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ABSTRACT
Entity Set Expansion (ESE) is a promising task which aims to ex-
pand entities of the target semantic class described by a small seed
entity set. Various NLP and IR applications will benefit from ESE
due to its ability to discover knowledge. Although previous ESE
methods have achieved great progress, most of them still lack the
ability to handle hard negative entities (i.e., entities that are difficult
to distinguish from the target entities), since two entities may or
may not belong to the same semantic class based on different gran-
ularity levels we analyze on. To address this challenge, we devise
an entity-level masked language model with contrastive learning
to refine the representation of entities. In addition, we propose
the ProbExpan, a novel probabilistic ESE framework utilizing the
entity representation obtained by the aforementioned language
model to expand entities. Extensive experiments1 and detailed anal-
yses on three datasets show that our method outperforms previous
state-of-the-art methods.
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1 INTRODUCTION
Entity Set Expansion (ESE) aims to expand from a set of seed entities
(e.g., “China”, “America”, “Japan”) to more new target entities (e.g.,
“Russia”, “Germany”, ...) that belong to the same semantic class (i.e.,
Country) as the seed entities. The ESE task can benefit kinds
of NLP or IR downstream applications, such as knowledge graph
construction [26], Web search [2], and question answering [30].
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Figure 1: Examples of hard negative entities in ESE.

In recent years, kinds of iterative bootstrapping methods have
gradually become the mainstream of ESE research. These meth-
ods [24, 32, 33] mainly select the most confident candidate entities
of the model to the expanded set iteratively. A core challenge for
these methods is to avoid selecting hard negative entities that are
semantically ambiguous with the target entities [7, 12]. As shown
in Figure 1, when we want to expand target entities belong to class
US States, a competitive model is likely to wrongly expand hard
negative entities, such as “San Francisco” and “Los Angeles”. If judged
according to US States, it is clear that these hard negative enti-
ties do not belong to the target semantic class. But if we follow a
coarser granularity (i.e., Location), hard negative entities can be
regarded as the same class as target entities. Furthermore, as the
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characteristic of the iterative expansion process, a small number of
negative entities that are incorrectly expanded in the early itera-
tions will cause errors to accumulate in later iterations, resulting in
a gradual decrease in expansion performance. This is the long-term
“semantic drift” problem faced by ESE methods [3, 18, 25].

To address the above challenge and problem, we propose to use
contrastive learning [1, 5, 21] to empower the ESE model to bet-
ter deal with hard negative entities. Contrastive learning is a hot
topic in self-supervised learning field, which is originally applied
to learn visual representation and attracts more and more atten-
tion from NLP researchers. In general, contrastive learning aims
to learn more effective representation by pulling samples belong-
ing to similar classes and further pushing samples from different
classes [8]. Intuitively, the idea that we want the ESE model to bet-
ter distinguish hard negative entities coincides with the motivation
of contrastive learning naturally. In our study, contrastive learning
provides the ESE model with clearer semantic boundary and make
entity representation closer to semantics.

Motivated by the above intuition, we propose a novel ESEmethod
that consists of three parts: (1) Entity representation model, an entity-
level masked language model pre-trained under the entity predic-
tion task we specially design for ESE. Then we apply contrastive
learning to refine the semantic representation learned by our model,
which can be utilized in later expansion process. (2) Model selection
and ensemble. Due to the randomness of training samples in the
pre-training process, the model will be sensitive to the quality of the
training context features. To alleviate this issue, we will pre-train
multiple models mentioned in (1), then select and ensemble top
models to avoid the randomness of single model. (3) Probabilistic
expansion framework, a novel framework that can utilize the ensem-
ble model obtained in (2) through a window search algorithm and
an entity re-ranking algorithm, both based on probabilistic repre-
sentation similarity of the candidate entity and entity set. Through
this framework, we can finally get the ideal target entities that we
want to expand.

In summary, our contributions are in three folds:

• We firstly apply contrastive learning in ESE to better han-
dle hard negative entities and derive more effective entity
representation in semantic space.
• We propose a novel ESE framework, ProbExpan, which can
uniformly represent entity/entity set in the probability space
and utilize the ESE model to expand target entities.
• We conduct extensive experiments and detailed analysis on
three public datasets and get state-of-the-art performance.
Solid results demonstrate the substantial improvement of
our method over previous baseline methods.

2 RELATEDWORK
Entity Set Expansion. Recently, many corpus-based ESE methods
have gradually become the mainstream paradigm. These corpus-
based ESE methods can be divided into two main categories:(1)
one-time ranking methods [15, 17, 33] which introduce pairwise
semantic similarity into set expansion tasks and suffer a lot from
the Entity Intrusion Error problem, that is, they cannot clearly con-
vey the semantic meaning of entities. (2) iterative pattern-based
bootstrapping methods [11, 22, 24] which aim to bootstrap the seed

