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Abstract Many theories of contingency learning assume
(either explicitly or implicitly) that predicting whether an
outcome will occur should be easier than making a causal
judgment. Previous research suggests that outcome predic-
tions would depart from normative standards less often than
causal judgments, which is consistent with the idea that the
latter are based on more numerous and complex processes.
However, only indirect evidence exists for this view. The
experiment presented here specifically addresses this issue by
allowing for a fair comparison of causal judgments and
outcome predictions, both collected at the same stage with
identical rating scales. Cue density, a parameter known to
affect judgments, is manipulated in a contingency learning
paradigm. The results show that, if anything, the cue-density
bias is stronger in outcome predictions than in causal
judgments. These results contradict key assumptions of many
influential theories of contingency learning.
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The ability to acquire causal knowledge is essential for
humans’ survival and well-being. It allows predicting future

events on the basis of present ones and to plan actions in order
to achieve desired goals. Therefore, this ability has been
extensively studied by psychologists with the aim of under-
standing the cognitive processes underlying it. One of the most
widely used paradigms to study causal knowledge is a very
simple one where information on the presence or absence of a
cue (C) and on the presence or absence of an outcome (O) is
given to the participants on a trial-by-trial basis (Jenkins &
Ward, 1965). That is, in each trial the cue is either present (C)
or absent (∼C) and the outcome either occurs (O) or does not
occur (∼O). If the cue is a cause of the occurrence of the
outcome, the outcome should occur more often in the
presence than in the absence of the cue, other things being
equal. Based on this reasoning, the Δp index was proposed
by Jenkins & Ward (1965; see also Allan, 1980; Cheng &
Novick, 1992) as a normative measure of causality:

Δp ¼ p OjCð Þ � p Oj � Cð Þ ð1Þ
This index has positive values when the cue is a

generative cause of the outcome. Negative values of Δp,
on the other hand, correspond to cases where the cue is a
preventive cause of the outcome. Finally, a Δp of zero is
obtained when the outcome occurs as frequently in the
presence of the cue as in its absence, that is, when the
outcome occurs independently of the cue.1

Importantly, when the joint frequencies of C and O are
manipulated so that the value of Δp remains unchanged,
normative analyses predict that people’s estimations should
still be based on this Δp value, regardless of that
manipulation. While not expected from a normative view-
point, a number of manipulations that do not affect the

1 Cheng (1997) proposed another statistical index, p, as an alternative
normative referent for causal judgments. However, since the cue
density effect explained below affects both Δp and p in a similar way,
for the sake of simplicity, we focus on the simpler, Δp rule.
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objective Δp value nevertheless have an impact on people’s
estimations of causality. The outcome-density bias consists of
the fact that, for a fixed Δp, ratings of contingency increase
with the overall probability of the outcome, p(O) (e.g., Allan &
Jenkins, 1983; Allan, Siegel, & Tangen, 2005; Alloy &
Abramson, 1979; Buehner, Cheng, & Clifford, 2003; Matute,
1995; Musca, Vadillo, Blanco, & Matute, 2010; Wasserman,
Kao, van Hamme, Katagiri, & Young, 1996). Likewise, some
researchers have found that, for a fixed Δp, ratings of
contingency increase with the overall probability of the cue,
p(C), an effect known as cue-density bias (e.g. Allan &
Jenkins, 1983; Matute, Yarritu, & Vadillo, 2010; Perales,
Catena, Shanks, & González, 2005; Wasserman et al., 1996).
In spite of the formal parallelism between both density effects,
the available evidence strongly suggests that the cue-density
effect is smaller and less robust than the outcome-density effect
(e.g., Hannah & Beneteau, 2009; Perales & Shanks, 2007).

To understand how participants acquire and use the
covariational information within these experiments, many
types of dependent variables have been measured. In a
standard contingency learning task, a predictive question is
generally used in each trial, just after the presentation of the
cue and before the presentation of the corresponding outcome;
as its name specifies, participants have to indicate by means of
a yes/no response whether they think that the outcome will
occur given the presence/absence of the cue in that trial.
Upon completion of the learning phase, there is usually a
final test phase where the participants have to provide a
causal judgment by rating on a numerical scale the perceived
strength of the causal link between the cue and the outcome.

