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Université Lyon 1, LIRIS, UMR5205

43 Bd. du 11 novembre 1918, F-69622 Villeurbanne, France

Abstract

Minkowski sum is an important operation. It is used in many domains such as:

computer-aided design, robotics, spatial planning, mathematical morphology, and

image processing. We propose a novel algorithm, named the Contributing Vertices-

based Minkowski Sum (CVMS) algorithm for the computation of the Minkowski

sum of convex polyhedra. The CVMS algorithm allows to easily obtain all the facets

of the Minkowski sum polyhedron only by examining the contributing vertices—a

concept we introduce in this work, for each input facet. We exploit the concept of

contributing vertices to propose the Enhanced and Simplified Slope Diagram-based

Minkowski Sum (ESSDMS) algorithm, a slope diagram-based Minkowski sum algo-

rithm sharing some common points with the approach proposed by Wu et al. [1]. The

ESSDMS algorithm does not embed input polyhedra on the unit sphere and does not

need to perform stereographic projections. Moreover, the use of contributing vertices

brings up more simplifications and improves the overall performance. The implemen-

tations for the mentioned algorithms are straightforward, use exact number types,

produce exact results, and are based on CGAL, the Computational Geometry Algo-

rithms Library. More examples and results of the CVMS algorithm for several convex

Preprint submitted to Elsevier 3 February 2009



polyhedra can be found at http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex

Key words: Minkowski sum, contributing vertices, slope diagram, convex hull,

computer-aided design

1 Introduction

Minkowski sum implementation is of a particular interest and used in a variety

of domains such as computer-aided design and manufacturing [2], computer

animation and morphing [3], morphological image analysis [4,5], similarity

measures for convex polyhedra [6], penetration depth computation and dy-

namic simulation [7], robot motion planning [8], and solid modeling.

The Minkowski sum or addition of two sets A and B in a vector space was

defined by the German mathematician Herman Minkowski (1864–1909) as a

position vector addition of elements of A and elements of B:

A⊕ B = {a + b|a ∈ A, b ∈ B} (1)

Where + denotes the vector addition of two position vectors a and b coming

from the two sets A and B. The Minkowski sum can also be obtained by the

following definition:

A⊕ B =
⋃

a∈A

Ba (2)
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Where ∪ denotes the set union operation and Ba denotes the set B translated

by a vector a. The second definition states that the Minkowski sum of two sets

A and B is obtained by sweeping all points of A by B and taking the union of

all resulting points. The sweep aims at positioning or translating B such that

its origin (the common initial point of all its position vectors) coincides with

each point of A and to take the union of the resulting sets, as depicted in Fig.

1.

B

A origin of B BA

(a) (b)  (c)

Fig. 1. Minkowski sum as a sweep of two sets. (a) Two polygons A and B. (b) B is

positioned on each point of A. (c) The Minkowski sum A ⊕ B is the union of the

resulting translations of B on all points of A.

Our goal is to compute the Minkowski sum polyhedron S = A ⊕ B where

A and B are two convex polyhedra in R
3. The polyhedra A and B are the

respective boundary representations of the sets A and B in R
3 (A = ∂A and

B = ∂B). It is clear that A and B are completely defined by their boundaries

A and B. Moreover, the Minkowski sum A⊕ B is also completely defined by

the polyhedron S = A ⊕ B (its corresponding boundary representation).

A convex polyhedron P in R
3 can be seen as the intersection of a finite num-

ber of closed half-spaces P =
⋂

i=1,...,n H−
i . Where H−

i is a closed half-space

bounded by the plane Hi having a normal vector ui , the half-space H−
i is

called the negative side of the plane Hi (see Fig. 2 for an example in 2D).

The boundary of a polyhedron can be partitioned into two-dimensional faces
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(facets), one-dimensional faces (edges), and zero-dimensional facets (vertices).

The supporting plane of a particular facet of a polyhedron A is the plane where

the facet lies. As an example, for the convex polygon P depicted in Fig. 2.b,

the supporting line (the supporting plane becomes a supporting line in 2D) of

the one-dimensional face (edge) e3 is H3. Further details on support function

representation of convex polyhedra and supporting planes can be found in [9].

(a) (b)

H1

H2

H3

H4

H5

P

u1

u2

u3

u5

u4

P

u1

u2

u3

u5

u4 e4

e5 e1

e2

e3

v2
v3

v4

v5

v1

Fig. 2. The intersection of closed half-planes. (a) A finite number of closed half–

planes H−
1 , . . . ,H−

5 defined by H1, . . . ,H5. (b) The boundary of P is partitioned

into one-dimensional faces (edges) e1, . . . , e5 and zero-dimensional faces (vertices)

v1, . . . , v5.

The rest of this paper is based on the definitions we gave above and is organized

as follows:

• In section 2, we review existent techniques for the computation of Minkowski

sum of polyhedra.

• In section 3, we give an overview of our work and introduce key concepts

we use throughout all the paper, such as the concept of contributing ver-

tices, the relation between contributing vertices and the sweep process, the

translated facets, the corner facets, and the edge facets.
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• In section 4, we present in detail our new algorithm, based on the concept of

contributing vertices, for the computation of the Minkowski sum of convex

polyhedra. We call it Contributing Vertices-based Minkowski Sum (CVMS)

algorithm.

• In section 5 we explain how the contributing vertices concept can help im-

prove slope diagram-based methods and present our Enhanced and Simpli-

fied Slope Diagram-based Minkowski Sum (ESSDMS) algorithm.

• Finally, we present results, performance study, and comparisons between

our two algorithms and other approaches found in the literature.

2 Previous work

The large number of applications needing Minkowski sum has inspired re-

searchers to propose and develop various algorithms. The most common ap-

proach used for polyhedra is based on convex hulls. For two convex polyhedra

A and B, it performs vector addition of all points of A and B and computes

the convex hull of the resulting point set giving us the Minkowski sum poly-

hedron A ⊕ B. Convex hulls are computed by several algorithms such as: the

Quickhull algorithm [10], the incremental algorithm [11,12], the gift-wrapping

algorithm [13], the divide and conquer algorithm [14], and Graham’s algorithm

[15]. A summary of these algorithms can be found in [16].

For two non-convex polyhedra A and B, the computation of the Minkowski

sum polyhedron A ⊕ B is done by decomposing each non-convex polyhedron

into convex pieces, computing the the pairwise Minkowski sums of all possible

pairs of convex pieces from A and B, and performing the union of the pairwise

Minkowski sums. The computation of the Minkowski sum of a pair of convex
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pieces (or polyhedra) is an important step in this approach.

For readers interested in the Minkowski sum of non-convex polyhedra, we give

some references about convex decomposition and union steps. Convex decom-

position aims at decomposing a non-convex polyhedron into convex pieces.

The smaller the number of pieces, the better the decomposition. The opti-

mal decomposition of a non-convex polyhedron into convex pieces is known

to be NP-hard. More than twenty years ago, Chazelle [17] proposed an opti-

mal decomposition algorithm which generates O(r2) convex pieces in O(nr3)

time, where r denotes the number of reflex edges and n denotes the number

of polyhedron facets. Nevertheless, no practical or robust implementation has

been found in the literature for Chazelle’s optimal algorithm. An experimental

study of convex decomposition strategies can be found in [18].