entities set by iteratively selecting context pattern and ranking
expanded entities. But these methods usually are troubled by the
Semantic Drift problem, that is, the target semantic class will change
gradually when noise arises during the iterations.
Language Representation. Early representation methods focus
on word-level embeddings, such as Word2Vec [6] and Glove [19]
which output a single embedding for each word in vocabulary. Af-
ter that, researchers design many context-aware representation
methods to utilize context information better. The outstanding rep-
resentative of context-aware representation methods is the masked
language models represented by BERT [4]. It is noted that CGEx-
pan [34] has utilized BERT’s representation to enhance ESE. But
BERT can still only perform word-level representation and CGEx-
pan only use the pre-trained BERT embeddings without any task-
specific training. To obtain better representation in more complex
tasks, ERNIE [35] is designed to learn entity/phrase-level represen-
tation. To the best of our knowledge, entity-level representation
methods have not yet been applied to ESE.
Contrastive Learning. Contrastive learning has been widely ap-
plied in self-supervised field [14, 16, 20, 29]. The main motivation
of contrastive learning is to attract the positive samples and re-
pulse the negative samples [1, 5, 8, 13]. Recent work [21] shows
that contrastive representation learning benefits from hard nega-
tive samples(those samples which are difficult to distinguish from
positive samples). This idea coincides with the challenge we have
observed in the existing ESE methods, that is, most expansion mod-
els cannot handle hard negative entities well. SynSetExpan [23]
enhances the ESE task via another related task, Synonym Discov-
ery. It is different from the idea of contrastive learning, hoping to
suppress the effect of negative entities by obtaining more positive
entities. NEG-FINDER [18] is concerned with semantic negative
classes same as our work, but it proposes to perform offline negative
discovery and then utilize the pre-selected negative categories to
alleviate the semantic drift of the bootstrapping algorithms. Unlike
NEG-FINDER that is just a heuristic and untrainable algorithm,
our study aims to pre-train a task-specific model which has better
entity representation and clearer semantic boundaries for ESE by
contrastive learning.

3 METHODOLOGY
In this section, we firstly introduce the entity representation model
and the entity prediction task we design for ESE. Specially, we
will discuss how we apply contrastive learning to refine entity
representation. Then we will illustrate the mechanism of model
selection and ensemble. Finally, we will describe the expansion
framework and algorithm to expand target entities. The overview
of our proposed method is shown in Figure 2.

3.1 Entity Representation Model
The entity representation model mainly contains an entity-level
masked language model, which takes a tokenized sentence with
entity masked as input and outputs a probability distribution de-
scribing which entity the masked token can be. The entity represen-
tation is defined as the average of the predicted entity distributions
of all its sentences. And the representation of an entity set is de-
fined as the average of the representation of all its entities. Our
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Figure 2: Overview of our proposed method. We jointly train the entity representation model to obtain clearer semantic
boundaries through our designed entity prediction task and contrastive learning task. Based on multiple pre-trained entity
representation models, we utilize the model selection and ensemble mechanism to avoid the randomness brought by a single
model. Two simple yet effective algorithms, namely window-search and entity re-ranking algorithms, are used to search and
sort entities to obtain ideal target entities, according to the similarity of probabilistic representations derived from the ensemble
model.

entity-level masked language model contains an encoder 𝒈 and
a classification head 𝒇 . To be specific, we initialize the encoder 𝒈
with pre-trained parameters of BERTBASE, so that grammatical and
semantic knowledge learned from large-scale corpus by BERT can
be utilized. The classification head 𝒇 consists of two linear layers
with GeLU activation and a softmax layer. We set biases of the
classification head 𝒇 to be 0 and initialize weights from Kaiming
uniform distribution [9].

Concerning the masked entity prediction pre-training task, for
every entity in the vocabulary, we replace its span with [MASK] to
get a training sample for all the sentences that it appears. During
each training epoch, we restrict the number of samples from every
entity to be the average number of samples of all entities, for con-
cern of sample imbalance and the facility of following ensemble
learning. We choose the Label Smoothing loss function [27] rather
than traditional cross-entropy loss function, so that entities shar-
ing similar semantic meaning with target entity will not be overly
suppressed. The prediction loss is defined as:

𝑙𝑜𝑠𝑠𝑝𝑟𝑒𝑑 = − 1
𝑁

𝑁∑︁
𝑖

𝑉𝑒∑︁
𝑗

(1𝑗=𝑦𝑖 (1 − [) · log ŷ𝑖 [ 𝑗]

+ 1𝑗≠𝑦𝑖[ · log ŷ𝑖 [ 𝑗]),
(1)

where 𝑁 is the size of mini-batch,𝑉𝑒 is the size of entity vocabulary,
[ is the smoothing factor and the larger the [ is, the higher the
smoothness of the label is,𝑦𝑖 is the index of the entity corresponding
to the training sample 𝑖 , ŷ𝑖 is the output of 𝒇 .

3.2 Contrastive Representation Learning
We apply contrastive learning to refine the semantic space learned
by our model so that the representation of the same semantic class
entities are pulled closer while the representation of different se-
mantic class entities are pushed outward.

To do this, we firstly generate positive/negative entities for each
semantic class from seed sets and previous expansion results. Note
that these previous expansion results are from the last iteration,
since our expansion framework is an iterative process. Positive en-
tities E𝑝𝑜𝑠 are defined as seed entities or entities that rank higher
than a threshold thr𝑝𝑜𝑠 in the expanded ranked lists. The enti-
ties that lie in a pre-defined interval (L𝑛𝑒𝑔,U𝑛𝑒𝑔) of the expanded
ranked lists are automatically selected as negative entities E𝑛𝑒𝑔 .

