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1
Introduction

1.1 Problem statement

Autonomous robots concretize a Perception-Planning-Action loop. Perception is the construction of a

useful representation of the robot and its environment. This process relies on data produced by cameras,

range sensors, force sensors, gyroscopes, etc. Actions designate the events that the robot can provoke

such as signals (light, voice), motions (involving motors, pneumatics), etc. Planning is the process that

maps the perception to actions. In this thesis, we will be exclusively focusing on planning problems for

humanoid robots.

The planning component of a humanoid robot designed after the human form is a great challenge to

roboticists. In front of a robot with a human shape walking and moving dexterously, anyone would

rightfully expect a little intelligence in the package. Intelligence, for a machine, is the capacity to

perform tasks normally requiring human intelligence (Oxford dictionary). All there seems to do to test

this intelligence is to submit a task and compare the robot’s actions to one’s own. This is the principle of

The Turing Test. The robot should use all the resources at its disposal and adopt a course of actions that

a human would expect from his peers.

Intelligence can be perceived at very simple levels. For instance, to grasp a couple of cups standing

close on a table, the human would probably use both hands simultaneously if possible. A humanoid robot

with the same possibility taking a cup after the other may probably be dismissed from the closed circle

of intelligent robots. Intelligence can be perceived on the level of the action itself: if the table happens

to be a little low, instead of decomposing the action into leaning forward on the legs then stretching the

arms to grasp the cups, all involved parts of the robot could move simultaneously to achieve the task.
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In both examples, intelligence is reflected through the coordination of several resources to save time.

In the second example, the robot used its legs to help a manipulation. We might have little conscience

of the motion of our lower bodies when performing such manipulation tasks. We may also have little

conscience of the infinity of ways in which we could have solved the same problem. One important

aspect of the intelligence of humanoid robots must therefore be a seamless exploitation of their rich and

redundant mechanical structures.

Unlike humans who might indulge in walking for their pleasure or because it sustains their health, the

humanoid robot should be motivated by a precise task for obvious energy-related considerations. How

do we relate the steps that we make to the tasks that we perform with our hands or any other part of our

bodies? Again, when we think of the number of solutions we realize that the robot must often choose

from an infinity, which it still has to be aware of. Let us again consider the simple example of picking

up an object, from the floor this time. We have not yet spoken of a level of intelligence to build a piece

of furniture from a famous Swedish brand, we will merely ask the robot to collect the fallen assembly

manual. The robot, nonetheless, faces various difficulties: where to stand to be able to perform the task?

The object is on the ground, therefore it will probably need to crouch, so how to take this posture into

account for the motion plan? Is the task feasible at all given its body shape? We are hinting at a second

seamless form of intelligence: the humanoid robot must decide if it needs to resort to locomotion in order

to carry out a task and if so, find a suitable one.

In fact, most animals possess this level of intelligence, they flawlessly move to where an intended

action could be fulfilled. The motion of legged forms on a terrain could roughly be seen as a monotonous

translation and/or rotation to attain a remote objective. However, a fine adjustment occurs at the end of

the locomotion so that the posture is adapted to the intended action. The complexity of actions and

postures is much higher for bipeds than for four-legged animals, therefore any heuristic-based resolution

of the task-driven locomotion problem is too restrictive.

The planning component of a humanoid robot must rigorously relate its tasks to its whole body and

locomotion capabilities, otherwise even the simplest possible tasks could be failed. We aimed in our

work at answering this requirement.

1.2 Related works and contributions

The two major components of this topic, whole body motion generation and locomotion planning,

have been subject to an extensive research activity. Both subjects could be considered new in the overall

young field of robotics. This thesis advances a new view for each subject.

In the context of robot motion control, a task is defined as a desired kinematic or dynamic property

in the robot (e.g position of hand, forces applied on manipulated object, direction of cameras, etc). For

robotic arms with a few degrees of freedom, we may find analytical formulas giving the unique control

satisfying a desired task. For highly-articulated structures like humanoid robots, the kinematic structure



is often redundant with respect to a task, offering an infinity of possible controls to choose from. One

efficient way of solving the problem of control in redundancy is by identifying a task to the minimum of

a convex cost function that can be reached using a numerical algorithm. If we wanted to take advantage

of the redundancy of the system and assigned several tasks at a time, we could still resort to the same

algorithm and minimize the sum of the cost functions associated with the tasks. However, if the tasks

became conflicting, the numerical algorithm could lead to a robot state where none of them are satisfied.

To avoid such situations, it has been proposed to strictly prioritize tasks so that when such a conflict

occurs, the algorithm should privilege the task with higher priority. Such a prioritization of a task A over

a task B has been modeled in [Liégeois 1977] as the control for task B within the set of controls satisfying

task A. The framework was further developed in [Nakamura 1990] and extended to any number of tasks

in [Siciliano and Slotine 1991; Baerlocher and Boulic 1998], with illustrations in velocity-based [Yoshida

et al. 2006; Mansard and Chaumette 2007; Neo et al. 2007] and torque-based [Khatib et al. 2004] control

of humanoid robots.

This classical prioritization algorithm presents an important shortcoming: its original design is

unable to consider unilateral constraints, inequalities. And physical systems are always subject to

such constraints, due to bounded control values, limited freedom of motion because of obstacles, etc...

Sometimes, tasks can also be expressed more rigorously with inequalities. For example, the task

“Walk through this corridor” is equivalent to “Go forward while staying in the region delimited by

the walls of the corridor”. Some workarounds have been proposed, associating for example to each

inequality constraint an artificial potential function which generates control forces pushing away from

the constraint [Khatib 1986; Marchand and Hager 1998; Chaumette and Marchand 2001], yet inequality

constraints would appear then to have the lowest priority. To address this problem, it has been proposed

[Mansard et al. 2008] to calculate a weighted sum of controls, each correpsonding to a stack of prioritizd

tasks where a subset of inequality constraints is treated as equality constraints. The main problem with

the algorithm is its exponential complexity in the number of inequalities. In a third approach, a Quadratic

Program (QP) is used to optimize a sum of cost functions, each one associated with a desired task, under

strict equality and inequality constraints [Zhao and Badler 1994; Hofmann et al. 2007; Decré et al. 2009;

Salini et al. 2009]. However, this approach can consider only two priority levels, the level of tasks that

appear as strict constraints of the QP, and the level of tasks that appear in the optimized cost function.

We strived to overcome this limitation.

The first outcome of this thesis work is a generalized prioritization algorithm for both equality

and inequality tasks for any type of control parameters.

The second part of the work focused on task-driven locomotion planning. In the literature, locomotion

planners that are free of ad-hoc strategies are exclusively relying on probabilistic search algorithms. In

this approach, the parameters of the problem are found by random exploration of the entire parameter

space. A first application for humanoid robots was shown by [Kuffner et al. 2002] to build dynamically

stable joint motion with a single foot displacement. [Escande et al. 2009] used the same class of

algorithms to plan successive contact ports between the robot and its environment yielding the desired

robot task. With the increase of average precessing power, applying search algorithms on high-



dimensional systems such as humanoid robot has become affordable. Nonetheless, we believe that these

powerful methods should be saved for complex situations where a local strategy does not suffice.