Interestingly, both cue- and outcome-density effects have
been found in causal judgments assessed after the learning
phase but not in the outcome predictions requested on a
trial-by-trial basis during the learning phase (e.g., Allan et
al., 2005; Perales et al., 2005). In light of this evidence,
some authors argue that the deviations from the normative
value that occur in participants’ causal judgments are due to
additional processes intervening in causal estimations as
compared to those intervening in predictions. The processes
underlying causal estimations would thus be more numerous
and complex (and consequently, more prone to errors) than
those underlying predictions.2 For instance, Allan et al.

(2005) proposed that trial-by-trial predictions reflect partic-
ipant’s sensitivity to the objective cue-outcome contingency.3

However, according to Allan et al., causal judgments would
involve not only participant’s knowledge of the cue-outcome
relationship, but also a decision process that can give rise to
biases such as the outcome-density bias.

Nevertheless, this view is based on a comparison that
can be misleading because it disregards the fact that causal
judgments and predictive responses that appear to be
dissociated in those experiments are not collected in a
comparable way. Indeed, causal judgments are collected
after completion of the learning phase and by means of a
numerical rating, while predictive responses are collected
on a trial-by-trial basis during the learning phase and by
means of yes/no responses. Thus, these dependent variables
differ not only in their predictive or causal status, but also
in a number of procedural details. A few studies have
already explored whether predictions, causal judgments and
other subjective ratings of covariation are sensitive to the
same information (Blanco, Matute, & Vadillo, 2010; De
Houwer, Beckers, & Vandorpe, 2007; Vadillo & Matute,
2007; Vadillo, Miller, & Matute, 2005), but to our best
knowledge, no experiment has manipulated cue or outcome
density and collected both causal and predictive judgments
at the same time and with the same rating scale so as to
allow an unbiased comparison of human’s prediction and
causation abilities. In the experiment presented here, we
offer such a comparison of cue-density effects in causal and
predictive judgments, by collecting them at the same stage
of the experiment with identical rating scales.

The reason why we are testing the cue-density effect is
that the covariational manipulation must be one that neither
affects the normatively expected causal judgment nor the
normatively expected prediction judgment. An outcome-
density manipulation does not satisfy this condition: With
such a manipulation, one would expect, from a normative
point of view, different prediction judgments as a
function of the outcome density (i.e., participants’
normatively expected predictions of the outcome are to
be higher if the outcome occurs frequently than if it
occurs with a low probability), but no effect on the
causal judgments. Thus, because the normatively
expected impact of outcome density on predictive and
causal judgments is distinct, a direct comparison of the
outcome-density effect on these two types of judgments
is unfair, at best. By contrast, a cue-density manipulation

2 Note that this interpretation is arguable: If a given judgment is based
on more complex processes, it is natural that this judgment shows
more random variance, but it is unclear why this variance should
result in any systematic bias, such as the cue- and outcome-density
effects. However, given that the assumption made by these authors is
reasonable and plausible, we will test the predictions that can be
drawn from it, without questioning its validity. In any case, the
assumption that outcome predictions should be easier to make than
causal judgments is also implicit in the rationale behind the
computation of the Δp rule: Contingency is computed on the basis
of conditional probabilities (which are useful to make predictions),
and not the opposite.

3 The dependent variable in Allan et al. (2005), ΔpPRED, is computed
as the difference between the proportion of “yes” responses in cue-
present trials and the proportion of “yes” responses in cue-absent
trials. Participants perceiving a positive cue-outcome contingency are
expected to give more “yes” responses in cue-present than in cue-
absent trials. Thus, this index is assumed to be an indirect measure of
participants’ perception of contingency.
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should, from a normative viewpoint, affect neither the
prediction of the outcome nor the causal judgments, so
that participants’ predictive and causal judgments can be
compared straightforwardly. Therefore, cue density was
manipulated in the following experiment to check
whether it does more readily induce a bias in causal or
in prediction judgments, even though it is well-known
that the cue-density effect is usually weak and elusive,
and that, in this sense, it might be a suboptimal
manipulation to induce a systematic bias on judgments
(see Hannah & Beneteau, 2009; Perales & Shanks, 2007).