E𝑝𝑜𝑠 =
{
𝑒 |𝑒 ∈ E𝑠𝑒𝑒𝑑 or rank(𝑒) < thr𝑝𝑜𝑠

}
, (2)

E𝑛𝑒𝑔 =
{
𝑒 |L𝑛𝑒𝑔 < rank(𝑒) < U𝑛𝑒𝑔

}
, (3)

where these thresholds are the hyper-parameters for positive/negative
entities selection. Additionally, it is worth noting that we determine
these thresholds based on a reasonable assuming, i.e., hard nega-
tive entities would be ranked close to positive entities during the
expansion process. Therefore, we set the E𝑛𝑒𝑔’s lower bound L𝑛𝑒𝑔
a little larger than the size of all positive entities to select negative
entities in practice.

Inspired by [21], we design the contrastive learning method
which can concentrate on hard negative entities for ESE. Specifically,
we initialize our models in the same way as we discuss above, while
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attaching an auxiliary projection head 𝒑 on top of the encoder of
our model. The projection head 𝒑 maps the final hidden embedding
of the masked entity into a normalized feature vector z ∈ R𝐷 ,
where 𝐷 is the dimension of output. To calculate the contrastive
loss, samples from positive/negative entities are paired up to form
positive/negative sample pairs:

P𝑝𝑜𝑠 =
{
(x, x′) |𝑒𝑛𝑡 (x) ∈ E𝑝𝑜𝑠 , 𝑒𝑛𝑡 (x′) ∈ E𝑝𝑜𝑠

}
, (4)

P𝑛𝑒𝑔 =
{
(x, x′) |𝑒𝑛𝑡 (x) = 𝑒𝑛𝑡 (x′) ∈ E𝑛𝑒𝑔

}
, (5)

where 𝑒𝑛𝑡 (x) indicates the entity corresponding to the training
sample x. The contrastive loss is then defined as follow:

𝑙𝑜𝑠𝑠𝑐𝑙 = −
2𝑁∑︁
𝑖=1

log
𝑆+
𝑖

𝑆+
𝑖
+ 𝑆−

𝑖

, (6)

𝑆+𝑖 = 𝑒z
⊤
𝑖 ·z𝑗 (𝑖 ) /𝑡 , (7)

𝑆−𝑖 = max(
−(2𝑁 − 2) · 𝜏+ · 𝑆+

𝑖
+ 𝑆−

𝑖

1 − 𝜏+ , 𝑒
−1
𝑡 ), (8)

𝑆−
𝑖
=
(2𝑁 − 2)∑𝑘 :𝑘≠𝑖≠𝑗 (𝑖) 𝑒 (1+𝛽)z⊤𝑖 ·z𝑘/𝑡∑

𝑘 :𝑘≠𝑖≠𝑗 (𝑖) 𝑒
𝛽z⊤

𝑖
·z𝑘/𝑡

, (9)

where 𝑆+
𝑖
/𝑆−
𝑖
respectively reflects the similarity between two train-

ing samples from the same/different sample pair, and 𝑗 (𝑖) indicates
that the training samples corresponding to indexes 𝑖 and 𝑗 can form
a positive/negative sample pair, that is, (x𝑖 , x𝑗 ) ∈ P𝑝𝑜𝑠 ∪P𝑛𝑒𝑔 , 𝑁
is the size of mini-batch, 𝜏+ is the class-prior probability which
can be estimated from data or treated as a hyper-parameter, 𝛽 is
the hyper-parameter controlling the level of concentration on hard
negative samples, 𝑡 is the temperature scaling factor which we set
as 0.5 in all our experiments. It is noted that the training process
alternates between the prediction loss and contrastive loss.

3.3 Model Selection and Ensemble
It is reasonable to hypothesize that a model which has learned more
common semantic meaning of a class will output more consistent
representation of seed entities from that class. Under this hypothe-
sis, we design a scoring function to estimate a model’s expansion
performance on a semantic class:

sco(\, 𝑐𝑙𝑠) = −
∑𝑀
𝑖

∑𝑀
𝑗 :𝑖≠𝑗 KL_Div(𝑟 (𝑒𝑖 ), 𝑟 (𝑒 𝑗 ))
𝑀 ∗ (𝑀 − 1) , (10)

𝑟 (𝑒) = 1
|S𝑒 |

∑︁
x∈S𝑒

𝒇 (𝒈(x|\ ) |\ ), (11)

𝑀 = |E𝑐𝑙𝑠
𝑠𝑒𝑒𝑑
|, (12)

where \ is parameters of the model,E𝑐𝑙𝑠
𝑠𝑒𝑒𝑑

is the set of seed entities
of the class, S𝑒 is the set of all samples of entity 𝑒 , 𝑟 (𝑒) is the
probabilistic representation of entity 𝑒 , KL_Div is KL Divergence.

The overall score of a model on a dataset is then defined as the
geometric mean of the model’s scores on all the classes:

s̃co(\ ) = −

������ 𝑁𝑐𝑙𝑠

√√√
𝑁𝑐𝑙𝑠∏
𝑖

sco(\, 𝑐𝑙𝑠𝑖 )

������ . (13)

Algorithm 1 Window Search
Input: candidate entity list 𝐿; current set 𝐿𝑐𝑢𝑟 ; window size𝑤 ;

anchor distribution d ∈ R𝑉𝑒 ; entity representation r ∈ R𝑉𝑒 ;
scaling factor 𝛼 ; stage step 𝜏 ; counter 𝑐 .
Output: target entity 𝑒𝑡 .
1: 𝑐 ← 0;
2: s𝑡 ← −∞;
3: 𝑝 ← 1

𝑉𝑒
;

