a federated
governance system that allows all modules to be
represented.

3.5 Demands of Disparate Stakeholders

A firm has a well-defined set of stakeholders, with
its primary responsibility to the company’s owners.
The stakeholders for a non-profit organization are more
complex, particularly for an open source project, which
relies on interdependent individuals and organizations to
create, maintain and evolve a complex technological
architecture. For the VistA Project, the stakeholders
would be an unusually broad group, including:
• The Department of Veterans Affairs, which could

gain through testing, interoperability, and
improving its ability to attract and retain skilled
technical workers.

• Existing and potential VistA user sites. Health
care organizations such as hospitals and provider
networks that implement VistA will be concerned
with reliability, affordability, security, and
ongoing maintenance and support.

• Organizations Implementing and Supporting
VistA (both commercial and non-profit) provide
service and support to users that are unable to
access the code themselves.

• VistA developers who develop and maintain the
VistA code, including former VA employees now
working as independent consultants.

The project’s governance must bridge the long-term
goals of the disparate stakeholders to the day-to-day
development efforts of contributors. Directors elected to
represent the interests of the disparate stakeholders
could govern a non-profit foundation that holds the
assets of the project.

However, directors cannot “order” volunteer
contributors without losing their motivation and
participation. Thus, to avoid exit and retain loyalty of
technical contributors, the governance model must give
voice to the expertise and views of these contributors.
For example, the directors of the Apache Software
Foundation are elected by a group of approximately
100 most active technical contributors (Apache, 2004).

Finally, governance must explicitly incorporate the
concerns of the central stakeholder, the VA. Due to
FOIA, the VA cannot block the growth of an open
source community. But given its technical knowledge

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

and continuing investment in the code, few of the
project goals could be realized without its ongoing and
enthusiastic participation.

3.6 Centrality of Domain Knowledge

Many successful open source projects share at least
one of two common characteristics. First, many
projects (such as web servers and development tools)
are developed by programmers who will be the eventual
users; their interest in the project is tightly coupled
with their own needs. Second, some key technologies
like Linux are infrastructure technologies that are not
directly visible to users, but form the basis on which
user applications are constructed. The VistA system
shares neither of these characteristics.

First, the VistA system depends heavily on
expertise from domains outside computer science or
related fields such as web protocols. These domains
include medicine, pharmacology, accounting and health
care regulation, and thus parallels Enterprise Resource
Planning systems such as SAP R/3. This means that
the ongoing development (and governance) of the
project must incorporate the contributions of non-
programmer domain experts, in a way that legitimates
them as first class citizens of the project.

Since the users of the system are skilled medical
professionals, including doctors, nurses and
pharmacists, the system must evolve to keep the
centrality of their requirements paramount. If VistA is
to be used to transfer the VHA technology to private
and non-profit hospitals, then the governance of the
project must incorporate requirements beyond that of
the VHA. Thus project sponsors would want to recruit
not just talented programmers, but domain level
experts who could contribute programmatic expertise.

3.7 Intellectual Property Licensing

The VistA project has three licensing goals typical
of a federally sponsored project:

1 . Encourage the use of a unified distribution of
VistA code for use outside the VA;

2. Assure that contributions to VistA are widely
disseminated to all possible users (including the
VA); and

3 . Attract a supply of complementary solutions
(e.g., new modules) to extend the capabilities of
VistA for use by commercial, non-profit and
government health care providers.

The reciprocity of the GPL requires users to
contribute to a single code base and prevents
distribution of proprietary derivative works. If the
project uses the GPL, it might encourage greater
dissemination of a unified distribution, but discourage
provision of complementary solutions. To meet the
latter goal, the project could choose the Lesser GPL

(LGPL), which allows developers to add new
proprietary modules although they could not privatize
proprietary enhancements to VistA. This option has
allowed major IT vendors to develop applications for
Linux, and allows OpenOffice to be used as a building
block for various open source and proprietary packages.

However, the VistA Project has a unique licensing
challenge as releases of the FOIA version of VistA in
the public domain may “trump” a version licensed
under more restrictive terms. Given a choice between
the unrestricted FOIA VistA and the limits of a
copyleft license, firms might prefer to use the FOIA
code, which would only continue the existing forking.

This suggests that for cases where a public domain
supply is perpetually available, an open source project
such as VistA would favor an open source license that
does not restrict distribution of proprietary additions to
it. The use of a popular non-viral license such as
Apache, BSD, or Mozilla would provide a familiar
license form that encourages proprietary extensions.