Some works attempted a different use of random search algorithms[Yoshida et al. 2007; Diankov

et al. 2008]. The humanoid is viewed as a wheeled robot that must join a goal position and orientation

linked to the task in mind. The search algorithm is parametrized to guarantee collision-free stepping

along the solution path. An independent method takes over to plan stable stepping motions along the

path. The advantage of this approach is the reduction of the dimension of the problem down to three

(two translations and one rotation for each node of parameters in the searched space). It needs, however,

a reliable inference of the goal position and orientation from the task and the robot’s geometry. In a trial

to compensate for this drawback, a two-time strategy has been proposed by[Yoshida et al. 2007]: first

infer a gross goal position and orientation for the given task, then plan a path to it and finally determine if

there is a need to fine-tune the position and orientation by a single step based on a task-specific strategy.

The advantage of this method is to tackle the problem in progressive difficulty. Nonetheless, the series

of subproblems suffers from the performance of the weakest link which is the final local strategy used to

adjust the stance.

The second outcome of this thesis work is a generic task-driven local footsteps planner that will

advantageously replace any task-specific or robot-specific strategy on a flat terrain.

1.3 Outline of the thesis

In chapter 2, the classical prioritized inverse kinematics framework is reviewed for velocity-resolved

control of kinematic structures. The algorithms of this framework will be closely related to optimization

formulations. Definitions of equality tasks and constraints will also be given.

In chapter 3, we generalize the prioritization framework to any set of equality and inequality tasks and

constraints. We will pose the optimization problems and characterize the corresponding solution sets.

We end this chapter by giving a stage-by-stage resolution algorithm, as in the classical prioritization

framework.

In chapter 4 we illustrate the generalized framework with two scenarios for the humanoid robot HRP-

2. The scenarios are based on several tasks and constraints which are also presented along with useful

calculus for the numerical resolution. Attention will be especially put on collision avoidance and relaxed

center of mass constraints

In chapter 5, a dynamic walk planning method is reviewed. We will present a contribution lying in the

merger of two frameworks: numerical inverse kinematics and Zero-Momentum-Point-based control of

dynamic biped walk. In the robot experiments that illustrate this work, only dedicated stepping strategies

are designed to help tasks as needed.

In chapter 6, we are ready to formulate and solve the problem of interest: where to stand and what

footsteps to adopt to carry out the requested tasks. We will use the algorithm presented in chapter 3 and



the tasks and constraints displayed in chapter 4 to formulate an inverse kinematics problem. We will

illustrate the efficiency of this methods through a variety of scenarios.

In the final chapter, we exploit whole-body motion generation reviewed in chapters 3 and 4, the

footsteps planner seen in chapter 6 and the locomotion planner from chapter 5 to design a local planning

component for humanoid robots on flat terrain.

1.4 Associated publications and software

Publications

Kanoun O., Yoshida E. and Laumond J-P. “An optimization formulation for footsteps planning” IEEE-

RAS International Conference on Humanoid Robots, 2009

Kanoun O., Lamiraux F., and Wieber P.B. “Prioritizing linear equality and inequality systems:

application to local motion planning for redundant robots” IEEE International Conference on Robotics

and Automation, 2009

Yoshida E., Kanoun, O., Esteves Jaramillo C., and Laumond J.P. “Task-driven support polygon

reshaping for humanoids” IEEE-RAS International Conference on Humanoid Robots, 2006

Yoshida E., Mallet A., Lamiraux F., Kanoun O., Stasse O., Poirier M., Dominey P.F., Laumond J.P.

and Yokoi K “”Give me the purple ball” - he said to HRP-2 N.14” IEEE-RAS International Conference

on Humanoid Robots 2007

Kanehiro F., Lamiraux F., Kanoun O., Yoshida E. and Laumond J.P. “A local collision avoidance

method for non-strictly convex objects” Robotics: Science and Systems Conference 2008

Yoshida E., Poirier M., Laumond J.P., Kanoun O., Lamiraux F., Alami R. and Yokoi K.“Whole-body

motion planning for pivoting based manipulation by humanoids” IEEE International Conference on

Robotics and Automation 2008

Kanehiro F., Yoshida E., Lamiraux F., Kanoun O. and Laumond, J.P. “A local collision avoidance

method for non-strictly convex object” (in japanese) Journal of the Robotics Society of Japan 2008

Yoshida E., Laumond J.P., Esteves Jaramillo C., Kanoun O., Sakaguchi T., and Yokoi K. “Whole-

body locomotion, manipulation and reaching for humanoids” Lecture Notes in Computer Science 5277,

Springer, 2008, ISBN 978-3-540-89219-9



Yoshida E., Poirier M., Laumond J.P., Kanoun O., Lamiraux F., Alami R. and Yokoi K. “Regrasp

planning for pivoting manipulation by a humanoid robot” IEEE International Conference on Robotics

and Automation 2009

Created software

hppGik : is a software implementing primarily a prioritized equality system solver (Problem 2.19,

Algorithm 2). A second solver dedicated to prioritized inverse kinematics is built on top (Algorithm

3). Joint limits are taken into account following (2.22). Singularities are with using either the regulated

pseudo-inversion (2.10) or the thresholded one (2.9). A set of equality tasks (body position, orientation,

parallelism, plane, posture, gaze direction and center of mass position) is also implemented. The

dynamic walk generation based on ZMP trajectory planning (section 5.1.4) is also integrated. There

are objects that enable the user to program desired tasks on a time line, including dynamic locomotion

tasks expressed as step tokens, and launch the batch resolution of the entire time line.

hppHik : is a software that implements the novel linear equality and inequality prioritization

(Algorithm 4). It is based on the a quadratic program solver courtesy of AEM-Design[Lawrence et al. ].

It implements the slack variable-based optimization of linear inequality systems (3.8).

hppLocalStepper : implements the footsteps planner (currently Block 1 of Algorithm 7 only). All

tasks presented in chapter 4 are implemented, including collision avoidance and static equilibrium with

a deformable robot support polygon.



2
Classical prioritized inverse kinematics

2.1 Definitions

Kinematics is a branch of mechanics that studies the motion of solid particles without consideration of

their inertia and the forces acting on them. To introduce inverse kinematics let us consider the kinematic

chain composed of three links represented in figure 2.1.

q
2

q
1

q
3

l
1

l
2 l

3

O

M

x

y

P

Figure 2.1: A three-link kinematic chain

Three rotation joints make the chain move in the plane (O,~x,~y), where the position of the point M is

:

−−→
OM =

(

xM

yM

)

=

(

l1cos(q1)+ l2cos(q1 +q2)+ l3cos(q1 +q2 +q3)

l1sin(q1)+ l2sin(q1 +q2)+ l3sin(q1 +q2 +q3)

)

(2.1)
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Calculating the position of M, tip of the third link, from the joint configuration (q1,q2,q3) is a

forward kinematics problem. It consists in evaluating a property of the chain in the work space given the

configuration of the chain in the joint space, whose dimension equals the number of degrees of freedom

of the kinematic structure. Inverse kinematics designates the opposite problem consisting in finding a

configuration fulfilling certain properties, for instance positioning the tip M at the point P.

Considering any kinematic structure with n degrees of freedom, we define its configuration:

q = (q1, · · · ,qn) ∈ℜn

and express desired values for some kinematic properties, which can be written without loss of generality

as:

x(q) =~0 (2.2)

where:

x : ℜn −→ ℜm

q 7−→ x(q)

is the m-dimensioned vectorial function defining a kinematic property. For a configuration q of the

structure, if (2.2) is verified and is to be kept, it can be interpreted as a kinematic equality constraint.

In the opposite case where the relationship is not yet fulfilled, we may call it a kinematic equality task.

A task expressed as (2.2) is often a non linear function of q that does not admit a trivial inverse. In

complex kinematic structures such as humanoid robots, the degrees of freedom relevant to a given task

often exceed in number the dimension of the task. For such systems we resort to numerical methods to

solve inverse kinematics problems.

