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Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained

from sensors (i.e., receivers) is an important research area that is attracting much interest. In this

paper, we review several representative localization algorithms that use time of arrivals (TOAs) and

time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when

a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position

estimation approaches both use nonlinear equations that relate the known locations of receivers and

unknown locations of transmitters. Estimation of the location of transmitters using the standard

nonlinear equations may not be very accurate because of receiver location errors, receiver mea-

surement errors, and computational efficiency challenges that result in high computational burdens.

Least squares and maximum likelihood based algorithms have become the most popular computa-

tional approaches to transmitter location estimation. In this paper, we summarize the computational

characteristics and position estimation accuracies of various positioning algorithms. By improving

methods for estimating the time-of-arrival of transmissions at receivers and transmitter location

estimation algorithms, transmitter location estimation may be applied across a range of applications

and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks,

underwater animal tracking, mobile communications, and multimedia. C 2016 Author(s). All article

content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4947001]

I. INTRODUCTION

Estimation of the location of the source of a signal (e.g.,

emitting radio, acoustic or optic signals, etc.) has been a sub-

ject of research for decades and continues to receive much in-

terest in the signal processing research community, including

radar (Bahl and Padmanabhan, 2000 and Yan et al., 2007),

sonar (Carter, 1981; Leonard and Durrant-Whyte, 1991; and

Leonard and Durrant-Whyte, 2012), mobile communications

(Caffery, 2000; Gustafsson and Gunnarsson, 2005; and Caf-

fery and Stuber, 1998), multimedia (Brandstein and Silver-

man, 1997; Wang and Chu, 1997; and Akyildiz et al., 2007),

animal tracking (Spiesberger and Fristrup, 1990), wireless

sensor networks (WSNs; Akyildiz et al., 2002; Chen et al.,

2002; Patwari et al., 2005; and Mao et al., 2007), and the

Global Positioning System (GPS; Hofmann-Wellenhof et al.,

2013). However, uncertainties resulting from the modulation

of a signal propagated through an inhomogeneous medium

and in measurements of received signals can quickly degrade

position estimation accuracy when using standard methods

to estimate transmitter position (Sayed et al., 2005; Güvenç

and Chong, 2009; and Tan et al., 2011). For reference, the

acronyms commonly used in the study of transmitter position

estimation and adopted by this paper are listed in Table I.

Historically, measurement of the features of received sig-

nals needed for input to position estimation algorithms has

a)E-mail: zhiqun.deng@pnnl.gov. Tel.: 1-509-372-6120. Fax: 1-509-372-
6089.

relied on four methods: time of arrival (TOA), time difference

of arrival (TDOA), angle of arrival (AOA), and received signal

strength (RSS). In recent years, hybrid measurements have

been investigated to improve the qualities of measurements of

received signals (Mao et al., 2007). Table II provides a compar-

ison of different approaches to obtain metrics for receipt of a

signal at a receiver (Güvenç and Chong, 2009 and So, 2011). In

this paper, we review localization algorithms and applications

of transmitter position estimation models that use TOA and

TDOA approaches. These approaches utilize distance-related

information between a source (transmitter) and sensors (re-

ceivers).

The variance of time-delay measurement errors is

inversely proportional to the signal-to-noise ratio (SNR), pro-

vided that bandwidth, observation time, and center frequency

remain constant (Quazi, 1981). For instance, for high SNR, the

standard deviation of the time delay estimate is

σ
2
TOA =

c

N · SNR · F( f0,W )
, (1)

where N is the observation time, f0 is the center frequency, W

is the bandwidth, and c is some constant. High accuracy can be

achieved by utilizing high-precision time of arrival measure-

ment techniques at reasonable SNR levels. If TOA or TDOA

approaches are used to estimate transmitter location, at least

three sensors are required for two-dimensional (2D) position

estimation and four are required for three-dimensional (3D)

position estimation, according to the principles of trilateration.

When more sensors are available, an over-determined system
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TABLE I. List of acronyms and abbreviations.

Acronyms and abbreviations Description

2D Two-dimensional

3D Three-dimensional

AOA Angle of arrival

CRLB Cramér-Rao lower bound

FDOA Frequency difference of arrival

GPS Global positioning system

LOP Line of position

LOS Line-of-sight

LS Least squares

ML Maximum likelihood

MRS Minimal required number of sensors

NLOS Non line-of-sight

ODS Over-determined system

RSS Received signal strength

SNR Signal-to-noise ratio

TDOA Time difference of arrival

TOA Time of arrival

WSN Wireless sensor networks

(ODS) may be solved by using the multilateration method

(Boukerche et al., 2007). In most cases, a basic assumption

is that there is line-of-sight (LOS) between a transmitter and

receiver and the transmitter’s signal follows a direct line-of-

sight path to a receiver.

