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Abstract The fields of machine meta-learning and hyper-heuristic optimisa-
tion have developed mostly independently of each other, although evolution-
ary algorithms (particularly genetic programming) have recently played an
important role in the development of both fields. Recent work in both fields
shares a common goal, that of automating as much of the algorithm design
process as possible. In this paper we first provide a historical perspective on
automated algorithm design, and then we discuss similarities and differences
between meta-learning in the field of supervised machine learning (classifica-
tion) and hyper-heuristics in the field of optimisation. This discussion focuses
on the dimensions of the problem space, the algorithm space and the per-
formance measure, as well as clarifying important issues related to different
levels of automation and generality in both fields. We also discuss important
research directions, challenges and foundational issues in meta-learning and
hyper-heuristic research. It is important to emphasize that this paper is not a
survey, as several surveys on the areas of meta-learning and hyper-heuristics
(separately) have been previously published. The main contribution of the pa-
per is to contrast meta-learning and hyper-heuristics methods and concepts,
in order to promote awareness and cross-fertilisation of ideas across the (by
and large, non-overlapping) different communities of meta-learning and hyper-
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heuristic researchers. We hope that this cross-fertilisation of ideas can inspire
interesting new research in both fields and in the new emerging research area
which consists of integrating those fields.

1 Introduction

Despite the success of heuristic optimisation and machine learning algorithms
in solving real-world computational problems, their application to newly en-
countered problems, or even new instances of known problems, remains dif-
ficult; not only for practitioners or scientists and engineers in other areas,
but also for experienced researchers in the field. The difficulties arise mainly
from the significant range of algorithm design choices involved, and the lack of
guidance as to how to proceed when choosing or combining them. This moti-
vates the renewed and growing research interest in techniques for automating
the design of algorithms in optimisation, machine learning and other areas of
computer science, in order to remove or reduce the role of the human expert
in the design process1.

Automating the design of algorithms is not a new idea, and what has
changed is the algorithmic level at which the automation is performed. Con-
sider the area of evolutionary computation, for example. Initially, researchers
concentrated on optimizing algorithm parameters automatically, which gives
rise to adaptive and self-adaptive parameter control methods [7]. With time,
the definition of parameters was broadened to include not only continuous
variables, such as crossover and mutation rates, but also include ‘categori-
cal’ parameters, i.e. evolutionary algorithms components, such as the selection
mechanism and crossover and mutation operators [65]. After that, evolution-
ary algorithms were first used in the meta-level, i.e. to generated a complete
evolutionary algorithm, as showed in the works of Oltean [83].

In the area of machine learning, automated algorithm design appeared as a
natural extension of the first works focusing on automated algorithm selection.
As discussed in [106], the algorithm selection problem was formally defined by
John Rice in 1976 [94], and the big question posed was: Which algorithm is
likely to perform best for my problem? The area of meta-learning [11] took the
challenge and started to take shape in the late eighties, but was formally intro-
duced in 1992 with the MLT project [63]. The MLT project created a specialist
system (named Consultant-2) to help in selecting or recommending the best
algorithm for a given problem. This first project was followed by two others,
namely Statlog [73] and METAL [12]. In all three projects, the main difference
between meta-learning and the traditional base-learning approach was in their
level of adaptation. While learning at the base level focused on accumulating
experience on a specific learning task, learning at the meta level accumulated
experience in the performance of multiple applications of a learning system

1 Note that when we talk about algorithms, we mean any sequence of steps that is followed
to solve a particular problem, regardless of whether these steps describe a heuristic, a neural
network or a genetic algorithm.
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[11]. Later, meta-learning developed other research branches, such as model
combination and, more recently, automated algorithm generation [87].

Within combinatorial optimisation, the term hyper-heuristics was first used
in 2000 [30] to describe heuristics to choose heuristics. In this case, a hyper-
heuristic was defined as a high-level approach that, given a particular problem
instance and a number of atomic heuristics, selects and applies an appropriate
heuristic at each decision point [14,96]. This definition of hyper-heuristics was
also expanded later to refer to an automated methodology for selecting or
generating heuristics to solve hard computational search problems [16].

Note that the original definitions of both meta-learning and hyper-
heuristics were expanded to move from heuristic/algorithm selection to heuris-
tic/algorithm generation. In both areas, the turning point from selecting to
generating heuristics/algorithms had the same cause: the expressive power
of genetic programming as a tool for algorithm design (see [15,87] for an
overview). In this new context, hyper-heuristics aimed to generate new heuris-
tics from a set of known heuristic components given to a framework. Similarly,
in meta-learning, the idea was to generate new learning algorithms by com-
bining algorithm primitives (such as loops and conditionals) with components
of well-established learning methods to generate new learning algorithms. In
both cases, the distinguishing feature of search methods in the meta/hyper
level is that they operate on a search space of algorithm components rather
than on a search space of solutions of the underlying problem. Therefore, they
search for a good method to solve the problem rather than for a good solution
[27].

One issue when migrating from heuristic/algorithm selection to generation
was the need for generalization. In typical applications of heuristic optimi-
sation methods, the quality of a candidate solution returned by the fitness
function is evaluated with respect to a single instance of the target problem.
In such applications, the generality of the method applied does not matter
(for a further discussion of this point, the reader is referred to [87] (pages
97–100)). By contrast, in machine learning tasks such as classification, the
algorithm learns a classification model from the training set, which is later
applied to classify instances in the test set. The goal of a classification al-
gorithm is to discover a classification model with high generalisation ability,
i.e. a model that has a high predictive accuracy on the test set, containing
data instances not observed during the training of the algorithm. Hence, the
work previously done in this area can be of great help for the hyper-heuristic
community.

Given the historical resemblance between the evolution of automated de-
sign in both the learning and optimisation communities, the main objective
of this paper is to bring together the supervised machine learning (classifi-
cation) and heuristic optimisation communities to contrast their work, which
both seek to: (i) automate the process of designing or selecting computational
problem solving methodologies; and (ii) raise the level of generality of these
methodologies.
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It is important to emphasize that this paper does not intend to be a survey,
as several surveys in the areas of meta-learning and hyper-heuristics (sepa-
rately) have being previously published [16],[85],[115]. The main contribution
of the paper is rather to contrast meta-learning and hyper-heuristics methods
and concepts, in order to promote awareness and cross-fertilisation of ideas
across the (by and large, non-overlapping) different research communities of
meta-learning and hyper-heuristics. We hope that this cross-fertilisation can
inspire interesting new research in both fields and in the new emerging research
area which consists of integrating those fields.

The remainder of this paper is organized as follows. Section 2 brings a
historical perspective of the idea of automatic algorithm design. Section 3 in-
troduces the areas of meta-learning and hyper-heuristics, and contrasts them
according to three points: (i) the problem space; (ii) the algorithm space,
and (iii) the performance measure. Section 4 presents various examples of
automatic algorithm design in different levels of generalization, emphasizing
the differences between algorithm selection and generation. Finally, Section 5
discusses the differences between current machine learning and optimisation
approaches for automatic algorithm design, and presents directions for future
research mainly in foundation studies, generalization of the algorithms gener-
ated and the evaluation process.

2 A Historical Perspective on Automated Algorithm Design

As previously discussed, the idea of automatic algorithm design is not new:
it has been investigated by different areas for the past 50 years, from differ-
ent perspectives. The desire to automatically create computer programs for
machine learning tasks, for example, dates back to the pioneering work of
Samuel in the 1950s, when the term machine learning was first coined mean-
ing “computers programming themselves” [75]. Given its original difficulty,
this definition was revised with time, being redefined as the systems capabil-
ity of learning from experience. Later, based on this same idea, the area of
meta-learning was the first to deal with selecting/building algorithms tailored
to the problem at hand, as detailed in Section 3.1.

In evolutionary computation, this problem was studied in different algo-
rithms and at various abstraction levels. For instance, the popularity of genetic
programming in the early 1990s for the automatic evolution of computer pro-
grams [64] was the first step towards current efforts to evolve programs using
knowledge from the user (such as those based on grammars [86]) or evolving
code in a particular language, such as C or Java [84],[53],[77]. In parallel, the
first studies on adaptive and self-adaptive evolutionary algorithms appeared,
in which the algorithms were dynamically adapted to the problem being solved.

