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Contrastive Cross-Site Learning With
Redesigned Net for COVID-19 CT Classification
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Abstract—The pandemic of coronavirus disease 2019
(COVID-19) has lead to a global public health crisis spread-
ing hundreds of countries. With the continuous growth of
new infections, developing automated tools for COVID-19
identification with CT image is highly desired to assist the
clinical diagnosis and reduce the tedious workload of im-
age interpretation. To enlarge the datasets for developing
machine learning methods, it is essentially helpful to aggre-
gate the cases from different medical systems for learning
robust and generalizable models. This paper proposes a
novel joint learning framework to perform accurate COVID-
19 identification by effectively learning with heterogeneous
datasets with distribution discrepancy. We build a powerful
backbone by redesigning the recently proposed COVID-Net
in aspects of network architecture and learning strategy to
improve the prediction accuracy and learning efficiency. On
top of our improved backbone, we further explicitly tackle
the cross-site domain shift by conducting separate feature
normalization in latent space. Moreover, we propose to use
a contrastive training objective to enhance the domain in-
variance of semantic embeddings for boosting the clas-
sification performance on each dataset. We develop and
evaluate our method with two public large-scale COVID-19
diagnosis datasets made up of CT images. Extensive exper-
iments show that our approach consistently improves the
performanceson both datasets, outperforming the original
COVID-Net trained on each dataset by 12.16% and 14.23%
in AUC respectively, also exceeding existing state-of-the-art
multi-site learning methods.

Index Terms—Contrastive learning, COVID-19 CT
diagnosis, multi-site data heterogeneity, network redesign.

I. INTRODUCTION

T
HE COVID-19 pandemic, caused by severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2), has lead to a

global public health crisis, and continues to spread worldwide.

Medical imaging, especially Computed Tomography (CT), has

been playing an important role for clinical diagnosis and mon-

itoring of patients with the disease infections [1]. However,
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Fig. 1. The CT images of COVID-19 patients from two different clinical
centers, showing data heterogeneity on the appearance and contrast.

the growth rate of COVID-19 suspicious cases has overloaded

the public health service capacity and manifested shortage of

trained radiologists. Therefore, developing effective computa-

tional methods for automated COVID-19 CT image analysis

is highly demanded towards improving the diagnosis outcomes

and patient management, as well as helping clinicians on tedious

image interpretation workload for releasing their precious time

which can otherwise be dedicated to more urgent things on the

frontline.

A considerable amount of data-driven methods have been

rapidly developed within this scenario, where the high accu-

racy is typically attributed to a collected large-scale training

database [2]–[4], however, this is difficult to generally achieve

in practice. Instead, to mitigate the insufficiency of single-site

data amount, aggregating the CT imaging data from different

hospitals is desired for establishing a cross-site learning scheme.

For instance, Di et al. [5] proposed a hypergraph model with

multi-site pneumonia data to achieve rapid identification of

COVID-19 cases. Wang et al. [6] developed COVID-Net using

data collected from different repositories to build an accurate

deep learning classifier for X-Ray images. However, so far,

a major limitation of these works is their negligence of the

data heterogeneity across different clinical centers with various

imaging conditions (e.g., scanner vendors, imaging protocols,

etc). As illustrated in Fig. 1, the CT slices of COVID-19 patients

from two different public datasets present apparently different

image contrasts. This could potentially affect the model ability to

extract robust and general representations as assumed. Previous

studies on other medical imaging applications [7]–[9] have

frequently observed that straight-forward joint learning with

such heterogeneous datasets only brings limited improvement,

or even sometimes underperforming individual models trained

on a single dataset.
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To address this real-world challenge, we propose a novel

joint learning framework for accurate identification of COVID-

19 CT images by effectively combing different data sources

with distribution heterogeneity tackled. First, we redesign the

recent state-of-the-art COVID-Net [6] from aspects of network

architecture and learning strategies to boost its computational

efficiency and recognition performance. Moreover, on top of

our new backbone, we conduct effective joint learning to fully

exploit the benefit of combining multiple datasets. Specifically,

our framework employs domain-specific batch normalization

layers which enable to conduct the feature normalization and

estimate internal feature statistics for each site separately. Im-

portantly, we further propose a contrastive learning objective

to explicitly regularize the latent semantic feature space being

category sensitive while domain invariant. We evaluate the ef-

fectiveness of our approach using two public COVID-19 CT

classification datasets. Extensive experiments show that our

approach consistently outperforms single-site training models,

straight-forward joint learning, as well as existing state-of-the-

art multi-site learning methods, on both the datasets. Our main

contributions are summarized as follows:
� We redesign the COVID-Net [6] (originally developed for

