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Abstract

Mangroves are seafaring taxa through their hydrochorous propagules that have the poten-

tial to disperse over long distances. Therefore, investigating their patterns of gene flow pro-

vides insights on the processes involved in the spatial genetic structuring of populations.

The coastline of Cameroon has a particular geomorphological history and coastal hydrology

with complex contemporary patterns of ocean currents, which we hypothesize to have

effects on the spatial configuration and composition of present-day mangroves within its

spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using

11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora

racemosa, a widespread species in the region. Genetic diversity was low to moderate and

genetic differentiation between nearly all population pairs was significant. Bayesian cluster-

ing analysis, PCoA, estimates of contemporary migration rates and identification of barriers

to gene flow were used and complemented with estimated dispersal trajectories of hourly

released virtual propagules, using high-resolution surface current from a mesoscale and

tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is

not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor,

formed due to sea level rise, allows for connectivity between two mangrove areas that were

isolated during glacial times by the CVL. Genetic data and numerical ocean simulations

indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC)

presents a strong barrier to gene flow, resulting in genetic discontinuities between the man-

grove areas on either side. This convergence did not result in higher genetic diversity at the

CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa

is maintained by the contrasting effects of the contemporary oceanic convergence and his-

torical climate change-induced sea level rise.
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Introduction

The potential effects of climate change on coastal ecosystems have received heightened atten-

tion recently [1]. Mangrove ecosystems are considered resilient under changing environmental

conditions [2–5], with potential expansion in some areas [1, 5]. Landward expansion, for

example, has been reported in localities where overall accretion keeps pace with relative sea

level rise (SLR) i.e., accretionary surplus [1, 2, 6, 7], while pole-ward (latitudinal) expansion

may occur in response to rising temperatures, i.e., higher average winter temperatures [2, 8–

10]. SLR may also favor landward mangrove expansion by decreasing subsidence, increasing

saline intrusion, and changing the ground water level in coastal areas, thereby allowing man-

groves to thrive over other vegetation [1]. Besides SLR, changing climatic conditions also

include changes in the frequency and intensity of extreme meteorological events such as tropi-

cal cyclones [11]. Although solid evidence is yet missing, such meteorological trends may favor

biogeographic range expansion through fostering long distance dispersal (LDD) by increasing

the vector (ocean surface current) seed load, vector displacement velocity, and seed passage

time [12]. Dispersal processes over oceans have shaped ranges of mangroves and the genetic

structure of populations throughout the species’ existence, but evidence is needed as to the

timescale and settings which define the outcome that are actually observed. Understanding dis-

persal processes of the past may give insight to species responses to future climate change.

Mangrove ecosystems occur along coastal areas in the (sub)-tropics, approximately between

30° N and 30° S. Their socio-economic and ecological importance has been widely recognized

[13–18], rendering them an integral part of the daily lives of many coastal communities. The

importance of these ecosystems, however, is not restricted to their biogeographical extent.

Despite occupying only 0.7% of the tropical forest area, mangrove degradation may contribute

to more than 10% of global carbon emissions due to deforestation [19]. Nevertheless, global

mangrove stocks have decreased more than 40% over the last 50 years, with a continuing yearly

decline of 2% [20]. By the year 2000, global mangrove cover was estimated to be 137760 km2

[21]. Fossil evidence indicates that mangroves once occupied a broader geographical range

than they do today [22–24] due to spatial changes in favorable temperatures. It has been

hypothesized that cold temperature, in interaction with aridity, are the delimiting factors to

mangrove range expansions [25–27]. Climatic oscillations of the past have also been character-

ized by successive range expansions and contractions for many mangrove species; range expan-

sions after the Last Glacial Maximum (LGM) have been reported for many Neotropical species

[25, 27–29]. The present distribution of mangroves is shaped by (1) suitable intertidal habitats,

(2) the potential of propagules to reach these locations within their viable periods [30, 31], and

(3) various thresholds to establishment [6]. The hydrochorous propagules of Rhizophora can

remain viable and afloat for more than 3 months [32], providing a sufficiently long time win-

dow for potential LDD and the colonization of new favorable habitats. Nevertheless, multiple

barriers may hamper a species from colonizing its full potential niche (sensu Randin et al.

[33]), for example unfavorable ocean currents, closed estuaries, arid [34] or hard rock coast-

lines, and the physical disturbance by tidal inundation and wave-induced sediment dynamics

[31, 35].

These factors, in addition to local pollen flow, determine the overall genetic structure as

they control the exchange and fluxes of alleles between nearby and remote populations.

Absence of or limited gene flow can result from vicariance [36–38], as well as distance-related

dispersal limitation, where genetic differentiation shows a linear relationship with geographical

distance between populations [39]. Orsini et al. [40] postulated that isolation of natural popula-

tions could indeed be due to either (1) distance-related dispersal limitation (Isolation by Dis-

tance; IBD), or (2) adaptation where selection pressure drives local adaptation, thereby
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reducing establishment success of non-adapted immigrants (Isolation by Adaptation; IBA).

Also, (3) local adaptation combined with the numerical advantage (density-dependence) of

first colonists (founder effect) may contribute to a strong priority effect of residents over immi-

grants, thereby creating isolation by colonization (IBC) [40, 41]. However, the source of colo-

nizers, which could either follow a migrant pool model, where colonizers originate from a pool

of different but still highly connected demes (thus resulting in low differentiation despite multi-

ple sources), or a propagule pool model, where colonizers come from a pool of already differen-

tiated origin population (thus resulting in high differentiation) [42], is also of great

significance. The use of IBD models for explaining spatial genetic differentiation among popu-

lations, dominate literature [43], irrespective of the frequent observation of dissociation

between genetic differentiation and geographical distance in marine systems [44] and the erro-

neous assumptions associated with the use of IBD models. IBD analysis generally assumes spa-

tial homogeneity and/or theoretically unjustified distance metrics, although landscapes are

naturally heterogeneous [45]. McRae [45] proposed the use of isolation by resistance model

(IBR) which takes into account landscape heterogeneity. Information on barriers to gene flow,

such as ocean currents, is used to define a resistance surface, predict spatial genetic structure of

populations, and to explain deviations from the widely applied IBD model [44].