2.2 Differential kinematics

By differential kinematics[Nakamura 1990] we refer to the iterative process of computing small

configuration updates for kinematic structure to converge towards a state that achieves a given task.

This process is also known as the Newton-Raphson algorithm applied to inverse kinematics. The tasks

we consider here are differentiable vector functions of the joint configuration.

By computing the jacobian of the task J = ∂x
∂q

(q), we can calculate configuration updates δq to make

the task value converge towards x(q) = 0. These joint updates are solution of the following linear

differential equation [Liégeois 1977]:

Jδq =−λx(q) (2.3)

where λ is a positive real number. To simplify the notations, we define:

δx (q,λ ) =−λx(q)



0 x(q)q0

x(q0)

q1

x(q1)

q2

q*

Figure 2.2: Newton-Raphson iterations to solve x(q) = 0

and rewrite the previous equation simply as:

Jδq = δx (2.4)

The relationship (2.4) is a system of linear equations for which a solution might not always exist,

depending on the rank of J. If J keeps a full rank, successive updates make the configuration converge

to q∗ satisfying x(q∗) = 0. We illustrate this process (Algorithm 1) in figure 2.2 using a simple function

mapping a 1D configuration space to a 1D workspace.

Algorithm 1 Numerical inverse kinematics for a single task T (q) = 0

1: Define εp > 0 the minimum task value progression required to continue

2: Initialize p > εp

3: while p > εp do

4: Evaluate T0 ← ‖T (q)‖
5: Calculate jacobian of T (q): JT

6: Solve JT δq =−λT (q) in δq

7: Update configuration q ← q+δq

8: Evaluate T1 ← ‖T (q)‖
9: Calculate task progression: p = T0−T1

10: end while

We suppose that J has full rank (the opposite case is studied in next section). The solution of the

linear system (2.4) form an affine subspace of ℜn. For instance, in case n = 3 this affine subspace is

either a point, a line, a plane or the whole space ℜ3. One way of calculating a point in that subspace is to

orthogonally project the origin of the updates space on the affine subspace. This projection is the result

of the following minimization: 





min
δq

|δq‖2

s.t Jδq = δx
(2.5)



which yields:

δq = J#δx

= JT (JJT )−1δx
(2.6)

J# is called the pseudo-inverse of J. A solution to the linear system (2.4) in general can be written as:

δq = J#
δx+(I− J#J)z (2.7)

where z is any vector in ℜn. The operator (I− J#J) is the projector along the direction of the affine

subspace of solutions. Figure 2.2 illustrates the components of the general form.

Jδq=δx
(I-J#J)z

J#δx

z

Figure 2.3: The plane represents the solutions to a linear equality in a 3D space

When the linear system (2.4) is over-constrained, the minimization of ‖Jδq− δx‖2 is considered

instead, yielding the solution:

δq = (JT J)−1JT δx (2.8)

2.3 Local extrema, or singularities

Gradient descent methods, such as Newton-Raphson algorithm, are subject to local extrema. Consider

for example the case represented in figure 2.4. The function x has a local minimum whose neighborhood

does not intersect the subspace x(q) = 0. At the minimum, the jacobian becomes singular, the product

JJT gives an ill-conditioned matrix, which results in the divergence of the numerical method (see how

q2 falls far from the local optimum).



0

x(q)

q0

x(q0)

q1q2

Figure 2.4: Divergence of Newton-Raphson algorithm near singularity

Near singularity, one method[Nakamura 1990] to avoid divergence is to perform a singular value

decomposition on J and only invert the well conditioned part, discarding the singular directions. To do

so, we decompose J as:

J = U







σ1

. . .

σm







V T

then cancel the singular values below a chosen threshold and invert the ones above

J# = V

(

Σ−1 0

0 0

)

UT (2.9)

A second method[Nakamura and Hanafusa 1986] consists in replacing the optimization problem (2.5)

by the following: 





min
w,δq

‖w‖2 + k2‖δq‖2

s.t Jδq−δx = w
(2.10)

where k is a scalar. Minimizing the first part of the objective function tends to satisfy the linear constraint

while minimizing the second part tends to keep a null update. Unless the linear constraint admits the null

vector as solution, in which case it represents the optimum, the outcome of the optimization is a joint

update with smaller norm than the one from (2.6). The importance of the second part of the objective

function is scaled with k, directly influencing the norm of the optimal point, which is given by the

formula:

δq = JT (JJT + k2I)−1
δx (2.11)

The factor k2 amplifies all eigen values of JJT thus regulating the pseudo-inversion. To picture this

process, consider a real function x and the tangent to its curve at point (x0,y0):

x′(q−q0) = x− x0



When the derivative of x is not null, damping the inverse of x by a factor k2 changes the tangent to:

(x′)2 + k2

x′
(q−q0) = x− x0

We illustrate in figure 2.5 the effect of factor k2 on the tangents near the singularity.

0

x(q)

Figure 2.5: Regulated pseudo-inversion: steeper tangents prevent large joint updates near singularity.

2.4 Prioritization

Figure 2.6: One target has to be prioritized to prevent failing both grasps.

Suppose that we seek the completion of two tasks x1(q) = 0 and x2(q) = 0 and that we cannot assess their

feasibility without resorting to numerical resolution. Suppose, furthermore, that task 1 is more important

that task 2. We derive the linear equations for differential kinematics:

J1δq1 = δx1 (2.12)

J2δq2 = δx2 (2.13)



Equation (2.12) has an affine subspace of solutions:

{
δq ∈ℜn s.t δq = J1

#
δx1 +(I− J1

#J1)z, z ∈ℜn
}

(2.14)

To express the absolute priority of task 1 with respect to task 2, δq is replaced in (2.13) giving the linear

system:

δx2− J2J1
#
δx1 = J2(I− J1

#J1)z (2.15)

Defining N1 = (I− J1
#J1) and δq1 = J1

#δx1, the above linear system is solved in z:

{

min
z
‖δ z‖2

s.t δx2− J2δq1 = J2N1z
(2.16)

yielding:

δq = J1
#
δx1 +N1(J2N1)

#(x2− J2δq1)

which can be simplified to ([Nakamura 1990]):

δq =

δq2
︷ ︸︸ ︷

J1
#
δx1

︸ ︷︷ ︸

δq1

+(J2N1)
#(x2− J2δq1) (2.17)

Figure 2.4 shows a representation of the successive orthogonal projections that lead to δq. To express

the priorities, the second linear system is solved within the solutions of the first linear system, hence the

second projection occurring inside the plane defined by the solutions of the first system. In case the tasks

J
1
δq=δx

1
δq

1

J
2
δq=δx

2

δq
2

δq

Figure 2.7: Compatible tasks. The linear equality systems are compatible thus a solution satisfying both

is found by successive pseudo-inversions.

are conflicting the union of linear systems is singular. The joint update δq satisfies the first linear system

and cannot satisfy the second. The regulated (2.11) or truncated (2.9) pseudo-inversion of the second

linear system ensures that the singularity does not yield a large update. The effect of both methods is
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(a) Regulation of the second pseudo-inversion gives a

point between the solution to the first linear system

and the solution to the normal pseudo-inversion of the

second linear system.

J
1
δq=δx

1
δq

1

J
2
δq=δx

2

δq
2
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(b) Truncation of singular directions. The projection

of the red line onto the plane represents the set of

solutions to the truncated system.

Figure 2.8: Conflicting tasks. The red line represents the solutions of the linear system corresponding to

the second task. The singularity of second task is represented by the near parallelism of the red line and

the plane.

shown in figure 2.4.