Initially, Angeline [6] grouped the latter methods according to the level
of adaptation they employed. Three different levels were defined: population-
level (global parameters), individual-level (parameters to particular individ-
uals) and component-level (different components of a single individual). Dif-
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ferent strategies were proposed according to the desired adaptation level, and
the same is true for automatic algorithm design. Later, Back [7] summarized
the strategies of parameter control in three groups: (i) dynamic, where the
parameters were modified according to a deterministic strategy defined by
the user; (ii) adaptive, where a feedback mechanism monitors evolution and
changes parameters according to their impact on the fitness function; and (iii)
self-adaptive, where the parameter values are inserted into the individual rep-
resentation or in a new cooperative population, and suffer the same types of
variations as the solutions themselves.

Summarizing the previous works in this area, Eiben et al. [40] proposed a
taxonomy for parameter setting methods, which were divided into two main
types: parameter tuning and parameter control. The main difference between
the two is that parameters are tuned before the evolution starts, and con-
trolled during evolution. While Eiben et al. focused on reviewing parameter
control, Kramer [65] extended the taxonomy to include different types of pa-
rameter tuning, including meta-evolution. Meta-evolutionary algorithms (such
as meta-genetic algorithms and meta-genetic programming) use evolutionary
algorithms in a nested fashion, which occurs on two levels. The outer level
evolutionary algorithm is used to tune the parameters of the inner level evo-
lutionary algorithm (i.e. the one solving the problem).

The initial works in meta-evolutionary algorithms also focused on optimiz-
ing continuous parameters, although in 1986 Grefenstette took six parameters
into account, including population size, crossover and mutation rates and the
type of selection to be followed by the algorithm (which was a discrete param-
eter) [58]. However, works in this area were criticized for bringing a problem
similar to the one being solved: optimising the parameters of the outer loop
evolutionary algorithms, which made the problems of parameter optimisation
recursive. Other works chose to use two co-evolving populations to solve this
same type of problem, where the main population used crossover and muta-
tion operators evolved by the second population during evolution [38]. Methods
based on meta-approaches also evolved with time, and the parameters were
replaced by high levels of components that, in the ultimate case, can generate
complete evolutionary algorithms [83]. In [83], the authors proposed to evolve
an evolutionary algorithm for families of problems using a steady-state linear
genetic programming (LGP), as detailed in Section 4.4.1. Another type of sys-
tem worthy of note is the autoconstructive evolution system proposed by [107],
named Pushpop, where the methods for reproduction and diversification are
encoded in the individual programs themselves, and are subject to variation
and evolution.

In the area of artificial life, in contrast with the efforts for automatic pro-
gram generation, computer simulations such as Tierra and Avida appeared
in the early 90s to create digital creatures or organisms. In Tierra, computer
programs (digital organisms) competed for CPU time and memory, and could
self-replicate, mutate and recombine. The main purpose of the system was to
understand the process of evolution, rather than solve computational prob-
lems. Avida, in turn, was an extension of Tierra that guided evolution to solve



6 Gisele L. Pappa et al.

simple problems [82]. Avida has been largely used to simulate biological and
chemical systems [1], but was also extended to other interesting problems that
need robust and adaptive solutions. [56], for example, developed Avida-MDE,
which generates behavior models for software (represented by a set of finite
state machines) that capture autonomic system behavior that is potentially
resilient to a variety of environmental conditions.

3 Contrasting Meta-Learning and Hyper-heuristic Optimisation
Methods

One of the objectives of this paper is to contrast automated methods for se-
lecting/generating new heuristics/algorithms for a given problem. This section
starts by summarizing how the meta-learning and hyper-heuristics fields devel-
oped to automatically select or build algorithms/heuristics, and then contrasts
the two approaches.

3.1 Meta-learning

Meta-learners were first developed to help users choose which algorithm to
apply to new application domains. The area does that by benefitting from
previous runs of each algorithm on different datasets. Hence, while a tradi-
tional (or base) learner accumulates experience over a specific problem, meta-
learners accumulate experience from the performance of the learner in different
applications [11].

The most common types of meta-learning are algorithm selection/recom-
mendation and model combination. Algorithm selection/recommendation is
based on the use of meta-features, which can be expressed using: (i) dataset
statistics, such as number of features, class entropy, attributes and classes
correlations, etc; (ii) properties of an induced hypothesis (e.g. for a rule induc-
tion model, features such as the number of rules, number of conditions per rule
using numerical and categorial attributes, etc); and (iii) performance informa-
tion of learning systems with different learning biases and processes. Hence,
algorithm selection/recommendation helps the user to choose the learner by
generating a ranking of algorithms or indicating a single algorithm accord-
ing to their predictive performance. The ranking/selection is created using
the meta-data aforementioned, which combines dataset characteristics with
algorithms performance.

Model combination, in turn, combines the results of different inductive
models, based on the idea that sets of learners may present better general-
ization than the learners by themselves. The models are generated based on
two main approaches. In the first case, different dataset samples are used to
train the same learner. In the second case, different learners are used to learn
from the same dataset. In both approaches, the final results are given by the
combination of the outputs of the single learners. Two well-known algorithms
that follow the first approach are bagging and boosting.
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Bagging extracts n samples from the dataset with replacement, and learns
a model from each of them [13]. Given a new instance to be classified, the
method performs a majority voting, assigning the class given by the majority
of the n learners to the example. Boosting also works with a single learner, but
is based on the assumption that combining weak learners (i.e. those with pre-
dictive performance just above random) is easier than finding a single learner
with high predictive accuracy [102]. Based on this idea, boosting runs a learner
repeatedly over different data distributions, and combines their final results.
However, boosting algorithms change the data distribution according to the
errors made by the first learners. Initially, each example is assigned a con-
stant weight w. On each iteration, the weights of misclassified instances are
increased, so that the next model built gives more importance to them.

Stacking [117] is an example of an algorithm that works with different
learners instead of different data samples. It runs a set of base-learners on the
dataset being considered, and generates a new datasetM replacing (or append-
ing) the instance features with the learner results. A meta-learner is then used
to associate predictions of the base-learners with the real class of the examples.
When new examples arrive, they are first run in the set of base-learners, and
the results given to the meta-learner. Examples of other algorithms combining
different datasets and multiple base-learners are cascading and delegating.

In addition to the two approaches of meta-learning just described, a third
type, called algorithm generation, is discussed in this paper. Instead of se-
lecting the best learner, this approach builds a learner based on its low-level
components, such as search mechanism, evaluation function, pruning method,
etc. In this case, the method working at the meta-level is usually an evolu-
tionary algorithm. In particular, genetic programming, which is intrinsically a
machine learning approach [8], is the most explored method.

The first approaches based on algorithm generation focused on evolving
neural networks [119]. There are still many efforts in this direction, as described
in Section 4.3. In the case of evolutionary artificial neural networks, researchers
have gone one step further, and are using evolutionary algorithms to create
ensembles of these networks [28], which is categorized as a combination method
in meta-learning. After neural networks, approaches for building rule induction
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algorithms [87] and decision trees [9] were also proposed. These approaches
resemble work in meta-evolutionary algorithms, and in this case the outer
loop algorithm is an evolutionary approach and the inner loop is essentially a
learning algorithm, which can be, again, an evolutionary one.

To summarize this section, Figure 1 presents a classification of the most
common approaches for meta-learning. This paper covers the approaches for
selection and generation of heuristics, although their combination is out of the
scope of the paper. For more details on this, the reader is referred to [95].
The numbers adjacent to some categories indicate the section of this paper in
which an example of that approach can be found. Note that in both selection
and generation methods, one can work at the level of algorithmic components
or algorithms. Although the idea of meta-learning refers to the choice of al-
gorithms (see Section 4.1), methods for component selection have also been
proposed (see Section 4.3 for an example of decision-tree split functions). Ad-
ditionally, the generation of algorithms and algorithm components is a more
recent development, as shown in the examples in Section 4.4.