X-Ray) in aspects of network architecture and learning

strategy to improve the computation efficiency and pre-

diction accuracy for COVID-19 CT images.
� We propose a novel joint learning framework to improve

the COVID-19 diagnosis by effectively learning from het-

erogeneous datasets, in which we conduct separate feature

normalization to tackle the inter-site data discrepancy and

propose a contrastive objective to explicitly promote more

robust semantic representations.
� Extensive experiments with two public datasets show

that our method consistently and significantly improves

the classification performance on both datasets. Code

is available at: https://github.com/med-air/Contrastive-

COVIDNet.

The reminder of the article is arranged as follows. We review

the related works in Section II, describe our proposed method

in Section III, and elaborate the extensive experiments in Sec-

tion IV. We then analyze and discuss our work in Section V and

finally draw the conclusion in Section VI.

II. RELATED WORKS

Many research works have been intensively and rapidly con-

ducted on developing AI methods in responding to COVID-19

global pandemic [10]. We hereafter briefly review deep learning

approaches for the task of image-level classification for diagno-

sis which are closely relevant to this article.

In the beginning, Butt et al. [11] aimed to establish a screening

model for distinguishing COVID-19 pneumonia from those

Influenza-A viral pneumonia and healthy cases with chest CT

images using ResNet18 with a location-attention mechanism.

Some following-up methods based on transfer learning have

been proposed, and most of which used popular existing net-

work architectures, such as VGG [12], ResNet [13]–[15] and

DenseNet [16]. Apostolopoulos et al. [17] relied on MobileNet

with its interpretability for helping radiologist to understand how

the model prediction was produced.

At the same time, there were new network architectures

emerging, carefully designed and validated. Representatively,

the COVID-Net [6] was tailored for COVID-19 recognition,

which achieved a promising accuracy for image-level diagnosis

based on chest X-Ray (abbr. CXR). Javaheri et al. [2] later

designed the CovidCTNet to differentiate positive COVID-

19 infections from community-acquired pneumonia and other

lung diseases. An alternative redesigned framework was based

on Capsule Network [18], aiming to more effectively handle

small-scale datasets, which is of valuable significance given

the emergency of COVID-19 initial outbreak. The method of

Gozes et al. [19] presented a system that can utilize robust

2D and 3D deep learning models, relying on modifying and

adapting out-of-the-box AI models and combining them with

domain-wise clinical understanding. Tang et al. [20] tackled

automated severity assessment (i.e., differentiating non-severe

and severe) for COVID-19 based on chest CT images through de-

signed exploration of those identified severity-related features.

Rahimzadeh et al. [21] developed a neural network that used

concatenation of features from Xception and ResNet50V2 net-

works, with benefits on recognition performance demonstrated.

With the wide spread of disease, more attentions have been

dedicated to joint learning of multiple sites for data sources ag-

gregation. For instance, a hypergraph based model [5] achieved

efficient COVID-19 identification with multi-site pneumonia

data; Zhang et al. [22] developed an AI system for COVID-19

diagnosis based on a very large scale dataset (containing about

0.6 million images) which achieved promising performance

on several unseen datasets. DasAdhikari et al. [23] combined

four datasets based on CT and CXR to study the infection

severity of COVID-19. Victor et al. [24] used data collected

from different repositories [6] for effective COVID-19 screening

based on deep learning method. More broadly speaking, the

issues of merging multi-site data have been actively investigated

in recent literature on medical image analysis. For instance,

Nguyen et al. [25] proposed a novel multi-site learning algo-

rithm to learn different features and aggregate spatial-temporal

features through a weighted regularizer based on an integrated

multiple heterogeneous dataset. The deep multi-task learning

(MTL) framework [26] could effectively improve the accuracy

of skin lesion classification through the additional context infor-

mation provided by body location. Meanwhile, several previous

works [27], [28] studied the construction of effective manually

generated features and how to design classifiers for medical

image analysis tasks across different domains respectively. The

federated learning approach [29] provided private multi-site

fMRI analysis through a privacy-preserving pipeline and in-

vestigated the federated models communication frequency and

privacy-preserving mechanisms from various practical aspects.