The union step is the most time consuming step when computing the Min-

kowski sum of non-convex polyhedra. It can have O(n6) time complexity for

non-convex polyhedra, where n is the number of polyhedra facets [19]. More-

over, there is no robust implementation for the union computation of convex

polyhedra that handles all degeneracies [20].

While the combinatorial complexity of the convex hull approach is O(mn)

for convex polyhedra with m and n features, it can have O(m3n3) worst-case

combinatorial complexity for non convex polyhedra [20,21].

Recently, Hachenberger implemented a data structure in CGAL [22] based

on Nef polyhedra theory [23]. He used this Nef polyhedra implementation

[24,25] for the decomposition of polyhedra into convex parts and the union

computation of pairwise Minkowski sums [26]. Unfortunately, this approach

is time consuming because it is based on the decomposition of polyhedra into
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convex pieces.

Due to non-robustness and expense of the union operation, researchers tried

to bypass it by using other representations or computing only approxima-

tions. Varadhan and Manocha [27] decomposed the polyhedra into convex

pieces, computed the pairwise Minkowski sums of convex pieces (by means of

convex hull algorithms), approximated the union of the pairwise Minkowski

sums using an adaptively subdivided voxel grid, computed signed distance

on the grid points and used isosurface extraction from the distance field [28].

They guarantee that their approximation has the same topology as the exact

Minkowski sum and provide a two-sided Hausdorff distance bound on the ap-

proximation. Recently, Lien [29] used a point-based representation instead of

the widely used mesh-based representation to compute the Minkowski sum of

polyhedra. He uniformly sampled two point sets from the boundaries of two

polyhedra, constructed a point set by adding all points from the two point

sets already generated, and used three filters (a collision detection, normal,

and octree filter) to discard interior points that are not on the boundary of

the sum polyhedron. He demonstrated that the point-based representation

provides the same functionality as the mesh-based representation by using it

in several applications such as motion planing.

Guibas et al. [30,31] presented a kinetic framework in two dimensions. An ac-

complishment of this framework was to define the operation of convolution on

planar tracings in 2D. Basch et al. [32] extended the convolution operation to

polyhedral tracings in 3D and used it to generate a superset of the Minkow-

ski sum. They extracted the exact boundary of the Minkowski sum by using

arrangement computations.
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Ghosh [33] proposed a unified computational framework to compute the Min-

kowski sum of polygons and polyhedra (in 2D and 3D domains). The poly-

hedra are represented in a dual space called the slope diagram. Computing

the intersections between the two merged or overlaid slope diagrams gives

the sum polyhedron. Although Ghosh stated that slope diagrams can be used

for both convex and non-convex polyhedra, the existent implementations of

slope diagram-based Minkowski sum computation are only devoted to convex

polyhedra.

Some researchers proposed other variants of slope diagram representation.

Bekker and Roerdink [34] used a slightly different slope diagram representa-

tion that works with edges instead of facets, so their 2D representation of the

slope diagram reduces the problem’s dimension. Wu et al. [1] presented some

improvements to the slope diagram by merging the two diagrams without an

explicit embedding on the unit sphere. They also avoided the use of stereo-

graphic projections (needed in the original slope diagram algorithm proposed

by Ghosh).

An interesting algorithm is that proposed and implemented by Fogel and

Halperin [35]. The authors represented the convex polyhedra in a dual space

they called the Cubical Gaussian Map (CGM) and implemented their algo-

rithm on the base of the arrangement package of CGAL. The cubical Gaussian

map is a Gaussian map embedded on a unit cube instead of the unit sphere.

The Minkowski sum of two convex polyhedra A and B is obtained by com-

puting CGM(A) and CGM(B), the respective cubical Gaussian maps of A

and B, overlaying or merging CGM(A) and CGM(B), and building the Min-

kowski sum polyhedron S = A ⊕ B from the resulting overlay. The overlay

process has a time complexity of O(fSlog(fA + fB)), where fA, fB, and fS are
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the respective facets number of the polyhedra A, B, and S.

3 Overview of our work

In this work, we are interested in computing the Minkowski sum of convex

polyhedra. We present a novel algorithm based on the concept of contributing

vertices associated to every facet of the two polyhedra we are working with,

hence its name : Contributing Vertices-based Minkowski Sum (CVMS)

algorithm.

3.1 Introduction to the CVMS algorithm

The CVMS algorithm is inspired from the definition given in equation 2. This

equation states that the Minkowski sum set A ⊕ B is obtained by sweeping

all points of A by B and taking the union of all resulting points. Since we

are working with polyhedra, it is clear that it is sufficient to only sweep the

boundary of A by B and discard the interior points of A and B in order to

have the Minkowski sum polyhedron S = A⊕B. Thus, we are only interested

in the boundary of the resulting union.

The boundary of A is composed of facets, vertices, and edges. So, in order to

obtain the Minkowski sum polyhedron S, we must sweep all facets of A by B,

sweep all vertices of A by B (or place B on all vertices of A), and sweep all

edges of A by B. Observe that because the Minkowski sum is commutative,

sweeping the vertices of A by B (or positioning B on vertices of A) is equivalent

to sweeping the facets of B by A. Therefore, in the CVMS algorithm, we need

to sweep all facets of A by B, sweep all facets of B by A, sweep all edges of
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A by B, and retain only facets that lie on the boundary of the union of these

sweeps (facets lying on the boundary of the Minkowski sum polyhedron S).

3.2 From the sweep to the definition of contributing vertices

To give an idea of what is a contributing vertex and how it relates to the

sweep operation, we consider two convex polygons A and B depicted in Fig.

3.a, their Minkowski sum A ⊕ B is also shown in Fig. 3.b. We take a 2D

example for simplicity purposes and without loss of generality. Let’s consider

the face (edge) f1,A of A and sweep it by B. Sweeping f1,A by B resumes

to parallel-translating B such that its origin passes through all points of f1,A.

During this sweep, all vertices of B (i.e. v1,B, v2,B, and v3,B) are also moving in

lines parallel to the supporting line of f1,A. The displacement of these vertices

produces faces (edges) having supporting lines parallel to that of f1,A (faces

that are drawn as dashed and dotted lines in Fig. 3.c). But only the facet

generated by the vertex v2,B (the dotted line in Fig. 3.c) which is at maximal

distance away from the supporting line of f1,A is considered because it lies

on the boundary of A ⊕ B. The other produced faces (drawn as dashed lines

in Fig. 3.c) are simply discarded because they do not lie on the boundary of

A⊕B. This particular vertex v2,B which generated this facet of the Minkowski

sum polygon A ⊕ B is called the “contributing vertex” associated to the

face f1,A.

For two convex polyhedra A and B, the same logic applies. So, sweeping a

particular facet fi,A of A by B is done by parallel-translating B such that

its origin (the common initial point of all its position vectors) passes through

all points of fi,A. This sweep implies that all vertices of B are also parallel-
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B

A origin of B

(a) (b) (c)

f1,A

A

f1,A

f2,A

f3,A
f4,A

v1,B

v2,B

v3,B

the face lying on 

the boundary of

BA

v2,B

BA

contributing vertex 

associated to f1,A

Fig. 3. (a) Two convex polygons A and B. (b) The Minkowski sum A⊕B depicted

as a sweep. (c) The contributing vertex v2,B associated to the face f1,A. The dotted

line is the face that lies on the boundary of A ⊕ B. The two other faces (dashed

lines) are discarded.

translated in the same manner, they are moving in planes parallel to the

supporting plane of fi,A and generating facets within supporting planes parallel

to that of fi,A. But only the facet generated by the vertex vk,B of B which

is at maximal distance away from the supporting plane of fi,A is taken into

account because it lies on the boundary of the sum polyhedron. The other

facets generated by the displacement of all other vertices of B are discarded

since they lie in the interior of the sum polyhedron. This particular vertex

vk,B which generated this facet of the sum polyhedron A ⊕ B is called the

“contributing vertex” associated to the facet fi,A.