The prioritization process is straightforwardly generalized to a set of k tasks. At priority level i, the

solved optimization problem is:







min
w,δqi

‖w‖2 + ki
2‖δqi‖2

s.t JiNi−1δqi− (δxi− Jiδqi−1) = w
(2.18)

Based on this generalization, Algorithm 2 describes the steps taken to solve a set of prioritized linear

equality systems. We propose the following compact formulation of the problem solved by this

algorithm:

Find δq∗ solution to the optimization problem:







min
δq∈Sk

‖δq‖2

s.t S0 = ℜn

Si = Argmin
δq∈Si−1

‖Jiδq−δxi‖2

(2.19)

Algorithm 2 calculates an update that acts on the values of all tasks simultaneously. Between two

consecutive stages ranked i and i+1, the joint update is modified to take into account the tasks at priority

level i without compromising the the tasks from level 1 to i−1. Like for the single task case, the linear

systems derived from the prioritized tasks are repeatedly solved by Algorithm 2 until convergence. The

convergence criterion takes into account all the tasks and observes their priority. It is shown in Algorithm

3.



Algorithm 2 Solve k prioritized linear equality systems

1: n is the dimension of the kinematic structure

2: N0 ← I (n by n identity matrix)

3: δq ← 0 (n-sized null vector)

4: for i = 1 to k do

5: Calculate linear equality system (Ji, δxi)

6: Ĵi ← JiNi−1

7: Calculate pseudo-inverse Ĵ#
i

8: δqi ← Ĵ#
i (δxi− Jiδqi−1)

9: δq ← δq+δqi

10: Ni ← Ni− Ĵ#
i Ĵi

11: end for

2.5 Handling inequality constraints

Numerical inverse kinematics are used to control the motion of virtual characters, humanoid robots,

etc. Most actuators on robotic systems only allow for a bounded range of motion between the connected

bodies. Virtual characters also require joint limits to be observed for realism. Joint limits are naturally

expressed as inequality constraints on the configuration:

in f (q)≤ q≤ sup(q) (2.20)

and translate to joint update space as:

in f (q)−q≤ δq≤ sup(q)−q (2.21)

which define an admissible convex volume in joint space outside of which a point corresponds to an

update that would violate the joint limits. Naturally, the desired bounds for δq may be more constraining

than in (2.21). From a geometrical point of view, pseudo-inversion is the computation of the orthogonal

projection of a point onto an affine subspace. Nothing prevents the coordinates of the projection to fall

outside the convex volume allowed by inequalities (2.21). Nonetheless, pseudo-inversion of a linear

equality system is a fast operation that can be afforded for online robot control, animation of virtual

figures in movies and video games. Therefore, modified versions of Algorithm 2 were proposed to

account for joint limits.

One solution is to replace the optimization problem at every priority stage by the following one:







min
δq

δq
T
Wδq

s.t Jδq = δx
(2.22)



Algorithm 3 Numerical inverse kinematics for k prioritized tasks {T1(q) = 0, ...,Tk(q) = 0}
1: Define εp the minimum task progression required to continue

2: Call p the measure of task value progression

3: repeat

4:

5: for i from 1 to k do

6: Calculate value of task i: T 0
i (q)

7: end for

8:

9: Solve the k prioritized linear systems [Algorithm 2]

10: Update configuration q ← q+δq

11:

12: for i from 1 to k do

13: Calculate value of task i: T 1
i (q)

14: Evaluate progression p = T 1
i (q)−T 0

i (q)
15: if p > εp then

16: break.

17: end if

18: end for

19:

20: until p < εp

W is a positive diagonal n-by-n matrix. The objective function here affects each degree of freedom in the

configuration q with a weight wi. To emphasize this, the objective function can be written as:

n

∑
i=1

wi
δq

i2

where δq
i

and wi are the i-th component of δq and w respectively. The larger the weight wi, the more

|δq
i| is minimized with respect to other coordinates, hence the idea: if

dqi

dt
> 0 and qi is close enough

to sup(q) then wi can be gradually increased to reduce the norm of δqi, making the corresponding joint

brake before violating the upper limit. The same reasoning holds for the lower limit. The analytical

solution to problem (2.22) is:

δq = J#
W δx

= W−1JT (JW−1JT )−1δx
(2.23)

The weighted pseudo-inverse J#
W is what we would have obtained from the simple pseudo-inversion of

the system:

J
√

W−1δq = δx (2.24)

Expanding above equation into:
n

∑
i=1

1√
wi

∂x

∂qi
δqi = δx (2.25)

we could observe that the factor 1√
wi

scales the partial derivative of the task x, acting as brakes or

accelerator on the coordinate qi. The performance of this method relies essentially on the tuning of



the parameters wi with respect to the state of the kinematic structure.

The above method does not address the general case where any inequality constraint on δq might be

considered. For example, bounding the velocity of a point P in the work space along vector d to remain

below a maximal value c is written as:

dT
δP(q)≤ c

from which an inequality constraint on the joint update follows:

dT JPδq≤ c

where JP is the jacobian of the position of point P with respect to q.

There are solutions proposed by [Baerlocher 2001; Peinado et al. 2005] to account for linear inequality

constraints within Algorithm 2. The inequality constraints are monitored after each priority stage and

if violated, the stage is re-computed while taking the violated inequality constraints as hard equality

constraints. This is the principle of active set algorithm. Supposing that priority stage i sees the system

of inequality constraints Aδq ≤ b violated, the following optimization problem is solved instead of the

usual problem (2.18):






min
w,δqi

‖w‖2 + ki
2‖δqi‖2

s.t JiNi−1δqi− (δxi− Jiδqi−1) = w

Aδq = b

(2.26)

The resolution of 2.26 is repeated until the solution update of stage i, δqi, satisfies all the inequality

constraints. The algorithm resumes its normal course afterward.

The main drawback of the method is the nested loop of pseudo-inversions that must be done at

every stage to enforce the inequality constraints . There are more efficient algorithms to solve linearly

constrained optimization problems with quadratic costs. As a matter of fact, other works[Zhao and

Badler 1994; Faverjon and Tournassoud 1987] resorted to these algorithms. However, the separation of

tasks into discrete priority levels was not available and the authors resorted to weighted sums of objective

functions corresponding to several simultaneous tasks, such as:







min
δq

∑
k
i=1 wi‖Jiδq−δxi‖2

s.t Aδq = b

Bδq≤ c

(2.27)

The weighted objective function does not permit strict enforcement of priority. When two of the

linear systems represented in the objective function cannot be solved simultaneously, the solution to

the minimization problem is a trade-off update that satisfies neither of the systems.





3
Generalizing priority to inequality tasks

3.1 Inequality task definition

Inequality tasks differ from inequality constraints in the way equality tasks differ from equality

constraints. For a kinematic structure with n degrees of freedom, we have a differentiable kinematic

property g : q 7−→ g(q) whose values are desired below a certain threshold, expressed without loss of

generality in the following inequality:

g(q)≤ 0 (3.1)

For a configuration q of the structure, if (3.1) is verified and is to be kept, it can be interpreted as a

kinematic inequality constraint. In the opposite case where the relationship is not yet fulfilled, we may

call it a kinematic inequality task.