III. METHODS

An overview of our framework for COVID-19 diagnosis is

illustrated in Fig. 2. In this section, we first describe our model

redesign from COVID-Net. We then introduce our joint learning

https://github.com/med-air/Contrastive-COVIDNet
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Fig. 2. The overview of our proposed joint learning framework, which redesigns the original COVID-Net as backbone and performs separate
feature normalization to tackle the statistical difference of heterogeneous datasets. The proposed contrastive training objective helps to further
enhance the domain invariance of semantic embeddings of infected and non-infected cases for boosted diagnosis accuracy on each dataset.

scheme, in which we incorporate separate feature normalization

to tackle the cross-site heterogeneity and a contrastive loss to

explicitly enhance the domain invariance of latent embeddings

for improved classification performance.

A. COVID-Net Redesign for Improved CT Classification

The starting point of our model is COVID-Net [6], a recent

new deep learning architecture for COVID-19 CXR image,

that has achieved superior performance over several popular

classification networks pretrained on ImageNet. As shown in

Fig. 2, the network is composed of two branches, in which the

upper branch is a light design with four separate convolutional

layers, and the lower branch is composed of blocks with heavier

dense connections for representation learning. The skip connec-

tion between these two branches are employed for long-range

multi-level feature fusion. However, the COVID-Net [6] was

tailored to meet some specific challenges on CXR images in

which the lesions are relatively coarse. Its appropriateness would

be changed to a certain extent when applied to CT images where

the lesion pattern turns to be more clear, so that presenting

richer information to be learned by the model. In this regard, we

aim to build upon the strength of this backbone, while further

improving its learning efficiency and classification accuracy

from two major complementary angles.

1) Network Architecture Redesign: One limitation of the

original COVID-Net [6] is the lack of internal feature normal-

ization layers, which is empirically observed to lead to notable

variance of the learned representations across different layers

and overall branches. As the CT images contain more elaborated

patterns, such feature variance will be further amplified if not

properly calibrated, which therefore will slow down the the

training process and affect the prediction accuracy. To address

this problem, we incorporate batch normalization [30] (BN)

layers into the specific components of the network to reduce

the internal covariate shift and thus helping improve feature

discrimination capability and speed up the convergence rate.

Importantly, such BN layers are not necessarily beneficial to

be naively used as add-on for every single convolution layer.

As the computation blocks in the lower branch contain highly

dense short-range connections, adding the BN layers there will

significantly increase the parameter scale and decrease training

speed. As a result, considering the balance between the com-

pution efficiency and stable representation, we add a BN for the

initial convolutional layer and a BN after each convolutional

layer in the upper branch.

Formally, given M -channel feature maps x = {x1, . . . , xM}
of a certain layer, the BN obtains the normalized features y =
{y1, . . . , yM} by applying affine transformation on the whitened

feature maps along each channel i ∈ {1, . . . ,M}:

yi = γx̂i + β, where x̂i =
xi − µi
√

σ2

i + ǫ
, (1)

where µi and σ2

i refer to the mean and variance of feature xi; ǫ is

an infinitesimal; γ and β are the trainable parameters. Besides,

the BN layer collects the moving average values as pair of mean

and variance of γ and β during training to capture the global

data statistics, and employ these estimated values for feature

normalization in the testing phase.

In addition, we have added a global averaging pooling layer

after the extracted high-level features for compact semantic em-

beddings, which helps to significantly decrease the parameters

of output dense layers (i.e., by 12 times specific in this network

architecture) for alleviating overfitting issues.