3.3 Computation of the Minkowski sum polyhedron from contributing vertices

To construct the Minkowski sum polyhedron, we must perform three sweep

steps mentioned above. The first step is to sweep all facets of A by B. From

what precedes, it is clear that the computation of the contributing vertices

associated to the facets of A is a mean to obtain the facets of S = A ⊕ B

that result from sweeping the facets of A by B, these facets of S are called

“translated facets”.
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The second step is to sweep all the facets of B by A. Therefore, computing

the contributing vertices associated to the facets of B is a mean to obtain the

facets of S = A ⊕ B that result from sweeping the facets of B by A. these

facets are denoted “corner facets” of S.

The last step is to sweep the edges of A by B. For a particular edge ej,A

of A, this operation implies the construction of several facets that are the

Minkowski sum of the edge ej,A and all the edges of B. But not all these facets

will lie necessarily on the boundary of S. Therefore, some of these facets are

discarded. To determine which of these facets are retained, we use two criteria:

a visibility criterion and normal orientation criterion as explained in section

4.3. The retained facets are denoted “edge facets”. Note that only edges of A

or B incident to facets having distinct contributing vertices will be considered

in this step. A proof of this property is given in section 4.

These three steps of sweep enable us to construct the Minkowski sum polyhe-

dron S. We show in section 4 how to compute the contributing vertices asso-

ciated to the facets of A and B. This resumes to the computation of distances

from vertices to supporting planes. We also show that the sum polyhedron S

is composed of three (already mentioned) types of facets: “translated facets”

obtained from the facets of A and their associated contributing vertices, “cor-

ner facets” obtained from the facets of B and their associated contributing

vertices (commutativity property), and “edge facets” obtained from the Min-

kowski sum of two non-parallel edges one from A and the other from B, having

incident facets with no common contributing vertices. An outline of the CVMS

algorithm is presented in algorithm 1. Further details can be found found in

section 4.
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Algorithm 1 An outline of the The CVMS algorithm for convex polyhedra

Require: two convex polyhedra A and B

Ensure: the Minkowski sum polyhedron S = A ⊕ B

1: for each facet fi,A of A do

2: compute its associated contributing vertices (w.r.t. B)

3: deduce the translated facet corresponding to it

4: end for

5: for each facet fi,B of B do

6: compute its associated contributing vertices (w.r.t. A)

7: deduce the corner facet corresponding to it

8: end for

9: for each edge ej,A of A incident to facets having distinct contributing

vertices do

10: for each edge ek,B of B incident to facets having distinct contributing

vertices do

11: if ej,A and ek,B satisfy both visibility and normal orientation criteria

then

12: construct the edge facet ej,A ⊕ ek,B

13: end if

14: end for

15: end for

3.4 Contributing vertices applied to slope diagram-based algorithms

We also show how the contributing vertices concept benefits slope diagram

algorithms. So, we present the Enhanced and Simplified Slope Diagram-

based Minkowski sum (ESSDMS) algorithm, which is somewhat similar

to the improved slope diagram algorithm (improved 3D-MSSD algorithm) pre-
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sented in the work of Wu et al. [1]. This similarity is due to the fact that we do

not embed input polyhedra on the unit sphere and do not use stereographic

projections. The merging of slope diagrams and the handling of the intersec-

tions are made possible by simple geometric operations on the outer normal

orientation information extracted from the polyhedra. The contributing ver-

tices concept allows to further simplify the algorithm and to gain considerable

performance by eliminating point in polygon queries and reducing edge arcs

intersection queries. The computation of the contributing vertices does not

introduce additional performance overhead since they are deduced directly

from the intersection configuration. Details on our ESSDMS algorithm can be

found in section 5.

4 The CVMS algorithm for convex polyhedra

In the rest of this paper, we will not distinguish between a vector v and a

point v. We will talk about a vertex v and simply refer, in the equations, to

the vector pointing from the coordinates origin o to the point v as v. The

distinction between a point and the corresponding vector is clear from the

context.

First, let’s give some notation and definitions required for the understanding

of the following notions.

4.1 Notation

We consider two convex, closed and two-manifold polyhedra A and B. A is

composed of fA facets, eA edges, and vA vertices. Similarly, B is composed
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of fB facets, eB edges, and vB vertices. The Minkowski sum of A and B is

denoted S.

4.2 Prerequisites and definitions

First, let’s define the concept of contributing vertices since it is needed in the

rest of definitions.

Definition 1: The contributing vertex vk,B of a particular facet fi,A with

an outer normal ni,A is the vertex of B which is at maximal distance away

from the supporting plane of fi,A. Formally, the contributing vertex vk,B of

a particular facet fi,A satisfies:

〈vk,B, ni,A〉 = max
R

〈vl,B, ni,A〉 ∀l = 1, 2, ..., vB (3)

Where 〈., .〉 denotes the scalar product. An illustration of the contributing

vertex concept in 2D is presented in Fig. 4.

The contributing vertex vk,A of a particular facet fi,B with an outer normal

ni,B is defined in the same manner by putting A in place of B and B in

place of A in equation 3.

For some facets of A and B, we can find many contributing vertices due

to the fact that these contributing vertices are at the same (maximal) dis-

tance away from the supporting planes of the considered facets. This case

is treated normally and does not cause any degenerate behavior.

Since the boundary of polyhedra is composed of facets, edges, and vertices,

sweeping the boundary of A by B is equivalent to sweeping the facets of A

by B, sweeping the edges of A by B, and sweeping the vertices of A by B (or

positioning B on vertices of A). Remember that it is sufficient to only sweep
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Fig. 4. Illustration of the contributing vertices concept for the facets of a convex

polygon A to be added to the convex polygon B.

the boundary of A by B and discard the interior points of A and B.

(1) Sweeping all the facets of A by B: when a particular facet fi,A is swept

by B (see Fig. 5.a), this results in the facet of the sum polyhedron S

having a supporting plane parallel to that of fi,A since it is generated

by the contributing vertex associated to fi,A (i.e. the vertex vk,B which

is at maximal distance away from the supporting plane of fi,A). So, the

sweeping of all fA facets of A results in the fA translated facets with

supporting planes parallel to those of the facets of A (see Fig. 6.d).

(2) Positioning B on all vertices of A: this means positioning B so that its

origin coincides with each vertex vk,A. It is clear that only some facets of B

will lie on the boundary of the sum polyhedron S when B is positioned

on a particular vertex of A. The remaining facets of B are discarded

because they lie inside S. To find the facets of B that are part of S, we

exploit the commutativity property of the Minkowski sum operation, i.e.
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A ⊕ B = B ⊕ A. If we sweep all facets of B by A, we observe that the

generated facets are the same as the facets we want to find by positioning

B on each vertex vk,A. So, positioning B on all vA vertices results in the

fB corner facets with supporting planes parallel to those of the facets of

B (see Fig. 6.e).