One trivial example of inequality task can be g(q) = Hz(q)− 0.5 where Hz(q) is the height of the

robot hands from the ground. In this example, the task Hz(q)− 0.5 ≤ 0 requires the hands to be below

the horizontal plane of equation z = 0.5. Inequality tasks may be solved with Newton-Raphson algorithm

like equality tasks through an iterative resolution of a linear differential system of inequalities. Defining

Jg = ∂g
∂q

(q), we write the system to solve at a given configuration q:

Jgδq≤−λg(q) λ ∈ℜ+∗ (3.2)

19



The method of resolution of such systems is detailed in the next section. Continuing with the above

example on the hand, equation (3.2) gives the following inequality:

∂Hz

∂q
δq≤−λ (Hz(q)−0.5)

For a constant value of λ and when the height of hands is below 0.5, the above equation sets a decreasing

upper bound on the vertical hand velocity, a bound that is equal to 0 for z = 0.5. Above the plane, the

upper bound is negative and the plane z = 0.5 acts as an attractor.

A linear inequality, when it has solutions, defines a halfspace. The set of solutions of a system of linear

inequalities is the intersection of the half spaces generated by its inequalities. This set is a volume of ℜn

bounded by a convex polytope which may be closed or infinite (for example a half space is infinite). See

figure 3.1 for an illustration of a system of linear inequalities in ℜ2.

I
1

I
2

I

x
2

x
1

Figure 3.1: The linear inequalities y≥ x and y≥−x determine the filled convex polytope.

One might observe that any equality task f (q) = 0 can be expressed as two simultaneous inequality

tasks, f (q) ≥ 0 and f (q) ≤ 0. Therefore inverse kinematics problems expressed as inequalities engulf

those that use equalities. One attractive aspect of inequalities is the possibility to specify a range or a

bounding on a kinematic property. What remains to be constructed is a framework that authorizes the

strict prioritization of inequality and equality tasks in any order. One may wonder about the scenarios

that require the inequality tasks to be at lower priority than equalities. Consider for example a humanoid

robot which has to grasp an object seen with embedded cameras. It is best if its reaching hand does not

come between the cameras and the object too soon. This is because we would like to keep checking the

visual target to maximize the chance of a successful grasp. In this scenario, the robot has to accomplish

a primary reaching task and a secondary region-avoidance task.



3.2 Description of the approach

Affecting priorities to linear systems means that we leave some of the systems unsolved to respect

the ones with higher priorities. Letting L1 and L2 be two linear systems without common solutions,

prioritizing L1 over L2 means that we retain a solution which satisfies L1 to the expense of L2.

Nonetheless, to take into account L2, one may select a solution of L1 which minimizes the euclidean

distance to L2’s solutions set. Euclidean distance is one example of optimality criterion adapted to

systems of linear equalities. As a matter of fact, a point realizing this shortest distance belongs to

the orthogonal projection of L2’s solutions on L1’s and can be obtained analytically. Furthermore, the

entire set of points realizing the shortest distance may also be determined analytically [Nakamura 1990;

Siciliano and Slotine 1991]. To solve a third system of linear equalities L3, the resolution is done within

L2’s optimal set.

L
1

L
2

M

P

Figure 3.2: The primary linear equality L1 and a secondary system of 3 linear inequalities L2 are without

common solutions. M and P are solutions of L1 minimizing the euclidean distance to L2’s set, however,

P should be preferred since it satisfies two inequalities out of three while M satisfies none.

For our problem, we adopt the same approach consisting in solving every linear system in the optimal

set defined by higher priorities. When we introduce systems of linear inequalities, however, we introduce

solution sets which are volumes of ℜn bounded by convex polytopes. In this particular case, euclidean

distance is not a good optimality criterion (Figure 3.2). Therefore, we start by mapping equality and

inequality tasks to suitable optimality criteria and study the nature of generated sets of solutions. We

prove that the optimizations result in sets that can be described with linear systems and we deduce a

resolution algorithm that is relatively easy to implement. This algorithm intended to prioritize inverse

kinematics tasks can be straightforwardly applied to any problem involving the prioritization of a set of

linear equality and inequality systems, regardless of the type of parameters. For this chapter, we will

abandon the notations J and δq to emphasize the generality of the algorithm.

3.3 Mapping linear systems to optimization problems

In this section we construct optimization problems to solve each type of linear system. For each problem,

we demonstrate the nature of the optimal set.



Let A and C be matrices in ℜm×n and b and d vectors in ℜm with (m,n) ∈ N
2. We will consider in

the following either a system of linear equalities

Ax = b (3.3)

or a system of linear inequalities

Cx≤ d (3.4)

or both. When m = 1, (3.3) is reduced to one linear equation and (3.4) to one linear inequality.

3.3.1 System of linear equalities

When trying to satisfy a system (3.3) of linear equalities while constrained to a non-empty convex set

Ω⊂ℜn, we will consider the set Se of optimal solutions to the following minimization problem:

min
x∈Ω

1

2
‖w‖2 (3.5)

with

w = Ax−b. (3.6)

Since the minimized function is coercive, the set Se is non-empty. We also have the property:

x1,x2 ∈ Se⇔ x1,x2 ∈Ω and Ax1 = Ax2, (3.7)

from which we can conclude that the set Se is convex.

Proof: Let us consider an optimal solution x∗ to the minimization problem (3.5)-(3.6). The gradient

of the minimized function at this point is

AT (Ax∗−b).

The Karush-Kuhn-Tucker optimality conditions give us that the scalar product between this gradient and

any vector v not pointing outside Ω from x∗ is non-negative,

w∗T Av≥ 0

with

w∗ = Ax∗−b.

Let us consider now two such optimal solutions, x∗1 and x∗2. Since the set Ω is convex, the direction x∗2−x∗1
points towards its inside from x∗1, so we have

w∗T1 A(x∗2− x∗1)≥ 0

which is equivalent to

w∗T1 w∗2−‖w∗1‖2 ≥ 0.



The same can be written from x∗2,

w∗T2 w∗1−‖w∗2‖2 ≥ 0,

so that we obtain

‖w∗2−w∗1‖2 = ‖w∗2‖2 +‖w∗1‖2−2w∗T2 w∗1 ≤ 0,

but this squared norm cannot be negative, so it must be zero and w∗2 = w∗1, what concludes the proof. �

In the unconstrained case, when Ω = ℜn, the solutions of (3.5)-(3.6) are such that AT Ax∗ = AT b.

This minimization problem corresponds therefore to a constrained pseudo-inverse solution of the system

of linear equalities (3.3).

3.3.2 System of linear inequalities

When trying to satisfy a system (3.4) of linear inequalities while constrained to a non-empty convex set

Ω⊂ℜn, we will consider the set Si of optimal solutions to the following minimization problem:

min
x∈Ω,w∈ℜm

1

2
‖w‖2 (3.8)

with

w≥Cx−d, (3.9)

where w plays now the role of a vector in ℜm of slack variables. Once again, since the minimized

function is coercive, the set Si is non-empty. Considering each inequality c jx ≤ b j of the system (3.4)

separately, we also have the property:

x1,x2 ∈ Si⇔ x1,x2 ∈Ω and

∀ j

{

c jx1 ≤ d j⇔ c jx2 ≤ d j,

c jx1 > d j⇒ c jx1 = c jx2,
(3.10)

which means that all the optimal solutions satisfy a same set of inequalities and violate the others by a

same amount, and from which we can conclude that the set Si is convex.

Proof: Let us consider an optimal solution x∗, w∗ to the minimization problem (3.8)-(3.9). The

Karush-Kuhn-Tucker optimality conditions give that for every vector v not pointing outside Ω from x∗,

w∗TCv≥ 0

and

w∗ = max{0,Cx∗−d}. (3.11)

This last condition indicates that if an inequality in the system (3.4) is satisfied, the corresponding

element of w∗ is zero, and when an inequality is violated, the corresponding element of w∗ is equal

to the value of the violation.