4: for 𝑒 in 𝐿 do
5: if 𝑐 ≥ 𝑤 then
6: break
7: r← 1

|S𝑒 |
∑
𝑥 ∈S𝑒

�𝒇 (𝒈(𝑥));
8: d← [𝑝]𝑉𝑒 ;
9: d[𝑖𝑛𝑑𝑒𝑥 (𝑒)] ← r[𝑖𝑛𝑑𝑒𝑥 (𝑒)];
10: for 𝑖 in |𝐿𝑐𝑢𝑟 | do
11: d[𝑖𝑛𝑑𝑒𝑥 (𝑒𝑖 )] ← 𝑝 ∗ 𝛼 ∗ 2−⌊

𝑖
𝜏
⌋ ;

12: d← Softmax(d);
13: s(𝑒) ← −KL_Div(r, d);
14: if s(𝑒) > s𝑡 then
15: 𝑒𝑡 ← 𝑒;
16: s𝑡 ← s(𝑒);
17: 𝑐 ← 𝑐 + 1;
18: return 𝑒𝑡 .

With this scoring function, we are able to select top-k models
Θ𝑡𝑜𝑝 from multiple models with only information of seed sets of
each class. We ensemble these models as follow:�𝒇 (𝒈(x)) = 1

|Θ𝑡𝑜𝑝 |
∑︁

\ ∈Θ𝑡𝑜𝑝

𝒇 (𝒈(x|\ )) . (14)

The practical model training process and analysis on model
efficiency are described in Appendix A.

3.4 Probabilistic Entity Set Expansion
Our proposed ProbExpan is an iterative framework based on the
probabilistic representation of entities and entity sets. At the begin-
ning of expansion, we initialize the current set 𝐿𝑐𝑢𝑟 as the given
seed set. In every expansion step, we first calculate the probabilistic
representation of current set 𝑟 (𝐿𝑐𝑢𝑟 ) with our pre-trained ensemble
model:

𝑟 (𝐿𝑐𝑢𝑟 ) =
1
|𝐿𝑐𝑢𝑟 |

∑︁
𝑒∈𝐿𝑐𝑢𝑟

1
|S𝑒 |

∑︁
x∈S𝑒

�𝒇 (𝒈(x)) . (15)

𝑟 (𝐿𝑐𝑢𝑟 ) is essentially the average of predicted entity distributions
of all entities in current set, whose dimension is the size of the
entity vocabulary. Sorting it and filtering out entities in current set
give us a ranked candidate entity list 𝐿.

The window search Algorithm 1 on 𝐿 is to expand the target
entities of current set. The algorithm judges the quality of a can-
didate entity by the similarity between its representation r ∈ R𝑉𝑒
and the anchor distribution d ∈ R𝑉𝑒 of current set. Therefore, an
entity that is not so prominent (i.e., long-tail entity) but shares more
similar representation with current set will be expanded in current
set. The anchor distribution d reflects entity distribution of current
set, where seed entities and entities expanded earlier weigh heavier.
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Methods Wiki APR SE2

MAP@10 MAP@20 MAP@50 MAP@ 10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

Egoset 0.904 0.877 0.745 0.758 0.710 0.570 0.583 0.533 0.433
SetExpan 0.944 0.921 0.720 0.789 0.763 0.639 0.473 0.418 0.341
SetExpander 0.499 0.439 0.321 0.287 0.208 0.120 0.520 0.475 0.397
CaSE 0.897 0.806 0.588 0.619 0.494 0.330 0.534 0.497 0.420
CGExpan 0.995 0.978 0.902 0.992 0.990 0.955 0.601 0.543 0.438
SynSetExpan 0.991 0.978 0.904 0.985 0.990 0.960 0.628 0.584 0.502

ProbExpan 0.995 0.982 0.926 0.993 0.990 0.934 0.683 0.633 0.541
ProbExpan-CN 0.995 0.983 0.929 1.000 0.996 0.955 - - -

Table 1: MAP@K(10/20/50) of different methods. The choices of 𝐾 value are exactly following the previous works [23, 34]. All
baseline results are directly from other published paper. Note that the class name guidance step in CGExpan is proposed for
relatively coarse-grained semantic classes, while the semantic classes of SE2 dataset are more fine-grained, so this method is
not very operable on SE2 dataset. We underline the previous state-of-the-art performance on three datasets for convenient
comparison.

The base of it is set as 1
𝑉𝑒

, the average entity prediction probability.
To make the anchor distribution robust to candidate entities, the
anchor probability of candidate entity is set to be the same as the
predicted probability of candidate entity. And the anchor probabil-
ity of each entity in current set scales over 𝑝 , where entities with
higher ranks will get larger scale. Note that the anchor distribution
d is transformed into a probability distribution by Softmax before
calculating the KL_Div.

We increase window size 𝑤 according to the current set size,
since the anchor distribution will be more concrete as the current
set size grows larger:

𝑤 = 𝑤0 + 𝑔 ∗ ⌊
|𝐿𝑐𝑢𝑟 |
𝑠
⌋, (16)

where𝑤0 is the initial window size, 𝑔 is window growing rate, 𝑠 is
window growing step.