(3) Sweeping all edges of A by B: when a particular edge ej,A is swept by B,

i.e. the origin of B is translated so it passes through all points of ej,A (see

Fig. 5.b). This produces facets of S that are the result of the Minkowski

sum of the edge ej,A and all edges of B. But not all these generated facets

lie on the boundary of the sum polyhedron S. So, S is composed of at

most eAeB edge facets (see Fig. 6.f). The determination of edge facets is

explained in section 4.3.

Proposition 1: The Minkowski sum polyhedron S of two convex, closed,

and two-manifold polyhedra A and B is composed exactly of three types of

facets:

(1) fA facets with supporting planes parallel to those of the facets of A,

these facets are named the “translated facets” of S;

(2) fB facets with supporting planes parallel to those of the facets of B,

these facets are named the “corner facets” of S;

(3) At most eAeB facets that result from the Minkowski sum of some pairs

of non-parallel edges of A and B, these facets are named the “edge

facets” of S.

Proof: Let’s sweep all fA facets of A by B. For a particular facet fi,A, i =

1, . . . , fA we keep only the facet that is the result of translating fi,A according

to its contributing vertex or vertices. So, there is a one-to-one mapping

between the facets of A and the facets of S with supporting planes parallel
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AB

fi,A

translated facet corresponding to fi,A

Contributing vertex

associated to fi,A

edge ej,A swept by B

edge el,B

edge facet created by BlAj ee ,, 

(a)

(b)

Fig. 5. (a) The creation of a translated facet corresponding to a particular facet fi,A

and its associated contributing vertex (the corner facets are determined in the same

manner). (b) Sweeping an edge ej,A by B and creation of an edge facet ej,A ⊕ el,B.

to those of the facets of A and that we called translated facets. Therefore,

the sum polyhedron S contains fA translated facets. In a similar manner, if

we sweep all fB facets of B by A, we will obtain exactly fB corner facets,

i.e. facets of S with supporting planes parallel to those of the facets of B.

Finally, it remains to sweep the edges of A by B. The result of this sweep

are facets that are the Minkowski sum of the edges of A and the edges of
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B. But since we are working with polyhedra (boundary representation), we

will not keep all these eAeB facets, only those lying on the boundary of the

Minkowski sum polyhedron S are retained. Therefore, the Minkowski sum

polyhedron is composed of at most eAeB edge facets.

(a)        (b)       (c)

(d)        (e)       (f)

Fig. 6. (a) Polyhedron A. (b) Polyhedron B. (c) Sum polyhedron S (d) Translated

facets. (e) Corner facets. (f) Edge facets.

From the definitions of translated and corner facets, it is clear that the trans-

lated facets of A⊕B are corner facets of B ⊕A and vice-versa. Furthermore,

since the Minkowski sum of two edges, one coming from A and the other from

B is commutative: eA ⊕ eB = eB ⊕ eA, it follows that the result of the CVMS

algorithm is commutative as well as the Minkowski sum operation.

As said previously, some facets of A and B can be associated to many con-

tributing vertices due to the fact that these contributing vertices are at the

same (maximal) distance away from the supporting planes of the considered

facets. If a facet of A has two contributing vertices, the corresponding trans-
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lated facet is the result of a planar Minkowski sum of that facet and the edge

of B incident to the two contributing vertices belonging to a supporting line

parallel to the supporting plane of the considered facet of A. If a facet of A

has more than two contributing vertices, the corresponding translated facet is

the result of a planar Minkowski sum of that facet and the facet of B incident

to the contributing vertices and belonging to a supporting plane parallel to

that of the considered facet of A. The same rules apply to facets of B having

two or more contributing vertices.

Here are two important properties used by the CVMS algorithm:

Property 1: If two adjacent facets fi,A and fj,A have at least one common

contributing vertex, the edge ek,A shared by these adjacent facets will never

contribute in any edge facets construction and can be simply ignored. This

property is also applicable to any two adjacent facets fm,B and fn,B having

at least a common contributing vertex.

Proof: Let’s consider any edge ek,A of A incident to two facets fi,A and fj,A

having at least one common contributing vertex. The facets fi,A and fj,A

share the vertices vm,A and vn,A incident to the edge ek,A. Since fi,A and

fj,A have a common contributing vertex that we denote vp,B, constructing

the translated facets fi,S and fj,S corresponding to fi,A and fj,A respectively

involves the translation of fi,A and fj,A by a vector starting from coordinates

origin o and ending at vp,B. This translation implies that the two vertices

vm,A and vn,A incident to the edge ek,A and shared by the facets fi,A and fj,A

are also translated to the positions vm,A + vp,B and vn,A + vp,B. Therefore,

the edge ek,A will be incident to fi,S and fj,S and will never contribute in

any edge facet construction.

In contrast, if another edge ek,A is incident to facets fi,A and fj,A having
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distinct common contributing vertices vp,B and vq,B respectively, it is clear

that the construction of the translated facets fi,S and fj,S corresponding to

fi,A and fj,A involves vp,B and vq,B respectively. Therefore, fi,A is translated

by a vector starting from coordinates origin o and ending at vp,B and fj,A is

translated by a vector starting from o and ending at vq,B. Thus, the vertices

vm,A and vn,A incident to the edge ek,A are translated to the positions vm,A+

vp,B and vn,A+vp,B when computing fi,S and to the positions vm,A+vq,B and

vn,A + vq,B when computing fj,S. Therefore, the translated facets fi,S and

fj,S are not incident to the same edge of polyhedron S (they are disjoint)

and the edge ek,A creates one or more edge facets.

The proof of property 1 can be done in a similar manner for any edge ek,B

of B.

In Fig. 7, a simple example illustrates property 1. The edge e1,A in Fig.

7.a is incident to the facets f1,A and f2,A. The vertices v1,A and v2,A are

those vertices incident to e1,A. The facets f1,A and f2,A have a common

contributing vertex v1,B (see Fig. 7.b). Therefore, the translated facets f1,S

and f2,S corresponding to f1,A and f2,A are incident to the same edge of S

delimited by two vertices with positions v1,A + v1,B and v2,A + v1,B (see Fig.

7.c). In contrast, the edges e2,A and e3,A in Fig. 7.a are incident to facets

having distinct contributing vertices, so they contribute to the edge facets

creation (Fig. 7.c).

Property 2: A facet of each polyhedron A or B contributes only once in

the Minkowski sum polyhedron S; this has been proved in earlier works

[3,33,34]. This property allows to reduce progressively the number of facets

considered in the subsequent steps of the algorithm. For example, if a facet

contributed to the creation of a translation facet of S, it can be omitted
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from the corner facets determination step.

The two mentioned properties enable a significant gain of performance by

reducing the number of facets and edges to be considered when computing

translated, corner, and edge facets.

A

edge e1,A

edge e2,A

contributing vertex v1,B

associated to f1,A and f2,A

f1,A

f2,A f3,A

contributing vertex v2,B

associated to f3,A

B

edge e3,A

edge facet

created by e2,A

edge facet

created by e3,A

(a) (b)

v1,A

v2,A

v1,A + v1,B

v2,A + v1,B

f1,S

f2,S

f3,S

v2,A + v2,B

(c)

Fig. 7. (a) Some edges e1,A, e2,A, and e3,A of A. (b) Contributing vertices associ-

ated to f1,A, f2,A, and f3,A. (c) Edge facets created by e2,A, and e3,A. The edge

e1,A will not produce edge facets since incident facets f1,A and f2,A have the same

contributing vertex.
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4.3 Steps of the CVMS algorithm

The CVMS algorithm begins by determining the translated and corner facets

of S by computing the contributing vertices associated to all facets of A and

B respectively. Then, it determines edge facets. Property 1 is used in the

translated and corner facets determination steps and property 2 is used in the

edge facets determination step. Given two convex and closed two-manifold

polyhedra A and B, the CVMS algorithm performs as follows:

(1) Translated facets determination: for each facet fi,A:

• Find its associated contributing vertices vk,B (see equation 3).