Let us consider now two such optimal solutions, x∗1, w∗1 and x∗2, w∗2. Since the set Ω is convex, the



direction x∗2− x∗1 points towards its inside from x∗1, so we have

w∗T1 C(x∗2− x∗1)≥ 0

which is equivalent to

w∗T1 (Cx∗2−d)−w∗T1 (Cx∗1−d)≥ 0.

The optimality condition (3.11) gives

w∗T1 w∗2 ≥ w∗T1 (Cx∗2−d)

and

w∗T1 w∗1 = w∗T1 (Cx∗1−d),

so we obtain

w∗T1 w∗2−‖w∗1‖2 ≥ 0.

The same can be written from x∗2,

w∗T2 w∗1−‖w∗2‖2 ≥ 0,

so that we obtain

‖w∗2−w∗1‖2 = ‖w∗2‖2 +‖w∗1‖2−2w∗T2 w∗1 ≤ 0,

but this squared norm cannot be negative, so it must be zero and w∗2 = w∗1, what concludes the proof. �

3.3.3 Mixed system of linear equalities and inequalities

We can observe that systems of linear equalities and systems of linear inequalities are dealt with

optimization problems (3.5)-(3.6) and (3.8)-(3.9) which have similar lay-outs and similar properties (3.7)

and (3.10). The generalization of these results to mixed systems of linear equalities and inequalities is

therefore trivial and we will consider in the following the minimization problem (in a more compact

form)

min
x∈Ω,w∈ℜm

1

2
‖Ax−b‖2 +

1

2
‖w‖2 (3.12)

with

Cx−w≤ d. (3.13)

The set of solutions to this minimization problem shares both properties (3.7) and (3.10).

3.4 Prioritizing linear systems

3.4.1 Formulation

Let us consider now the problem of trying to satisfy a set of systems of linear equalities and inequalities

with a strict order of priority between these systems. At each level of priority k ∈ {1, . . . p}, both a

system of linear equalities (3.3) and a system of linear inequalities (3.4) are considered, with matrices



and vectors Ak, bk, Ck, dk indexed by their priority level k. At each level of priority, we try to satisfy

these systems while strictly enforcing the solutions found for the levels of higher priority. We propose

to do so by solving at each level of priority a minimization problem such as (3.12)-(3.13). With levels of

priority decreasing with k, that gives:

S0 = ℜn, (3.14)

Sk+1 = Argmin
x∈Sk,w∈ℜm

1

2
‖Akx−bk‖2 +

1

2
‖w‖2 (3.15)

with Ckx−w≤ dk. (3.16)

3.4.2 Properties

A first direct implication of properties (3.7) and (3.10) is that throughout the process (3.14)-(3.16),

Sk+1 ⊆ Sk.

This means that the set of solutions found at a level of priority k is always strictly enforced at lower levels

of priority, what is the main objective of all this prioritization scheme.

A second direct implication of these properties (3.7) and (3.10) is that if Sk is a non-empty convex

polytope, Sk+1 is also a non-empty convex polytope, the shape of which is given in properties (3.7) and

(3.10). Figures 3.3 and 3.4.2 illustrate how these sets evolve in different cases. Classically, these convex

polytopes can always be represented by systems of linear equalities and inequalities:

∀k, ∃Āk, b̄k,C̄k, d̄k such that x ∈ Sk⇔
{

Ākx = b̄k

C̄kx≤ d̄k

With this representation, the step (3.15)-(3.16) in the prioritization process appears to be a simple

Quadratic Program with linear constraints that can be solved efficiently.

Note that when only systems of linear equalities are considered, with the additional final requirement

of choosing x∗ with a minimal norm, the prioritization process (3.14)-(3.16) boils down to the classical

problem 2.19.

3.4.3 Algorithms

The proposed Algorithm consists in processing the priority levels from highest to lowest and solving at

every level the corresponding Quadratic Program. The representation of the sets Sk by systems of linear

equalities and inequalities is efficiently updated then by direct application of the properties (3.7) and

(3.10).

It is naturally possible to optimize additional criteria over the final set of solutions. For instance, one

might be interested in the solution with minimal norm, or in the solution that maximizes the distance to

the boundaries of the optimal set, etc.
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Figure 3.3: Illustration of the optimal sets for prioritization problems involving both linear equality and

inequality systems.

Algorithm 4 Solve prioritized linear systems

1: Initialize the system of equalities Ā0, b̄0 to empty.

2: Initialize the system of inequalities C̄0, d̄0 to empty.

3:

4: for k = 0 to p−1 do

5:

6: Solve the Quadratic Program (3.15)-(3.16) to obtain Sk+1.

7:

8: Āk+1←
[

Āk

Ak

]

, b̄k+1←
[

b̄k

Akx∗k

]

.

9:

10: C̄k+1← C̄k, d̄k+1← d̄k.

11:

12: for all c
j

k in Ck do

13: if c
j

kx∗k ≤ d
j

k then

14:

15: C̄k+1←
[

C̄k+1

c
j

k

]

, d̄k+1←
[

d̄k+1

d
j

k

]

.

16:

17: else

18:

19: Āk+1←
[

Āk+1

c
j

k

]

, b̄k+1←
[

b̄k+1

c
j

kx∗k

]

.

20:

21: end if

22: end for

23: end for



Optimal set
Optimal setOptimal set

Figure 3.4: Equivalent of figure 3.3 in a 3D space.

Note that a similar algorithm has already been described by [Wolf 1996], but in the setting of

Constraint Programming on discrete variables: the structure and the logic are similar, but the inner

workings are very different, especially the theoretical analysis of section 3.3.

For an equality task f (q) = 0, the value of the task was implicitly defined in previous chapter as the

convex function:

q 7−→ ‖ f (q)‖ (3.17)

For an inequality task g(q)≤ 0, we use the convex value function:

q 7−→
√

∑
j

max(0,g j(q))2 (3.18)

with g j being the j-th inequality in g. This is perhaps better known as an exterior penalty function[Fiacco

and McCormick 1987] in the context of non-linearly constrained optimization. In case of a mixture of

equality and inequality tasks, for instance { f (q) = 0,g(q)≤ 0}, the sum of all value tasks is taken:

q 7−→ ‖ f (q)‖ +
√

∑
j

max(0,g j(q))2 (3.19)

Apart from this modification of the task values, the iterative process (see Algorithm 5) that solves k

prioritized equality or inequality tasks stays the same as in Algorithm 3.

3.4.4 Dealing with singularities

The proposed algorithm inherits the singularity issues from the classical algorithm based on pseudo-

inversion. Recall that the pseudo-inverse could be regulated or thresholded to ensure that the joint updates

do not diverge near singularity. In this new framework, we can take advantage of the same solutions.

Thus, at every priority stage of Algorithm 4, instead of solving the problem (3.15)-(3.16) we may choose



Algorithm 5 Solve k prioritized tasks (equality, inequality or mixture)

1: Define εp the minimum task value progression required to continue

2: Call p the measure of task value progression

3: repeat

4:

5: for i from 1 to k do

6: Calculate value of task i: T 0
i (q) using (3.17), (3.18) or (3.19)

7: end for

8:

9: Solve prioritized linear systems [Algorithm 4]

10: Update configuration q ← q+δq

11:

12: for i from 1 to k do

13: Calculate value of task i: T 1
i (q)

14: Evaluate progression p = T 1
i (q)−T 0

i (q)
15: if p > εp then

16: break.