In mangroves, high levels of gene flow (Fst< 0.2, Nm> 1) along the same stretch of coast-

line have been reported by several authors [46–48], likely as a result of range expansion after

the LGM (28). However, genetic structure at distance classes< 1000 km in the Atlantic East

Pacific (AEP) suggests high levels of short distance dispersal (SDD) (and therefore low levels of

long distance dispersal), at least for Avicennia spp. [28, 49]. Generally, broad-ranged seafaring

species exist as patchy subpopulations separated by weak barriers [50]. Several barriers to gene

flow among mangrove populations have been identified worldwide, resulting in patterns of

genetic discontinuities. Land barriers like the Central American Isthmus, the Malay Peninsula

and the Indonesian archipelago [37, 38, 51], as well as cold currents [28] and oceanic barriers,

even at spatially proximate populations [28, 52, 53] have been well established. Despite the

importance of such insight in explaining and understanding the genetic structure of mangrove

populations across vast expanses of ocean or along coastlines at local, regional and continental

scales, information on the underlying drivers that shape the genetic structure of mangroves

along the East-Atlantic coast is missing.

In this study, we assess the genetic diversity and structure of Rhizophora racemosa G. Mey.

populations from 4 estuaries along the coast of Cameroon. It is likely that the historical and

current barriers, as well as the recent dispersal corridor on this coastline (see “Study area”

below) may explain, at least partly, the configuration and composition of present-day man-

grove forest in this area (ca. 400 km, which makes up ca. 6% of the mangrove coastline of the

East Atlantic). The spatial configuration of mangroves along this coastline relative to past and

present-day oceanographic and geomorphologic characteristics provides an interesting case to

test the hypotheses that: (1) the historical barrier of the Cameroon Volcanic Line (CVL) (at the

Bioko-mainland connection) has affected gene flow such that populations on either side of this

barrier are isolated; (2) the presence of an ocean current convergence zone represents an

important oceanic barrier to gene flow causing genetic discontinuity between populations on

both sides of its frontal zone; and (3) the ocean current convergence zone results in higher

genetic diversity of mangroves of the Cameroon Estuary complex (CEC) than among man-

grove populations on either side of this convergence zone, due to input of propagules from

areas north and south of it.

Inter-Regional Gene Flow in Rhizophora racemosa
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Materials and Methods

Ethics Statement

Permission to collect samples in the Campo Ma’an National Park and the Douala-Edea Reserve

at Mouanko was obtained from the Ministry of Forestry and Wildlife (Ministère des forêts et

de la faune). Local chiefs and local people gave permission to collect samples in non-protected

areas. No specific permission was required for locations outside the protected areas and field

studies did not involve endangered or protected species.

Study area

The coast of Cameroon is about 400 km long, stretching from the country’s border with Equa-

torial Guinea in the south to its northern border with Nigeria, on the Eastern Atlantic coast.

This coastline has an interesting geomorphological history and a coastal hydrology that is char-

acterized by a dense network of rivers. The Cameroon Volcanic Line (CVL) is a 1600 to 1800

km chain of volcanoes [54, 55] that started forming about 30 Ma BP and stretches from far

inland in the north, via Mount Cameroon and Mount Etinde across the Cameroonian Atlantic

coast, to the Bioko, Príncipe, São Tomé, and Annobón Islands [56]. The CVL separates the

mangroves of the present-day Rio Del Rey Estuary in the north from those of the Cameroon

Estuary complex (CEC) and other southerly-situated populations (Fig 1). Bioko Island is the

youngest of all these islands, having formed about 1 Ma BP, and it is situated ca. 40 km from

the edge of the continental shelf at less than 60 m below sea level [56, 57]. It was repeatedly

connected to mainland Cameroon during glacial times [56–58]. Following glacial retreat ca. 12

ka BP, sea level rose and covered these lowlands, separating Bioko from the mainland [56–58]

and forming the Inter-Bioko-Cameroon (IBC) corridor. In addition to the many rivers flowing

into the coastal waters of Cameroon, the isolation of Bioko Island from the mainland has

caused ocean swells around the coast of Cameroon to be weak [59]. The tidal system in our

study site is semidiurnal, ranging in amplitude between 0.3 m and 3 m, depending on the local-

ity [59, 60]. Ocean currents near the coast of Cameroon are characterized by the convergence

of the south-eastwards flowing Guinea Current and the northwards surface flow, converging

near the CEC (Fig 1). Four disjunct mangrove areas (estuaries) currently exist along the coast

of Cameroon with Rhizophora racemosa (90%) and Avicennia germinans L. (5%) being the pre-

dominant mangrove species on this coastline [61]. Hence, this study on genetic patterns of a

widespread mangrove species, R. racemosa, reveals the importance of geomorphological his-

tory and ocean currents in shaping contemporary genetic structure.

Sampling and genotyping

Leaf tissue was collected from adult trees at least 10 m apart along transects (parallel to the

direction of river flow), except at Mabeta where only fringing stands were left, hampering con-

tinuous transects. Hence, in the latter area, all adult individuals were sampled. On average, 30

adult trees were sampled per transect and transects in each site were pooled into a single popu-

lation, except for areas where only one transect could be obtained due to very few stands

(Ekondo-Titi and Mabeta). Three populations were sampled from the Rio Del Rey Estuary in

the north (Ekondo-Titi, Mbongo, Bekumu), six populations from the CEC at the center

(Mabeta, Tiko, Douala Akwa-Nord, Douala Bonamoussadi, Douala Bonaberi, Douala-Edea

Reserve). The Kibi population from the Lokoundje Estuary (with transects from Londji and at

Mpalla), and the Campo population from the Ntem Estuary (with transects from Ipono and

Campo Beach) (see Table 1, Fig 1, Fig 2). Leaf samples were kept dry on silica gel. Genomic

DNA was extracted from dried leaf tissue using the E.Z.N.A SP plant DNAMini Kit (Omega

Inter-Regional Gene Flow in Rhizophora racemosa
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bio-tek). Eleven (11) polymorphic microsatellite markers (Rrace1, Rrace3, Rrace5, Rrace6,

Rrace7, Rrace12, Rrace15, Rrace17, Rrace18, Rrace20, and Rrace24) initially developed from

Cameroonian populations of R. racemosa [62], were used in a single multiplex for the Polymer-

ase Chain Reaction (PCR). The PCR reactants were 1.25 μl of the primer mix, 6.25 μl of the

Master mix, 2.5 μl of H2O, and 3 μl of DNA, in a final volume of 13 μl. The PCR reaction con-

ditions were: an initial denaturation of 95°C for 15 minutes followed by an extension of 30 sec-

onds at the same temperature. Annealing was then allowed at a temperature of 57°C, followed

Fig 1. The coastal area of Cameroon indicating the studied estuaries andmajor dispersal corridor and barrier to gene flow.Map generated from
Hydrography shape files obtained from the World Resource Institute (WRI) Congo Basin Forest Atlases webpage: http://www.wri.org/our-work/project/
congo-basin-forests/cameroon.

doi:10.1371/journal.pone.0150950.g001

Table 1. Description of the studiedR. racemosa populations from the coastline of Cameroon.

