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Abstract

Ecologists often contrast diversity (species richness and abundances) using tests for comparing means or indices. However,
many popular software applications do not support performing standard inferential statistics for estimates of species
richness and/or density. In this study we simulated the behavior of asymmetric log-normal confidence intervals and
determined an interval level that mimics statistical tests with P(a) = 0.05 when confidence intervals from two distributions
do not overlap. Our results show that 84% confidence intervals robustly mimic 0.05 statistical tests for asymmetric
confidence intervals, as has been demonstrated for symmetric ones in the past. Finally, we provide detailed user-guides for
calculating 84% confidence intervals in two of the most robust and highly-used freeware related to diversity measurements
for wildlife (i.e., EstimateS, Distance).
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Introduction

Measuring biodiversity is one of the major goals of ecologists

around the world [1]. As suggested by Hubbell [2], biodiversity

can be summarized by the species richness and relative

abundances of a community in a given space and time. For

decades, ecologists have used many different methods to calculate

and contrast species richness, relative abundances, and/or

diversity values. Most simply, ecologists often contrast species

richness and abundances relative to sampling effort among

different conditions using tests for comparing means (e.g.,

ANOVA, Kruskal-Wallis; [3–5]). Also, many indices have been

developed to measure species richness and diversity (see Moreno

[1,6–8] for further details). However, many popular software

applications do not support performing standard inferential

statistics for estimates of diversity (e.g., species richness, density).

Recently, the use of two methods for quantifying species

richness and individual densities have became very popular due to

their robustness: (1) rarefaction curves produced by randomly re-

sampling the pool of total individuals or sampling units, plotting

the estimated number of species in relation to a given number of

individuals or sampling units [9–11], and (2) distance-sampling

calculation of densities (number of individuals per area unit - e.g.,

hectares, square kilometers), calculated based on the probability of

detection of individuals at increasing distances from the observer

and the size of the successfully surveyed area [8]. Both methods

can be calculated using freeware. Rarefaction curves can be

generated using the output from the software EstimateS [12], which

computes the expected number of species as a function number of

accumulated samples (sample-based rarefaction, denoted Sobs

[Mao Tao] in EstimateS) with symmetric 95% confidence intervals

(Sobs 95% CI Upper and Lower Bounds). Densities can be

calculated using the software Distance [13], for which asymmetric

95% confidence intervals, based on assuming the distributions of

the density estimate is log-normal, are output as a default by the

program.

As software programs such as EstimateS and Distance output

results that cannot be contrasted directly though inferential

statistics, degree of overlap between confidence intervals has been

proposed to assess statistical differences [14]. Such comparisons

allow testing null hypotheses regarding different environmental

conditions (e.g., habitats, treatments). Although other approaches

to hypothesis testing for Distance have been shown to contrast

density values effectively (e.g., ANOVA, t-tests), they often require

experience using sophisticated processes in statistical packages.

As demonstrated by Payton et al. [14], when comparing

overlapping 95% confidence intervals of independent treatments

with similar standard errors, non-overlapping confidence intervals

represent significant differences in expectations with extremely low

probabilities of Type I error (a ,0.01), while no statistical

inferences can be drawn with certainty if confidence intervals

overlap but are not coincident. However, Payton et al. [14] showed

that comparing 83–84% confidence intervals, instead of 95%,

represents statistical tests with an a level of 0.05 (Fig. 1), the

conventional criterion of significance for biological and ecological

analyses [15].

As the 83–84% rule has previously been demonstrated only for

normally distributed confidence intervals, in this study we

simulated how asymmetric log-normal confidence intervals behave

and determined a confidence interval level for mimicking two-

sample statistical tests with a= 0.05. As the log-normal distribution

is a normal distribution on the log-scale, we predicted that the 83–

84% rule should also apply to asymmetric log-normal confidence

intervals. We also describe how to calculate different percentage
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confidence intervals for rarefaction curves and distance-sampling

based densities and indicate how to contrast them, representing a

novel way to statistically compare species richness and density

values robustly.