• If there are more than two contributing vertices, the facet fj,B incident to

the contributing vertices associated to fi,A lies on a supporting plane parallel

to that of fi,A. The corresponding translated facet is the result of the planar

Minkowski sum of fi,A and fj,B (fi,A ⊕ fj,B). The translated facet has the

same outer normal orientation as fi,A and fj,B. The facet fj,B will be ignored

in the corner facets determination step since it contributes once.

• If there are exactly two contributing vertices, the edge ej,B incident to the

two contributing vertices associated to fi,A lies on a supporting line parallel

to the supporting plane of fi,A. The resulting translated facet is computed

by a planar Minkowski sum of fi,A and ej,B (fi,A ⊕ ej,B) and has the same

outer normal orientation as the facet fi,A.

• If there is only one contributing vertex vk,B, the corresponding translated

facet results from translating the facet fi,A by a position vector pointing

from coordinates origin o to vk,B and has the same outer normal orientation

as the facet fi,A.
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(2) Corner facets determination: for each facet fi,B that have not yet

contributed in the previous step:

• Find its associated contributing vertices vk,A. Note that there is no case

where a facet fi,B has more than two contributing vertices since such a

facet has contributed once in the translated facets determination step.

• If there are exactly two contributing vertices, the edge ej,A incident to the

two contributing vertices associated to fi,B lies on a supporting line parallel

to the supporting plane of fi,B. The resulting corner facet is computed by a

planar Minkowski sum of fi,B and ej,A (fi,B ⊕ ej,A) and has the same outer

normal orientation as the facet fi,B.

• If there is only one contributing vertex vk,A, the corresponding corner facet

results from translating the facet fi,B by a position vector pointing from

coordinates origin o to vk,A and has the same outer normal orientation as

the facet fi,B.

(3) Edge facets determination: we use two criteria for this purpose: the

visibility of facets of B with respect to a visibility direction (defined by an

edge ei,A; see Fig. 8.a) allows to find horizon edges of B. Horizon edges are

edges that separate invisible facets from other facets B with respect to the

considered visibility direction. By other facets of B, we mean facets that are

either visible or having supporting planes parallel to the visibility direction

ei,A (see Fig. 8.b). All these horizon edges are candidates to construct an edge

facet of S, but only those verifying the second criterion of normal orientation

will do (see Fig. 8.c). Thus, for each edge ei,A incident to facets having distinct

contributing vertices:

• Determine the visibility of all facets of B. A facet fj,B with an outer normal
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nj,B is invisible with respect to the visibility direction ei,A if and only if:

〈ei,A, nj,B〉 > 0 (4)

The facets of B that do not satisfy the above inequality are either visible

or lie on supporting planes parallel to the visibility direction. The horizon

edges are frontier edges between invisible facets and other facets of B with

respect to the visibility direction ei,A (see Fig. 8.b).

• For each horizon edge ek,B incident to facets having distinct contributing

vertices:

Add an edge facet ei,A ⊕ ek,B to the sum polyhedron S if its outer

normal orientation ni,k = ei,A×ek,B lies between the two outer normal

orientations n1,A and n2,A of the facets f1,A and f2,A incident to the

edge ei,A (n2,A follows n1,A in a counter-clockwise order; see Fig. 8.c).

Therefore, an edge facet ei,A ⊕ ek,B is added to the sum polyhedron

S if and only if:

〈n1,A × ni,k, ei,A〉 < 0 and 〈ni,k × n2,A, ei,A〉 < 0 (5)

At this point, we have constructed the sum polyhedron S. We note that we

have not talked about the origin of the polyhedron B, but it is easy to consider

an origin point c that is different from the coordinates origin o by translating

the sum polyhedron S by a vector beginning from c and ending at o.

5 Slope diagram-based Minkowski sum

In order to show how the concept of contributing vertices is a benefit to the

construction of slope diagrams, we propose a novel algorithm named the En-
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ei,A

B

A

visibility direction

invisible facet

visible facet

horizon edge

f2,A

f1,A

ni,2

ni,1

ni,3

ni,4

ni,5
ni,6

ni,7

ni,8

ni,9

ni,10
ni,11

n1,An2,A

horizon edges e1,B, e2,B, …e11,B

outer normals of facets f1,A and f2,A

(a) (b)

11,...,1;1,,,  kieen BkAiki

(c)

Fig. 8. (a) An edge ei,A as a visibility direction . (b) Visibility computation of all

facets of B w.r.t. ei,A and horizon edges determination. (c) Only horizon edges e4,B,

e5,B, and e6,B will produce edge facets ei,A ⊕ e4,B, ei,A ⊕ e5,B, and ei,A ⊕ e6,B.

hanced and Simplified Slope Diagrams-based Minkowski Sum (ESSDMS) al-

gorithm. We first describe the principles behind the original slope diagram.

After that, we describe the ESSDMS algorithm and indicate the role played

by contributing vertices in the improvement of performance (by eliminating

unnecessary processing) and the simplification of some steps.

5.1 Original slope diagram-based Minkowski sum algorithm

Slope diagrams were proposed for the first time by Ghosh [33]. The principle

is to represent two convex and closed two-manifold polyhedra A and B in a

dual space such that the orientation of the normals of the facets, edges, and

vertices of the two operands determine the Minkowski sum polyhedron S. The
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dual space used by Ghosh is a unit sphere. For a convex polyhedron A, the

slope diagram representation SD(A) is obtained as follows:

• Each facet fi,A with an outer unit normal ni,A is represented by a spherical

point corresponding to the end point of the outer unit normal ni,A. This

point is referred to as a facet point.

• Each edge ej,A is represented on the unit sphere by the arc of the great circle

joining the two facet points representing the two facets of A incident to the

edge ej,A. The spherical arc representing the edge ej,A is called an edge arc.

By “the arc of the great circle” we mean the shorter arc among the two

ones joining the two facet points. The reason for choosing the shorter arc

is that for convex polyhedra, the angle between two neighboring facets is

always less than 180 degrees.

• Each vertex vk,A is represented by a region on the unit sphere (a spherical

polygon) bounded by the facet points corresponding to the facets of A in-

cident to the vertex vk,A and by the edge arcs corresponding to the edges

of A incident to vk,A. We call this spherical polygon a vertex polygon or a

vertex region.

The slope diagram of polyhedron B is obtained by following the same steps

used for polyhedron A. Fig. 9 shows a slope diagram representation of a convex

and closed polyhedron.

The Minkowski sum polyhedron A ⊕ B is obtained by merging the two slope

diagrams SD(A) and SD(B). The merging process aims at deducing the sum

facets following the intersections or coincidences of the two slope diagrams

components (facet points, edge arcs, and vertex regions). Four intersection

cases are detected:
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Fig. 9. A convex polyhedron and its slope diagram representation (revised from

[33]).