However, in some situations (e.g., a dense urban envi-

ronment), there is no direct path between a signal source

and a sensor because of reflection and diffraction of the

signal. In these cases of non-line-of-sight (NLOS) signal

propagation, the transmitter location estimate can become

significantly biased. To deal with NLOS signal propagation

and associated transmitter position estimation error, strategies

for NLOS identification and LOS reconstruction have been

suggested (Wylie and Holtzman, 1996). NLOS propagation

is also a common problem in indoor environments where

several limitations are commonly encountered: (1) LOS is not

possible, (2) strong multipath fading occurs, (3) GPS does

not work well, and (4) it is expensive to deploy specialized

infrastructure. Transmitter position estimation methods using

TOA, TDOA, or AOA often provide erroneous results because

of the first two limitations. Therefore, location fingerprint-

ing approaches are the most promising approach for indoor

applications (Prasithsangaree et al., 2002). Under LOS condi-

tions, multipath fading can be addressed by identifying the first

strong peak of the received signal. Cost is another important

consideration for transmitter localization systems (Bulusu

et al., 2000; Stoleru et al., 2005; and Guo et al., 2011).

High-accuracy systems normally require sensor array design

optimization, expensive infrastructure, supporting networks,

expert installation, and routine maintenance.

In the remainder of this paper, we will present a litera-

ture review of TOA or TDOA based source-localization algo-

rithms, including a comparison of the methodologies, advan-

tages, and disadvantages of the various methods (Section II),

analysis of the application specific performance of algorithms

(Section III), and categorization of source localization algo-

rithms by application (Section IV).

II. ALGORITHMS FOR SOURCE LOCALIZATION

A. TOA and TDOA-based algorithms with LOS

The general 3D range equations for source localization

using TOA and TDOA are

TOA :

sti =
�
(x − xi)

2 + (y − yi)
2 + (z − zi)

2
�1/2

,

T DOA :

s∆ti j =
�
(x − xi)

2 + (y − yi)
2 + (z − zi)

2
�1/2

−
�
(x − x j)

2 + (y − y j)
2 + (z − z j)

2
�1/2

,

i, j = 1, . . . ,N,

(2)

where s is the signal propagation velocity, ti is the signal

traveling time from the source to sensor i, and ∆tij indicates

the time difference between travel times ti and t j. The terms xi,

yi, zi represent the position of sensor i, and N is the number

of sensors (N ≥ 4). The terms x, y , z are the coordinates for

the position of the source that are to be determined. Nonlin-

earity of the source localization problem is introduced into

the algorithm by the square-root terms (distance formula) in

Equations (2). These make estimation of a source’s location

potentially complex and expensive.

To obtain the measurements of TOAs and TDOAs, a group

of sensors first receives signals emitted from the source. The

sources and receivers must be time-synchronized to ensure

precision of the arrival times. In a passive system, the TDOA

measurement can be made by cross-correlating the signals

received at two different sensors. Alternatively, TOA measure-

ments can be gathered at the sensors and converted into TDOA

measurements by calculating the differences.

In geometric positioning, TOAs are then converted to

range estimates by multiplying the propagation speed of

light or sound in the appropriate medium. For each TOA,

if accurately measured and assumed to be free of noise,

the range estimate to the source results in a circular

locus of possible source positions with the receiver at

the center. This is commonly called the circular line of

position (LOP). In a 2D space, at least three such LOPs

are needed to estimate the source’s location. The position

of the source is at a single point where all three LOPs

intersect (Figure 1, solid line). In practical situations, TOAs

have measurement errors and the circular LOPs may not

have a unique intersection point. The trilateration will yield

multiple intersections bounded by the errors in the TOA

measurements (Figure 1, dashed line). The estimate of

source position then is obtained by solving for an optimal

solution. In a 3D space for TOAs measured without error,

the source location locus for each TOA is the surface of a

sphere. Three TOA sphere surfaces intersect at two points,

so a fourth TOA is needed to determine the position of

the source. TOAs can also be used to estimate TDOAs

(Equation (2)), which are source range-difference estimates.

In the 2D case, the possible location of a source for each

TDOA is given by a hyperbolic LOP in which the focal

points of the hyperbola are the positions of the two receivers

used in the TDOA computation. At least two hyperbolas

(Figure 2, solid line) formed using two TDOAs computed



041502-3 Li et al. Rev. Sci. Instrum. 87, 041502 (2016)

TABLE II. Overview of different measurement approaches. This table has been summarized and expanded from So (2011) and Güvenç and Chong (2009).