Once expanded set reaches target size S𝑡𝑔𝑡 , we stop the expansion
and run the entity re-ranking algorithm. In particular, for every
entity 𝑒 in the expanded set, we first calculate its score s(𝑒) in the
same way as we do in the window search algorithm. A ranked list
𝐿𝑟𝑎𝑛𝑘 can be constructed according to these scores. The aggregation
score of every expanded entity is then calculated as follow:

𝑠𝑐𝑜𝑟𝑒 (𝑒𝑖 ) =
√︂

1
𝑖
∗ 1
𝑟𝑎𝑛𝑘 (𝑒𝑖 )

, 𝑖 = 1...S𝑡𝑔𝑡 , (17)

where 𝑖 is the expand order of entity 𝑒𝑖 in expanded set, 𝑟𝑎𝑛𝑘 (𝑒𝑖 ) is
the rank of entity 𝑒𝑖 in 𝐿𝑟𝑎𝑛𝑘 .

Sorting the expanded set according to these aggregation scores
will get the final expansion results.

4 EXPERIMENTS
4.1 Experiment Setup
1. Datasets. To verify the correctness of our intuition and proposed
method, we choose two public datasets widely used in previous
work and an additional recently released larger and more challeng-
ing dataset [23]:

(1) Wiki and APR, which contains 8 and 3 semantic classes
respectively. Each semantic class has 5 seed sets and each
seed set has 3 queries, following the previous work.

(2) SE2, which contains 60 semantic classes and 1200 seed queries.
The scale of dataset shows that SE2 is more challenging. The
datasets used in the experiment are detailed in Appendix B.

2. Compared methods. We will compare the following ESE meth-
ods in our experiments, the implementation details and hyper-
parameter choices of our experiments are shown in Appendix C:

(1) Egoset [22]: A multifaceted set expansion system based on
skip-gram features, word2vec embeddings and WikiList.

(2) SetExpan [24]: A method iteratively selects context features
from the corpus and proposes an ensemble mechanism to
rank entities.

(3) SetExpander [17]: A corpus-based model for expanding a
seed entity set into a more complete entity set that belong
to the same semantic class.

(4) CaSE [33]: A framework that constructs candidate entities
with lexical features and ranks candidates using the similar-
ity of distributed representation.

(5) CGExpan [34]: A method that generates the target semantic
class name by querying a pre-trained language model and
utilizes generated class names to expand new entities.

(6) SynSetExpan [23]: Current state-of-the-art method that
jointly conducts two related tasks and utilizes synonym in-
formation to improve performance of ESE.

(7) ProbExpan: In our proposed framework, we first apply
contrastive learning on entity representation model to obtain
better entity semantic representation. Then we use model
selection and ensemble to avoid the randomness of the pre-
training process. Finally we run two novel algorithms to get
expansion results.

(8) ProbExpan-CN: Because our proposed entity representa-
tion model is end-to-end trainable, we can combine it with
the class name guidance step in CGExpan.

3. Evaluation Metrics. The task objective of ESE is to expand
a ranked list of entities belong to the same semantic class. Thus,
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to evaluate the ranked result, we choose to use the Mean Av-
erage Precision at different top K positions as: MAP@K =
1
|𝑄 |

∑
𝑞∈𝑄 AP𝐾

(
𝐿𝑞, 𝑆𝑞

)
, where 𝑄 is the set of all seed queries and

for each query 𝑞, we use AP𝐾
(
𝐿𝑞, 𝑆𝑞

)
to denote the traditional av-

erage precision at position 𝐾 given a ranked list of entities 𝐿𝑞 and
a ground-truth set 𝑆𝑞 . To ensure the fairness of experiment, we are
completely consistent with the baseline methods’ evaluation metric
settings.

4.2 Experiment Results
We will first report the overall performance, then analyze and ex-
plain the experiment results comprehensively.
1. Overall Performance. Table 1 shows the overall performance
of different ESE methods. We can see that ProbExpan along with its
variant outperform all baselines including current state-of-the-art
methods on three datasets, which demonstrates the effectiveness
of our proposed method. It is also worth noting that the Wiki and
APR are small and relatively easy, the baselines don’t leave us much
space for improvement. But even so, our methods still perform well
compared to the baselines.

Semantic Class MAP@100
China Provinces 0.824 - 0.728 = 0.096 ↑

Companies 0.969 - 0.950 = 0.019 ↑
Countries 0.930 - 0.941 = -0.011 ↓
Disease 0.959 - 0.948 = 0.011 ↑
Parties 0.948 - 0.913 = 0.035 ↑

Sports Leagues 1.000 - 0.909 = 0.091 ↑
TV Channels 0.888 - 0.875 = 0.013 ↑
US States 0.763 - 0.750 = 0.013 ↑
Overall 0.033 ↑

Table 2: The improvement (MAP@100) of ProbExpan based
on CGExpan under different classes.

2. Performance Analysis. (1) For different datasets, our meth-
ods stably perform at a competitive level while existing methods
fluctuate fiercely. Especially on SE2, which has more entities and
semantic classes, our model’s advantage is more obvious. (2) For
different semantic classes, Table 2 shows that ProbExpan outper-
forms previous work under most classes, even though we use more
challenging evaluation metric such as MAP@100. (3) For flexibility
and expandability, the performance improvement of ProbExpan-CN
compared with ProbExpan suggests that our proposed method can
be combined with other methods friendly.