Estuary Site No. Sites (Region) Pop ID Latitude Longitude Notes Habitat type

Rio Del Rey Estuary 1 Ekondo-Titi EKO 4°46'18.88'' N 8°47'52.84'' E S, D, Riverine

2 Mbongo, Bekiri Beach MBO 4°29'34.41'' N 8°55'51.00'' E L,U Riverine

3 Bekumu BEK 4°22'49.84'' N 8°53'46.45'' E L, D Estuarine

Cameroon Estuary (CEC) 4 Mabeta Njanga MAB 3°57'53.09'' N 9°15'58.06'' E S, D, Coastal

5 Tiko beach TIKO 4°03'30.02'' N 9°22'56.06'' E L, D Riverine

6 Douala, Akwa-Nord AKN 4°05'23.76'' N 9°43'19.24'' E S, D, Riverine

7 Douala, Bonamoussadi SADI 4°06'51.60'' N 9°44'58.07'' E S, D, Riverine

8 Douala, Bonaberi BERI 4°04'40.70'' N 9°42'16.31'' E S, D, Estuarine

9 Douala-Edea Reserve RSVM 3°45'20.75" N 9°42' 0.26" E L, U Riverine

Lokoundje 10 Kribi, Londji & Mpalla KRIBI 3°04'57.67'' N 9°58'29.50'' E S, D, Estuarine

Ntem 11 Campo Beach, Ipono CAMPO 2°20'09.49'' N 9°51'19.89'' E S, U, Estuarine

S = small, L = Large, U = undisturbed, D = disturbed

doi:10.1371/journal.pone.0150950.t001
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by an extension at 72°C. Subsequently, the initial steps were repeated with final extension time

of 60°C for 30 minutes and a cooling to 4°C for 1 minute in a Bio-Rad thermal cycler (MJ

research PTC-200 and Bio-Rad MyCycler). Fragment analysis of PCR products was done by

Macrogen Corporation (Seoul, South Korea). GeneMarker (SoftGenetics LLC, State College,

USA) was used to score fragments.

Data quality and genetic diversity

Genotypic linkage disequilibrium between all pairs of loci was tested using FSTAT v.1.2 [63].

The presence of null alleles and significant deviations from Hardy-Weinberg equilibrium

(HWE) were investigated for each locus and population with Genepop v.4.3 [64]. MICRO--

CHECKER [65] was used to investigate scoring errors and allele dropouts. We calculated allelic

richness (Ar) and significance of heterozygote deficiency (Fis) based on Bonferroni corrections

with FSTAT. Rarefaction of allelic richness was to the smallest population size (smallest sam-

ple = 30). The observed and expected heterozygosity were calculated using GenAlex v.6.5 [66].

The total number of alleles and number of effective alleles per population was obtained from

GenAlex. We tested populations for recent bottleneck events with the software BOTTLENECK

v.1.2.02 [67]. This was done with 1000 iterations by testing the assumptions that: mutation rate

of microsatellite markers follow (1) an Infinite Allele Model (IAM); (2) a Stepwise Mutation

Model (SMM); or (3) a Two Phase Model (TPM) (TPM assumes 70% SMM rate and a variance

of 30%).

Genetic structure

Global mean population differentiation (Ѳ) and inbreeding (f) over all loci [68] was estimated

using FSTAT. Genetic differentiation, at first, was tested by a hierarchical analysis of molecular

variance (AMOVA-Fst) calculated with GenAlex, where populations were grouped according

to their estuary, and also by an AMOVA without any prior grouping into estuaries. Secondly, a

Bayesian clustering analysis at individual level was conducted in STRUCTURE v.2.3.4 [69]

Fig 2. The coastal area of Cameroon with the 11 sites as in Table 1 and the proportions of two inferred clusters of individuals for each population.
Proportions of inferred clusters (Q-values) per population are represented as bar charts at their respective geographical locations on the map.

doi:10.1371/journal.pone.0150950.g002
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following the admixture model by testing K values ranging from 1 to 10 without any prior indi-

cation of population origin, with 10 iterations per K value. The length of burn-in period was set

at 10 000 and the number of Markov Chain Monte Carlo (MCMC) repeats after burning at 1

000 000. The program minimizes deviations from the Hardy Weinberg Equilibrium (HWE)

and linkage equilibrium. The results of K values were obtained from STRUCTURE HAR-

VESTER [70] and the Evanno method of the highest ΔK value [71] was used to determine the

best K value. We also calculated pairwise genetic differentiation (Fst) with GenAlex and pair-

wise allelic differentiation (Dest) using SMOGD online http://www.ngcrawford.com/django/

jost/ [72], for all population pairs. Also patterns of the spatial relationship among populations

was done by Principal Coordinate Analysis (PCoA) with GenAlex and by a Neighbor-joining

(NJ) tree based on Nei’s genetic distances [73] as computed with POPTREE v.2 [74], bootstrap-

ping at 10000.

Hypotheses testing

The Cameroon Volcanic Line is a barrier to gene flow vs the Inter-Bioko-Cameroon cor-

ridor as a pathway for gene flow. It is expected that (1) if the CVL presents a barrier to gene

flow, populations on either side of this barrier will be genetically isolated from each other and

(2) if the Inter-Bioko-Cameroon corridor is a pathway for gene flow, populations will be

admixed. To test this, we first created a predictor matrix whereby population pairs consisting

of one population to the north and another to the south of this barrier were coded as 1 (high

expected differentiation), while those with pairs located on the same side, either north or

south, were coded as 0 (low expected differentiation), similar to the methodology applied by

Dodd et al. [36] and Wee et al. [53]. This predictor matrix and a matrix of pairwise Fst were

then used together in a Mantel test with 9999 permutations in GenAlex. Using BayesAss ed. 3

[75], we estimated contemporary migration (dispersal) rates and directionality between popu-

lations on either side of the supposed barrier or present-day corridor to check for connectivity

between these areas. The program was run at 3 x 106 MCMC iterations with a burn-in period

of 106 at a sampling frequency of 2000. This software allows only for the estimation of recent

migration rates, i.e within the past 3 generations [38].