Localization

measurement Characteristics Advantages Disadvantages Usage and applicability

TOA Performing direct ranging from

the relationship of signal traveling

time, speed, and distance

High accuracya LOS is normally assumed More common in cellular networks

Time synchronization across

source and all sensors is

needed for one-way ranging

3D systems often feature assisted GPS at

sensors

Relatively larger cost and

increased system complexity

TDOA Presenting difference of TOAs

from a pair of sensors

High accuracya LOS is normally

assumed

More common in wireless sensor networks

Only time synchronization at all

sensors

3D systems often feature assisted GPS at

sensors

AOA Intersecting the direction lines

obtained from the angles measured

at the sensors.

Computation requires information

of each sensor’s orientation

Only at least two receivers are

needed

Time synchronization is not

required

Smart antennas are needed,

relatively larger and

expensive hardware.

LOS is normally

assumed

Strongly affected by

multipath and shadow

fading

Common in radar scenarios.

More appropriate for sensors rather than

transmitters due to large size. Or source

size has to be able to carry an antenna

array

RSS Comparing RSS measurements

from source to each sensor with a

propagation model to estimate

distance

Time synchronization is not

required

Simple and inexpensive

Low accuracy

An accurate signal

attenuation model is needed

Strongly affected by

multipath and shadow fading

Typically used in applications that do not

require accurate ranging

Hybrid TOA/RSS and TDOA/RSS Relatively simple hardware

requirement

Utilized for NLOS condition and indoor

environment

TOA/AOA and TDOA/AOA Better performance when source

is in proximity to sensors; allows

for single sensor localization

Utilized for NLOS condition and indoor

environment

TDOA/FDOA Complementary to TDOA for

estimating source position and

velocity

Common in moving source (mobile)

localization

TOA/TDOA Data fusion Utilized for NLOS condition

aAccuracy is dependent on the signal bandwidth.

from TOAs for three receivers are needed to find the

intersections of the two hyperbolas, the potential locations

of the signal source. Because TOAs and therefore TDOAs

have measurement errors, the location of a source may be

estimated by propagating the errors through the computation

and estimating the source location along with the errors in

the estimates (Figure 2, dashed line). In the 3D case, a

hyperboloid is defined by each TDOA, and at least three

TDOAs need to intersect at a unique point to identify a

source location. Intersection of LOPs, a geometric construct,

is the most basic and intuitive method for source position

estimation. Starting from this idea, numerous methods have

been developed, validated, and published in the literature.

The most used TOA- and TDOA-based source-localization

algorithms when LOS between receivers and sources exist are

summarized in Table III.

Direct solutions may be used when TOA measurement

errors are not considered. The source position can be directly

calculated from different sets of geometric equations (Schmidt,

1972; Fang, 1990; and Caffery, 2000). The computational

complexity of this approach to source localization is low, but

frequently does not result in a source location solution when

TOA measurement errors exist. Furthermore, when additional

LOPs are available in an ODS, the source position needs to

be estimated by averaging all the possible source locations

(LOP intersections). A linear least-squares (LS) approach is

an alternative source location estimation technique (Caffery,

2000) that can provide a global solution using simple compu-

tational steps for situations when only the minimum number of

sensors (MRS) is available. It can also be used in the ODS case.

However, it is a suboptimal technique because, by assuming

sufficiently small measurement errors, the source location

position estimate accuracy is not high. As a result, other types

of approaches have been developed to improve source location

estimate accuracy when there is error in TOA measurements.

Measurement errors are usually assumed to be independent,

zero-mean Gaussian variables with the same variance for all

receivers in an LOS environment. Weighted LS estimators are

computed by introducing a weight matrix into the LS cost

function. A favorite LS weight matrix is the inverse of the

covariance matrix of TOA measurement errors (Chan et al.,

2006a).
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FIG. 1. Schematic diagram of two-dimensional localization using TOAs

from three sensors.

The general LS cost function for TOA measurements and

TDOA measurements are

JTOA =

N

i=1

(tis − ||x̃ − xi||)
2
, (3)

JTDOA =

N

i=2

((ti − t1)s − ||x̃ − xi|| + ||x̃ − x1||)
2
. (4)

The general maximum likelihood (ML) cost function for TOA

measurements and TDOA measurements are

JTOA =

N

i=1

(tis − ||x̃ − xi||)
2

σ
2
i

, (5)

JTDOA =

N

i=2

((ti − t1)s − ||x̃ − xi|| + ||x̃ − x1||)
2

σ
2
d, i

, (6)

FIG. 2. Schematic diagram of two-dimensional localization using TDOAs

from three sensors.

where ti is the measured TOA at sensor i with or without

measurement errors, xi is the coordinate vector of sensor i,

σ
2
i

is the variance of TOA measurements at sensor i, and

σ
2
d, i

is the variance of TDOA measurement at sensor i. The

objective of the algorithm is to estimate the source coordi-

nate vector x̃ that minimizes the cost function J. Iterative

nonlinear minimization is required for an optimal solution.