2) Learning Strategy Redesign: The CT images used in this

study present notable appearance differences for COVID-19

patients across different severity. For examples as shown in

Fig. 1, the mild patient may only contain a small lesion while

severe patient can be infected almost in whole lung scope. Such

large variance within the input space further presents difficul-

ties for the model to explore a robust optimal solution from

heterogeneous COVID-19 datasets. To address this problem,

we expect a smooth learning process to facilitate the model

optimization to reach a relatively robust solution. To this end,

we propose to improve the COVID-Net learning strategy by

adjusting learning rate more smoothly in a cosine annealing

manner [31]. Specifically, denoting the total training epoch as

T , the learning rate at a current epoch t is calculated as follows:

ηt = ηmin +
1

2
(η − ηmin)

(

1 + cos

(

t

T
π

))

, (2)
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where η is the initial learning rate, ηmin is a predefined threshold

of minimum learning rate.

B. Joint Learning Scheme with Redesigned COVID-Net

Given insufficiency of COVID-19 samples from individual

hospitals, it is usually desired to aggregate cases from different

data sources for deep learning model development. On top of

the redesigned COVID-Net backbone, we further propose a

joint learning scheme to explicitly tackle the data heterogeneity

problem for boosted diagnosis performance.

1) Separate Batch Normalization at Data Heterogeneity:

Previous studies have revealed the limited improvement or even

performance degradation of simple joint training at severe data

heterogeneity [9], [32]. One crucial reason is that the BN layer

in joint model will suffer from an inaccurate estimation of

moving average values during the training phase due to the

statistical difference across datasets (as shown in Fig. 1). During

testing phase, the estimated values cannot accurately represent

the testing data statistics in each site and hence will lead to

performance degradation. In this paper, we employ the domain-

specific batch normalization (DSBN) method [9], [33], [34] by

assigning an individual BN layer for each site independently to

explicitly tackle the statistic discrepancy. As shown in Fig. 2, we

replace the BN layers incorporated at redesigned COVID-Net

with the DSBN layers. Compared with original BN layer, the

DSBN layer enables to capture domain-specific moving values

that can accurately represent the statistics of each site, also

supplies domain-specific training variables of γ and β to tackle

the inter-site variations by performing separate internal feature

normalization.

2) Contrastive Domain Invariance Enhancement: In addi-

tion to tacking the inter-site heterogeneity under joint learning,

we further aim to encourage robust semantic embeddings that

cluster regardless of the data source domains. This is crucial,

as the benefit from aggregating multi-site data would only be

partially leveraged if the model fails to project inputs of different

sites into a harmonized feature space. In this regard, we propose

to explicitly promote the intra-class cohesion and inter-class

separation of the semantic embeddings of infected (i.e., positive

COVID-19) and non-infected cases across sites.

We adopt the contrastive learning [37] to achieve that goal.

Given a pair of samples (m,n), we denote their semantic em-

beddings extracted after the global average pooling layer of the

network as em and en, which are 8096-dimensional vectors.

In the preliminary experiment, we observed that imposing the

compactness regularization directly on the semantic features

might be a too strict constraint that impede the convergence.

We therefore introduce an embedding network Hφ to project

the embeddings to a lower-dimensional space. The similarity

between this pair of samples (m,n) is then computed on the

projected features instead of the original features as:

sim(m,n) =
Hφ(em) ·Hφ(en)

‖ Hφ(em) ‖2 · ‖ Hφ(en) ‖2
. (3)

We denote the pair (m,n) as positive pair if sample m and n
are of the same class, otherwise negative pair. In each iteration,

we randomly sample a minibatch of K examples from the two

sites. The contrastive loss over each positive pair (m, n) within

the minibatch is defined as follows:

ℓcontrastive(m,n) =−log
exp(sim(m,n)/τ)

∑K
k=1

F(m, k) · exp(sim(m, k)/τ)
,

(4)

where the value of F(m, k) is 0 and 1 for positive and negative

pair, respectively; τ denotes a temperature parameter. The final

loss function is computed over all positive pairs in the given

mini-batch for both (m,n) and (n,m). Trained in this way, the

model will be enhanced to explore the domain invariance of

representations such that the semantic embeddings of samples

of same class can lie close to each other in angle space regardless

of domain, and away from those of different classes.

C. Overall Training Objective and Technical Details

The overall training objective Loverall composes the cross en-

tropy lossLce to assess the classification error and the contrastive

loss Lcon to regularize latent space:

Loverall = Lce + α · Lcon, (5)

where Lce =
1

N

∑

i −gi · log pi, in which N is the number of

samples, gi denote the one-hot groundtruth label and pi is the

predicted probability map, and the Lcon sums over pairs accord-

ing to (4). The embedding network Hφ has two fully connected

layers, with output size of 1024 and 128 using ReLU activation

function. This component is only optimized with Lcon.