The convergence zone of two currents at the Cameroon Estuary complex is a barrier to

gene flow. We expect that if the zone of convergence of the Guinea Current and the north-

ward flowing surface current is a barrier to gene flow, there will be a genetic discontinuity and

an absence of migration between populations on either side of the barrier. Contemporary

migration (dispersal) rates were calculated following the same parameters and software pro-

grams as above. We tested for Isolation by distance-related dispersal limitation (IBD) at popu-

lation level through a Mantel test of pairwise actual genetic (allelic) differentiation using Dest

[76] (SMOGD online) versus pairwise direct flight geographical distances (km) with 9999 per-

mutations in GenAlex. Considering the LDD potential of Rhizophora species and the regional

scale of our study (i.e., 11 study sites located along 400 km of coastline), we decided to check

whether or not dispersal is limited by physical barriers rather than by geographic distance. We

therefore calculated barriers to gene flow using the software program Barrier v.2.2 [77] based

on information from 3 matrices (Fst, Dest, and Nei’s genetic distances between populations)

following an a priori assignment of 3 barriers: (1) the CVL; (2) the ocean current convergence

zone; and (3) geographical distance. This program runs the Monmonier maximum difference

algorithm on a genetic distance matrix (or matrices) and geographical coordinates of sampling

locations to detect genetic breaks (i.e., genetic barriers) based on a priori number of barriers set

by the user. Due to the likely inbreeding signals observed in the Kribi population, this popula-

tion was omitted and a second run was conducted using Barrier to assess whether or not the
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barriers observed in the first run were due to inbreeding signals. Also, to identify the major bar-

rier to gene flow we did a third run with only one a priori barrier set. Following Dodd et al.

[36] and Wee et al. [53], and similar to the first hypothesis above, a new predictor matrix of

population pairs on either side and on the same side of this convergence zone, was created,

which was used in a Mantel test with a pairwise Fst matrix. We also carried out a partial Mantel

test of three matrices: genetic distance matrix (Fst), geographic distance matrix, and the predic-

tor matrix in IBDWS v. 3.23 online [78]. This allowed for investigating the significance of this

convergence zone of ocean currents as a barrier to gene flow. To ascertain this, genetic differen-

tiation (Fst) for all population pairs from within the same ocean current were classified as

“Within” and pairs from different ocean currents (i.e, from opposite sides of this barrier) as

“Between”. Using this classification, the two groups were tested for significant difference in Fst

using the Mann–Whitney U test in Statistica v.8 (StatSoft Inc., USA).

Additionally, gene flow patterns and genetic clusters from the STRUCTURE analysis were

interpreted in the context of ocean surface currents from a mesoscale and tide-resolving config-

uration of the Massachusetts Institute of Technology general circulation model (MITgcm;

[79]). The model has horizontal grid spacing of ca. 4 km and vertical grid spacing of 1 m near

the surface in order to better resolve surface boundary layer currents. The simulation is initial-

ized from a data-constrained global ocean solution provided by the Estimating the Circulation

and Climate of the Ocean, Phase II (ECCO2) project [80]. At the surface the simulation is

forced by six-hourly fields from the 0.14° (i.e., 15 km or less) European Center for Medium-

Range Weather Forecasts (ECMWF) atmospheric operational model analysis, starting in 2011.

Tidal forcing for the 16 largest tidal constituents is also applied. The bathymetry is a blend of

the Smith and Sandwell [81] version 14.1 and the International Bathymetric Chart of the Arctic

Ocean (IBCAO).

Virtual propagules were released hourly for the months February, March, April, September

and October 2012, being the general propagule release periods for R. racemosa in the study

area (personal observation; observations in line with Menezes et al. [82] for Brazil). In total,

3626 virtual propagules were released in each of the 11 coastal locations. All virtual propagules

were given a floating period of 3 months and were advected by surface currents from the

numerical ocean simulation described above. These virtual 3-month propagule trajectories are

used to interpret gene flow patterns and genetic clusters in this study.

The role of ocean current convergence on genetic diversity level. It is expected that at

the convergence zone of both the Guinea and northward flowing ocean currents, genetic diver-

sity will be higher because of the input of alleles (via propagules) from northerly and southerly

mangrove populations. To test this, we pooled populations into estuary groups and tested for

significant differences between groups in allelic richness, genotypic diversity and heterozygos-

ity deficiency (Fis) in FSTAT. Since the Lokoundje and the Ntem Estuaries had just one popu-

lation each, they were pooled into one group since they lie on the same trajectory of the

northward flowing surface current (on the same side of the convergence zone).

Results

Data quality and genetic diversity

We found no linkage disequilibrium between any pair of loci. Null alleles could potentially be

present in 3 loci at Kribi (site 10, frequency< 0.4) (S2 Table). Significant deviations from

HWE were observed in 2 (Rrace5 and Rrace7) out of 11 Loci (p< 0.001), following the multi-

population tests. Genetic diversity of R. racemosa populations from the Cameroonian coastline

was low to moderate. The observed heterozygosity of the populations ranged from 0.169 to

0.369 (mean = 0.295) while the expected heterozygosity (He) ranged from 0.244 to 0.335

Inter-Regional Gene Flow in Rhizophora racemosa
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(mean = 0.290) (Table 2). The average allelic richness was 2.6 and was highest at BERI (site 8,

Ar = 3.0), BEK (site 3, Ar = 2.9) and TIKO (site 5, Ar = 2.9). Kribi (site 10) had the lowest allelic

richness (Ar = 2.1) and heterozygosity (Ho = 0.169) and was the only population with signifi-

cant inbreeding coefficient (Fis = 0.316, p<0.05). Five out of 11 populations gave signatures of

recent bottlenecks (p< 0.001 under the standardized difference test for SMM) (Table 2).

Genetic structure

Jackknifing across loci showed that there was low overall genetic differentiation (Ѳ = 0.073,

SE = 0.019) and no inbreeding (f = -0.007, SE = 0.054). However, there was 6% variation

among regions and 4% among populations following a hierarchical AMOVA-Fst (Table 3). Frt

Table 2. Descriptive statistics of genetic diversity based on 11 nuclear microsatellite loci for 11 populations ofRhizophora racemosa from the
Coast of Cameroon.