A common solution technique is to create an iterative algo-

rithm based on an initial position estimate obtained using

the Gauss-Newton method, the steepest descent method, or

the combined Levenberg-Marquardt method, which typically

have high computation requirements. A good initial source

position estimate also is needed to find the global minimum.

Therefore, a Taylor series (TS) is often used to linearize the

nonlinear equations by updating a LS solution (Foy, 1976 and

Torrieri, 1984). The Taylor series methods refine the initial

guess by iterating a procedure determining location estima-

tion errors. Compared with LS methods that ignore measure-

ment errors, TS methods can provide accurate location esti-

mation at reasonable noise levels. However, they still require

a fairly accurate initial estimate of source location, and conver-

gence on a source location estimate is not guaranteed. The

ML approach estimates source position by minimizing the

cost function of the probability density function of measure-

ments (Ziskind and Wax, 1988). This algorithm is similar to

a weighted nonlinear LS approach when measurement errors

are zero-mean Gaussian distributed (Chan et al., 2006a). Li

et al. (2014) improved on an algorithm published by Chan

et al. (2006b) using an efficient approximate ML algorithm that

included coupling with bad-measurement filters for 3D source

localization.

To avoid iterative algorithms, two-stage, closed-form LS

estimators have been extensively developed for ML approxi-

mation (Friedlander, 1987; Schau and Robinson, 1987; Smith

and Abel, 1987a; Smith and Abel, 1987b; Chan and Ho,

1994; Brandstein and Silverman, 1997; Huang et al., 2001;

and Cheung et al., 2004). These LS solutions can provide

good initialization for iterative estimators, which converge

with less computational effort to a source position estimate

with higher accuracy (Smith and Abel, 1987a and Chan et al.,

2006a). Some researchers have compared the performance

of algorithms (Yu and Oppermann, 2004; Shen et al., 2008;

Gezici et al., 2008; and So, 2011). An LS methodology that

used squared range or squared range-difference measurements

(Beck et al., 2008) is an attractive approach in that the method

performs very well even at high noise levels.

B. Algorithms dealing with specific scenarios

Because real environments are complex and the geome-

tries of sources and sensors can be quite variable, algorithms

have been developed for special cases. For instance, estimation

of the location of a source under NLOS conditions is one of

the main challenges in localization. Güvenç and Chong (2009)

presented an overview of different TOA NLOS localization

algorithms with varying levels of computational complexity

and prior information. Early researchers considered treatment

methods that identify the NLOS sensors in an array using

TOA measurements, then estimate the location of the source
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TABLE III. Summary of TOA and TDOA-based, source-localization algorithms in LOS condition.

Author and year

Dimension and

measurement Algorithm Advantage and disadvantage

(Schmidt, 1972) 2D/3D, TDOA LOCA: Location on the conic axis, an

alternative geometry to the hyperbolic

intersection principle, also known as plane

intersection (PX) method

The sensors appear on the conic rather than at

foci and thus the source locations appear at

foci rather than on a hyperbola

TDOAs provide a straight line in two

dimensions and a plane in three dimensions of

possible source locations

(Foy, 1976) 2D, TOA/TDOA/AOA Taylor-series, an iterative Gauss-Newton

method, gives LS solution

Requires an initial guess, not a simple start in

application

Convergence is not proved

Is computationally expensive

Useful in solving multiple-measurement,

mixed-mode problems

(Knapp and

Carter, 1976)

TOA/TDOA ML estimator, the generalized

cross-correlation method

The most widely used method to obtain

time-delay estimates, a landmark paper

(Torrieri, 1984) 2D, TOA/TDOA/AOA Taylor-series method, linearizing the

hyperbolic location equations in an iterative

algorithm

Similar disadvantages to Foy (1976)

(Friedlander,

1987)

3D, TDOA Weighted LS method Localizations from MRS and ODS are both

considered

Also derived a linearization algorithm to

estimate source velocity from TDOA/FDOA

(Schau and

Robinson, 1987)

3D, TDOA Spherical intersection (SX) method Only presented solution for MRS

Requires a priori solution for the source range

(Smith and

Abel, 1987a)

3D, TDOA Spherical interpolation (SI) method: A

closed-form two-step LS method, linear LS

“equation-error” minimization

Closely related to ML solution for Gaussian

TDOA measurement errors

Non-iterative algorithm

(Smith and

Abel, 1987b)