3.2 Hyper-heuristics

The term hyper-heuristic is relatively new — it first appeared in a peer-
reviewed conference paper in 2000 [30], to describe heuristics to choose heuris-
tics in the context of combinatorial optimisation, and the first journal paper to
use the term in this sense was [22]. However, the idea of automating the design
of heuristic methods is not new; it can be traced back to the 1960s, and can
be found across Operational Research, Computer Science and Artificial Intel-
ligence. Fisher and Thompson [45], showed that combining scheduling rules
(also known as priority or dispatching rules) in production scheduling was
superior to using any of these rules separately. This pioneering work should
be credited with laying the foundations of the current body of research into
hyper-heuristic methods. Another body of work that inspired the concept of
hyper-heuristics came from the Artificial Intelligence community. In particu-
lar, from work on automated planning systems and the problem of learning
control knowledge [57]. The early approaches to automatically set the pa-
rameters of evolutionary algorithms can also be considered as antecedents of
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hyper-heuristics. The notion of ‘self-adaptation’, first introduced within evo-
lution strategies for varying the mutation parameters [93,103], is an example
of an algorithm that is able to tune itself to a given problem whilst solving it.
Another idea is to use two evolutionary algorithms: one for problem solving
and another one (a so-called meta-evolutionary algorithm) to tune the first one
[59]. Finally, a pioneering approach to the automated generation of heuristics
can be found in the domain of constraint satisfaction [74]; where a system for
generating reusable heuristics is presented.

Hyper-heuristics are related to metaheuristics [55,110] but there is a key
distinction between them. Hyper-heuristics are search methods that operate on
a search space of heuristics (or algorithms or their components), whereas most
implementations of metaheuristics search on a space of solutions to a given
problem. However, metaheuristics are often used as the search methodology in
a hyper-heuristic approach (i.e. a metaheuristics is used to search a space of
heuristics). Other approaches, not considered as metaheuristics, can and have
been used as the high-level strategy in hyper-heuristics such as reinforcement
learning [31,37,81,88], case-based reasoning [24] and learning classifier systems
[98,112].

In a recent book chapter [16], the authors extended the definition of hyper-
heuristics and provided a unified classification which captures the work that is
being undertaken in this field. A hyper-heuristic is defined as a search method
or learning mechanism for selecting or generating heuristics to solve computa-
tional search problems. The classification of approaches considers two dimen-
sions: (i) the nature of the heuristics’ search space, and (ii) the different sources
of feedback information from the search space. According to the nature of the
search space, we have;

– Heuristic selection: methodologies for choosing or selecting existing heuris-
tics

– Heuristic generation: methodologies for generating new heuristics from the
components of existing heuristics.

A second level in this first dimension (the nature of the search space) corre-
sponds to the distinction between constructive and perturbative (or improve-
ment) heuristic search paradigms. Constructive hyper-heuristic approaches
build a solution incrementally: starting with an empty solution, the goal is
to intelligently select and use constructive heuristics to gradually build a com-
plete solution. In selection hyper-heuristics, the framework is provided with a
set of pre-existing (generally problem-specific) constructive heuristics, and the
challenge is to select the heuristic that is somehow the most suitable for the cur-
rent problem state. This type of approach has been successfully applied to hard
combinatorial optimisation problems such as cutting and packing [98,112], ed-
ucational timetabling [23,24,97] and production scheduling [43,25]. In the case
of generation hyper-heuristics, the idea is to combine sub-components of pre-
viously existing constructive heuristics to produce new constructive heuristic.
Examples can be found in bin packing [19,20] and production scheduling [35,
111]. This classification is illustrated in Figure 2.
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In contrast, improvement hyper-heuristic methods start with a complete
solution, generated either randomly or using simple constructive heuristics,
and thereafter try to iteratively improve the current solution. In selection
hyper-heuristics, the framework is provided with a set of neighborhood struc-
tures and/or simple local searchers, and the goal is to iteratively select and
apply them to improve the current complete solution. This type of approach
has been applied to problems such as personnel scheduling [22,31], timetabling
[22], packing [37] and vehicle routing [88,51]. Improvement heuristics can also
be automatically generated. Examples can be found for both producing a com-
plete improvement search method or some of its algorithmic components; in
domains such as boolean satisfiability, [49], bin packing [18], and traveling
salesman problem [83].

The second dimension in the classification considers the source of the feed-
back during learning: we can distinguish between online and offline learning. In
online learning hyper-heuristics, the learning takes place while the algorithm is
solving an instance of a problem. Therefore, task-dependent properties can be
used by the high-level strategy to determine the appropriate low-level heuristic
to apply. Examples of online learning approaches within hyper-heuristics are:
the use of reinforcement learning for heuristic selection [31,88,37,81] and gen-
erally, the use of metaheuristics as high-level search strategies across a search
space of heuristics [43,97,22,23,25]. In offline learning hyper-heuristics, the
idea is to gather knowledge in the form of rules or programs, from a set of
training instances, that will hopefully generalize to the process of solving un-
seen instances. Examples of offline learning approaches within hyper-heuristics
are: learning classifier systems [98], case-based reasoning [24] and genetic pro-
gramming [35,111,49,19,20,18].

These categories reflect current research trends. However, there are
methodologies that can cut across categories. For example, we can see hybrid
methodologies that combine constructive with perturbation heuristics [51], or
heuristic selection with heuristic generation [42,60,66,71].

3.3 A Framework to Contrast Meta-Learning and Hyper-heuristics

A first attempt to contrast meta-learning and hyper-heuristics was done by
[32], which focused on the main applications of algorithm selection for real-
world problems. The idea of this paper, however, is to review methods for
selection and generation of algorithms in both areas and contrast them. In
order to make this comparison easier, we will borrow Rice’s framework for
algorithm selection and (without loss of generality) extend it to a framework
that encompasses algorithm generation. According to Rice [94], there are three
important dimensions to be taken into account when tackling algorithm se-
lection problems: (i) the problem space; (ii) the algorithm space, and (iii) the
performance measure. These three dimensions are essential for both hyper-
heuristics and meta-learning.
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The problem space defines the set of all possible instances of the prob-
lem. In both hyper-heuristics and meta-learning, the problem space can be
seen from three different perspectives. In the first case, one might want to
create a general heuristic/algorithm, which has a robust, good performance
across a very wide range of instances of the target problem. In the second
case, one can generate heuristics/algorithms for datasets/problem instances
with similar characteristics (or families of problems). In the third case, the
heuristic/algorithm can be developed to solve a specific instance of a problem,
without the need to generalize to different problem instances.

The algorithm space can be explored at different levels, considering ei-
ther all available algorithms/heuristics to solve the problem or components of
the former at different abstraction levels. The variety of each of these algo-
rithms/components is defined by the user, and ultimately determines the size
of the search space. Finally, the performance measure defines which criteria
will be used to evaluate an algorithm in a specific problem. Different algorithms
might be appropriate to different problems according to this measure.

3.3.1 Problem Space

This section discusses the three aforementioned levels at which heuristics or al-
gorithms can be generated: creating a general heuristic/algorithm, generating
heuristics/algorithms for datasets/problem instances with similar characteris-
tics, and solving a specific instance of a problem.

Research in meta-learning has already shown that one can customize rule
induction algorithms using both selection and generation approaches for a sin-
gle dataset [86], and obtaining success in this case is more likely than when
competing with more general algorithms, fine-tuned to generalize well in the
great majority of problems. In the optimisation field, genetic programming
hyper-heuristics have also been shown to operate on single problem domains.
Examples of single domains where generative hyper-heuristics have been ap-
plied are 2D bin packing [19], and job shop scheduling [52]. Note that here
we refer to the term hyper-heuristics in the context of heuristic generation
rather than heuristic selection. Heuristic selection has been shown to be able
to operate over multiple problem domains, but the domains must have pre-
existing human-generated heuristics. Therefore, the operation of the selection
hyper-heuristic over multiple problem domains is not completely automated.