Site No. Pop ID Ntransect N At Ae Ar Ho He Fis

1 EKO 1 30 28 1.6 2.5 0.339 0.312 -0.07

2 MBO 3 91 32 1.6 2.5 0.364 0.309 -0.17

3 BEKb 4 125 43 1.5 2.9 0.281 0.276 -0.012

4 MAB 1 31 27 1.4 2.4 0.284 0.25 -0.121

5 TIKOb 5 126 38 1.6 2.9 0.312 0.321 0.031

6 AKNb 3 125 36 1.6 2.7 0.281 0.285 0.02

7 SADI 5 141 36 1.6 2.7 0.302 0.309 0.024

8 BERIb 4 122 40 1.7 3 0.369 0.335 -0.095

9 RSVM 3 80 29 1.5 2.4 0.266 0.257 -0.028

10 KRIBI 2 57 25 1.5 2.1 0.169 0.244 0.316*

11 CAMPOb 2 52 34 1.5 2.8 0.281 0.285 0.027

Mean 3 89 33.5 1.6 2.6 0.295 0.289 -0.039

SE 0.4 4 1.7 0 0.1 0.022 0.019 0.038

b indicates populations undergoing recent bottleneck (standardized difference test; p < 0.001), while

* indicates populations with significant Fis (p <0.05). N = sample size, Ntransect = number of transects per population, At = total number of alleles,

Ae = number of effective alleles, Ar = allelic richness, Ho = observed heterozygosity, He = expected heterozygosity, Fis = inbreeding coefficient.

doi:10.1371/journal.pone.0150950.t002

Table 3. Analysis of Molecular Variance (AMOVA-Fst) based on a pooling of populations (Hierarchical) into estuaries and non-pooling (non-
hierarchical).

Hierarchical based on grouping into estuaries Non-hierarchical

Source df SS MS Est. Var. % Source df SS MS Est. Var. %

Among Estuaries 3 149.164 49.721 0.109 6% Among Pops 10 254.577 25.458 0.136 8%

Among Pops 7 105.412 15.059 0.072 4% Among Indiv 971 1620.773 1.669 0.008 0%

Among Indiv 971 1620.773 1.669 0.008 0% Within Indiv 982 1622.5 1.652 1.652 92%

Within Indiv 982 1622.5 1.652 1.652 90% Total 1963 3497.849 1.797 100%

Total 1963 3497.849 1.842 100% F-Statistics Value P(rand > = data)

F-Statistics Value P(rand > = data) Fst 0.076 0.000

Frt 0.059 0.001 Fis 0.005 0.293

Fsr 0.041 0.001 Fit 0.08 0.000

Fst 0.098 0.001 Nm 3.0

Fis 0.005 0.304 F'st 0.108

Fit 0.103 0.001

Nm 2.3

doi:10.1371/journal.pone.0150950.t003
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(0.059) and Fst (0.098) were both low but significant at p< 0.001. The non-hierarchical AMO-

VA-Fst showed 8% variation among populations (Fst = 0.076) (Table 3). Bayesian clustering

analysis assembled individuals into 2 clusters (K = 2, S1 Fig), with a very high degree of admix-

ture of populations from the Rio Del Rey Estuary and those of the Cameroon Estuary complex

(CEC) while those of the Lokoundje and the Ntem estuaries formed a different cluster (Fig 2).

Pairwise Fst and Dest generally increased significantly (p< 0.001) with geographical distance

of population pairs (Table 4). PCoA and NJ tree showed a complex spatial relationship among

populations. Generally patterns were similar to those observed for Bayesian clustering analysis,

as there was clustering (i.e., mixtures) of populations of the Rio Del Rey Estuary and those of

the CEC while the Kribi and Campo (sites 10 and 11) populations of the Lokoundje and the

Ntem estuaries respectively were grouped separately (Fig 3).

Hypotheses 1 and 2: Corridors for and barriers to gene flow

AMantel test of the predictor matrix assuming the Cameroon Volcanic line (CVL) is a barrier

to gene flow and pairwise Fst was non-significant (data not shown). Contemporary migration

rates (Fig 4, S1 Table) were high between populations of the Rio Del Rey and CEC, while those

of the Lokoundje and the Ntem estuaries are isolated from the others (no migration). These

results are in line with the genetic structure pattern, where high levels of admixture among

populations of the Rio Del Rey and CEC were observed. The IBD test was significant (Fig 5, S3

Fig), indicating dispersal limitation with geographical distance. Assuming the convergence of

ocean currents around the CEC to be a barrier to gene flow, the predictor matrix following this

barrier and pairwise Fst in a Mantel test was significant (R2 = 0.631, p< 0.05). Partial mantel

test was significant for genetic and geographic distances while controlling for the predictor

matrix (r = 0.53, p< 0.05), as well as for genetic distance and predictor matrices, while control-

ling for geographical distance (r = 0.43, p< 0.05). This significance was confirmed by a signifi-

cant Mann–Whitney U test (p< 0.001) when Fst of population pairs were grouped into pairs

from within the same ocean currents (“Within”) and pairs from across the convergence zone

barrier (“Between”) (Fig 6). Probabilistic estimates of propagule dispersal trajectories from our

model suggest that propagules can go through the Inter-Bioko-Cameroon (IBC) corridor; they

also suggest that, Bekumu (site 3) and, secondarily, Mbongo (site 2) are potentially major

Table 4. Pairwise population genetic differentiation.

EKO MBO BEK MAB TIK AKN SADI BERI RSVM KRIBI CAMPO

EKO 0 0 0.001 0.006 0.003 0.01 0.004 0.014 0.015 0.055 0.062

MBO 0.000ns 0 0.002 0.009 0.003 0.01 0.006 0.017 0.018 0.052 0.063

BEK 0.040 0.044 0 0.013 0.003 0.004 0.003 0.009 0.009 0.035 0.044

MAB 0.054 0.056 0.087 0 0.013 0.018 0.017 0.032 0.015 0.038 0.051

TIK 0.028 0.029 0.019 0.060 0 0.004 0.003 0.005 0.008 0.03 0.046

AKN 0.087 0.085 0.036 0.114 0.021 0 0.001 0.001 0.005 0.015 0.029

SADI 0.064 0.068 0.014 0.101 0.017 0.015 0 0.003 0.004 0.027 0.039

BERI 0.094 0.099 0.062 0.134 0.040 0.028 0.042 0 0.007 0.028 0.039

RSVM 0.110 0.118 0.078 0.122 0.048 0.044 0.057 0.044 0 0.021 0.024

KRIBI 0.202 0.190 0.164 0.204 0.121 0.086 0.115 0.112 0.121 0 0.009

CAMPO 0.239 0.234 0.217 0.265 0.177 0.133 0.155 0.153 0.176 0.062 0

(Fst) (below the diagonal) and allelic differentiation (Dest) (above the diagonal) between all possible pairs of populations. All significant at p < 0.001 and ns