3D, TDOA SI method: An intermediate term introduced

linearized the nonlinear hyperbolic equations

It has one-order-of-magnitude greater noise

immunity than the SX method

Has consistently lower variance and slightly

higher bias than the PX method

Source range is independent of the location

coordinates, exhibiting worse performance

with larger noise levels

(Fang, 1990) 3D, TDOA An exact solution to the hyperbolic TDOA

equations, when the number of TDOAs is

equal to the number of coordinates of source

Clear and simple solutions

(Chan and Ho,

1994)

2D, TDOA Approximation of ML estimator, improved

from SI method

Two-stage weighted LS method: An

unconstrained least-squares solution

is obtained first and then a second LS estimator

utilized the constraint between source

coordinates and the intermediate variable to

refine the position coordinates

It is non-iterative, explicit solution only when

the TDOA measurement errors are small (at

high SNR)

Performs significantly better than SI method,

particularly when the number of sensors is

small

Computational burden is similar to SI method

but much lower than Taylor-series methods

(Torrieri, 1984)

Need priori knowledge of the second-order

statistics of the TDOA measurement errors

(Brandstein and

Silverman,

1997)

3D, TDOA Linear intersection (LI) method: Calculate a

number of potential source locations from the

points of closest intersection for all pairs of

bearing lines and use a weighted average of

these locations for a final estimate

Localization in 2D can be performed with a 2D

sensor system

Performs better than SI method for moderate

and large noise levels
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TABLE III. (Continued.)

Author and year

Dimension and

measurement Algorithm Advantage and disadvantage

(Caffery, 2000) 2D, TOA A new geometric interpretation replaced

circular LOPs with linear LOPs to determine

the source position, by averaging the

intersections of linear LOPs

The linear LS algorithm was significantly

better than Taylor-series LS algorithm when a

large bias was present

Widely used for NLOS environments

(Huang et al.,

2001)

3D, TDOA A linear-correction LS approach incorporates

the relation between source coordinates and

the intermediate variable from SI method

explicitly based on Lagrange multipliers

Use additive measurement error

model

Can be easily implemented in a real-time

system

Make no assumptions about the noise

covariance

More efficient than SI method

(Cheung et al.,

2004)

2D, TOA A constrained weighted LS (CWLS) algorithm

extends the SI method using the TOA

measurements

For sufficiently small measurement

errors

Has performance optimality and capability of

extension to hybrid measurement cases

(Cheung et al., 2006)

(Chan et al.,

2006a)

2D, TOA/TDOA A close-form approximate solution to the ML

equation. A weighted LS solution is used as

initial guess to calculate the weighting matrix

in exact ML estimator. The approximate ML

solution is obtained by updating the solution

iteratively

Insensitive to geometry, thus it is superior to

Chan and Ho (1994) and Caffery (2000)

Gives an exact ML estimate when three

sensors on a straight line

without using the NLOS sensors, or reduce the error in position

estimates by weighting the NLOS less (Wylie and Holtzman,

1996; Chen, 1999; and Chan et al., 2006b). This approach is

effective when a small number of the distributed sensors are

NLOS, but become computationally intensive when there are

many distributed sensors and may not be possible in situations

where the signal source is moving. Because NLOS-caused er-

rors are always positive, this constraint can be imposed on the

search for a position estimate (Wang et al., 2003; Venkatraman

et al., 2004; and Cong and Zhuang, 2005), but normally, prior

knowledge of NLOS error statistics is required to correct a

LOS estimate. The procedure for estimating a source location

when some distributed sensors are NLOS is more complicated

using TDOAs because the NLOS error for a reference sensor

will be transferred to all TDOAs computed using that sensor.

Additional research is needed to learn how to mitigate NLOS

errors effectively and efficiently under real world conditions

with moving sources and large receiving networks.

Proficiency in estimating the locations of fixed sources is

becoming less important as interest in detecting, locating, and

tracking mobile sources has increased. Frequency difference

of arrival (FDOA) measurements with independent sources of

errors are combined with TDOAs to immediately estimate the

location and velocity of a source (Ho and Chan, 1997; Ho and

Xu, 2004; and Anderson et al., 2005). Kalman filter (Leonard

and Durrant-Whyte, 1991) or Monte Carlo approaches (Sheng

et al., 2005) can be integrated into tracking algorithms for mo-

bile source localization to improve their performance. These

additions can detect discontinuities from continuously esti-

mated positions and smooth the source’s trajectory by replac-

ing the position estimate outliers with predicted or refined esti-

mates. Kalman filters, which are optimal recursive Bayesian

estimators for linear Gaussian problems, are the best-known

filters. Extended (Welch and Bishop, 2006) and unscented

Kalman filters (Julier and Uhlmann, 1997) are examples of

nonlinear filtering by linearization. Particle filters are the most

general class of filters for nonlinear and non-Gaussian prob-

lems (i.e., sequential Monte Carlo) (Gordon et al., 1993; Kita-

gawa, 1996; and Ristic et al., 2004). Computational cost is

a major disadvantage of Monte Carlo estimators. The novel

challenge of estimating the locations of mobile sources using

mobile sensors is now being investigated (Ho and Xu, 2004

and Hu and Evans, 2004). Optimal design of a sensor system

(i.e., network, array) is a challenging task that can significantly

affect tracking accuracy.