• Intersection of two facet points: this occurs when a facet point of SD(A)

is coincident with a facet point of SD(B). The corresponding Minkowski

sum facet is the result of a planar Minkowski sum of the two facets of A

and B represented by the two coincident facet points.

• Intersection of a facet point with an edge arc: this occurs when a

facet point of one of the slope diagrams lies on an edge arc of the other

slope diagram. The corresponding Minkowski sum facet is the result of a

planar Minkowski sum of the facet represented by the facet point and the

edge represented by the edge arc.

• Intersection of two edge arcs: this occurs when two non-parallel edge

arcs one from SD(A) and the second from SD(B) have a common intersec-

tion point. The corresponding Minkowski sum facet is the result of a planar

Minkowski sum of the two non-parallel edges represented by these two edge

arcs. Two edges arcs are non-parallel if they do not lie on the same great

circle of the unit sphere.

• Intersection of a facet point with a vertex region: this occurs when
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a facet point of one of the two slope diagrams lies inside a vertex region

of the second slope diagram. The corresponding Minkowski sum facet is a

translated version of the facet represented by the facet point (the sum facet

has the same shape as this facet), the translation vector is defined by the

coordinates of the vertex represented by the vertex region.

In order to merge the two slope diagrams embedded on the unit sphere, Ghosh

transformed them into a 2D planar form by means of stereographic projection.

The stereographic projection is a projection of a sphere from one of the points

N or N ′ onto the plane σ tangent to the sphere in the diametrically opposite

point N ′ or N (see Fig. 10).

tangent plane

p’ p1’

p1p

N

tangent plane

p’ p1’

p1p

N

Fig. 10. Stereographic projection used to merge two slope diagrams (revised from

[33]).

Although Ghosh formulated slope diagram for the computation of the Minkow-

ski sum of convex and non-convex polyhedra, the existent implementations are

only restricted to convex polyhedra. Furthermore, the weakness of the slope

diagrams based Minkowski sum algorithms come from the embedding on the

unit sphere and from the stereographic projection used to merge two slope
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diagrams. These two steps are relatively complex, require a non-negligible

computation time, and lead to precision problems when working with built-in

number types such as float or double.

To overcome these two problems, we propose the ESSDMS algorithm which is

somewhat similar to the improved slope diagram algorithm presented by Wu

et al. [1] and detailed in the next section.

5.2 The ESSDMS algorithm

The ESSDMS algorithm we propose here comes with simplifications and en-

hancements to the algorithm of Wu’s et al.. It uses the concept of contributing

vertices to gain additional performance and simplify some steps of the algo-

rithm. Its implementation is based on exact number types instead of built-in

number types to avoid using position thresholds. So the ESSDMS algorithm

is similar to that of Wu et al. in the following points:

• No embedding of the slope diagram representation: the slope dia-

gram principle is exploited without explicitly embedding objects in the unit

sphere. When information about facet points, edge arcs, or vertex regions

is needed, it is directly extracted from the polyhedra we are working with.

• No stereographic projection: because there is no explicit embedding

or representation of slope diagrams, there is nothing to project. The in-

tersections between slope diagram components are detected by the use of

geometric operations obtained directly from polyhedra.

In contrast, the ESSDMS algorithm differs from that of Wu et al. in the

following points:
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• Use of the contributing vertices concept: this enhancement reduces

the number of edges used in the determination of the intersections between

edge arcs by considering only those having incident facets associated to com-

mon contributing vertices. Moreover, it allows to avoid the point-in-polygon

queries needed when testing if a facet point lies inside a vertex region (in-

tersection of a facet point and a vertex region). If we perform all other

intersection queries (intersection of two facet points, intersection of a facet

point and an edge arc, and the intersection of two edge arcs), it is clear that

the remaining facets correspond to facet points lying necessarily inside ver-

tex regions. So the corresponding facets in the Minkowski sum polyhedron

are translated copies of these facets. By analogy with the CVMS algorithm,

we can conclude that each of these facets has only one contributing vertex.

The creation of the sum facets corresponding to the remaining facets is done

by using their contributing vertices. The computation of the contributing

vertices does not introduce additional performance overhead (compared to

the cost of detecting intersections) since they are deduced directly from the

intersection configuration.

• No round-off errors: this is an implementation issue, by using exact num-

ber types (such those provided by GMP (GNU Multi Precision) library [36],

we ensure that computations are done exactly and intersections are com-

puted correctly. This avoids the use of position tolerance values or thresholds

when testing coincidences of geometric features.

Given two convex, closed and two-manifold polyhedra A and B, the four in-

tersection cases are handled as the following:

• Intersection of two facet points: two facet points are coincident if the

two outer normals a and b of the corresponding facets fi,A and fj,B of A
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and B respectively have the same orientation (see Fig. 11.a); this is the case

when a and b satisfy:

a × b = 0 and 〈a, b〉 > 0 (6)

The first part of equation 6 (the cross product) checks if a and b are on

the same supporting line (since they have the same origin point, they have

the same supporting line if they are parallel). The second part of equation

6 (the dot product) checks if a and b have the same orientation since they

can be on the same supporting line but with opposite orientations.

The corresponding Minkowski sum facet fS for this case is the result of a

planar Minkowski sum of fi,A and fj,B:

fS = fi,A ⊕ fj,B (7)

Since the facets fi,A and fj,B have parallel supporting planes, the contribut-

ing vertices associated to the facet fi,A are the vertices of fj,B and the

contributing vertices associated to the facet fj,B are the vertices of fi,A.

• Intersection of a facet point with an edge arc: a facet point f corre-

sponding to a facet of one of the two slope diagrams lies on an edge arc st

of the other slope diagram (s and t are facet points corresponding to the

facets incident to the edge represented by the edge arc st) if it lies on the

great circle passing through facet points s and t and if f lies on the shorter

arc joining s and t (see Fig. 11.b). These two conditions are equivalent to:

f × n = 0 where n = s × t (8)

〈s × f, n〉 > 0 and 〈f × t, n〉 > 0 (9)

Equation 8 checks if the facet point f lies in the great circle passing through

s and t, this is the case when f is perpendicular to the normal n of the great
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circle. Equation 9 checks if the facet point f lies on the shorter arc of the

great circle joining s and t.

The corresponding Minkowski sum facet fS for this configuration is the

result of a planar Minkowski sum of the facet represented by the facet point

f and the edge represented by the edge arc st. For example, if the facet

point f corresponds to a facet fi,A of A and the edge arc on which f lies

corresponds to an edge ej,B of B, the Minkowski sum facet fS of S is given

by:

fS = fi,A ⊕ ej,B (10)

In this case, the contributing vertices associated to the facet fi,A repre-

sented by the spherical point f are the two vertices incident to the edge ej,B

represented by the edge arc st.

By commutativity, if the facet point f corresponds to a facet fi,B and the

edge arc on which f lies corresponds to an edge ej,A, the Minkowski sum

facet fS is given by equation 11 and the contributing vertices associated to

the facet fi,B are the two vertices incident to the edge ej,A.

fS = fi,B ⊕ ej,A (11)

• Intersection of two edge arcs: before trying to determine if two non-

parallel edge arcs st and s′t′ representing two edges ei,A and ej,B of A and B

have a common intersection point, we must check if the contributing vertices

associated to the facets incident to ei,A have distinct contributing vertices.