The framework is implemented with PyTorch [38] using an

Nvidia TITAN Xp GPU. The classification model and embed-

ding network are trained from scratch with the same Adam

Optimizer. The learning rate was initialized with 1e-4 and de-

cayed with cosine annealing. We have used grid search with a

random small subset of the entire dataset to empirically adjust the

hyper-parameters, setting the temperature parameter τ as 0.05

and α is 1.0. For our proposed method and all the comparsion

methods, we totally trained 100 epochs with batch size as 32,

containing 16 images from each dataset. Considering the imbal-

ance of sample number between the two datasets, we reloaded

the smaller dataset by four times. Data augmentation of random

crop and random vertical, horizontal flip were used to mitigate

the overfitting problem.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We adopt two public COVID-19 CT datasets to evaluate

our joint learning framework, including SARS-CoV-2 [39] and

COVID-CT [40]. To the best of our knowledge, these two

datasets are the only relatively large-scale high-quality COVID-

19 datasets which are currently publicly available for research.

Among the two datasets, the SARS-CoV-2 (denoted as Site A)

consists of 2482 CT images from 120 patients, in which 1252

are positive with COVID-19 and 1230 are non-COVID but with

other types of lung disease manifestations. The spatial sizes of

these images range from 119× 104 to 416× 512. The COVID-

CT dataset (denoted as Site B) includes 349 CT images from
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TABLE I
RESULTS OF DIFFERENT METHODS ON THE TWO DATASETS FOR COVID-19 CT IMAGE CLASSIFICATION (MEAN±STD)

Fig. 3. (a) ROC curves of Single and Joint approaches with redesigned and original backbone of COVID-Net on Site A (upper) and Site B (lower);
(b) ROC curves of our approaches and baseline approaches (Single and Joint) on Site A (upper) and Site B (lower), using redesigned backbone;
(c) ROC curves of our approach and other comparison methods on Site A (upper) and Site B (lower), using redesigned backbone.

216 patients containing clinical findings of COVID-19 and 397

CT images from 171 patients without COVID-19. Resolutions

of these images range from 102× 137 to 1853× 1485. For the

preprocessing of the two datasets, all images are first resized to

224× 224 in axial plane, and then normalized into zero mean

and unit variance for intensity values along channel dimension.

Our experiment conducted four-fold cross-validation on the

two datasets. Following the literature of COVID-19 diagno-

sis [39], we adopt five metrics to provide comprehensive evalu-

ation for the models, including: (1) Accuracy (%), (2) F1 score

(%), (3) Sensitivity (%), (4) Precision (%) and (5) AUC (%). We

report the results in form of average and standard deviation over

three independent runs.

B. Effectiveness of Network Redesign on COVID-Net

We first compare our redesigned backbone with the original

COVID-Net to validate the effectiveness of network redesign.

The comparisons are conducted on two different experimental

settings, including 1) Single setting which trains a model for

each single site; and 2) Joint setting which trains a model jointly

using two datasets with naive aggregation. From the results in

Table I, we see that our Redesign model outperforms the original

COVID-Net [6] in Single setting on both two sites by a large

margin, with consistent increase on all five evaluation metrics.

Similar observations are shown in Joint setting, except the

slightly marginal improvement of precision in Site B. These re-

sults highlight the superior representation learning ability of our

redesigned backbone for COVID-19 diagnosis. Fig. 3(a) further

displays the receiver operating characteristic (ROC) curves of

the Single and Joint settings on the two sites, with our redesigned

model and the original COVID-Net as backbone respectively.

The benefits of our architecture and learning strategy redesign

can be further observed from the overwhelming advantage in

ROC curves.

C. Effectiveness of Our Joint Learning Framework

We then study the effectiveness of our proposed joint learning

framework. Specifically, we first conduct comparison with the
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TABLE II
THE P-VALUE WITH PAIRED T-TEST OF OUR METHOD WITH SINGLE, JOINT

AND SEPNORM LEARNING SCHEMES

two baseline settings, i.e., Single and Joint, and then compare

with state-of-the-art joint learning approaches. Note that all these

comparisons are based on the same backbone of redesigned

COVID-Net for fair comparison.