Method

Participants and apparatus

One hundred and forty-four anonymous Internet users
voluntarily took part and were randomly assigned to
each of two groups. This resulted in 71 participants in
the High Cue Density (hereafter, High) group and 73
participants in the Low Cue Density (hereafter, Low)
group. The experimental program used is an adaptation
of the allergy task that has been extensively used in
contingency learning experiments (e.g., Wasserman,
1990). The experiment was run on the Internet, imple-
mented as an HTML document dynamically modified
with JavaScript that any computer connected to the
World Wide Web with a standard Internet browser can
run. Previous experiments conducted with this task
showed that the results obtained over the Internet are
virtually identical to those obtained under traditional
laboratory conditions (e.g., Vadillo & Matute, 2007; Vadillo
et al., 2005).

Design and procedure

In the current version of the allergy task participants were
asked to imagine that a space alien from Mars was offered
carrots, which it ate (C) or did not eat (∼C), and then
the Martian felt sick (O) or did not feel sick (∼O). Each
trial started with the presentation of the phrase “The
Martian ate / did not eat carrots”. The participant had to
click a “Click when ready” rectangle located below that
phrase in order to continue. On click, with the phrase
still present, the rectangle was substituted by a predic-
tive question, which read “Do you think the Martian will
be sick?” and the participants had to choose between a
“Yes” and a “No” answer. Once the “Yes” or “No”
rectangle was clicked, the question disappeared from the
screen. With the information on the cue still present on
the upper part of the screen, a pre-programmed outcome
was displayed on the lower part of the screen. It

consisted of the phrase “The Martian is OK/sick”, of a
happy/sad smiley and of a “Click to continue” rectangle
that once clicked triggered the next trial.

Upon completion of the training trials, participants were
presented with the test phase. This consisted of a prediction
question and a causal question, with presentation position
(upper/lower half of the same screen) counterbalanced
between participants. The questions read: “If the Martian
ate carrots, how likely is it that it will be sick?” (prediction
judgment), and “To what extent do the carrots have the
power to make the Martian feel sick?” (causal judgment).
Below each question a 101-point scale ranging from 0 to
100 was displayed. For the prediction judgment, 0 was
labeled as “Very unlikely” and 100 as “Very likely”. For the
causal judgment, 0 was labeled as “Definitely it is not the
cause” and 100 as “Definitely it is the cause”. Participants
were able to answer the questions in the order they
preferred, through a click on the corresponding scale. On
click, the value corresponding to their answer was
displayed and remained visible. Participants had the
opportunity to correct their answers as many times as
they wanted. Although causal judgments are sometimes
collected by means of a bidirectional scale (from –100 to
100), we decided to request causal judgments on a
unidirectional scale (0–100) in order to improve their
comparability with predictive judgments (which can only
take positive values).

Cue density was manipulated between participants. For
group High, cue density was of .80, with 38 trials in which
C and O co-occurred (type a trials), 26 trials in which C
was present but O was absent (type b trials), four trials in
which C was absent but O was present (type c trials), and 12
trials in which neither C nor O were present (type d trials).
For group Low, cue density was of .20, with 13 a, 3 b, 29 c,
and 35 d trials. With these frequencies of each trial type, the
overall density of the outcome, p(O), was .525 in both
groups. Contingency, as measured by Δp, was about .35 in
both groups (specifically, .344 in group High and .359 in
group Low). The probability of the outcome in the presence
of the cue, p(O|C), was .59 in Group High and .81 in group
Low. These differences in the p(O|C) are an unavoidable
consequence of manipulating the density of the cue while
keeping contingency and p(O) constant, with a nonzero
positive contingency. However, they were carefully chosen
so that, if anything, they worked against the observation of a
cue-density effect. The sequence of trials was randomized
for each participant.

Results

Upon application of the studentized deleted residuals (SDR)
outliers-detection method proposed by McClelland (2000),
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data from three participants were eliminated from further
analyses because their ratings showed extreme between-
judgments difference (all SDRs > 3), which would have
compromised the homoscedasticity assumed in the
following mixed analysis of variance. We also removed
the data from one additional participant who responded
“yes” in almost all cue-absent trials during training (60
out of 64, |z| > 3.50), which indicates that this participant
was not paying attention to the experiment. The following
analyses were conducted with the remaining participants:
70 in group High and 70 in Low.