If this is not the case, we conclude that the corresponding edge arc st will

not intersect any edge arc s′t′. Therefore, it will no longer be considered in

the subsequent edge arcs intersection queries. In a similar manner, we must

also check the contributing vertices associated to the facets incident to ej,B.
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If there is at least one common contributing vertex, the edge arc s′t′ will

also be discarded from the rest of the iterations.

If edge arcs st and s′t′ pass the previous step, we continue by checking if

one of the two spherical points resulting from the intersection of the two

great circles supporting st and s′t′ lies on st and s′t′ at the same time (see

Fig. 11.c). Suppose n is the normal of the circle containing st, i.e. n = s× t

and n′ the normal vector of the great circle containing s′t′, i.e. n′ = s′ × t′.

The two spherical points x and x′ resulting from the intersection of the two

great circles are obtained by the cross products x = n × n′ and x′ = n′ × n

(see Fig. 11.c). To check that x (or x′) lies on the edge arcs st and s′t′, we

can consider it as a facet point and use equations 8 and 9 derived for the

intersection of a facet point and an edge arc.

The corresponding Minkowski sum facet fS for this configuration is the

result of a planar Minkowski sum of two edges ei,A and ej,B represented by

the two edge arcs st and s′t′:

fS = ei,A ⊕ ej,B (12)

• Intersection of a facet point with a vertex region: from Fig. 11.d, it

seems that checking if a facet point f of one of the two slope diagrams lies

within the interior of a vertex region (gray-shaded in Fig. 11.d) of the other

slope diagram can be done by algorithms used to test if a point lies within a

polygon or not (such as ray-crossing for example). In our algorithm, we will

bypass the point-in-polygon queries by using some properties of the CVMS

algorithm. The CVMS algorithm states that for convex polyhedra, a facet

contributes only once in the Minkowski sum polyhedron construction. Thus,

after enumerating the first three kinds of intersections (two facet points, a

facet point and an edge arc, and two edge arcs), it is clear that the remaining
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facets of A and B will necessarily lie within vertex regions (avoiding point

in polygon queries). The vertex v corresponding to the vertex region in

which lies a particular facet point f coincides with the contributing vertex

associated to that facet. So, all we need to do is to find the contributing

vertex corresponding to the facet represented by the facet point f (see

equation 3).

The corresponding Minkowski sum facet fS is obtained by translating the

facet represented by the facet point f by a position vector pointing from

the coordinates origin and ending at the corresponding contributing vertex.
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Fig. 11. Intersections in slope diagrams. (a) Intersection of two facet points. (b)

Intersection of a facet point and an edge arc. (c) Intersection of two edge arcs. (d)

Intersection of a facet point and a vertex region.

6 Implementation and performance

In this section, we describe the implementations of the CVMS algorithm,

the ESSDMS algorithm, and the Convex Hull-based Minkowski Sum (CHMS)

algorithm. After that, we compare the performance of these approaches with

other methods found in the literature and present examples of Minkowski sum

polyhedra we computed.
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6.1 Implementation

The CVMS algorithm has been implemented using C++ and CGAL. We used

the same environment for the implementation of the ESSDMS and the CHMS

algorithms. The convex polyhedra are handled by the CGAL Polyhedron 3

data structure.

The CHMS algorithm is implemented by using the CGAL function convex hull 3

for the computation of convex hulls in 3D. This function is an implementation

of the Quickhull algorithm [10].

For the computation of the planar Minkowski sums involved in the CVMS

and the ESSDMS algorithms, we used the function minkowski sum 2 provided

in the 2D Minkowski sum package of CGAL. This function implements the

convolution operation [30].

As stated previously, we guarantee the exactness of the obtained results by

using exact number types. For our implementation, we used the exact number

types provided by the GNU Multi Precision (GMP) library [36] under CGAL.

By using exact number types, we penalize run-time performance. In fact, exact

number types are very slow compared to the built-in floating point number

types. To overcome this problem, we used the lazy kernel adapter [37] which

speeds up exact computations.

We also re-implemented the improved 3D-MSSD algorithm of Wu et al. using

the same components of CGAL. Our implementation of the improved 3D-

MSSD algorithm guarantees exact results because it uses exact number types,

so it does not rely on position thresholds as done in the work of Wu at al..
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6.2 Complexity study

In the case of the CVMS algorithm, finding the contributing vertices for the

fA facets of A takes O(fAvB) time. Similarly, finding the contributing vertices

for the fB facets of B takes at most O(fBvA) time. The determination of

translated facets takes O(fA) time since it is done directly by examining the

number of contributing vertices associated to each facet. In the same manner,

constructing corner facets takes at most O(fB) time. For edge facets, it takes

at most f(eAeB) time to find them. By adding times of all steps, we conclude

that the CVMS algorithm has a worst-case time complexity of O(fAvB +

fBvA + fA + fB + eAeB).

For the ESSDMS algorithm, the computation of the intersections of two facet

points requires O(fAfB) time, the computation of the intersections of facet

points and edge arcs requires O(fAeB + fBeA) time, and the computation of

the intersection of two edge arcs requires at most O(eAeB) time. Since the

computation of the intersection of a facet point and a vertex region reduces to

finding the contributing vertices corresponding to the remaining facet points

(that have not yet contributed into the sum), the complexity of finding such

intersections is at most O(fAvB + fBvA). By summing all these times, we

conclude that the ESSDMS algorithm has a worst-case time complexity of

O(fAfB + fAeB + fBeA + eAeB + fAvB + fBvA).

For the Convex Hull-based Minkowski Sum (CHMS) algorithm we imple-

mented, we performed vector addition of all points of A and all points of

B in order to build a point cloud C. Then, we computed the convex hull of

the point cloud C using the Quickhull algorithm. The first step takes O(vAvB)
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time and the second has a worst-case complexity of O((fA + fB)2) [10]. Thus,

the CHMS algorithm has a worst-case time complexity of O((fA+fB)2+vAvB).

6.3 Performance benchmark

For our benchmark, we computed the Minkowski sum of several polyhedra

using the CVMS algorithm, the ESSDMS algorithm, the CHMS algorithm,

and the improved 3D-MSSD algorithm we re-implemented.

We also compared the above mentioned algorithms with three other algo-

rithms. The first one is based on Nef polyhedra embedded on the sphere and

implemented by Hachenberger [24], the second one is a method based on linear

programming implemented by Weibel [38] (following the work of Fukuda [39]),

and the third one is the Cubical Gaussian Map-based (CGM-based) algorithm

of Fogel and Halperin [35].

We shall note that the method based on Nef polyhedra is more powerful than

necessary for the Minkowski sum computation since it aims at overlaying two

arbitrary Nef polyhedra embedded on the sphere (with lower dimensional fea-

tures, unbounded or bounded boundaries, etc.). A second remark concerns the

implementation of Weibel which is intended for the computation of polytopes

(convex polyhedra in R
n) in an arbitrary dimension, so it is not specifically

optimized for convex polyhedra in R
3.

The experiments where done on a 2 GB RAM, 2.2 GHZ Intel Core 2 Duo

personal computer. We used a cube and a sphere with varying facets number

as input polyhedra. A comparison between running times is given in table 1:

38



Table 1

Running times of the Minkowski sum computation of convex polyhedra performed

by several algorithms.

Operands (facets number) Running time (sec.)