means non-significant differentiation between MBO and EKO

doi:10.1371/journal.pone.0150950.t004
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source populations of propagules from the Rio Del Rey to the CEC (Fig 7). Model results also

show that the convergence zone of currents represents a barrier to gene flow, as propagules

from either side do not cross this barrier (Fig 7). Propagules from the CEC cover the shortest

dispersal distances (Fig 7). A more holistic test to identify barriers to gene flow showed that the

convergence zone of ocean currents is a barrier to gene flow (Fig 8), even after omitting the

only (potentially) inbred population (Kribi, site 10) and after only one a priori barrier was used

in the analyses (data not shown). Additionally, this test did not identify the CVL as a barrier to

gene flow (Fig 8). Mabeta (site 4) was also isolated from all other populations (Fig 8). Ocean

current patterns also illustrate the established IBC corridor is a pathway for connectivity

between the CEC and the Rio Del Rey Estuary, and indicates as well the zone of convergence of

the two ocean currents (S2 Fig).

Fig 3. Principal Coordinate analysis (PCoA, above) and Neighbor-joining tree (NJ tree, below). The grouping of 11 populations of Rhizophora
racemosa along the entire coast of Cameroon into 3 groups with high admixtures of populations from the Rio Del Rey Estuary and the Cameroon Estuary
complex and isolation of first group of populations of the Loukondje Estuary (Kribi, site 10) and the Ntem Estuary (Campo, site 11). The second group is
made-up of 2 landward populations from the Rio Del Rey Estuary (MBO, site 2 and EKO, site 1) (>75% bootstrapping). A third large group consisting of one
seaward population from the Rio Del Rey Estuary (BEK, site3) and 5 other populations from the Cameroon Estuary complex (sites 5–9). Bootstrap
values� 75 are indicated on each node of the NJ tree and site numbers (1–11) are indicated beside the pop ID’s.

doi:10.1371/journal.pone.0150950.g003
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Fig 4. Pairwise contemporary migration rates between populations based on Bayesian estimates using individual multilocus genotypes.

doi:10.1371/journal.pone.0150950.g004

Fig 5. Strong isolation by distance (IBD) amongRhizophora racemosa populations along the coast of Cameroon. The pairwise actual genetic
differentiation (Dest) increases from 0 to 7% over a direct flight geographic distance of up to 300 km), p < 0.001.

doi:10.1371/journal.pone.0150950.g005
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Hypothesis 3: Increased genetic diversity by convergence of two ocean
currents at the Cameroon Estuary complex

Despite the large sample size of the Cameroon Estuary complex (CEC), there was no significant

difference in genetic diversity parameters (Ar, Ho, Hs) among estuaries (Table 5). This indi-

cates that there is no accumulation of genetic diversity in the CEC due to the convergence of

ocean currents around this area (Table 5) or any other process. However, there was significant

difference in inbreeding coefficient among estuary groups (Fis, at p< 0.005).

Discussion

The Inter-Bioko-Cameroon corridor facilitates gene flow between
mangroves of the Rio Del Rey and the Cameroon Estuary complex

Our results are in line with the hypothesis that contemporary global mangrove distribution is

shaped by (historical) vicariance and LDD [24, 39], and suggests that this applies as well to

regional and local scales [62]. Bayesian clustering analysis shows high admixture of populations

of the Rio Del Rey Estuary and those of the Cameroon Estuary complex (CEC). This is in

accordance with the observed patterns of contemporary migration rates and modeled propa-

gule dispersal trajectories and suggests that post-glacial SLR has established the genetic connec-

tivity between populations of the Rio Del Rey Estuary and those of the CEC via the Inter-

Bioko-Cameroon (IBC) corridor. Rhizophora racemosa is wind pollinated, with occasional

insect pollination [83, 84]. Pollen dispersal by wind covers certain distances, but unlikely over

the entire studied area. The efficiency of wind pollination is low in fragmented landscapes.

This would imply restricted pollen dispersal for wind pollinated Rhizophora species, since

mangroves are naturally patchy [85]. Additionally, mangrove habitats are generally heteroge-

neous landscapes, (e.g. interspersed by the landscape matrix of other forest or vegetation types)

and this presents another strong barrier for most insect pollinators [85]. Furthermore, the

Fig 6. Box-whisker plot of mean population pairwise Fst values between “Within” ocean current population pairs group and ‘Between’ ocean
current population pairs group.

doi:10.1371/journal.pone.0150950.g006
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(historical) landscape was mountainous in nature (see Cameroon Volcanic Line). Although

palaeo-weather conditions and wind directions are not known, this mountainous terrain (by

acting as a wind shield) would have hardly allowed wind-borne pollen to cross over between

the two formally separated estuaries. Nevertheless, potential gene flow between these two estu-

aries prior to the LGM cannot be completely excluded. Occasional fluctuations in sea levels

prior to the LGM could have allowed for propagule exchange via the IBC corridor before its

complete formation 12 ka BP. However, a period of 12 ka (i.e., onset of the formation of the

IBC corridor) provides a sufficiently long time period to generate the observed patterns of high

connectivity between the Rio Del Rey and the CEC. This has resulted in reduced genetic differ-

entiation between population pairs of the CEC and the Rio Del Rey, indicating that dispersal of

propagules is more effective than pollen at preventing genetic divergence of populations (pro-

moting homogeneity) [86]. Since seeds carry two alleles, their dispersal is twice as effective as

the gene flow by pollen dispersal (if selection is ignored) [86]. Post-glacial mangrove shifts and

expansion have mostly been attributed to the formation of favorable habitats by warmer tem-

peratures at higher latitudes [8–10, 25, 27–29], accretion and favorable topographical condi-

tions at landward margins [1, 7, 87]. Here, we present a case of connectivity between two

mangrove estuaries through the formation of a corridor for gene flow, following post-glacial

SLR. Our results from the Mantel tests, pairwise Fst, as well as the test of genetic barriers, indi-

cate that the Cameroon Volcanic Line (CVL) does not represent a barrier to gene flow between