Regarding the second case (building algorithms/heuristics for problem in-
stances with similar characteristics), it is demonstrably possible in the field of
optimisation to automatically design heuristics for certain families of problem
instances having shared characteristics. In particular, [17] study the trade-
off between generalization and performance which is associated with evolving
generic heuristics (which work reasonably well across a very broad class of
problem instances) or evolving specialised heuristics (which work very well in a
sub-class of problem instances, but not well in a very different sub-class of prob-
lem instances). Their results are consistent with the ‘no free lunch’ theorem
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[118], which suggests that a heuristic that performs well over a large set of prob-
lem instances can be beaten on any particular subset by a specialised heuristic.
A computer system which can automatically design specialised heuristics can
be much more successful over a targeted subset of problem instances than a
fixed, hand-crafted, general heuristic.

For meta-learning, this second approach was tried with algorithm selection,
but not generation. One of the main problems here is how to characterise
datasets as similar. Dataset characterisation is still an open research question
[11], but simple attributes such as number of attributes, classes by distribution
of attribute values, number of classes, among others, have already been tried
for algorithm selection.

The generation of algorithms which can generalise to any other instances
(the first of the three problem spaces mentioned above) has already been
tackled in meta-learning, but is probably the case where one can expect fewer
advantages of the built method regarding the other algorithms in the litera-
ture. This is because it is easier to generate a better algorithm for a target
domain than one that performs well in a wide range of datasets. In supervised
machine learning (in particular, for the classification task addressed in this
paper), even the simplest models generated from data must be generalisable,
and methods to prevent data overfitting have been studied for quite some time
[76]. The automatic design of algorithms gives a new context to the problem,
considering now the algorithms should generalise well to many new datasets.
So far, this problem was tackled by training an algorithm with many datasets,
and then testing its performance in a different set of non-overlapping datasets
(from different application domains than the datasets used to train the sys-
tem). According to previous results, this approach is capable of generating
algorithms that generalise well, and have comparative accuracy with state of
the art algorithms [87]. However, a motivation for automatic algorithm design
is to generate an algorithm which is better than others already proposed in
the literature, given the specificity and computational cost of the task.

In this direction, and taking into account the Law of Conservation of Gen-
eralisation Performance [92,101], which states that two different algorithms
have on average exactly the same performance over all possible classification
problems, maybe the best approach is to focus first on automatically design-
ing algorithms for ‘families’ of datasets or single datasets. After this prob-
lem is well-understood, we may move on to more complicated and general
domains. The principle here is the same as discussed above for the case of
hyper-heuristics in optimisation, namely the trade-off between generalization
and performance. This trade-off suggests that, all other things being equal, a
classification algorithm automatically designed for a specific class of classifica-
tion problems is expected to be more effective in problems of that class than
another classification algorithm automatically designed to be robust across a
much larger class of problems.

In summary, a problem domain in classification is a set of data points hav-
ing different features, such as cancer patient medical data, large scale bioinfor-
matics data, or financial data. It has been shown that algorithms can be au-
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tomatically generated for different classification domains, but it remains to be
seen if the same can be done for different optimisation domains. The challenge
is different in optimisation, since optimisation problems are represented with
different data structures, rather than a different set of feature-value pairs. The
higher levels of generality recently reached by machine learning research may
not be possible in optimisation systems, given the different problem formu-
lations and (most importantly) modeling required in optimisation problems.
This is an important point for future research.

Still related to the point of generalisation is the idea of problem class hier-
archies, which can be defined based on certain characteristics of the problems,
or how they have been generated. Algorithms do not have to be evolved for
any possible future instance, and in real world problems we do not expect
them to. For example, an organisation’s algorithm may be trained on real in-
stances from the past year. Such an algorithm would not need to operate well
on instances from another organisation, and has been implicitly trained on
the ‘class’ of problems that the organisation expects to see in the future. It
has been shown in the one-dimensional bin packing domain that optimisation
heuristics can be specialised to progressively more narrow classes of instances
in a hierarchy [17]. Further studies on how problem class hierarchies relate to
the generalisation of hyper-heuristics are also an interesting direction of future
work.

3.3.2 Algorithm Space

As already discussed in Sections 3.1 and 3.2, both hyper-heuristics and meta-
learning can explore the algorithm space using a selection or a generation
approach. In the case of meta-learning, there is also a third scenario, in which
one can combine the results of different machine learning approaches. Both
selection and generation approaches are well defined, as illustrated in Figures 1
and 2. Regardless of the approach followed, it can work at the component or
algorithm level.

One of the aspects we want to emphasize in this paper is the use of GP to
explore this algorithm space, possibly due mainly to the ease with which heuris-
tics/algorithms can be represented. GP is able to evolve heuristics/algorithms
by virtue of its expressive power (defined by a function and terminal set),
rather than because of its search operators (e.g. crossover/mutation). Hence,
the search in the space of heuristics or algorithms can be performed by any
other type of search method, given a suitable equivalent of GP’s function set
with sufficient expressive power. Some interesting alternatives to GP to con-
struct programs include the use of a variation of Estimation of Distribution
Algorithms called Estimation of Distribution Programming [104] and a varia-
tion of Ant Colony Optimisation called Ant Programming [99,100]. Although
ant algorithms have been used as a hyper-heuristic to select heuristics [33,
62,21,29], to the best of our knowledge neither technique has been used as a
hyper-heuristic to generate heuristics, and this could be an interesting research
direction.



14 Gisele L. Pappa et al.

The best method of searching the space of heuristics or algorithms is still
an open research question, with very little research done on this topic so far.
One such example is a comparison between grammar-based GP and grammar-
based greedy hill-climbing hyper-heuristics to generate a full data mining (rule
induction) algorithm, using the same grammar (defining the same data mining
algorithm space) in both methods. Pappa and Freitas [86,87] reported that GP
was more effective than hill-climbing. In contrast, on a different set of prob-
lem domains, [61] suggests that a grammar based local search methodology
can outperform GP in the task of automatically generating heuristics. In any
case, given the large diversity of search methods available in the literature,
we would argue that the current popularity of population-based methods does
not necessarily mean that they are the best choice to automatically design
algorithms, compared to single point stochastic local search methods.

At present, the majority of the computational methods produced by GP
are not algorithms in the sense of the term considered in this paper. They do
not have loops nor nested If-Then-Else statements, and they do not consist
of multiple heuristic procedures. In most GP applications, the entity being
evolved is better described as a mathematical expression, consisting of mathe-
matical operators applied to variables and randomly generated constants. This
is highly applicable in many cases, especially in optimisation, where mathemat-
ical expressions can be used as heuristics to choose between different options.
However, GP does have the potential to evolve full algorithms, as long as the
function set and the terminal set are carefully defined to allow the representa-
tion of loops, nested If-Then-Else statements, instructions for integrating the
results of multiple heuristic procedures, etc. In the following section on case
studies, we discuss some examples of GP systems that evolve full algorithms
for optimisation and classification problems.

One of the goals of this paper is precisely to draw the attention of the GP
research community to this more challenging and arguably more interesting
usage of GP, closer to the original spirit of GP as an automatic programming
tool, although our interest is mainly on automatic algorithm design rather
than on the details of any particular programming language.

3.3.3 Evaluation Measure

The evaluation measure is a dimension in which, at first glance, there is a
large difference between meta-learning for classification and hyper-heuristics
for optimisation. The reason for this apparently great difference is the differ-
ing nature of optimisation and classification problems, as follows. First, note
that there are many different types of optimisation problems (e.g. Travelling
Salesman Problem and Bin Packing Problem), each with its specific evalua-
tion measure (e.g. tour length or some function of the bins required to pack all
items, respectively). Note also that, in a conventional optimisation framework,
a candidate solution is evaluated with respect to a single instance of the target
problem, e.g. the quality of a candidate solution for the Travelling Salesman
Problem typically refers to the length of a tour for one predefined set of cities
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and corresponding pairwise distances. That problem instance is just one in-
stance out of the infinite number of possible problem instances that can be
obtained by varying the number of cities and the real values of the distances
between cities.