Materials and Methods

Simulations for Mimicking Pairwise Tests Based on
Asymmetric Confidence Intervals

We performed simulations to establish the confidence intervals

at which P,0.01, 0.05, and 0.10 Type I error was achieved,

mimicking pairwise tests with PC SAS [16]. In order to explore

how the proposed method behaves for various types of log-normal

distributions, we created several combinations of the two

parameters of the log-normal distribution (m and s). Specifically,

we created 48 different log-normal distributions by utilizing 6

different levels for m and 8 different levels for s in an effort to

cover a variety of different distributions. For the purposes of these

simulations, we generated samples from parent populations which

were generated by assuming different means and corresponding

standard errors, which are functions of the parameters utilized to

create these parent populations. Thus, as we assessed the behavior

of asymmetric confidence intervals, we calculated a confidence

interval for each of two samples drawn from the same population,

each with alpha values varying from 0.05 to 0.25, at 0.01

increments. We calculated 10,000 iterations of each simulation

scenario, including populations with different means extracted

from the same parent populations. For each iteration, we

calculated 0.75% to 0.95% confidence intervals in 1% increments,

and we used this series of confidence intervals to determine the

proportion of times the simulated confidence intervals overlap for

each nominal level of confidence. Note that the log-normal

distribution’s coefficient of variation is a function of s only [17], so

changing the mean of the distribution changes, by definition, the

variance also.

Results

For almost all of the scenarios contrasting samples with different

means, the 84% confidence intervals provided overlap probability

that best mimicked a two-tailed two population test with a 0.05

error rate. To mimic a 0.01 test, 94% confidence intervals would

appear to be the proper choice. Confidence intervals at the 76%

level best mimic a test with a 0.10 error rate (Tables 1, 2).

Discussion

As predicted, our results show that comparing the overlap, or

lack of it, between 84% asymmetric confidence intervals pertain-

ing to different means mimics 0.05 tests surprisingly well (Fig. 1, 2).

Thus, this study provides empirical evidence that the 84% rule is

suitable for mimicking 0.05 statistical tests for both symmetric and

asymmetric confidence intervals. However, we did not explore the

statistical power of the method (regarding Type II errors), since the

primary concern of this paper was to create a process that best

mimicked an alpha-level test, and the use of overlapping 84%

confidence intervals for this method would be more powerful, by

definition, than using 95% intervals. Assessing power for this

situation would involve constructing distributions with different

means (and, by virtue of the nature of the log-normal distribution,

different variances) and assessing the ability of the method to

detect differences in overlapping confidence intervals with

different means. Though our results have been demonstrated

effective only for normal symmetric intervals and for log-normal

asymmetric intervals, we believe that the 84% rule for mimicking

0.05 tests with overlapping confidence intervals might work

effectively for other distributions. For example, comparing 84%

confidence intervals for species estimation comparisons using

widely used non-parametric estimators (e.g., Chao1, Chao2, ICE,

ACE, Jackknife, Bootstrap), could mimic 0.05 tests. However, it

remains to be tested.

Figure 1. Hypothetical scenario comparing diversity values
with 95% and 84% confidence intervals. In the example on the
left (A vs. B), with 95% confidence intervals, no conclusion can be drawn
regarding statistical difference in diversity values at P = 0.05. In the
example on the right (A9 vs B9), with 84% confidence intervals but the
same means as on the left, we can confidently infer that diversity values
differ at P,0.05.
doi:10.1371/journal.pone.0056794.g001

Table 1. Simulation results of 10,000 iterations calculating
the overlap of confidence intervals of various sizes generated
from log-normal populations with mean of 12.2 and variance
of 0.08 (log-normal parameter values of m= 2.5 and
s2 = 0.0005).

Size of CIs (%) Average overlap Size of CIs (%) Average overlap

95 0.9946 84* 0.9543*

94 0.9898 83 0.9494

93 0.9899 82 0.9448

92 0.9855 81 0.9312

91 0.9838 80 0.9318

90 0.9802 79 0.9276

89 0.9768 78 0.9149

88 0.9687 77 0.909

87 0.9671 76* 0.9026*

86 0.9624 75 0.8966

85 0.9608

Values that represent the preferred choice of confidence interval to mimic tests
with alpha of 0.05 and 0.10 are marked with an asterisk (*). This table represents
only one set of parameter values considered (among 48 sets considered) and is
meant to represent typical results associated with the other population values
considered in our simulations.
doi:10.1371/journal.pone.0056794.t001
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In order to generate 84% confidence intervals for rarefaction

analyses, the standard deviation of the observed species (Mao Tao

SD) from the output file from EstimateS is needed. As standard

deviations equal standard errors in EstimateS because infinite

degrees of freedom are assumed in the calculation of Mao Tao SD,

the latter must be multiplied by 1.372, the quantile (normal curve

z-score) corresponding to two-sided intervals of 84% probabilities,

with alpha = 0.16, and cumulative probabilities of 0.08 and 0.92.