The pattern of results depicted in Fig. 1 shows a cue-
density effect in the prediction judgments, whereas no such
effect was found in causal judgments. A 2 (Group: High vs.
Low) x 2 (Judgment: Prediction vs. Causal) mixed ANOVA
yielded a significant interaction between both factors,
F(1, 138) = 5.01, p < 0.05. Planned comparisons showed
that there were no significant differences in causal judg-
ments, t(138) < 1. However, there was a significant
cue-density effect in predictive judgments, t(138) = 2.02,
p < 0.05. Thus, the pattern of results observed here
provides no support for the hypothesis that causal judg-
ments are more biased than predictive ones. If anything,
the significant interaction between cue-density and type of
judgment supports the opposite conclusion.

Discussion

One quite popular view, common to authors that champion
diverse and even conflicting theories, is that causal judg-
ments are based on more numerous and complex processes
than predictive responses, which in turn would explain why
people depart from what is normatively expected less often
when they say what is going to happen than when they say
whether an event is or is not the cause of another (e.g. Allan
et al., 2005; Perales et al., 2005). However, when looking
closer at the available evidence, it becomes clear that such

interpretation is based on an unwarranted comparison
between yes/no predictive responses collected during
training, on the one hand, and numerical causal judgments
collected after training, on the other hand. It does not
seem reasonable to compare prediction and causation
dependent variables that lie on different measuring scales
and are collected at different points in time during the
experiment. Indeed, it has long been shown that the
moment when a judgment is collected and the frequency
with which it is collected can change dramatically the
participants’ responses (e.g., Catena, Maldonado, &
Cándido, 1998; Collins & Shanks, 2002; Matute, Vegas,
& De Marez, 2002).

Even more important, causal judgments may seem more
difficult than predictive responses in previous studies not
because of the causal/predictive distinction, but simply
because a numerical judgment is more complex than a yes/
no response. Because of their dichotomous nature, discrete
predictive responses bear greater similarity to the structure
of the cues and outcomes: Just as cues and outcomes are
either present or absent, a predictive response is either
positive or negative. On the other hand, a numerical
judgment somehow requires that the participants ignore
the dichotomous nature of the cue and outcome information
they have been presented with during the training phase and
engage in a probabilistic evaluation, the result of which is
to be expressed numerically.

If one accepts the idea that cue- and outcome-density
biases can be taken as indicative of the relative complexity
of the processes involved in several types of judgment
(Allan et al., 2005; Perales et al., 2005), then the present
results suggest, if anything, that predicting the outcome is
more complex than inferring causality. Although this
conclusion is at odds with the prevailing framework
described in the Introduction, the idea that causal judgments
might be more automatic or intuitive than predictions based
on conditional probabilities is consistent with a recent
tendency to see causal structure judgments as more primary
and fundamental than probabilistic judgments (for a review,
see Lagnado, Waldmann, Hagmayer, & Sloman, 2007).
From this point of view, people would first infer causal
structure on the basis not only of contingency information,
but also on the basis of several additional cues, such as the
timing of events, interventions, or previous knowledge. The
assessment of the strength of the links connecting causes
and effects in this structure (i.e., the parameters or weights)
would take place only subsequently. Given that this
updating of the weights would be necessary to make
accurate probabilistic predictions, this would explain why
outcome predictions seem to be more complex and open to
biases than causal judgments. In other words, inferring the
causal structure is a necessary, but not sufficient, step
towards making accurate predictions.

Fig. 1 Mean predictive and causal judgments given by participants.
Whiskers stand for standard error of the mean.
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The idea that outcome predictions might require more
cognitive processing than causal judgments is also consis-
tent with our previous attempts to explain the divergences
between both types of judgments from an associative point
of view. For example, Vadillo and Matute (2007) showed
that manipulating the order in which trials c and d were
presented to participants biased causal judgments to-
wards recency without any significant effect on outcome
predictions. We proposed that this pattern of results
could be easily accommodated by the influential
Rescorla and Wagner (1972) associative model by
assuming that causal judgments might be a relatively
direct expression of the association between the target
cue and the outcome, whereas outcome predictions might
arise from a combination of the information contained in
several associations (e.g., context-outcome association
and cue-outcome association). Although the particular
details of the model proposed therein are not well suited
to account for the specific pattern of data found in this
experiment (e.g., the asymptotic predictions of the model
are insensitive to cue-density effects), the general idea
behind the model (i.e., that causal judgments are directly
based on single associations, while outcome predictions
require a combination of associative strengths) is per-
fectly consistent with the present results.
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