4.3 Parameter Studies
In Section 3.2, we propose to automatically select negative entities
using a pre-defined interval (L𝑛𝑒𝑔,U𝑛𝑒𝑔), according to the Equa-
tion 3. Furthermore, to select those really hard negative entities as
accurately as possible, we will manually ensure that the value of
L𝑛𝑒𝑔 is slightly larger than the size of positive entities when we
determine the values of these two hyper-parameters. Therefore, it is
reasonable to suspect that the values of (L𝑛𝑒𝑔 and U𝑛𝑒𝑔) will affect
the hardness of the selected negative entities, thereby affecting the
performance of the ProbExpan. But we can prove both theoretically
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Figure 3: Sensitivity analysis of L𝑛𝑒𝑔 / U𝑛𝑒𝑔 in ProbExpan.

and empirically that such a phenomenon that parameters affect
performance does not exist in our proposed framework.

Theoretically, even if we set an inappropriate and large L𝑛𝑒𝑔 , it
will not cause a drop in the overall performance of the ProbExpan,
because our proposed contrastive loss can adaptively focus on really
hard entities in a training batch. The negative entities that are more
similar to the positive entities will receive higher weight when
calculating loss through Equation 9. Empirically, we carry out the
parameter studies as shown in Figure 3 to verify the insensitivity
of ProbExpan to these two hyper-parameters. Specifically, we fix
one of (L𝑛𝑒𝑔 and U𝑛𝑒𝑔) and change the value of the other, and run
the ProbExpan on different datasets to test its performance. From
Figure 3, we can see that the performance of our proposed Prob-
Expan is not very sensitive to their specific values when these two
parameters are within a reasonable range, because as L𝑛𝑒𝑔 or U𝑛𝑒𝑔
changes, the model performance (MAP@K) does not change very
significantly. To sum up, the values of (L𝑛𝑒𝑔 and U𝑛𝑒𝑔) will indeed
determine what entities we select as the hard negative entities, but
due to the design of other structures and training strategy of our
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Methods Wiki APR

MAP@10 MAP@20 MAP@50 MAP@ 10 MAP@20 MAP@50

CGExpan-NoCN 0.968 0.945 0.859 0.909 0.902 0.787
ProbExpan-NoCLEN 0.983 0.974 0.910 0.990 0.977 0.898
ProbExpan-NoEN 0.989 0.980 0.899 0.992 0.981 0.912
ProbExpan-NoCL 0.991 0.980 0.917 0.993 0.984 0.910
ProbExpan 0.995 0.982 0.926 0.993 0.990 0.934

Table 3: Ablation studies of ProbExpan and its variants on two datasets. We arrange the results from top to bottom in the order
of increasing components of the model.

model, their values will not affect the overall performance of the
model significantly.

4.4 Ablation Studies
To provide a detailed analysis of how our proposed method works
on ESE, we perform a series of ablation experiments to see how each
component affects the model’s expansion performance. Besides, the
ablation results will also provide empirical proofs for our intuitions.

Because the full method of CGExpan leverages some fixed pat-
ternswell manually designed by researchers(i.e., Hearst patterns [10]),
to ensure ablation studies’ fairness, we will compare ProbExpan’s
variants with CGExpan-NoCN [34], which mainly consists of a tra-
ditional pre-trained languagemodel such as BERT. The ProbExpan’s
variants include:

(1) ProbExpan-NoCLEN: The ablation of ProbExpan without
contrastive learning and model selection and ensemble.

(2) ProbExpan-NoEN: The ablation of ProbExpan without model
selection and ensemble.

(3) ProbExpan-NoCL: The ablation of ProbExpan without con-
trastive learning.

The results of these methods are shown in Tabel 3.
1. Can Entity Representation Model Empower ESE? From
Table 3 we can see that ProbExpan-NoCLEN has a great improve-
ment compared to CGExpan-NoCN, especially for the MAP@50.
The significant improvement of ProbExpan-NoCLEN indicates the
entity-level masked language model can represent entities better.
Besides, it is worth noting that the ProbExpan-NoCLEN’s results
on APR are better than results on Wiki, which is exactly the op-
posite of CGExpan-NoCN. Because CGExpan-NoCN incorporates
the average BERT representation to select entities and the BERT
is pre-trained on Wikipedia corpus which is similar to the corpus
of Wiki dataset in ESE. Therefore, CGExpan-NoCN cannot handle
other source corpus, which also reflects that the entity representa-
tion model we design is not sensitive to the source corpus and has
good generalization performance.
2. CanContrastive LearningDivideAClearer Semantic Bound-
ary? The comparison between ProbExpan-NoEN and ProbExpan-
NoCLEN shows that contrastive learning effectively refines the en-
tity representation. According to our observation, previous works
such as CGExpan already have competitive performance, the most
error-prone case is that they face entities that are semantically am-
biguous. This is also the motivation we choose contrastive learning
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Figure 4: Correlation analysis of model score and perfor-
mance on Wiki and APR datasets.

to handle these hard negative entities. The performance results of
Table 3 and the case study in Figure 5 together show that contrastive
learning can indeed divide a clearer semantic boundary.
3. Can Model Selection And Ensemble Strategy Work? The
results about ensemble method in Table 3 show that the model
selection and ensemble step we design can bring remarkable im-
provement. Especially for the ProbExpan’s results, we are pleasantly
surprised to find that on the basis of ProbExpan-NoEN, application
of model selection and ensemble strategy can still improve further.
In addition, to verify the validity of the Equation 13, we analyze
the correlation between model score and performance. For the con-
venience of display, we normalize the model score. The positive
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Methods Wiki APR
MAP@10 MAP@20 MAP@50 MAP@ 10 MAP@20 MAP@50

CGExpan-NoCN 0.968 0.945 0.859 0.909 0.902 0.787
ProbExpan-NoCLEN 0.983 0.974 0.910 0.990 0.977 0.898
ProbExpan-NoEN 0.989 0.980 0.899 0.992 0.981 0.912
ProbExpan-NoCL 0.991 0.980 0.917 0.993 0.984 0.910
ProbExpan 0.995 0.982 0.926 0.993 0.990 0.934

Table 3: Ablation studies of ProbExpan and its variants on two datasets. We arrange the results from top to bottom in the order of
increasing components of the model.