III. PERFORMANCE ANALYSIS

A. Sources of error

3D localization and tracking requires at least four different

sensors to form the necessary nonlinear localization equations.

From Equation (2), the precision of the estimate of a source’s

location can be estimated as a function of the errors in the

measurements of sensor locations, TOA/TDOA, and signal

velocity. Under NLOS conditions, an additional term for the

distance bias caused by the blockage of the direct path between

source and sensor should be included in the localization equa-

tions.

In many cases, accurate estimates of sensor locations can

be obtained from careful field surveys and highly accurate

GPS location estimates. In homogeneous media, the speed
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of a signal can be accurately estimated by using known rela-

tionships between the characteristics of the transmitted signal

(e.g., sound or radio) and of the medium through which the

signal will propagate (e.g., air or water). For instance, a fifth-

order polynomial can accurately describe the dependence of

sound speed in water on temperature (Marczak, 1997). In

heterogeneous media, where the signal speed differs from path

to path, “isodiachron” algorithms can improve the accuracy of

location estimates (Spiesberger, 2004).

However, the errors in TOA and TDOA measurements

can be quite complicated, depending on multiple factors (Mao

et al., 2007), such as SNR, integration time, signal band-

width, multipath propagation, and possible NLOS propaga-

tion. In practical implementations, hardware limitations and

transmission channel degradation may become the dominant

sources of error (Krizman et al., 1997 and Caffery and Stuber,

1998). Considering hardware limitations, TDOA measure-

ments require highly precise synchronization between sensors,

whereas TOA measurements require accurate synchronization

between a transmitter and sensor. Such hardware requirements

can greatly increase the complexity and cost of localization

systems. Minimizing the errors in time of arrival and other

time-based measurements is the greatest challenge in many

source localization studies because of the large uncertainties

in such measurements. For example, ultra-wide-band signals

are used for wireless positioning (Gezici et al., 2005) because

of their time domain high-resolution capability.

B. Theoretical analysis

Benchmarks are needed to assess the performance of

localization estimators. The Cramér-Rao Lower Bound

(CRLB), which gives the minimum variance of unbiased esti-

mators, is widely used as a measure of the precision attainable

for parameter estimates from a given set of observations (Van

Trees et al., 1968 and Kay, 1993). The CRLB was compared

with the mean square errors of different localization algorithms

under low SNR conditions (Gustafsson and Gunnarsson, 2005

and Macagnano et al., 2012). Using TOA and TDOA measure-

ments, So (2011) used the corresponding Fisher information

matrix with zero-mean Gaussian distributed measurement

errors to compute CRLB in LOS scenarios. An example of

2D localization for TOA measurements is

CRLB (x) = [I−1(x)]1,1 + [I
−1(x)]2,2,

I (x) =
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,

di = ||x − xi||, x = [x, y]T. (7)

In NLOS scenarios, the CRLB depends on LOS signals,

assuming that the NLOS sensors can be accurately identified

(Güvenç and Chong, 2009). Qi and Kobayashi (2002) derived

an explicit formulation of the CRLB for NLOS geolocation.

CRLBs for the TOA and TDOA based source localization

estimates are determined by (1) the positions of the sensors,

(2) the positions of the source, and (3) variances of measure-

ment noise, σ2. Independent of σ2, the CRLB indicates that

achievable localization accuracy is related to the geometry of

the distributed sensors relative to the source locations.

Another approach to estimate source position accuracy is

to directly compute position errors using distance equations,

which does not require expensive Monte-Carlo simulations.

This type of theoretical error analysis was performed on 2D

MRS systems and compared with field measured positions

(Smith et al., 1998). Wahlberg et al. (2001) extended the

mathematical approach of this method (Watkins and Schevill,

1971) to formulate a linear error propagation model. The

position accuracy for 2D and 3D tracking for both MRS and

ODS sensor systems was estimated as a function of TDOA

errors, sound velocity errors, and sensor position errors, and

they concluded sensor position errors had a large impact

on source position estimate accuracy. Later, Ehrenberg and

Steig (2002) presented a derivation of an expression that

showed the dependence of source position error on TOA and

sound velocity estimate errors, which are independent of the

algorithm used to determine the source position estimate.