4. Tradeoffs in Community Building

4.1 Challenges for Community-Led Projects

Building community in parallel with the code base
offers several advantages. It allows early entrants to lay
their fingerprints on the architecture of the project.
This can enhance the robustness of the architecture
itself, help foster the development of shared formats,
processes, and norms; and increase individual
commitment to the project.

At the same time, this process is often marked by
long periods of ambiguity over project direction and
viability and take time to develop critical mass.
Furthermore, many of the mature, successful projects
were founded well before the popularization of open
source software changed the ecology of community
developed software. Now, there are more projects
competing for quality contributors and more
commercial entrants who may make it more difficult to
align community and firm interests. Thus, many open
source projects do not make it past the incubation stage
for some combination of these reasons.

4.2 Challenges for Sponsored Projects

Projects spun-out from proprietary sponsors have
several advantages. Their architecture may be more
clearly defined, their viability more clearly established,
and they may have received commercial and/or
community recognition which can help attract talented
developers. Sponsored projects have better assurance of
the support needed to develop a ‘commercial face’ by
marketing and promoting the project.

However, these projects lack several features
endemic to community initiated projects. The ability

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

for contributors to stake out autonomous sections of
the project to which they can uniquely contribute may
not be clear in the presence of prior “owners” to the
code. If contributors do not see how they can “make
their mark,” they will be less inclined to contribute to
a sponsored project since this has been identified as a
critical incentive on community managed projects.

Since sponsored projects do not have the
opportunity to recruit developers in the design phase of
the project, managing the appropriate level of
modularity may be more important. A degree of
modularity that attracts talented developers seeking to
exercise their skills and autonomy will be critical.
Potential contributors may react negatively to spinouts
that are viewed as transfers to the community to
maintain code as opposed to collaborative partnerships.
Community based contributors will be quick to note if
contributor pluralism is nominally encouraged, yet the
governance structure allows a dominant to emerge.

Thus we predict that pre-emptive governance on the
part of a sponsor will have a curvilinear relationship
with the project’s ability to grow an open source
community. If the sponsor does too much pre-emptive
governance design, potential contributors will question
the sponsor’s motives and be reluctant to become
involved. On the other hand, if the boundary between
commercial and community ownership and control is
not secured, potential contributors will be less
motivated to contribute.

4.3 Learning from VistA

The VistA case is unusual as the code is in the
public domain and a distributed community of users
and developers already exists. Unlike other corporate
sponsors, VistA does not have to build an external
community from scratch, but must integrate a pre-
existing, but fractured community to create a shared
code base. Furthermore, they must do so in a way that
creates avenues for domain experts to participate and
considers the needs of a large group of public and
private stakeholders.

The VistA analysis suggests that both public and
private sponsors need to create some type of buffer
institution to manage the community-commercial
boundary. The tensions involved in maintaining this
boundary are not unique to firms. In order for a sponsor
of any kind to grow an external community around a
previously developed project, a buffer organization is
needed to create an appropriate distance from the host.

Without a buffer organization, it will be difficult for
the sponsor to gain legitimacy in the eyes of all
stakeholders. Providing a buffer organization may also
help balance the curvilinear relationship between
sponsor control and community building potential.
This suggests additional considerations for the future
study of sponsored open source projects.

Thus far, our analysis of sponsored open source
projects identified four roles for sponsors:

• providing code for a working system;
• providing resources, such to support hardware,

web hosting, conferences, travel, marketing,
ongoing programmer time or legal counsel;

• transferring knowledge regarding code, its
history, design and structure;

• providing community leadership, to provide a
clear mission, allocation of rights and
responsibilities, and a structure for community
participation and governance.

These roles may be temporary, and sponsors may shift
their attention among these roles depending on the
maturity of the code base and the degree to which there
is a pre-existing community.

The example of VistA adds another possible role to
this list: helping create institutional boundaries as well
as bridges among community, public and private
interests. We predict that this role will be particularly
important for sponsors that lack legitimacy in the
programming community.

4.4 Measuring Success of a Sponsored Project

How should success of a sponsored project be
measured? In addition to measures of a project’s
internal health (such as achieving pluralism), the
project should be evaluated by its alignment with the
sponsor’s open source strategy.

We can suggest three reasons why sponsors would
initiate an open source project. First, they want to
create a larger market for the project’s software or
reduce a competitor’s market share by building a robust
development ecology. Second, the use of external
contributors reduces the demand on the sponsor’s
resources so they can be redeployed. Third, the sponsor
hopes to create software as a public good – particularly
likely for a nonprofit or government sponsor.