For example, if Mao Tao SD = 5.55, for example, 84% confidence

intervals for that specific value of Mao Tao SD, which can vary in

relation to the number of accumulated computed individuals in a

rarefaction plot, are equal to the average value 67.61.

As the Distance program can calculate user-selected levels for

confidence intervals (default = 0.95) for distance-sampling density

calculations, setting the confidence interval limits solves the issue.

To accomplish this, go the ‘‘Analyses’’ button on the toolbar, select

‘‘Analysis details’’ and a new window will appear. Finally, select

the ‘‘Misc’’ tab and modify the default value for confidence

intervals (i.e., 95) to 84. Results output from the Distance program

will now include 84% confidence intervals.

Wildlife species richness and density measurements of ecosys-

tems are imperative in order to concentrate conservation actions in

highly biodiverse areas [1]. In this paper, we demonstrated that

the 84% rule mimics 0.05 pairwise statistical tests for both

symmetric and asymmetric confidence intervals, with detailed

users’ guides for calculating 84% confidence intervals in two of the

most robust and highly-used freeware applications related to

biodiversity (i.e., EstimateS, Distance). Thus, we encourage ecologists

to use these programs to calculate species richness and individual

Table 2. Appropriate sizes of confidence intervals to simulate
P = 0.05 and P = 0.10 size tests for various combinations of log-
normal parameter values and associated means and variances.

m s 2 Mean Variance Size of CIs (%) Average overlap

4.5 0.0005 90.04 4.05 84 0.9541

76 0.9032

0.001 90.06 8.12 84 0.9546

76 0.903

0.0015 90.08 12.18 84 0.9507

76 0.9049

0.002 90.11 16.25 84 0.953

76 0.9036

0.0025 90.13 20.33 83 0.9506

76 0.9065

0.003 90.15 24.41 84 0.9541

75 0.9001

0.0035 90.17 28.51 84 0.9566

77 0.9114

0.004 90.2 32.61 83 0.9505

76 0.9042

5.5 0.0005 244.75 29.96 84 0.952

77 0.9071

0.001 244.81 59.96 83 0.9517

76 0.9043

0.0015 244.88 90.01 84 0.9554

75 0.904

0.002 244.94 120.11 84 0.9509

76 0.9049

0.0025 245 150.25 85 0.9582

76 0.901

0.003 245.06 180.43 84 0.9534

76 0.9022

0.0035 245.12 210.66 84 0.9525

76 0.9057

0.004 245.18 240.94 83 0.9514

76 0.9041

6.5 0.0005 665.31 221.37 84 0.9533

76 0.9039

0.001 665.47 443.08 84 0.9535

76 0.9011

0.0015 665.64 665.12 84 0.9557

75 0.9017

0.002 665.81 887.49 84 0.9524

76 0.9012

0.0025 665.97 1110.19 84 0.9517

76 0.901

0.003 666.14 1333.23 83 0.9508

77 0.9091

0.0035 66.31 1556.6 83 0.9504

76 0.9042

0.004 666.47 1780.3 84 0.9521

76 0.9028

Results from simulations including 10,000 iterations.
doi:10.1371/journal.pone.0056794.t002

Figure 2. Comparison of the use of 95% and 84% confidence
intervals in three replicates of our simulations. For this
representative example, the data were created from a log-normal
population with a mean of 90.2 and variance of 32.6. In case 1, the both
sets of intervals overlap, both suggesting that no significant (NS)
differences exist. Note, however, that the 95% confidence intervals will
yield an error rate of less than 1%, while the 84% confidence intervals
better mimic a 0.05 level test. In case 2, 95% confidence intervals
slightly overlap, while 84% ones do not. For this situation, these two
approaches would lead to different conclusions: (a) significant
differences (*) when considering 84% confidence intervals, and (b) no
statistical differences can be inferred using 95% confidence intervals (?).
In case 3, none of the sets of intervals overlap, both suggesting that
significant differences exist. Note, however, that statistical differences
using 95% confidence intervals are assumed with an error rate of less
than 1%, while that of 84% confidence intervals better mimic a 0.05
level test.
doi:10.1371/journal.pone.0056794.g002
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density statistical expectations, applying this easy-to-use overlap-

ping confidence interval method when making statistical inferenc-

es, which represents an alternative to the use of diversity indices.
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