Seed Entity Set ProbExpan-NoCLEN ProbExpan-NoEN ProbExpan

China Provinces

{“Anhui”,“Fujian”,
“Hunan”}

1 “Zhejiang” 1 “Jiangsu” 1 “Jiangsu”
2 “Shandong” 2 “Zhejiang” 2 “Guangdong”
3 “Henan” 3 “Guangdong” 3 “Zhejiang”

... ... ...
30 “Wuhan” 30 “Chongqing” 30 “Chongqing”
31 “Shanghai” 31 “Hubei province” 31 “Fujian province”
32 “Liaoning province” 32 “Liaoning” 32 “Guangdong”
33 “Hangzhou” 33 “Fujian province” 33 “Tianjin”
34 “Guangzhou” 34 “Harbin” 34 “Liaoning province”

... ... ...

Sports Leagues

{“Victorian
Football Leagues”,

“NBA”,
“Australian

Football League”}

1 “AFL” 1 “AFL” 1 “AFL”
2 “VFL” 2 “VFL” 2 “VFL”
3 “NFL” 3 “SANFL” 3 “SANFL”

... ... ...
15 “MLB” 15 “Southern Football League” 15 “WAFL”
16 “major league baseball” 16 “Victorian Premier League” 16 “Victorian Premier League”
17 “major leagues” 17 “A-league” 17 “League of Ireland”
18 “national league” 18 “NSL” 18 “NSL”
19 “American League” 19 “St Kilda Football Club” 19 “national basketball league”

... ... ...

Table 4: Results of two seed entity sets with different semantic classes. We mark the wrong entities in red.
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Figure 5: Results of two seed entity sets with different semantic classes. We mark the wrong entities in red.

correlation results presented in Figure 4 show that the Equation 13
can effectively evaluate the model.

4.5 Case Studies
We will present different models’ representative expansion cases
as further verification of our methods’ advantages.

Figure 5 shows some expansion results of ProbExpan’s variants
for several queries from different semantic classes. We see that
even though ProbExpan-NoCLEN has achieved very good overall
performance (as can be seen from Table 3), it still occasionally has
difficulty distinguishing some hard negative samples. For example,
municipal administrative regions such as “Wuhan”, “Hangzhou”,
and “Guangzhou” are likely to have great similarities in context with
provincial administrative regions such as “Shanghai” and “Zhejiang”
when training a language model, because they all actually belong
to Location entities. Therefore, ProbExpan-NoCLEN cannot rep-
resent these entities in a more fine-grained manner at the semantic
level. As shown in the comparison between ProbExpan-NoCLEN
and ProbExpan-NoEN columns of Figure 5, ProbExpan-NoEN can
recall more entities belonging to the correct target semantic class.
So we can know that contrastive learning can divide a tighter and
clearer boundary for the target semantic class through by extending
the distance between negative and positive samples and shortening
the distance between positive samples in the semantic space.

From the ProbExpan-NoEN column of Figure 5, we can see con-
trastive learning still can not solve some extreme situations. For
example, suppose a person does not have any external background
knowledge, then when he/she sees “St Kilda Football Club”, he/she
must be easy to literally classify it as Sports Leagues. There-
fore, we design the model selection and ensemble mechanism to
get better expanded entities on the basis of ProbExpan-NoEN and
the mechanism’s effectiveness can be reflected from the ProbExpan

column of Figure 5. From the whole Figure 5 we can know that the
effect of ProbExpan-NoEN is better than ProbExpan-NoCLEN, and
ProbExpan can be further improved based on ProbExpan-NoEN.
Such experimental results are in line with our design expectations.

5 CONCLUSIONS
In this paper, we introduce to pre-train an entity-level masked
language model with the entity prediction task. Then we firstly
empower the ESE model to better handle hard negative entities
with contrastive learning task. To utilize our pre-trained entity rep-
resentation model, we propose the ProbExpan, a novel probabilistic
ESE framework that consists of two simple yet effective algorithms,
namely window-search and entity re-ranking algorithms. In the
future, we will further study how to apply our pre-trained ESE
model in cross-domain scenarios to better exploit its generalization
ability. Combining various domain adaptation methods with our
model will be an interesting direction. Moreover, it is also a worthy
and promising research direction to study how to automatically
measure the hardness of negative entities, so that the really hard
negative entities can be better directly selected.
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A THE TRAINING PROCESS OF MODEL IN
PRACTICE

In practice, the overall training process of entity representation
model consists of four phases:

(1) In the first phase, we train multiple models in parallel with
a masked entity prediction task.

(2) In the second phase, we select top-k models using an algo-
rithm based on the consistency of probabilistic representa-
tion of seed set entities, and ensemble them.