Fig 7. Location of virtual propagules (dots) after 3 months of floating. Virtual propagules were released
hourly during the months February, March, April, September and October 2012, since these months
correspond with propagule release periods for Rhizophora racemosa in the study area (personal
observation). Hence, in total, 3626 virtual propagules were released in each of the locations. Author-defined
release locations correspond with the localities where samples for our genetic analyses were collected, which
were subsequently shifted to the closest ocean point (rectangles) to ensure the possibility of particle
movement. Site numbers (1–11) are indicated beside the corresponding point.

doi:10.1371/journal.pone.0150950.g007
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these two mangrove areas. Historically (> 13 ka BP), however, connecting Bioko Island to

mainland Cameroon, the CVL presented an important land barrier that isolated the Rio Del

Rey mangroves from those situated south of this barrier, since regional uplift and resulting

land barriers are among the few impenetrable barriers to gene flow among seafaring organisms

[50]. The present-day absence of this barrier underscores the functional role of the recently

(< 12 ka BP) formed corridor following SLR, in facilitating gene flow between these two estuar-

ies. The land bridge has not left any trace in genetic differentiation of mangrove populations of

these two estuaries. Our results also show that (virtual) propagules of the CEC presently cover

the shortest dispersal distances. This may be due to the tidal regimes in this area, preventing

propagules from reaching the open ocean [62], hence reducing their potential to embark on

Fig 8. Gene flow barriers (red lines) and hypothetical barriers (Black dotted lines). The thickness of the red line indicates the importance of the barriers
based on the 3 different distance matrices (pairwise Nei’s genetic distances between populations (S3 Table), pairwise Fst, Pairwise Dest) used in the
analysis.

doi:10.1371/journal.pone.0150950.g008

Table 5. Descriptive statistics of comparative genetic diversity of different estuaries.

Estuary N Ar Ho Hs Fis* Fst Rel

Rio Del Rey 246 2.8 0.319 0.295 -0.082 0.035 0.074

CEC 627 2.7 0.307 0.304 -0.013 0.04 0.079

Ntem & Lokoundje 109 2.5 0.222 0.267 0.167 0.065 0.106

* Significance at p < 0.01 (p = 0.004).

doi:10.1371/journal.pone.0150950.t005
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LDD. The role of tides in facilitating bidirectional gene flow along the Wouri River channel, for

example, was highlighted by Ngeve et al. [62]. Understanding plant dispersal in riparian habi-

tats provides important knowledge to understand how these areas are and had been colonized,

and provides a hint on how they may respond to climate change [88]. Contemporary migration

rates indicate that colonization of the Wouri River channel may have occurred following Slat-

kin’s “propagule pool”model [42]) with the RSVM (site 9) (mangroves of the Douala-Edea

Reserve) population being the most likely propagule source. Other populations of the CEC and

the Rio Del Rey Estuary may have followed the “migrant pool”model [42]. Nevertheless, our

results do not allow for conclusions on the colonization model for the southernmost and more

diverged Kribi (site 10) and Campo (site 11) populations. Their source populations were not

revealed, but it is likely that they have originated from mangroves in the Angola-Congo-Gabon

range, borne by the northwards flowing surface currents.

Despite the resilience demonstrated by mangrove ecosystems to climate change, Ellison and

Zouh [89] showed that recent climate change-induced SLR in Cameroon has resulted in die-

backs in over two-third of seaward mangroves at a rate of about 3 m shoreline per year over the

last 3 decades. According to Alongi [2] mangroves around the Cameroonian range (Central

Africa) are among the least vulnerable to the effects of climate change globally, although reduc-

tion in subsidence, saline intrusion and SLR are assumed to be the most likely threats to nega-

tively impact these mangroves [5]. However, we have indications that lowlands hampering

gene flow during glacial times have been submerged by SLR, resulting in the connectivity of

distantly located estuaries. Seasonal floods, expected to increase with changing climate,

enhance the accessibility of mangrove forest by inhabitants of local communities, hence pro-

moting mangrove exploitation [90]. Therefore, climate change, in addition to its impact on the

area, on spatial distribution of suitable mangrove habitat and dispersal barriers, may influence

the impacts from other anthropogenic drivers [2]. Future biogeographical range shifts will

depend as well on the spatial variability of local extinction risk in response to environmental

changes [5, 24], and other factors such as the geomorphological features of the locality [5].

The consequences of the IBC corridor for local mangroves are not obvious, since gene flow

can either limit evolution by preventing local adaptation or facilitate evolution by spreading

new genes and gene combinations throughout a range [91], except in areas where environmen-

tal constraints exert a selection pressure. However, the isolation of Bioko Island may be a rem-

nant of range fragmentation of mangroves, at least if we assume that mangrove forests were

ubiquitous in this region during glacial times. This is for example the case for the insect Glos-

sina palpalis palpalis, where Bioko populations have been isolated, resulting in a unique clade,

different from mainland populations [58]. Therefore, future studies should consider mangrove

samples from Bioko to assess the full impact of the IBC corridor on genetic connectivity and

potential range fragmentation of Central African mangrove populations. Nevertheless, there

are indications that LDD via the IBC corridor, in addition to the time of its existence (ca. 12

ka), override patterns that might have existed prior to the LGM.

Ocean current patterns as a determinant of genetic structure

As hypothesized, ocean currents constitute an important determinant in understanding the

observed regional genetic structure. This is expected, since ocean currents, in addition to pollen

flow, represent the primary mechanism via which genetic material is exchanged among popu-

lations, close and remote. Ocean current patterns in our study area seem to underscore the

genetic clusters that were detected using the Bayesian clustering, the pairwise Fst and Dest.

Both the output from tests with genetic data and our probabilistic estimates from the numerical

dispersal model, for example, support the movement of propagules from Bekumu (site 3) to

Inter-Regional Gene Flow in Rhizophora racemosa
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the more southerly (ca. 100 km) situated CEC. The southernmost populations, Kribi (site 10)

and Campo (site 11), on the other hand seem to be lying “oceanographically” beyond the reach

of the other populations in this region, explaining their genetic isolation.

Interestingly, while our genetic results reflect the absence of a contemporary barrier between

the Rio Del Rey and CEC, numerical model output indicates that the genetic discontinuity

between the CEC and the Kribi (site 10) and Campo (site 11) populations aligns with present-

day ocean circulation in this area. Here, a linear convergence zone results from the confluence

of ocean currents from the north and south. Ocean currents at the frontal zone are directed sea-

ward, consequently preventing the exchange of propagules between localities north and south

of it. The importance of considering ocean current patterns in explaining the genetic structure

of coastal ecosystems has also been postulated by Wee et al. [53], who demonstrated that the

genetic discontinuity between the mangrove populations of the Andaman Sea and the Malacca

Strait is maintained by ocean features that prevent the mixing of water between these areas.