No one measure of success matches all strategies.
Sponsors trying to accelerate the project’s market share
will be more interested in the rate of membership
growth, rate of adoption, strengthening of their brand,
and innovations that complement the project. Those
seeking cost reductions will concentrate on indicators
of a self sustaining project, such as the diversity of
project contributors and the project’s ability to attract
resources from others. Sponsors creating a public good
may focus on the degree of awareness and adoption of
the project.

5. Implications

This paper has identified key distinctions between
community and sponsored open source projects. Our
research suggests that firms experimenting with the
open source model are more likely to do so in an

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

adaptive as opposed to a wholesale fashion, but how
these hybrids will survive is unknown.

Creating a spinout open source project shares many
of the same issues as a community managed one, such
as building a collaboration infrastructure, designing
governance mechanisms and making key decisions
about licensing and other external relationships.

Any ongoing relationship between the sponsor and
the community will raise questions of ownership,
decision rights, and control. West (2003) predicts an
“essential tension” of open source projects: trading off
appropriation of the returns versus providing incentives
for adoption. In this case, a sponsor’s desires to guide
the project to meet its own needs (and establish
licensing terms favorable to its own interests) must be
weighed against providing incentives for participants to
join and contribute to the community.

To the degree that sponsors assert unilateral
ongoing technical leadership and control, sponsored
projects may have difficulty recruiting external
contributors. Since external participation in the pre-
spinout technical design phase is not feasible, it will
be more critical for sponsors to seek external
participation in the design of governance mechanisms.
When doing so, sponsors must walk a fine line
between asserting preferential decision rights and losing
all influence over the project. A well functioning
governance model should enable the sponsor to
influence the project’s evolution through pluralistic
support.

5.1 Technology Transfer

Converting federally funded software to open source
software could allow pre-existing investments in
software to further economic development and benefit
the sponsor. The success of using open source as a
technology transfer mechanism will vary based on a
number of factors, including:
• Government priorities. As with private firms,

some government spinout projects will represent
an exit strategy for a technology that otherwise
lacks ongoing value. In these cases, the
government will be less likely to want to control
the community but also less likely to provide
ongoing resources to support the community.

• Applicability of technology to external needs.
Obviously some technologies will be more
transferable than others to the requirements of
other jurisdictions or private entities.

• Financial goals and constraints. Some
governments (such as public universities) will
seek to profit from their technology. Others will
seek to discriminate in favor of local or national
champions to control the spillovers. These goals
are more consistent with building a “gated
community” than a full open source project.

5.2 Future Research

Our study highlights the general lack of empirical
research on sponsored open source projects. As open
source software becomes not only accepted by the
computing industry but a model to adapt and modify in
conjunction with traditional corporate strategy, more
attention needs to be paid to the evolution of technical
and social hybrids that are emerging.

It is likely that the role of spinout projects in a
firm’s strategy will affect how firms approach
community building. We would expect that the degree
to which a firm’s complementary work can be
decoupled from a community project, the more likely
they will pursue an open approach to creating a spinout
project. For example, firms interested in testing
prototype ideas may be more open in their approach to
community building than firms building tightly
coupled complements.

Thus, points of interdependence will be worth
examining in order to understand how much loss of
control a sponsor can tolerate. Temporal conditions
may matter as well. Longer product development cycles
may be able to tolerate more community control,
where as shorter product development cycles may
require more sponsor control.

Future research should also attend to the dynamics
of sponsored open source projects over time. Is it
possible for a sponsored project to become a
community managed project? The Mozilla and Jikes
projects suggest that sponsored projects can indeed
achieve self-governance, a necessary if not sufficient
measure for a sustainable community project.

6. References

Apache (2004) “Management - The Apache Software
Foundation,” Apache Software Foundation,
http://www.apache.org/foundation/roles.html

Baldwin, Carliss Y., & Clark, Kim B. (2003) “Does Code
Architecture Mitigate Free Riding in the Open Source
Development Model?” working paper, Harvard
Business School, June 1.

Healy, Kieran and Alan Schussman, (2003) “The Ecology
of Open-Source Software Development,” working
paper, Department of Sociology, University of
Arizona, January 29,
http://opensource.mit.edu/papers/healyschussman.pd

f

Lakhani, Karim and Wolf, Robert G., (2003) “Why
Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software
Projects,” September, MIT Sloan Working Paper No.
4425-03.

