Contrasting regional architectures of
schizophrenia and other complex diseases
using fast variance components analysis



Heritability in the GWAS era:
Much is known — but much more is unknown

e GWAS have found thousands of associations
between genes and traits... | o
Published Genome-Wide Associations through 12/2013

. . Published GWA at p<5X10-8 for 17 trait categories

* ... but GWAS hits explain g
only a fraction of known
heritability wmaner 2008 nature
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NHGRI GWAS catalog:
www.genome.gov/gwastudies/



http://www.genome.gov/gwastudies/

Heritability in the GWAS era:
How much is explained by genotyped SNPs?

We now know that all
genotyped SNPs together Beetics
explain a large fraction of trait
variance: hz

ANALYSIS

_ Note hg < hZ (narrow-sense Common SNPs explain a large proportion of the heritability
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Beyond hg: How many SNPs are causal?

We know there are
lots of causal SNPs
explaining hg of the
variance

We still don’t have

power to find all the
causal SNPs

Can we say how
many there are?
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e Partitioning heritability...

Beyond hg: How is h; distributed across
genomic elements?

— By chromosome
— By MAF bin

— By functional annotation
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Larger sample sizes are required to
obtain further insights into h

e Atasample size of
N=5000, h? estimates
have standard errors of
~0.06

— Too large for precise
inference

 Problem: For sample
sizes above N=50K,
standard variance
components analysis is
computationally
intractable
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New fast algorithm (BOLT-REML) performs
hg analyses on N>50,000 samples

Performs REML heritability

parameter estimation

— Multiple var. comps.:
Partitioned h;

— Multiple phenotypes:
Genetic correlation
~ O(MN®) time,
MN/4 memory
(M = # SNPs) as in
BOLT-LMM association
analysis
Loh et al. 2015a Nat Genet

Much more efficient
than GCTA at high N
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BOLT-REML algorithm

e Rapidly approximate
gradient and Hessian of 3670

likelihood surface seep | e
— Monte Carlo approximation = _
=>no need for O(N3)-time ' %% G
matrix operations apagl o s
5
Garcia-Cortes et al. 1992 JABG
Matilainen et al. 2013 PLOS ONE
— Instead, just solve linear
systems with O(MN)-time -
conjugate gradient iterations = = (AVTAZV gy —y V42V )
3r?
O L wvogmvozavy— s
e Ensure robustness using A A A

trust region optimization



Application: two N>50K data sets

Psychiatric Genomics Consortium Genetic Epidemiology Research

(PGC2) on Aging (GERA)
e Largest schizophrenia e 22 case-control diseases
data set ever collected — Dyslipidemia, hypertension,
. type 2 diabetes, ...
e Data size (after QC): . Data size (after QC):
— 22K schizophrenia cases — 54K European-ancestry
+ 28K controls samples (older adults in
(across 29 cohorts) Kaiser Northern CA system)

— 472K well-imputed SNPs — 600K genotyped SNPs

UNC Chapel Hill  UNC Health Care Embargoed for Release: Wednesday, February 26, 2014, 12 p.m. EST

NIH adds substantial set of genetic,
health information to online database

Psychiatric Genomics Consortium

Home Results DataSharing Scientific Plan For Investigators
Information on older adults is [argest ever resource for researchers

Worldwide



Chromosome-level polygenicity analysis:
per-chrom hé scales strikingly linearly with length
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BOLT-REML allows estimation of SNP-
heritability explained per megabase
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Details of BOLT-REML analysis:
e Estimate hg’le for up to 100 regions at a time (100 VCs)
e 1 additional VC containing all remaining SNPs



Megabase-scale SNP-heritability estimates
reveal extreme polygenicity of schizophrenia

How many SNPs are causal?

 Simulations to match

observed distribution of per-

megabase hé estimates

suggest >20K causal SNPs

e Previous estimate (ABPA

method, Ripke et al. 2013):

~8,300 causal SNPs

 Both methods are subject to
assumed parameterizations

of genetic architecture
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Megabase-scale SNP-heritability estimates
reveal extreme polygenicity of schizophrenia

How much SNP-heritability Fraction of hj explained by top regions
do hottest (“top”) 1Mb S
regions explain? "

* We use a non-parametric 08
method (i.e., robust to
genetic architecture
assumptions) to infer 04 .
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Heritability is enriched in GC-rich
regions
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e 1% increase in GC content => 1-4% increase in heritability explained
 Note: GC content is correlated with genic content, replication timing, etc.



Higher-frequency SNPs explain more
schizophrenia liability (on average)

x10"
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* MAF-partition h§ using BOLT-REML * Divide by (# UK10K SNPs per bin)
e Infer total narrow-sense h? per bin to estimate average heritability
based on tagging ability explained per SNP
(UK10K sequence data simulations)



Several pairs of GERA diseases exhibit significant genetic

correlations, esp. asthma & allergic rhinitis (7
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Conclusions

BOLT-REML enables powerful heritability
analyses of very large GWAS data sets

Schizophrenia is extremely polygenic
GC-rich regions contribute more heritability

Higher-frequency SNPs contribute more
heritability (per SNP)
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