1) Comparison With Baseline Settings: From the results in

Table I, the Joint approach underperforms the Single approach

in both Site A and Site B, with 8.40% and 11.65% decrease of

AUC score respectively. Such performance degradation reveals

the severe statistical discrepancy between the two datasets, and

also highlights the urgency and clinical significance to design

effective ways for improving the joint learning outcomes from

heterogeneous datasets. It is worthy to point out that when

conducting separate feature normalization for the two datasets,

the joint learning model, i.e., SepNorm, outperforms the Joint

approach on both two sites consistently, which indicates the ef-

fectiveness of separate feature normalization scheme in solving

the data heterogeneity problem. Notably, by further leveraging

the proposed contrastive training objective, the model gains

additional improvements on both Site A and Site B, achieving

the AUC score of 96.24% and 85.32%, respectively. Such results

demonstrate the effectiveness of the contrastive objective to

promote more robust semantic embeddings from heterogeneous

datasets. Our final results outperforms the Single approach in 9

out of 10 metrics on the two sites, which further endorses the

practical values of our approach to maximize the data utility

of different datasets for boosting diagnosis accuracy. Fig. 3(b)

displays the ROC curves of our approach and the two baseline

approaches for reference.

We conduct paired t-test to analyze the significance of the

improvements of our method over the Joint, Single and SepNorm

approaches. The detailed results are shown in Table II. We see

that all paired t-tests present p-value smaller than 0.05, indicating

the statistically significant improvements of our method on both

two sites.

2) Comparison With State-of-the-Art Methods: We then

compare our approach with state-of-the-art joint learning meth-

ods in both medical image analysis and natural imaging domain,

including:

Series-Adapter [35]: This study proposes series domain

adapter for joint learning from multiple datasets, in which

domain-adaptive layers are incorporated into residual block to

mitigate the cross-domain visual discrepancy in natural image

processing.

Parallel-Adapter [36]: They develop parallel domain adapter

where the domain-adaptive convolutional layer is inserted into

residual block in parallel with filter banks to tackle the visual do-

main gap. This method achieves the state-of-the-art performance

for the joint learning task from 10 different natural imaging

classification datasets.

TABLE III
THE P-VALUE WITH PAIRED T-TEST OF OUR METHOD WITH THE

STATE-OF-THE-ART COMPARISON METHODS

MS-Net [9]: This work constructs a multi-site model that

incorporates domain-specific auxiliary branches to improve the

feature learning capacity and an online knowledge transfer

strategy to explore the robust knowledge from multiple hetero-

geneous prostate MRI datasets for boosted segmentation.

The Joint approach serves as a reference to evaluate these

joint learning methods. As shown in Table I, the Series Adapter

achieves higher performance than Joint model in both Site A and

Site B, while its improvements are highly imbalanced across the

two sites and still underperforms the Single approach. Compared

with Series Adapter, the Parallel Adapter presents relatively

balanced improvements over the Joint model, with 4.27% and

7.81% increase of AUC score in Site A and Site B respec-

tively. Improvements of the two approaches over Joint model

indicate that the domain-specific parameters in domain adapter

are beneficial for handling the problem of data heterogeneity.

The MS-Net is superior to the two domain-adaptive approaches,

demonstrating the benefits of the knowledge transfer process in

this framework. Notably, our method considerably outperforms

all three state-of-the-art joint learning methods on both two

sites, demonstrating the superiority of our approach to exploit

more robust representations from heterogeneous datasets. The

advantage of our method can also be reflected from the ROC

curves in Fig. 3(c). Results of paired t-test in Table III indicate

the statistical significance of our improvements over the state-

of-the-art methods.

V. DISCUSSIONS

With the rapid growth rate of COVID-19 suspection all over

the world, designing effective automated tools for COVID-19

diagnosis from CT imaging is highly demanded to improve the

clinical diagnosis efficiency and release the tedious workload

of clinicians and radiologists. However, accurate diagnosis of

COVID-19 from CT images is a non-trival problem, mainly due

to the highly similar patterns of COVID-19 and other pneumonia

types, as well as the large appearance variance of COVID-19

lesions of patients in different severity level [42]. Recently, a

variety of data-driven models have been proposed to solve this

problem [4], [19], [43], [44], leading to considerable progress

in the field of automated COVID-19 diagnosis in the past few

months.