(3) In the third phase, we run the expansion procedure and gen-
erate positive/negative entities from the expansion results
and seed sets, with which we train multiple models in par-
allel with the combination of contrastive loss and masked
entity prediction loss.

(4) In the fourth phase, we select and ensemble models in the
same way as we do in the second phase.

For the overall model efficiency, since the bottom layers of en-
coder 𝒈 are frozen and all models are trained in parallel, the time
cost is close to fine-tuning single BERT. Once training is done, we
parallelly use all models to calculate the predicted entity distri-
butions for all samples on the corpus and saved the output into
disk, so that models’ output can be easily retrieved during model
selection and ensemble. Overall, the framework is efficient enough
for downstream applications.

B DATASETS USED IN EXPERIMENTS
We select Wiki and APR datasets which are used in previous work
and an recently proposed more challenging dataset, SE2. We use
these datasets following previous works to process the corpus. The
download links of these datasets are all available in their original
papers [23, 34]. The details of these datasets are described as follow:

(1) Wiki, which is from English Wikipedia articles. It mainly
contains 8 semantic classes, namely China Provinces,
Companies,Countries,Diseases,Parties,Sports
Leagues, TV Channels and US States. Each seman-
tic class has 5 queries and each queries has 3 entities as the
initial seed entity set.

(2) APR, which is from news articles published by Associated
Press and Reuters in 2015. It mainly contains 3 semantic
classes, namely Countries, Parties and US States.
Each semantic class has 5 queries and each query has 3
entities as the initial seed entities.

(3) SE2, which is from Wikipedia 20171201 dump. It contains
60 major semantic classes and 1200 seed set queries. It is the
latest and largest benchmark for ESE.

C IMPLEMENTATION DETAILS AND
HYPER-PARAMETER CHOICES

C.1 Implementation Details of Baselines
If a baseline method has make its code public available, we directly
use the open-source code of this method in our experiments. But
if there is no open-source code for a baseline method, we directly
report its performance obtained in other published paper [23], be-
cause the datasets and evaluation metric used in the original paper
are completely consistent with these in our experiments.

C.2 Implementation Details of ProbExpan
Our proposed entity representation model adopts the Encoder-
Decoder architecture, the encoder is a multi-layer bidirectional
Transformer [28] that follows the BERTBASE setting, and the de-
coder is a classification head. Specifically, we firstly tokenize the
sentences by the WordPiece tokenizer [31]. The input embedding
of each token is the sum of its token embedding and position em-
bedding. The sequence of input embedding then passes through 12
stacked bidirectional Transformer blocks with 𝐻 = 768 hidden di-
mensions and 12 self-attention heads. It is noted that we freeze part
of the layers in our model when pre-train the entity representation
model to utilize the pre-training knowledge of BERT.

C.3 Implementation Details of ProbExpan-CN
The entity probabilistic representation of our model can be easily
used in other ESE frameworks. Here we discuss how to combine our
entity representation model with the class name guidance step of
CGExpan. In the Class-Guided Entity Selection module of CGExpan,
score of a candidate entity 𝑒𝑖 is formulated as:

𝑠𝑐𝑜𝑟𝑒𝑖 =

√︃
𝑠𝑐𝑜𝑟𝑒𝑙𝑜𝑐

𝑖
∗ 𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑏

𝑖
, (18)

where 𝑖 is the index of the candidate entity in the vocabulary,
𝑠𝑐𝑜𝑟𝑒𝑙𝑜𝑐

𝑖
is related to the guidance class name and we leave it alone,

𝑠𝑐𝑜𝑟𝑒
𝑔𝑙𝑏

𝑖
measures the similarity between the candidate entity and

entities of current set in the embedding space and is calculated as
follow:

𝑠𝑐𝑜𝑟𝑒
𝑔𝑙𝑏

𝑖
=

1
|E𝑠 |

∑︁
𝑒∈E𝑠

cos(V𝑒𝑖 ,V𝑒 ), (19)

where E𝑠 is a set of entities sampled from current set, V𝑒 is the
averaged word embedding of entity 𝑒 by BERT, cos(·) is cosine
similarity function. Finally, we replace 𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑏

𝑖
with �𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑏

𝑖
:

�𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑏
𝑖

=
1
|E𝑠 |

∑︁
𝑒∈E𝑠

1
|S𝑒 |

∑︁
𝑥 ∈S𝑒

�𝒇 (𝒈(𝑥)) [𝑖] . (20)

C.4 Hyper-parameter Choices
In our experiments, our model is trained by an AdamW optimizer
with the betas of (0.9, 0.999), epsilon of 1e − 6, and weight decay of
1e− 2. For different datasets, the choices of other hyper-parameters
are shown in Table 4. It is worth noting that we use the standard
and general hyper-parameter selection strategy, i.e., grid search the
hyper-parameters by model performance on a validation set that
does not overlap with the test set.

Hyper-parameter Wiki APR SE2
Frozen layers 11 11 10
Initial 𝑙𝑟𝑝𝑟𝑒𝑑 1e − 5 1e − 5 2.5e − 6

Smoothing factor [ 0.075 0.1 0.15
Initial 𝑙𝑟𝑐𝑙 1.5e − 5 1.5e − 5 3.5e − 6
thr𝑝𝑜𝑠 12 10 5
L𝑛𝑒𝑔 170 175 160
U𝑛𝑒𝑔 200 200 180
𝜏+ 0.05 0.1 0.01
𝛽 1 1 2

Table 4: The hyper-parameter settings in experiments.
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