In contrast, in a conventional classification framework, a candidate solution
must be evaluated with respected to its generalization ability across many dif-
ferent data instances of the same application domain (e.g. different customers
of the same credit-scoring domain, or different patients of the same medical-
diagnosis domain). Furthermore, the training and testing instances must be
drawn independently from the same distribution. The need for this general-
ization is not present in a conventional optimisation framework.

However, the interesting point is that the use of hyper-heuristics in op-
timisation blurs the aforementioned distinction between evaluation measures
for classification and optimisation. When using hyper-heuristics to select or
construct a heuristic for optimisation, a candidate heuristic is typically evalu-
ated in terms of how well it performs on a set of problem instances, not just a
single problem instance. It is also possible and desirable to use the notion of
training and testing sets in this context, i.e. once a hyper-heuristic has selected
or constructed a heuristic by using a training set of problem instances, it is
interesting to measure the performance of that heuristic on a different set of
testing problem instances, unused during the training of the hyper-heuristic.

In the case of meta-learning for classification, the same basic principle of
generalization still applies, but now the generalization issue is further extended
to an even higher level of abstraction. More precisely, when a meta-learning
system selects or constructs a classification algorithm, we can measure gener-
alization performance at two levels. At the base level, we measure the gener-
alization ability (predictive accuracy) of the classification model built by the
(automatically selected or constructed) classification algorithm in a set of test-
ing data instances from a specific dataset (from a specific application domain,
like medicine or finance). In addition, at the meta-level, we can measure the
generalization ability of the meta-learning system itself across different types
of datasets or application domains. In other words, we can measure a kind
of average predictive accuracy associated with application of the classification
algorithm produced by the meta-learning system to different types of datasets
or application domains.

4 Automating the Design of Algorithms: Different Levels, Different
Approaches

This section focuses on automatic algorithm design at different levels. We
start with methods that follow meta-learning approaches in classification and
optimisation to solve the algorithm selection problem. We then consider the
selection and generation of algorithm components, contrasting the similarities
and differences between these approaches in the same problem domain. We
next give two examples of complete heuristic/algorithm design, where sets
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of components were combined, both with and without algorithm primitives.
Finally, we discuss and contrast the approaches followed in meta-learning and
hyper-heuristics.

4.1 Algorithm Selection: what researchers did before automatic algorithm
generation

As previously explained, the areas of meta-learning and hyper-heuristics, in
their early days, focused on algorithm selection. Meta-learning ideas have tra-
ditionally been applied to learning algorithms to solve classification problems,
where the goal is to relate performance of algorithms to characteristics or
measures of classification datasets. [106] presented a framework for the gener-
alisation of algorithm selection and meta-learning ideas to algorithms focused
on other tasks such as sorting, forecasting, constraint satisfaction and optimi-
sation. However, classification is still the most studied task in meta-learning.
Hence, the next sections discuss examples of algorithm selection in classifica-
tion, and then show how an optimisation task is solved using the same type
of approach.

4.1.1 Algorithm Selection for Classification Problems

For quite some time, the machine learning community has been interested in
meta-learning for selecting the best learning algorithm to solve a classification
problem using performance measures related to classification accuracy. Differ-
ent studies over the years have increased the sophistication of both the features
used to characterise the datasets, and the learning algorithms to learn the map-
ping from the features to the algorithms. We discuss here one of the earliest
attempts to characterise a classification problem and examine its impact on
algorithm behavior, using features related to the size and concentration of the
classes [2]. The approach used rule based learning algorithms to develop rules
like:

If the given dataset has characteristics C1, C2, ..., Cn

then use algorithm A1

else use algorithm A2

In this particular problem, the three algorithms used to learn the asso-
ciation between the attributes describing the classification problems and the
learning algorithms were the following: (i) IB1: nearest neighbour classifier,
(ii) CN2: set covering rule learner, and (iii) C4: decision tree learner.

The classification problems being addressed considered datasets from the
Frey and Slate letter recognition problem [48]. The features which described
the classification problems included the number of instances, number of classes,
number of prototypes per class, number of relevant and irrelevant attributes,
and the distribution range of the instances and prototypes. Note that the
number of relevant and irrelevant attributes is not usually known a priori, but
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IF (# training instances < 737) AND

(# prototypes per class > 5.5) AND

(# relevants > 8.5) AND

(# irrelevants < 5.5)

THEN IB1 will be better than CN2

Fig. 3 Example of the rules produced by the algorithm selection approach in [2].

in this case the datasets were artificially generated to study the behavior of
the learning algorithms. Figure 3 illustrates an example of the kind of rules
produced by this algorithm selection approach.

The study found that despite some constraints, the rules derived from the
proposed method yielded valuable characterisations describing when to prefer
using specific learning algorithms over others.

4.1.2 Algorithm Selection for Optimisation Problems

There has been surprisingly few attempts to generalize the relevant meta-
learning ideas to optimisation, although several approaches can be found in
the related area of constraint satisfaction [70]. We discuss here the approach
proposed in [105] to use meta-learning ideas for modeling the relationship
between instance characteristics and algorithm performance for the Quadratic
Assignment Problem (QAP).

The study considered a set of 28 problem instances taken from [109], and
three metaheuristic algorithms were considered for selection: (i) robust tabu
search, (ii) iterated local search, and (iii) min-max ant system. The perfor-
mance of each algorithm for each dataset was measured by the percentage
difference between the objective function value obtained by the algorithm and
the known optimal solution.

Each problem instance was characterized using 9 meta-features, which in-
cluded four measures of problem size (dimensionality, dominance of distance,
flow matrices, and sparsity of matrices) and five measures based on iterated
local search runs, namely: the number of pseudo-optimal solutions, average
distance of local optima to closest global optima using two different local
search procedures, the empirical fitness distance correlation coefficient based
on the local search experiments; and the empirical fitness distance correlation
coefficient based on the iterated local search experiments.

Both unsupervised and supervised neural network models were used to
learn the relationships in the meta-dataset and automate the algorithm selec-
tion process. Two supervised neural network architectures were tested. The
first model used as input the 9 features discussed above, and 3 outputs cor-
responding to each of the meta-heuristic performances. The neural network
was able to successfully predict meta-heuristic performance, measured as the
percentage deviation from the optimal solution.

The second supervised neural network explored another form of perfor-
mance prediction: the goal was to predict which algorithm would perform best.
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This was modeled as a classification problem: given the 9 inputs, learn to clas-
sify each example according to the known classification (the best performing
of the 3 available meta-heuristics). After training, the model was used on un-
classified data (i.e. QAP instances where it was not known which algorithm
was best). Again, the neural network was found to successfully predict the
best algorithm with 94% accuracy. The study also considered an unsupervised
model, self-organizing maps, to select the best algorithm by creating visual
explorations of the performance of different algorithms under various condi-
tions describing the complexity of the problem instances. Given the limited
size of the data, this is a preliminary study, but it demonstrates the relevance
of meta-learning ideas to the optimisation field.

4.2 Hyper-Heuristics for 2D Packing: Selecting versus Generating
Components

This section presents two hyper-heuristics for the 2D strip packing problem,
one based on the selection approach and the other in the generation approach,
and its main objective is to make clear the differences between the two ap-
proaches. While the selection approach chooses two components according to
the item at hand, the generation approach evolves a single algorithm compo-
nent which scores the best position to place an item.

There are many types of cutting and packing problems in one, two and
three dimensions. A typology of these problems is presented by Wascher et
al.[116], which explains the two dimensional strip packing problem in the con-
text of other such problems. In the 2D packing problem, a set of items of
various shapes must be placed onto a sheet with the objective of minimising
the length of sheet that is required to accommodate the items. The sheet has
a fixed width, and the required length of the sheet is measured as the distance
from the base of the sheet to the item edge furthest from the base. The items
may be rectangular or non-rectangular, and this characteristic classifies the
problem as a regular or irregular 2D packing problem. This problem is known
to be NP hard [50], and has many industrial applications as there are many
situations where a set of items of different sizes must be cut from a sheet of
material (for example, glass or metal) while minimising waste.