To minimize errors in source position estimates, in addi-

tion to optimization of signal processing, an optimal distrib-

uted sensor geometry is required to decrease the sensitivity

of estimated source positions to TOA/TDOA measurement

errors (Ehrenberg and Steig, 2003).

IV. APPLICATIONS OF SOURCE LOCALIZATION

A. Radar and sonar

Radar and sonar source localization systems have been

used to detect, localize, and track signal sources for decades

(Altes, 1979; Krim and Viberg, 1996; and Le Chevalier, 2002).

Radar and sonar have been widely used for civilian, military,

and scientific purposes, and the range of applications is large

(Minkoff, 1992). The applications of sonar and radar systems

are separated into active (Bekkerman and Tabrikian, 2006)

and passive system (Carter, 1981) problems. Active sonars

and radars transmit signals that are reflected back from tar-

gets (i.e., an echo), whereas passive sonars and radars do not

transmit and only receive signals transmitted by sources (Ster-

giopoulos, 2000). There are many similarities between radar

(using radio waves) and sonar (using sound) signal processing,

and developments for both types of systems have contributed

significantly to the solutions to underwater localization prob-

lems (Vaccaro, 1998).

B. Wireless sensor networks

Determination of the location of nodes in wireless sensor

networks accurately and at low cost is very important (Patwari

et al., 2005 and Mao et al., 2007). Knowledge of the precise

location of wireless network sensors is fundamental for a wide

range of applications (i.e., event detection and tracking), such

as disaster relief operations (e.g., wildfire detection), environ-

mental monitoring, biodiversity mapping, and precision agri-

culture (Karl and Willig, 2007). Accuracy and precision are the

most important characteristics for a WSN localization system.

Thus, TDOA methods are more suitable and commonly used
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for WSNs, compared with the low-cost but less accurate RSS

method (Boukerche et al., 2007).

Numerous methods have been developed to reduce the

location estimation errors for WSN nodes, thereby enhancing

the event detection and tracking functions of WSN. Optimi-

zation of the design of sensor networks for specific appli-

cations is one of the most important components of source

localization systems. The design of the sensor network deter-

mines the applicability of localization algorithms and thus

has been investigated for years (Sohrabi et al., 2000; Lan-

gendoen and Reijers, 2003; Römer and Mattern, 2004; Al-

Karaki and Kamal, 2004; and Wang, 2008). To improve source

localization, different types of signals (e.g., acoustic sound,

ultrasound, or radio) transmitted by sources may result in

different estimation errors (Boukerche et al., 2007). White-

house (2002) tested an acoustic source tracking system and

observed source location estimation errors of approximately

23 cm. In other experiments computing the distance of radio

and ultrasound signals using various network design scenarios

(Savvides et al., 2001), the errors were as low as 2–3 cm.

Novel computational techniques are also proving helpful in

overcoming specific localization problems in WSNs (Kulkarni

et al., 2011). For example, stochastic particle swarm optimi-

zation was recognized as an efficient tool to use to solve local-

minimum problems for localization and tracking in mobile

WSN environments (Gopakumar and Jacob, 2008).

C. Global positioning system

GPS provides coded satellite signals that can be processed

to compute a receiver’s three dimensional position and velocity

by using four or more GPS satellites (Kaplan and Hegarty,

2005). The global GPS system has benefited civil, commer-

cial, and military users worldwide (Hofmann-Wellenhof et al.,

2013) in wide-ranging applications such as ground surveying,

land vehicle navigation and tracking, marine navigation, air

traffic control, aircraft landing, general aviation, and geodesy

(Parkinson, 1996). A variety of error sources are encountered

using the GPS system. Among these are selective availability,

clock and ephemeris errors, ionospheric delays, tropospheric

delays, multiple paths, signal noise, receiver errors, poor satel-

lite coverage, and satellite geometry (Dana, 1997; Kiefer and

Lillesand, 2004; and Misra and Enge, 2006). The accuracy of

GPS depends on receiver location and the presence of obstruc-

tions that may block satellite signals. With technical improve-

ments to GPS receivers, it is possible to measure a location on

Earth at high frequency (e.g., 5 Hz) at a centimeter level of

precision using the phase differential positioning method for

timing measurements (Schutz and Herren, 2000).