Lerner, J. & Tirole, J., (2002) The Simple Economics of
Open Source. Journal of Industrial Economics , 52,
197-234.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

Marshall, Rick, (2003) “About VistA,” WorldVistA, Feb.
17, http://www.worldvista.org/About/VistA/

Medsphere (2003), “History of VistA,” Medsphere
Systems Corporation,
http://www.medsphere.com/development/history.wpl

Moglen, E. (1999) Anarchism Triumphant: Free Software
and the Death of Copyright. Saggi, Conferenze E
Seminari (38), Roma..

Moody, Glyn, (2001) Rebel Code: Inside Linux and the
Open Source Revolution, Cambridge, Mass.:
Perseus.

O’Mahony, Siobhán, (2002) “The Emergence of a New
Commercial Actor: Community Managed Software
Projects”, unpublished dissertation, Stanford
University.

O’Mahony, Siobhán, (Forthcoming) “Non-Profit
Foundations and Their Role in Community-Firm
Software Collaboration.” In Joe Feller, Brian
Fitzgerald, Scott Hissam and Karim Lakhani, eds.,
Making Sense of the Bazaar: Perspectives on
Free and Open Source Software . Cambridge, Mass:
MIT Press.

O’Mahony, Siobhán, and Fabrizio Ferraro, (Forthcoming)
“Managing the Boundary of an ‘Open’ Project.” In
John Padgett and Walter Powell, eds., Market
Emergence and Transformation , edited by

OSI, “Licensing,” Open Source Initiative, 2003, URL:
http://www.opensource.org/licenses/

OSI, “The Open Source Definition,” Version 1.9, Open
Source Initiative, 2004, URL:
http://www.opensource.org/docs/definition.html.

Stallman, R., (1999) “The GNU Operating System and the
Free Software Movement.” In: DiBona, C., Ockman,
S., & Stone, M., eds., Open Sources , O’Reilly,
Sebastopol, CA.

VA, “VistA Monograph: 2003-2004,” Veterans Health
Administration, Department of Veterans Affairs,
September 2002, URL:
http://www.va.gov/vista_monograph/.

Välimäki, Mikko, (2003) “Dual Licensing in Open Source
Software Industry,” Systemes d’Information et
Management, January 2003,
http://opensource.mit.edu/papers/valimaki.pdf.

von Krogh, Georg, Sebastian Spaeth and Karim R. Lakhani
(2003) “Community, joining, and specialization in
open source software innovation: a case study,”
Research Policy, 32, 7, 1217-1241.

West, Joel (2003) “How open is open enough? Melding
proprietary and open source platform strategies.”
Research Policy, 32, 7, 1259-1285.

West, Joel and Scott Gallagher, (2004) “Key Challenges of
Open Innovation: Lessons from Open Source
Software,” working paper, May 2004.

West, Joel and Siobhán O’Mahony, (2003), “The VistA
Open Source Project,” URL:
http://www.worldvista.org/worldvista/calendar/2004
-06-seattle/VistA-Community-12-2003.pdf

Project Date Created Sponsor Current Control
Mozilla 1998 Netscape independent

Jikes 1998 IBM independent

MySQL 1995 MySQL AB sponsor-controlled

Ximian Evolution 1999 Ximian Group sponsor-controlled

Darwin 1999 Apple Computer sponsor-controlled

OpenOffice 2000 Sun Microsystems sponsor-controlled

Eclipse 2001 IBM sponsor-controlled

Chandler 2002 Open Source Application Foundation sponsor-controlled

Beehive 2004 BEA sponsor-controlled

Table 1: Examples of firm-sponsored open source projects

Table 2: Key issues for community-led and sponsored open source projects

Reason for Initiation Key issues Contributor Motivation Control

Community
Initiated

Solve a problem
Create a “free software”

alternative to
proprietary solution

Garnering resources
Building healthy

community, attracting
talented developers

Distributing software
Gaining ‘mindshare’ with

minimal marketing

To make software happen
To gain fulfillment
To build and learn new

skills
To solve personal and

professional problems

Democratic,
transparent,
usually
meritocracy

Some leadership
and
stratification

Sponsored Achieve greater adoption
of software

Get development help on
areas that are of low
priority for the firm
(e.g. special dialects)

Gaining legitimacy
Building healthy

community, attracting
talented contributors

Resolving ambiguity
about control and
ownership

To complete areas that are
of high priority for
contributors

To gain visibility by
prospective employers

To influence sponsor’s
alignment with
complementary projects

Varies, but usually
sponsor retains
direct or indirect
control

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

10

	Contrasting Community Building in Sponsored and Community Founded Open Source Projects
	Recommended Citation

	tmp.1292876346.pdf.JMvp9