We first describe the work of [113], where the hyper-heuristic selects heuris-
tics for the regular and irregular two dimensional strip packing problems. In
this study, the solutions are constructed by packing one item at a time. A
packing heuristic decides which item to pack next, and where to place it in the
partial solution. Ten item selection heuristics and four placement heuristics
are combined to produce 40 heuristics in total.

The main motivation to model that problem that way is that different
heuristics perform well in different situations. For example, one heuristic may
be good at packing small items, one heuristic may be good at the start of
the packing process, and another heuristic may perform well when there are a
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variety of items to pack. The hyper-heuristic aims to select the best heuristic
from those available, at each decision point.

After each item has been packed, the state of the remaining item list is
determined, by calculating eight values, such as the fraction of large, medium
and small items remaining. The hyper-heuristic represents a set of mappings
from states to one of the 40 heuristics. This mapping is evolved with a genetic
algorithm [113]. An interesting point here is the way the fitness of the GA is
calculated. Each individual receives a set of five different instances to evaluate,
and their fitness takes into account the difference between the hyper-heuristic
being evolved and the results given by the single best heuristic (i.e. the per-
centage of usage for each object) and how many instances the individual has
seen so far.

In contrast with the work just described, [19] uses a hyper-heuristic to
generate heuristics for the regular 2D strip packing problem. Here, instead of
pre-selecting item selection and placement heuristics, a single heuristic is gen-
erated and evolved with genetic programming. This heuristic is represented
by a function, used to assign a score to all of the candidate positions of place-
ment at each decision point, as shown in Figure 4. This is useful as, when
faced with multiple options of which item to pack next and where to put it in
the partial solution, the optimal function to score those options is not obvious.
Moreover, 2D packing problem instances can be separated into classes with
different characteristics, and different scoring function heuristics will perform
well on different instances. Given a problem class, it is not easy to manually
generate a specialised heuristic for that class.

The terminals and functions used to generate these heuristics include the
width and length of the items, the bin dimensions, and various metrics that
calculate the differences between the bin and item sizes. Note that only the
score function is evolved. The other basic algorithm elements, such as the loop
which specifies that all of the items must be packed, are kept constant to
ensure a feasible solution.

The literature on human-created heuristics for this problem focusses on
scoring functions which are good over many different problem instances, with
many different characteristics. The “best-fit” heuristic is shown to perform well
over all benchmark instances. To manually create a heuristic for each different
instance class would require a prohibitive amount of effort. Automating this
creative process makes generating specialised heuristics viable, as no additional
human intervention is necessary. All that is needed is a large enough set of
representative training instances of the problem class and rich enough function
and terminal sets.

4.3 Selecting/Generating Algorithm Components for Classification

While the previous section showed an example of hyper-heuristics using se-
lection and generation of algorithm components, here we give an example of
evolving an algorithm component through selection in the learning context.
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Fig. 4 The locations where item “1” can be placed. The heuristic must decide where to
place the piece by assigning a score to each.

Two works are discussed: the first shows the use of an evolutionary algorithm
to evolve a component of a decision tree induction algorithm: the heuristic for
selecting the best attribute to split the tree [114]. The second discusses the
evolution of (sets of) components of neural networks [119].

Decision tree algorithms build models by adding attributes to the tree, one
at a time, according to their capabilities of discriminating examples belonging
to different classes. Each value (in the case of categorical attributes) or range
(in the case of numerical attributes) of the selected attribute is used to generate
a new branch (split) in the tree. The discrimination power of each attribute
is measured by a heuristic, and there are many in the literature that have
already been explored, such as information gain and gain ratio. The method
described here selects this heuristic.

The problem solving strategies (or hyper-heuristics) are represented by
rules. These rules select the most appropriate splitting heuristic according to
the degree of entropy of data attributes. An example of a rule is: IF (x%
> high) and (y% < low) THEN use heuristic H, where x and y are both
percentage values ranging from 0 to 100, and high and low are thresholds for
the entropy value H. The meaning of the previous rule is: if x% of the attributes
have entropy values above high, and if y% of attributes have entropy values
below low, then use heuristic H to choose the splitting attribute at the current
node.

Individuals represent rule sets of size n, and a set of 12 heuristics can be
recommended. In order to ensure valid solutions, each individual is associated
with a default heuristic. When a new split needs to be created, the conditions
of the n rules are checked, and zero or more rules can hold. If no rule is
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selected, the default heuristic is applied. If one rule is selected, the heuristic
that appears in its consequent is applied. Finally, if more than one rule holds,
a majority voting is performed.

A few years after this first work, [9] proposed to generate a complete al-
gorithm to create a decision tree induction algorithm from sub-components
of well-known algorithms. This was achieved using a genetic algorithm with
a linear individual representation where each gene value represents a specific
choice in the design of one component of a decision tree algorithm. Different
genes refer to different design choices for decision tree components like the
criterion used to select attributes, parameters related to pruning, the stopping
criteria for the tree-construction process, etc. Hence, the combination of values
for all genes of an individual specify a unique complete decision tree induction
algorithm.

Considering other classification models apart from decision trees, research
on neural networks has invested a lot of effort on algorithm component selec-
tion and generation. Here we describe the main aspects of neuroevolution [46]
(i.e. evolution of artificial neural networks). As pointed out by Yao [119], neu-
ral networks can be evolved at three different levels: synaptic weights choice,
topology design and learning rule selection. Initially, neuroevolution followed
mainly an algorithm selection approach but, nowadays, it is moving in the di-
rection of algorithm generation [26]. The first use of the term neuroevolution
was to evolve the connection weights of a population of neural networks. This
basic idea grew and researchers started to evolve, together with the weights,
the topology of the networks. In the past decade, research on learning algo-
rithms has advanced significantly.

Here we focus on a specific example of Neuroevolution: NEAT (Neuroevo-
lution of Augmenting Topologies) [108]. This system is well suited to rein-
forcement learning tasks, and evolves network topologies along with weights.
As in all evolutionary systems, choosing how to represent the networks in the
evolutionary process is one of the key design issues. In NEAT, each individual
(neural network) is a linear representation of connecting genes, which spec-
ify the input node, output node, weight of the connection, whether or not
the gene is expressed and an innovation number, used to mark genes belong-
ing to the same ‘evolution line’. Crossover and mutation operations may add
perturbations to weights or add new connections or nodes, but they use the
innovation numbers for historical tracking. During crossover, only genes with
the same innovation number can be exchanged. The innovation number is as-
signed to a gene the first time it is created, and is kept unchanged during
evolution. Hence, genes with the same innovation number must represent the
same structure, maybe with different weights. The system also uses speciation
to evolve different network structures simultaneously.
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4.4 Generating Complete Heuristics/Algorithms

This section presents two case studies of the generation of algorithms. In the
same fashion as when generating heuristics, this approach is appropriate where
there is a basic sequence of steps to generate an algorithm; a range of compo-
nents that can be used to implement each step, and a set of variations of this
sequence that can be tested, modified or extended (automatically or by hand).
Here we describe case studies regarding the automatic creation of evolutionary
algorithms and rule induction algorithms, both using genetic programming.

4.4.1 Evolving Evolutionary Algorithms with Genetic Programming

There have been many attempts to make evolutionary algorithms more self-
adaptive, avoiding necessity for choosing from many types of operators and
parameters. Initially, many self-adaptive systems focused on parameters [40],
and others were created to evolve the operators of the evolutionary algorithm
[39]. Going one step further, Spector [107] and Oltean [83] employ genetic
programming to evolve the algorithms themselves.

This section discusses in detail the LGP proposed by Oltean [83], as it
also has one particularly interesting characteristic: it generalizes for families of
problems. Each individual in the LGP (the macro-level algorithm) corresponds
to an evolutionary algorithm (the micro-level algorithm), where individuals
differ from each other according to the order that the selection, crossover
and mutation operations are performed. Figure 5 shows an example of an
individual. Only the commands in the body of the for loop are evolved. Pop[8]
represents a population with 8 individuals, and the first command of the body
of the for loop mutates the individual in position 5 of the population and
saves the result in position 0. In the second for loop line, the select acts as
a binary tournament selection, choosing the best individual among those in
positions 3 and 6 and storing it in position 7. The third command crosses over
the individuals in positions 0 and 2, saving the result in position 2.