17: end if

18: end for

19:

20: until p < εp

to solve:

Sk+1 = Argmin
x∈Sk,w∈ℜm

1

2
‖Akx−bk‖2 +

1

2
‖w‖2 +λ

2‖x‖2 (3.20)

with Ckx−w≤ dk (3.21)

where λ is a scalar. The following steps in Algorithm 4 are not modified. In figure (3.5) we illustrate the

effect of the proposed method in a 2D space.

Task(t+Δt)

Task(t)

x(t) x(t+Δt)

(a) The red line represents the solution

set of a linear equality system that is

singular with respect to feasible set,

represented as a blue triangle. Slight

variation of the red line may produce a

large difference in the optimal point x.

x(t)

x(t+Δt)

(b) Damping with factor λ 2‖x‖2

reduces the norm of x and

augments the dimension of the

optimal set (from the single

red point in (a) to the purple

segment).

x(t) x(t+Δt)

x(t+2Δt)

(c) Next time iteration sees

the optimal point x and the

optimal set change continuously,

provided the task is continuous.

Figure 3.5: Illustration of the effect of damping in problem (3.20)-(3.21) across successive time steps.



3.5 Conclusion

We have introduced inequality tasks as generalization to both inequality constraints and equality

tasks. We have defined a unified algorithm for linear equality and inequality system prioritization. This

algorithm can serve as a basis for numerical resolution of equality and inequality tasks regardless of the

type of parameters: joint velocities, torques, accelerations, etc.

For humanoid robot, the physical constrains that express as inequality constraints, such as joint limits,

non-collision with obstacles, static equilibrium, can be accounted for in a robust manner within our

framework. As for the concept of inequality tasks, it will permit a more relaxed specification of tasks

and we will give several examples thereof in the following chapter.





4
Illustration

4.1 A humanoid robot

The humanoid robot HRP-2 was used for our work. This robot can be modeled as a kinematic tree

of links, connected by joints. This kinematic model has 28 revolute joints of freedom and extra ones at

each hand to allow one-dimensional opening and closing. A link i in this model represents a solid body

in the robot with its shape, its mass mi and its inertial matrix Ii. A joint is the abstract object representing

a single degree freedom between a parent and one child link. The joint is characterized by a parameter

qk that determines the position and orientation of a child link k +1 with respect to the parent link k.

Figure 4.1: The humanoid robot HRP-2.
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Call:

• F a frame attached to the workspace

• Fk the frame attached to link k.

• Ok the center of frame Fi.

For a parent link k and its child link k +1, define:

• (Ok,ak) the axis of rotation of joint k.

• ak the unitary vector defining the positive rotation of joint k, expressed in Fk.

• bk the constant vector
−−−−→
OkOk+1 separating frames Fk and Fk+1, expressed in Fk.

• Rot(w,α) the rotation matrix representing a rotation around vector w by angle α .

• pk the position of point Ok in frame F

• Rk the rotation matrix defining the frame Fk in frame F

• wk the rotation vector equivalent to Rk, such that Rk = Rot( wk

‖wk‖ ,‖wk‖)

The position and orientation of link i child of link k can be calculated as:

pk+1 = pk +Rkbk

Rk+1 = Rk +RkRot(Rkak,qk)

With these formulas, any point in the kinematic structure can be computed recursively from the root

node of the tree of links, which can be any link. The humanoid robot having complete motion freedom in

space, the root node is considered linked to the environment by a 6-degree-of-freedom joint authorizing

any transformation. There are applications that require interruption of contact between the robot’s feet

and the ground, such as jumping and running. In such cases, the position and the rotation of every link in

the robot is known only if the root body’s are known. In the scope of this work, the robot is permanently

in non-slippery contact with a horizontal ground by one or both of its feet. Therefore, defining a root

node other that a support foot was redundant given the knowledge of the foot’s position and orientation

in the workspace.

When it is not possible to select the root node for a given reason (e.g constraint of implementation,

etc) Algorithm 6 can be used to compute the position and orientation jacobian of a frame with respect

to another, in the kinematic structure. Given that a support foot is considered in non-slippery contact

with the workspace, computing a jacobian with respect to the frame of a support foot is equivalent to

computing the jacobian with respect to F , the frame attached to the workspace. The jacobians used for

the differentiation of constraints and tasks presented in the next section rely on such computations.



Algorithm 6 Compute the jacobian of pi and wi in frame F with respect to frame Fk

1: Find the chain of joints A from root link to link i

2: Find the chain of joints B from root link to link k

3: C = A∪B−A∩B is the set of joints between links i and k

4: for all c ∈C do

5: Calculate the rotation vector a of joint c in frame F according to case:

6: if c ∈ A then

7: a = Rcac

8: else

9: a =−Rcac

10: end if

11: Position part:

12:
∂ pi

∂qi
= a× (pi−Oc)

13: Orientation part:

14:
∂wi

∂qi
= a

15: end for

4.2 Constraints and tasks

Posture and limits

The simplest expressions of a kinematic tasks are:

q−qre f = 0 (4.1)

or

q−qre f ≤ 0 (4.2)

with qre f being a reference vector in ℜn. The posture task in equality type are usually placed at the lowest

priority level in the stack of prioritized tasks, acting like a constant attractor for a preferred configuration.

In inequality, it can be used to define a range of preferred postures, yet the most common use is as

constraint to observe joint limits.

0

qmin

qmaxqmaxs
qmaxi

qmins

qmini

|δq|max

−|δq|max

Figure 4.2: Bounding joint updates to enforce joint limits.

To enforce the joint limits described by the double inequality, qmin ≤ q ≤ qmax, we place bounds on

the absolute value of the joint updates such that the update is gradually decreased to 0 when the joint

parameter value is almost to its limit. We implement this approach by setting the differential system of



inequalities as a prior constraint for any prioritized optimization problem:

δq≤
{

|δq|max
q−qmaxs

qmaxi
−qmaxs

if q > qmaxi

|δq|max otherwise
(4.3)

−δq≤
{

|δq|max
q−qmins

qmini
−qmins

if q < qmini

|δq|max otherwise
(4.4)

where qmini
, qmaxi

, qmins
, qmaxs

and |δq|amx are as implicitly defined by figure 4.2.

Position and orientation

The most common tasks and constraints involve positions and orientations of bodies in the robot. To

express an inequality task on the position and the orientation of a frame Fk, we write:

pk = pre f

Rk = Rre f

where pre f and Rre f are the desired position and rotation matrix for Fk. Call wgap the rotation vector such

that RT
k Rre f = Rot(

wgap

‖wgap‖ ,‖wgap‖). The linear equality system to be fulfilled write as:

Jkδq = λ

[

pre f − pk

Rkwgap

]

(4.5)

where J is the full jacobian of the non-root foot’s frame calculated for instance with Algorithm 6. In case

we are considering a constraint to be permanently constrained, λ is taken equal to 1.

Plane

We are interested in the position of a point P(q) on the kinematic structure. If we desire this point to

be on a certain plane of the workspace, we write:

〈un|P(q)〉= c (4.6)

where un and c are the normal vector and the scalar defining the plane. For the numerical resolution, the

linear system to be considered is:

〈un|JP〉δq =−λ (〈un|P〉− c) (4.7)

with JP ∈ℜ3×n being the jacobian of the position of P(q) expressed in the same frame as P and un.



Figure 4.3: While the robot is walking, an inequality task is set such that a point in the head of the robot

should go below a horizontal plane (the black line).

Parallelism

Figure 4.4: The glass is maintained vertical by setting a constraint on hand axis to remain parallel to the

workspace’s~z vector.