Appropriate network redesign is commonly required to adapt

a well-established model onto a specific task. Our work em-

ploys the COVID-Net [6] as backbone, which achieves superior

performance in COVID-19 diagnosis with X-ray images than

several popular classification networks. Considering that the CT

images present more detailed and complex patterns of lesions

than the X-rays, we redesign the COVID-Net in terms of net-

work architecture and learning strategies to better capture the
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Fig. 4. Visualization of color maps using Grad-CAM [41].

Fig. 5. Visualization of color maps of failure cases with Grad-CAM [41].

semantic representations and facilitate smooth learning process

for boosted recognition performance and learning efficiency on

COVID-19 diagnosis from CT images.

Given the large appearance variance of COVID-19 lesions and

the highly similar patterns with other pneumonia types, the data-

driven machine learning models certainly require a large-scale

database for training to capture a widespread sample and lesion

distribution to attain high accuracy [45]. To mitigate the insuffi-

ciency of available COVID-19 CT scans from a certain hospital,

it is meaningful and essential to collect the joint data efforts from

different clinical centers for robust model development. Some

previous studies have also highlighted the importance of learning

from multi-site data for rapid and accurate model development in

COVID-19 diagnosis [2], [5], but most of them naively mix the

data from different sources while ignoring the data heterogeneity

that will affect the model to explore the general and robust

knowledge for this task. Our experiment reveal that the separate

feature normalization can effectively solve the problem of data

discrepancy and the benefits of collaborative data efforts can

be better explored by explicitly promoting the domain-invariant

knowledge during training process.

To understand the behavior of our framework, we observe the

Grad-CAM [41] visualization results on the two heterogeneous

sites, as saliency maps (shown in Fig. 4). It is consistently

observed on both datasets that the suspicious lesion regions

are successfully localized across various abnormality patterns

(e.g., bilateral and peripheral ground-glass, and consolidative

pulmonary opacity), even with quite mild lesions. This analysis

reveals promising interpretability of our classification model

trained with image-level labels, demonstrating potential clinical

relevance for COVID-19 image-based computer-assisted diag-

nosis. In addition, we present typical failure cases in Fig. 5. We

see that the method would mis-classify samples due to wrongly

attended regions, and fail to distinguish images with unobvious

lesions.

Although promising performance has been achieved as a

preliminary study of multi-site learning with COVID-19 data,

the limitation of our method still exists. Our method is limited

to these two sites used in our paper, which is suboptimal to be

directly applied on other unseen sites. This still cannot solve the

challenge for wider cross-site deployment thoroughly. Mean-

while, as the lack of computational resources and development

urgency, we cannot pretrain our redesigned model on large-scale

datasets such as ImageNet. Some previous works in the literature

demonstrated that fine-tuning transferred models will bring per-

formance improvement and speed up the training process [46].

As a near future work, we are interested to explore how to

connect the carefully redesigned network architectures with

model transfer learning from large-scale datasets, by trading off

their respective benefits at balance. In addition, we also plan to

extend our method to more sites with different environments for

wider multi-site learning to validate the generalization capability

of AI models in the context of COVID-19 CT image diagnosis.

VI. CONCLUSION

In this article, we aim to develop a highly-accurate model

for COVID-19 CT diagnosis by exploring the benefits of joint

learning from heterogeneous datasets of different data sources.

We propose a novel joint learning framework through redesign-

ing the recently proposed COVID-Net from architecture and

learning strategy as a strong backbone. Our joint learning

framework explicitly mitigates the inter-site data heterogeneity

by conducting separate feature normalization for each site. A

contrastive training objective is further explored to enhance the

learning of domain-invariant semantic features to improve the

identification performance on each dataset. Experiments on two

large-scale public datasets demonstrates the effectiveness and

clinical significance of our approach. The future works include

improving the generalization capacity of our model, extending

it into a wider multi-site setting, as well as employing transfer

learning from other large-scale datasets to further enhance the

diagnosis accuracy.
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