The fitness of LGP is calculated by running the micro-level evolutionary
algorithm. However, given the stochastic nature of the method being evolved,
the micro-level algorithm was run a predetermined number of times on a set of
training problems. The average fitness of the micro-level algorithm was used
to set its fitness in the macro-level algorithm.

This work was later extended [36], with the LGP replaced by a genetic
algorithm. The main modification in this system is that now the algorithm
evolves not only the evolutionary algorithm, but also their parameters, such
as crossover and mutation probabilities.

4.4.2 Automatically Evolving Rule Induction Algorithms

In [87,86], the authors proposed a grammar-based genetic programming al-
gorithm to evolve rule induction algorithms. The process of automatically
evolving algorithms first requires a study of manually-designed algorithms. In
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void LGP Program(Chromosome Pop[8])

{

Randomly initialize the population();

// repeat for a number of generations

for (int k = 0; k < MaxGenerations; k++) {

Pop[0] = Mutate(Pop[5]);

Pop[7] = Select(Pop[3], Pop[6]);

Pop[2] = Crossover(Pop[0], Pop[2]);

Pop[4] = Mutate(Pop[2]);

Pop[6] = Mutate(Pop[1]);

Pop[2] = Select(Pop[4], Pop[3]);

Pop[1] = Mutate(Pop[6]);

Pop[3] = Crossover(Pop[5], Pop[1]);

}

}

Fig. 5 LGP individual representing an Evolutionary Algorithm, adapted from [83].

the case of [87], the literature concerning rule induction algorithms was sur-
veyed, and a set of algorithm components, such as rule search, evaluation and
pruning, were identified. Different implementations of these components were
found and added to the grammar, including methods which had not previously
appeared in the literature. Loop and conditional statements were also added
when appropriate, resulting in a grammar with 26 production rules.

Based on this grammar, a grammar-based genetic programming algorithm
was used to generate, evaluate and evolve the rule induction algorithms (indi-
viduals). As the algorithm was being designed to work with any given dataset,
the research challenge was to implement a fitness function that would facili-
tate the generalization of the produced algorithms. This problem was tackled
using a set of datasets, termed the meta-training set to calculate the fitness of
the individual. Hence, for each individual of the population, its corresponding
rule induction algorithm was translated into Java code, and then run on the
meta-training set. For each dataset in the meta-training set, a classification
model was generated and its respective accuracy on the test set was calculated.
The average accuracy in all datasets in the meta-training set was used as the
fitness of the GP individual.

Figure 6 shows an example of the conversion from individual to Java code.
Note that the individuals are trees, where each leaf node is associated with a
portion of code that implements the respective function. These functions are
combined with a set of core classes that implement the basics of any classifier.

The results showed that GP could generate rule induction algorithms dif-
ferent from those already proposed in the literature, and with competitive
accuracy. Following another approach, the authors also proposed the use of
the algorithm to generate algorithms targeted to a specific dataset [86] or
datasets with similar characteristics.
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Fig. 6 Example of the method used to convert GGP individuals in Java code [87]

Table 1 Comparison of the methods described in Section 4 considering the problem being
tackled, the approach followed and the search method

Ref. Problem Approach followed Search Method

[2] data classification alg. selection rule induction alg.
[105] QAP problem heuristic selection neural networks
[113] 2D packing heuristic selection genetic algorithm
[114] decision tree split component selection rule induction alg.
[108] neural networks component selection evolutionary algorithm
[19] 2D packing component generation genetic programming
[9] decision tree alg. alg. generation genetic algorithm
[83] EA for 3 problems alg. generation linear GP
[87] rule induction alg. alg. generation grammar-based GP

4.5 Summary

This section summarizes and compares the methods previously described ac-
cording to the three dimensions introduced in Section 3.3, namely problem
space, algorithm space and evaluation metrics. To facilitate this comparison,
Table 1 lists the methods according to the problem being tackled, the approach
followed to generate the hyper-heuristic (selection or generation, components
or algorithm/heuristic) and the search method used.

Recall that the problem space is defined according to the problem being
solved and the level of abstraction at which one is working: components or
algorithms/heuristics. Furtheremore, it considers if a hyper-heuristic is being
developed for a set of datasets or for a specific dataset. Table 1 shows a sample
of learning and optimisation problems solved so far considering both compo-
nents and algorithms/heuristics. Note that all types of approaches have been
previously explored. In terms of developing heuristics/algorithms for specific
problems or sets of problems, all the work referenced in Table 1 uses multiple
problem instances, divided into training and test sets.

The algorithm space, in turn, refers to whether we use a selection or a
generation approach. This space can be explored by different search methods.
In Table 1, we observe that initially machine learning methods, such as rule
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induction algorithms and neural networks were explored for selection. However,
they do not offer enough expressive power to generate algorithms. Most of the
methods created for generation are evolutionary algorithms, with a special
emphasis on different types of genetic programming.

Finally, regarding the evaluation metric, the quality of the produced algo-
rithms is measured with the average of a well-known problem-specific metric
over different test instances. In optimisation, this is often translated as the
error between the optimal hand-designed solution (when one is available) and
the one found by the search method, or using some other measure of optimisa-
tion performance. In classification (supervised machine learning), any metric
estimating the predictive accuracy of the results in the test set (containing only
problem instances not present in the training set) can be used. Hence, gener-
alization ability is always measured when evaluating a classification model’s
predictive performance. The only approach which differs from this, and an
interesting research direction to be further investigated, is the one presented
in [113], where different individuals evaluate different instances, and the fit-
ness considers how many instances the individuals have seen so far, trying to
improve generalization and prevent overfitting.

5 Discussion and Conclusions

The previous sections reviewed the work done in optimisation and machine
learning for automatic algorithm design, and identified that both areas work
with two main approaches: those for selecting and those for generating heuris-
tics and algorithms. Examples of systems following the two approaches in both
domains were presented and compared.

Despite similarities, the issue of generalisation is the most different be-
tween automated approaches to machine learning and optimisation. This sec-
tion emphasizes and discusses the differences between the current approaches
for generalisation and asks how much further we can go. It also discusses some
theoretical foundations and concludes with some final remarks.

5.1 Differences between Current Machine Learning and Optimisation
Approaches

In this paper we have explored the similarities and differences between recent
research undertaken in supervised machine learning (classification) and optimi-
sation. The first significant observation is regarding the levels of generalisation
in the algorithms in the respective communities. The ability of algorithms to
generalise to new datasets has long been a concern of the classification commu-
nity. Within the context of optimization, starting in the 1970s, the application
of machine-learning to planning has seen the emergence of increasingly so-
phisticated domain-independent planners ( [5],[3],[4], [10],[68], [69]). However,
the wider optimisation community has only recently begun to seriously focus
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Fig. 7 The levels of generality at which methods for automating the design of optimisation
and machine learning algorithms operate.

on automatically designing heuristic systems (hyper-heuristic research) which
can adapt to new problem instance data without further human intervention.

In this section, we want to draw attention to these differences in levels
of generalisation. Figure 7 shows the different levels of generality at which
machine learning and optimisation systems can operate. Level A is the least
general, and level C is the most general. In level A, also known as the exe-
cutable level, the optimisation heuristic produced by the heuristic generator
and the classifier (classification model) produced by the classification algo-
rithm are directly executed on the training instance, and their performance
is evaluated on the test instances. In level B, also called generator level, the
methods generate a heuristic for optimisation or a classifier for supervised ma-
chine learning. Finally, when operating in level C, also named meta-generator
level, machine learning methods act as meta-learning systems, generating a
classifier generator. The meta-generator level is a recent development, and we
are aware of only two meta-generator level systems [87,86,9].