Considering ocean current velocities of 0.1 to 0.2 m s-1 and geographical distances among

the various estuaries in our study area (Rio Del Rey, CEC, Lokoundje and Ntem) on the order

of 100 km, propagules could be transported between two neighboring populations in about 6

to 12 days. This is indeed an oversimplification, since dispersal vector properties (in this case

ocean surface current speed and direction) vary over the course of a propagule’s dispersal tra-

jectory. However, it demonstrates that within reported floating and viability periods for Rhizo-

phora species, ranging from several weeks to several months [92–96], there is a sufficiently

long period of time to reach remote areas; although our results demonstrate that this does not

guarantee connectivity. Hence, the concept of isolation by oceanographic distance (sensu

Wood [97]), more than just distance, may be a more appropriate and realistic model to explain

the genetic structure of seafaring organisms. Since this model takes into account variations in

dispersal vector properties, genetic breaks among proximate populations of species with propa-

gules that can float for several months can be much better understood (see also [53]). The

importance of oceanographic features, such as cyclonic and anticyclonic eddies in quantifying

the dispersal trajectories of biological material at the ocean surface, has been mentioned in ear-

lier oceanographic studies in the Mozambique Channel [98, 99]. This was reported as well by

Wee et al. [53] in explaining the observed genetic structure in Southeast Asian mangroves.

Here, we demonstrate that ocean convergence zones in coastal areas can act as a barrier for

connectivity, and underscore the strength and complementarity of genetic and modeling stud-

ies. Hence, our study clearly indicates that knowledge of ocean circulation constitutes primary

knowledge in the study of observed genetic structure of ocean-dispersed organisms. The com-

bination of genetic data and model output, as well as empirical data from release-recapture

methods, has been proposed earlier as a way to gain insight on (long distance) dispersal (see

[12, 53, 100]). Others have demonstrated the value and strength of mathematical dispersal

models to study oceanographic dispersal and connectivity in coastal areas at regional and

global scales [97, 101–104] at which the use of release-recapture methods can hardly be applied

(but see [105]).

Ocean convergence does not increase genetic diversity at the
Cameroon Estuary complex

Moderate genetic diversity was observed in the red mangroves of the Cameroonian coastline

and there was a general trend of genetic diversity parameters, decreasing from north to south.

This may indicate that the relatively smaller populations in the Lokoundje (Kribi site 10) and

Ntem (Campo, site 11) estuaries, located on the south of this coastline, have lower effective

population sizes. Genetic diversity is directly proportional to effective population size [106,

Inter-Regional Gene Flow in Rhizophora racemosa

PLOSONE | DOI:10.1371/journal.pone.0150950 March 10, 2016 17 / 24



107]. Several populations were observed to be under recent bottleneck, likely as a result of high

anthropogenic pressures on these coastal ecosystems [17, 18, 60, 108, 109]. Heterozygosity was

moderate to low, and this has been commonly observed in Rhizophora species [62, 110, 111].

Generally, low heterozygosity can be attributed to several factors [cf. 36, 47, 48, 110]. Ng et al.

[110] andWee et al. [111] observed low heterozygosity to be in agreement with the biology of

Rhizophora species. Null alleles are relatively common in microsatellite analysis [112] and they

could be present at some loci in our study populations, albeit at very low frequencies (S2

Table). The number of effective alleles and mean number of alleles in all populations was low

(means: Ae = 1.6, Ad = 3) so it is unlikely that null alleles will account for reduced heterozygos-

ity. Null allele frequencies were highest in Kribi (site 10) for the Loci Rrace5 and Rrace6.

Rrace5 deviates from HWE and this population has a significant inbreeding coefficient (Fis).

So the potentially (relatively) high null allele frequencies at this population are most likely an

over estimation because the significant Fis of this population and the deviation of this loci from

HWE [113]. Significant Fis in the Kribi (site 10) population could be explained from either

Wahlund-effect or potential inbreeding in the small, highly fragmented adult stands that made

up the transect from Londji.

The highest genetic diversity was observed in the BERI (site 8), BEK (site 3), and TIK (site

5) populations and this could be due to propagule supply from upstream populations into

these seaward populations (BERI and BEK) [62]. These two sites are part of the (CEC). We

expected that due to the presence of an oceanographic convergence just off the CEC, genetic

diversity would be significantly higher at the CEC via the supply of propagules from both sides.

There was no significant difference in the genetic diversity (Ar and Ho) of the CEC over other

estuaries, despite the large sample size of the CEC. Thus, locally, river and coastal currents

increase genetic diversity of the downstream populations of the Wouri River [62], but region-

ally, the CEC is not significantly different in genetic diversity from the other studied areas. Rhi-

zophora propagules have quicker establishment chances and longer viability periods [114].

Despite the high fecundity of mangroves [115], low seed dispersal effectiveness (SDE) can

result when the probability for dispersed propagules to remain viable along their dispersal tra-

jectory is low and the potential for successful establishment after stranding is limited [116].

Hence, a plausible explanation is that many viable propagules are transported to the open sea

and sink rather than projected suitable habitats where they could strand and eventually

establish.

Conclusion

We found sufficient evidence to conclude that climate change-induced SLR in the recent past

has created a corridor for gene flow between Rhizophora racemosa populations of the Rio Del

Rey Estuary and those of the Cameroon Estuary complex. In contrast, our study illustrates how

ocean features such as convergence zones in coastal areas can greatly influence the overall

genetic structure in a particular region. The isolation by distance signals observed is likely isola-

tion by resistance posed by the presence of an oceanic convergence zone, which was found to

be an effective barrier to gene flow, hampering the exchange of propagules between popula-

tions at both sides of this barrier. Contrary to expectation, the convergence of two ocean cur-

rents did not result in higher genetic diversity at the Cameroon Estuary complex, likely as a

result of ineffective overall dispersal.
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S2 Fig. Ocean current simulated patterns of the coast of Cameroon. The convergence zone

of the two currents offshore of the Cameroon Estuary complex is clearly revealed.
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S3 Fig. Isolation by Distance based on pairwise Nei’s genetic distances of populations and

geographic distance.
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estimates using individual multilocus genotypes. Significant migration rates are highlighted
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