A B CHMS ESSDMS CVMS MSSD NGM Fuk. CGM∗ CGM∗∗

(overlay) (whole)

Cube(6) Tetra(4) 0.016 0.015 0.015 0.031 0.093 0.096 0.015 0.030

Cube(6) Hedra(8) 0.015 0.015 0.015 0.078 0.093 0.100 0.015 0.030

Cube(6) Truncated cube(14) 0.046 0.015 0.015 0.110 0.110 0.232 0.015 0.030

Cube(6) Sphere1(20) 0.046 0.046 0.015 0.156 0.203 0.300 0.015 0.046

Cube(6) Sphere2(80) 0.125 0.093 0.031 0.359 0.421 0.786 0.047 0.124

Cube(6) Sphere3(320) 0.546 0.250 0.078 1.156 1.438 3.269 0.078 0.296

Cube(6) Sphere4(1280) 2.438 0.735 0.266 4.344 5.563 15.224 0.203 1.249

Cube(6) Sphere5(5120) 11.407 2.719 1.375 17.938 22.625 69.956 0.562 7.406

Cube(6) Sphere6(20480) 77.422 16.828 12.234 79.750 94.157 146.870 1.921 219.592

CHMS - Convex Hull-based Minkowski Sum algorithm, ESSDMS - Enhanced and Simplified Slope

Diagram-based Minkowski Sum algorithm, CVMS - Contributing Vertices-based Minkowski Sum

algorithm, MSSD - improved 3D-MSSD algorithm of Wu et al., NGM - Nef polyhedra-based algorithm of

Hachenberger et al., Fuk. - Weibel’s implementation of the algorithm of Fukuda. CGM - Cubical Gaussian

Map-based (CGM-based) algorithm of Fogel and Halperin.

∗ only the overlay step of the CGM-based algorithm.

∗∗ the whole CGM-based algorithm: the construction of the cubical Gaussian maps plus their overlay.

Fig. 12 shows the ratio of the running time for the algorithms mentioned in

table 1 to the sum of the number of facets of several polyhedra (the sum of

the number of facets of A and B).

The CGM-based algorithm of Fogel and Halperin proceeds in two steps: first it

computes the cubical Gaussian maps of the polyhedra A and B, then it over-

lays the computed CGMs in order to obtain the result. In table 1, the ninth

column reports the running time of the overlay step and the tenth column
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Fig. 12. Evolution of the running time of the algorithms mentioned in table 1 with

respect to the sum of the number of facets of the operands. This figure shows that

when increasing the number of facets, the CVMS and the ESSDMS algorithms are

largely preferred in comparison to other algorithms.

reports the running time of the whole CGM-based algorithm (the construc-

tion of the cubical Gaussian maps plus their overlay). In order to have a fair

comparison of our CVMS algorithm, the CGM-based algorithm of Fogel and

Halperin, and the other algorithms, we must consider the running times re-

ported in the tenth (the last) column as the running time of the CGM-based

algorithm since the overlay process alone is not sufficient for the computation

of the Minkowski sum without the construction of the cubical Gaussian maps.

The running time reported in table 1 show that our CVMS algorithm per-

forms better than all other algorithms. Specifically, the CVMS algorithm is

more efficient than the ESSDMS algorithm. If we eliminate the common terms

O(fAvB+fBvA+eAeB) in the time complexities of the CVMS and the ESSDMS

algorithms, it is clear that O(fA +fB) (the remaining term in the CVMS time

complexity) is significantly inferior to O(fAfB + fAeB + fBeA) (the remaining
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term in the ESSDMS time complexity). This proves that the CVMS algorithm

performs better than the ESSDMS algorithm and consolidates experimental

results. Table 1 shows also that our CVMS and ESSDMS algorithms are much

more efficient than the CGM-based algorithm of Fogel and Halperin; the com-

putation of the cubical Gaussian maps in their algorithm is the most time

consuming step when compared to the overlay one (especially for polyhedra

with high complexity).

The algorithm implemented by Weibel is the slowest among all these algo-

rithms since it is not optimized in R
3. Another observation that is verified in

table 1 is that the overlay process of the Nef polyhedra-based algorithm is not

specifically devoted to the Minkowski sum computation of convex polyhedra.

An interesting fact of table 1 is that a good convex hull-based algorithm

can perform better than other algorithms. In the present case, the CHMS

algorithm performs better than the improved 3D-MSSD algorithm of Wu et

al..

6.4 Examples

Fig. 13 shows some examples of Minkowski sum polyhedra computed by the

CVMS algorithm. In Fig. 14, we included more results to show that the CVMS

algorithm works with complex or big size polyhedra (having thousands or tens

of thousands of facets; see Fig. 14.a and b). The CVMS algorithm handles well

degenerate cases that require special treatment with some other methods. An

example of a degenerate case is that of two facets having parallel supporting

planes (having the same outer unit normal) one from polyhedron A and the
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other from polyhedron B. An extreme degenerate case occurs when A = B

(two convex polyhedra with identical sets of facet outer normals). These de-

generate cases do not require any special handling by the CVMS algorithm.

Fig 14.c shows the result of such an extreme case correctly computed by

the CVMS algorithm. More results of the CVMS algorithm can be found at:

http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex

7 Conclusion and future work

In this work, we have presented the CVMS algorithm for the computation of

the Minkowski sum of convex polyhedra. The CVMS algorithm is based on

the concept of contributing vertices. By finding the contributing vertices for

polyhedra facets, it is straightforward to deduce translated and corner facets

of the Minkowski sum polyhedron. Furthermore, the concept of contributing

vertices allows additional gain of performance when constructing edge facets

by examining only relevant edges from input polyhedra.

We also took benefit from the concept of contributing vertices in the ESSDMS

algorithm. This results in more simplicity by eliminating point in polygon

queries and performance gain by reducing the number of edge arcs intersection

requests.

The proposed algorithms are easy to implement and they guarantee the ex-

actness of the result by using exact number types. The complexity study and

the experimental results show that the CVMS algorithm is faster than the

ESSDMS algorithm and that the CVMS algorithm is more efficient than the

other algorithms proposed in the literature and cited in this paper. The CVMS
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       A     B     A+B

translated facets
corner facets
edge facets

Fig. 13. Minkowski sum examples for convex polyhedra generated by the CVMS

algorithm.

algorithm can be used as an efficient replacement for the convex hull-based

algorithms in order to speed-up the computation of the pairwise Minkowski

sums for non-convex polyhedra (along with convex-decomposition and union
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(a)

5120 facets 20480 facets 35810 facets

5120 facets 5120 facets 5120 facets

16384 facets 32 facets 22800 facets

(b)

(c)

A B A+B

translated facets
corner facets
edge facets

Fig. 14. More results of the CVMS algorithm for: (a) two spheres having thousands

and tens of thousands of facets. (b) an ellipsoid-like polyhedron and a truncated

dodecahedron. (c) for an extreme degenerate case (two identical spheres with thou-

sands of facets).
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steps).

As a part of our future work, we are generalizing the CVMS algorithm to non-

convex polyhedra. The main idea is that the boundary of each non-convex

polyhedron can be seen as the union of disjoint convex surface patches (sets of

facets containing no reflex edges). So by treating polyhedra in a local manner

(working on each convex patch) and by correctly handling reflex edges, it is

possible to generate a superset of the Minkowski sum facets. To extract the

boundary of the Minkowski sum, we plan to use arrangements and surface

envelope computations for which CGAL provides powerful packages.
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