In optimisation, a level A heuristic operates on problem instances to pro-
duce solutions. This is analogous to the case in supervised machine learning,
where a classification model operates on a dataset specific to a data domain.
Note that, although level A is the least general and involves both optimisa-
tion and classification, the latter requires that the model works well on new
data coming from the same data domain (i.e. represented by the same set
of features), which is not always required in optimisation. In level B, hyper-
heuristics for optimisation automatically design heuristics, which can then op-
erate on similar problem instances. The hyper-heuristic operates at a higher
level of generality — it is a system which can automatically design specialised
heuristics.

Most current classification algorithms are expected to work well over a
variety of domains, and one would not generally hand-craft a classifier for a
given dataset. For example, a neural network classifier would typically be au-
tomatically trained using an algorithm such as back-propagation on the target
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dataset, since hand-crafting a neural network is well-understood to be ineffi-
cient. This automatic training of ‘level A’ entities (using a classifier generator
at the ‘level B’) has been a feature of machine learning approaches for decades.
The same is not true in the optimisation community, where hyper-heuristic
approaches which generate heuristics have only recently become successful,
mainly due to the application of genetic programming.

Recent application of genetic programming in classification has resulted in
a meta-learning system which can automatically generate new classification
algorithms [87,9], which are in turn used to generate classifiers (classification
models for the input data). This system operates at level C in Figure 7. For
example, the system can produce an algorithm for one dataset with a cer-
tain set of features, and then also produce a different algorithm for a second
dataset with a different set of features. This process of algorithm generation is
automated, and allows one system to operate over different problem domains.

5.2 Generalisation: Future Research Directions

The fact that the latest machine learning research can operate at level C (in
Figure 7) means that it can operate over different datasets, from different prob-
lem domains, and even with different features. Genetic programming-based
hyper-heuristics for optimisation have so far only been shown to operate at
level B, meaning that one system can generate heuristics for one problem do-
main. We can generate a human-competitive heuristic for 2D packing, but the
same system cannot generate a heuristic for the traveling salesman problem,
or for vehicle routing. To do so would require a fundamentally different set of
functions and terminals, or (in the case of grammar-based genetic program-
ming) a different grammar. Recognising this current level of generality is a key
contribution of this paper, and we argue that removing this limitation on opti-
misation systems should be a focus of current and future research. One possible
way forward is adopt one or more of the domain description languages (e.g.
[54],[72]) (many of which have evolved from the well-known STRIPS solver
[44]) that have enjoyed success in the wider Artificial Intelligence community.
This would also have the added advantage of making optimization problems
amenable to processing by a wider variety of problem-solving architectures
than is currently the case.

If we instead consider heuristic selection (as opposed to heuristic gener-
ation), the winning algorithm of the Cross-domain Heuristic Search Chal-
lenge (CHeSC) did in fact show high generality across problem domains. It
was shown that it was possible to design one hyper-heuristic that could pro-
vide good solutions to instances of six different problem domains, including
two that were not seen by the hyper-heuristic designers (travelling salesman
and vehicle routing). For each problem domain, a problem representation,
fitness function and a set of low-level heuristics, encapsulating the domain
specific components, was provided. The task of the hyper-heuristic was to
intelligently select the sequence of heuristics to apply, based on their perfor-
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mance and characteristics. This is very different to the related goal of au-
tomatically generating the heuristics themselves, but the results of CHeSC
represent the state of the art in automatic selection of algorithms for op-
timisation problems. Details of the challenge and the results can be found
at http://www.asap.cs.nott.ac.uk/external/chesc2011/, and the challenge was
made possible by the use of the HyFlex framework [78] through which the
participants developed their hyper-heuristics. HyFlex is available for future
research at the CHeSC website, allowing comparison with the competition
results.

Another point that needs to be explored is how to make the algorithm
even less dependent on the human designer, making him/her less responsible
for the definition of a set of pre-defined functions, increasing even more the
level of generality.

5.3 Challenges Relating to Datasets and Training

When we talk about using various datasets for training and testing in the
context of the automatic design of classification algorithms, there are a lot of
public repositories to be explored, such as the one maintained by the University
of California Irvine (UCI) [47], or the huge amounts of bioinformatics data
freely available on the Web. The same is not always true in optimisation tasks.
In order to obtain a number of instances large enough for training and test
purposes, the use of problem-instance generators might be necessary.

The use of many datasets as a training set also raises problems of perfor-
mance, as each individual in the population must be tested on the training
data. This problem is related to both the number and size of the training
data. In the case of machine learning, research on intelligent sampling meth-
ods [67,34] might be necessary to enable the use of the methods. This problem
has been already explored in other contexts, such as selecting a subset of in-
stances for the user to label or reducing data sets for evolutionary algorithms
fitness computation, and some such well-understood methods could certainly
be applied.

Alternative strategies can be used to reduce the time spent on fitness com-
putation while improving the generalization of the solutions. In [42], for ex-
ample, the available instances are divided into groups according to their level
of difficulty. Initially, solutions are evaluated using easy instances and, as the
solutions get better, the initial instances are replaced by harder ones. [113], in
contrast, evaluates different solutions using different subsets of instances, and
the fitness of individuals take into account how many instances they have seen
so far.

However, even if algorithm generators take a considerable amount of time
to run, it is important to remember that this time would probably still be a
small fraction of the time taken by the human-designer of a new algorithm. Fur-
thermore, when the focus is on automatically designing heuristics/algorithms
that are robust across many different types of datasets, constructing new
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heuristics or algorithms would not be a task frequently performed, as the
intention is that the generated algorithms will be reused.

5.4 Foundational Studies

Thus far, little progress has been made in enhancing our theoretical under-
standing of hyper-heuristics and the automated design of algorithms. The the-
oretical study of the run-time and convergence properties of algorithms that
explore the complex search spaces of algorithms/heuristics seems far from fea-
sible. One direction that does seem promising is to study the structure of the
search space of heuristics/algorithms. The approaches explored in this article
generally involve searching in multiple spaces simultaneously. An additional
question is then how the different search spaces interact.

Analysis of the heuristic search spaces in hyper-heuristics for educational
timetabling and production scheduling [79,80] revealed common features, viz.
(i) a ‘big-valley’ structure in which the cost of local optima and their distances
to the global optimum (best-known solution) are correlated; (ii) the presence
of a large number of distinct local optima, many of them of low quality; and
(iii) the existence of plateaus (neutrality): many different local optima are
located at the same level in the search (i.e. have the same value). It remains to
be seen whether such features occur in other heuristic search spaces. In these
studies, the heuristic search space is generally smaller in size (when compared
to the solution space). With respect to the mapping between the two spaces;
the heuristic search space seems to cover only a subset of the solution search
space (but well distributed areas) [91].

Finally, since genetic programming is an important technique in the ap-
proaches explored in this article, the theoretical studies in this area are of
relevance [89].

5.5 Final Remarks

This paper focused on the automatic design of optimisation and supervised
machine learning (classification) methods. Many real-world problems can be
modeled as optimisation or classification problems, so the issues discussed here
are widely relevant. However, other domains, such as bioinformatics, control,
constraint programming and games have already investigated forms of both
automated algorithm/heuristic selection and generation [5,90,41,74]. We ar-
gue that algorithm/heuristics selection and generation are crucial for all types
of domains in which many methods and/or parameters are available, but no
clear methodology or criteria for choosing them are available.

Our discussion concentrated on the role of genetic programming and evo-
lutionary algorithms as a methodology for designing algorithms/heuristics,
although some of the case studies discussed involved other methods such as
neural networks and other metaheuristics. We believe that the representation
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power offered by different types of genetic programming system makes them
a suitable methodology. However, the exploration of other techniques is also a
direction worth pursuing.

Optimisation and classification are generally considered as to be distinct.
However, while the problem types and methods are different, the meta-learning
and hyper-heuristic methodologies discussed in this paper share a focus on au-
tomatic design of heuristic methods. Comparing and contrasting the various
approaches in this paper will hopefully lead to closer collaboration and signif-
icant research progress.
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116. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing
problems. European Journal of Operational Research 183(3), 1109–1130 (2007)

117. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)
118. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Tran-

sction on Evolutionary Computation 1(1), 67–82 (1997)
119. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447

(1999)