D. Underwater localization of animals

1. Fisheries

Telemetry systems are widely used to track fish to observe

their behavior and obtain other information such as seasonal

changes (e.g., preferences for water depths or temperatures),

foraging behavior, habitat utilization, home range size, spawn-

ing behavior, site fidelity, and mortality (Priede et al., 1990;

Metcalfe and Arnold, 1997; Roussel et al., 2000; Meyer et al.,

2000; Cunjak et al., 2005; and Skalski et al., 2001). Because

many fish of interest are small, methods for implantation

of sources within their bodies or external attachment are an

important topic of research. The transmitter and the attachment

method should be designed to have minimal effect on the fish

after they are released (Deng et al., 2012).

An important area in the study of fish is the migration

and passage behavior of fish through hydroelectric facilities

(Evans and Johnston, 1980; Webb, 1975; Northcote, 1998;

Čada, 2001; and Schilt, 2007). Transmitters with frequency

and pulse codes that permit fish to be individually identified

can provide detailed information on both the large- and small-

scale behavior of fish (Berman and Quinn, 1991). A recent

example is the Juvenile Salmon Acoustic Telemetry System

that is being used to monitor the survival and behavior of

juvenile salmonids migrating downstream through eight large

hydroelectric facilities within the Federal Columbia River

Power System to the Pacific Ocean (McMichael et al., 2010;

Weiland et al., 2011; Deng et al., 2011; and Deng et al., 2015).

2. Acoustic tracking of marine animals

It is well known that marine mammals use sound (calls)

passively and actively to communicate. They use calls for

foraging, predator avoidance, navigation, and environment

sensing. Biologists have used acoustic tags (transmitters) to

track the movement of marine animals over small and large

scales (Heupel et al., 2006). Although the acceptable error

in position accuracy varies with the objectives of individual

behavioral studies on marine animals (Janik et al., 2000),

these powerful tools have provided insights into the behavior

of marine animals and have opened new opportunities for

studying the ways they interact with the environment (Johnson

et al., 2009).

New tagging techniques, analytical methods, and experi-

mental designs are needed to match research objectives with

acoustic tag performance in marine environments. An array of

four hydrophones arranged in a symmetrical star configuration

(phased array) was used to measure TDOAs of the echolo-

cation signals of spotted dolphins (Au and Herzing, 2003)

and killer whales (Au et al., 2004) to estimate their distances

from the array. Brousseau et al. combined acoustic and radio

transmitters to study horseshoe crab spawning behavior in

subtidal habitats.

Approaches using TDOA measurements have been the

most common methods used to monitor movement of animals

in the ocean (Wartzok et al., 1992; Stafford et al., 1998; Hol-

land et al., 1999; Thode, 2004; Morrissey et al., 2006; Muanke

and Niezrecki, 2007; and Deng et al., 2013) and to estimate

their population densities (Muanke and Niezrecki, 2007 and

Marques et al., 2009).

E. Other applications

Electronically steerable arrays of microphones that apply

TDOA technologies are used in a variety of ways in speech

data acquisition systems (Brandstein and Silverman, 1997).
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Microphone arrays are capable of automatic detection, local-

ization, and tracking of active “talkers” in an enclosed envi-

ronment in the presence of reverberation (DiBiase et al., 2001

and Ma et al., 2006).

The use of cellular mobile systems to position mobile

stations will play a fundamental role in future wireless commu-

nication networks (Caffery, 2006). Applications of wireless

localization using code division multiple access cellular net-

works include E-911, fraud detection, cellular system design

and resource management, fleet management, and intelligent

transportation systems (Caffery and Stuber, 1998). These posi-

tioning algorithms utilize TDOA approaches (Zhu and Zhu,

2001 and Mensing and Plass, 2006) or hybrid TDOA/AOA

(Jami et al., 1999 and Cong and Zhuang, 2002).

V. CONCLUSIONS

This article has reviewed localization algorithms that

apply TOA and TDOA in transmitter and receiver technologies

for a wide range of applications. Compared with other signal

source localization approaches, TOA and TDOA are both

appropriate for applications that require high accuracy. We

have summarized some of the most popular 2D and 3D loca-

tion estimation algorithms and compared them for accuracy

and computational efficiency. Many factors can influence the

performance of localization algorithms in specific applica-

tions. Among these are the design of distributed sensor or mo-

bile networks; sensor position estimation accuracy (e.g., accu-

rate surveying of sensor positions, node locations, mobility

in network, etc.); consideration of environmental conditions;

uncertainties in propagation (e.g., NLOS, multipath, sound

speed variation, etc.); device limitations (e.g., synchroniza-

tion, channel structure, etc.); and evaluation and validation

of localization algorithms. Despite considerable technolog-

ical development and improvements in hardware and soft-

ware technologies, researchers still face significant challenges

in developing approaches for location estimation of signal

sources that are economical and provide high levels of perfor-

mance.
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