We are interested in the orientation of an axis (Oi,ul) attached to a body in the kinematic structure.

We would like to align this axis with a reference axis (O,ur) in workspace, thus we write:

ur×ul = 0 (4.8)

We differentiate to construct the linear system for numerical resolution:

ur× (Jωi
δq×ul) =−λur×ul (4.9)

where Jωi
designates the jacobian of the rotation speed ωi of link i. Replacing cross products with

equivalent skew-symmetric matrices the above system can be re-written as:

[ur]×[ul]×Jωi
δq = λur×ul (4.10)



This task can be used to maintain a plate or a glass vertical in the hands of a humanoid robot (see figure

4.4). We often use it to maintain the robot straight.

Cone of directions
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Figure 4.5: Setting a minimum value for ul.ur constrains ul to stay within a maximum angle around ur.

A half-empty bottle could be held a little inclined without risk of spilling. To define such a constraint

on any link i of the robot, we considered a vector ul attached to the link and a vector ur representing the

reference direction from which we allow ul to deviate (see figure 4.5). The corresponding inequality task

writes as:

ur.ul− c > 0 (4.11)

where c is the minimum cosine allowed between ur and ul , giving the differential inequality system:

−ur.[ul]×Jωi
δq≤ λ (ur.ul− c) (4.12)

where Jωi
designates the jacobian of the rotation speed ωi of link i, [ul]x the skew-symmetric matrix

representing a prior cross product by ul .



Coplanar line segments

u B
D

C

A

Consider HRP-2’s hand having to grasp a cup. The sagittal plane defined by the hand clamps has to

coincide with the axis of the cup. We have this if two non parallel line segments of the hands’ plane are

coplanar with the axis of the cup.

Let (A,~u) define a reference axis and let B, C and D be three points defining the constrained plane on

a a robot link i (figure 4.2). We express the task as:

(u×−→AB)× (u×−→AC) = 0

(u×−→AB)× (u×−→AD) = 0
(4.13)

Letting JB, JC and JD be the jacobians of the position of points B, C and D on link i, the differential

system is:

{([−→AC×u]×[u]×)JB− [
−→
AB×u]×[u]×)JC}δq = −λ (u×−→AB)× (u×−→AC)

{([−→AD×u]×[u]×)JB− [
−→
AB×u]×[u]×)JD}δq = −λ (u×−→AB)× (u×−→AD)

(4.14)

Gaze direction

A variation of the previous task is applied to control the optical axis of a vision system attached to

the structure. Let O(q) be a point on the optical axis, ug a unitary vector along the optical axis oriented

towards the vision field, T a fixed point representing the target of focus in the workspace and ut the

unitary vector defined by ut =
−→
OT

‖−→OT‖
. Writing the following equation, we require the vision system to

focus on point T :
−→
OT ×ug = 0 (4.15)

After differentiation the linear system for numerical resolution is:

([ug]×JO− [ut ]×[ug]×Jω)δq =−λut ×ug (4.16)

Suppose that instead of defining a focus point on which the optical axis must be constantly aligned, we

prefer to specify a region of focus described by a solid angle. In this case, we rewrite the task as two

inequalities, as seen in the previous subsection.



Figure 4.6: Two simultaneous tasks: a gaze equality task to look at a point under the table and a plane

inequality task to draw the head out of the occlusion area (in transparent gray).

Collision avoidance
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Forbidding collision between two elements is preventing the shortest distance between them to become

null. Between a point A and a point B, between a point and a line or a line segment, or between two

strictly-convex volumes V1 and V2, there is unique pair of points realizing the minimal distance (figure

4.2). In these cases, collision is avoided if we observe the constraint:

〈−→AB|n〉−d ≥ 0 (4.17)

where d is the minimal distance to be kept between points A and B, and n =
−→
AB

‖−→AB‖
.

One may observe that the relative rotation between the objects in second and third case may still be

the cause of collision (if, for instance, object V1 rotates around point A by π

2
in the next time sample),



however, since the absolute rotation speed is bounded, the maximal displacement of any point on either

of the elements is also bounded, therefore the distance d could always be chosen such that violation of

the minimal distance d remains very small.

The differential system following from constraint 4.17 is thus:

−〈δ (
−→
AB)|n〉 ≤ λ (〈−→AB|n〉−d) (4.18)

d

Figure 4.7: Inspired from [Kanehiro et al. 2008]. Constraining a single pair of points realizing the

minimum distance (represented by vertical black line) between non-strictly convex shapes does not

prevent collision.

This method was applied by [Faverjon and Tournassoud 1987] on the the pairs of points realizing the

shortest distance between a mobile robot and the obstacles around, bounded by strictly-convex shapes.

A recent work by [Kanehiro et al. 2008] focused on the general case where the objects are non strictly-

convex polyhedra. They showed how a collision may occur when only a single pair of points realizing the

minimal distance is constrained between a segment and a line in a plane (see figure 4.7). The method they

propose is an extension of the work by [Faverjon and Tournassoud 1987] where they analyze the pairs

of points to be constrained for all configuration cases between faces, edges and vertices of polyhedra.

For instance, in the example of the segment and the line in a plane, their analysis leads to constrain the

extremities of the segment as suggested in figure 4.8.

d

Figure 4.8: Inspired from [Kanehiro et al. 2008]. At least two linear velocity constraints are needed to

prevent collision between a line segment and a plane

The algorithm they propose permits accurate collision avoidance but can be too costly if the

geometrical model of the robot is complex. We have consequently designed a simplified geometry for

the robot where every link is wrapped in a cylinder capped with half spheres. The interesting aspect of

this particular geometrical shape is that it represents a line segment around which a minimal distance d,



corresponding to the radius of the cylinder and the spheres, need be observed (figures 4.9 and 4.10). All

that remains is to follow the same analysis conducted by [Kanehiro et al. 2008] to determine the pairs of

points that need be constrained between line segments in 3D space.

Figure 4.9: Setting simple constraints for self-collision avoidance: the bodies of the robot are wrapped

in cylinders and spheres. The red lines are examples of pairs that need to be watched for collisions.
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Figure 4.10: The approximation of a link with a cylinder and half-spherical caps is equivalent to an

approximation by a line segment that must not be approached by less than the radius of the cylinder.

Let us expose the solution for line segments in a plane, since it will be very close to the 3D case.

Figure 4.11 shows the three configuration cases that demand different treatment. The cases are defined

according to intersection of segment [CD] with two type of regions defined with respect to segment

[AB]: the middle region where orthogonal projections on the line (AB) fall on the segment [AB], and the

complementary regions containing only points A and B. d represents the minimal authorized distance



between the line segments. In the first case, the forbidden region (half sphere) is strictly convex, therefore

a single pair of points is enough to maintain [CD] out. In the second case, [CD] completely inside the

middle region, thus the linear velocities of its extremities are constrained. In the third case, [CD] is

between two adjacent regions. It is convenient to think of it as two separate line segments, each in

a region enabling us to apply the constrains found for first and second case, yielding a total of three

constrains.

A B

C

D

A B

C

D

A

C

D

B

d

Figure 4.11: Pairs of points to constrain to maintain a minimal distance between two plane segments.

For the 3D case that is in our interest, the region analysis holds, but we have to take one additional

case into account, depicted in figure 4.12. It occurs when the minimal distance between the line segments

lies in the middle region, and is realized by a pair of points excluding the extremities. To obtain the

distance and the pair of points realizing it we can write a point X on [AB] as:

X = A+λ1
−→
AB λ1 ∈ [0,1]

and a point Y in [CD] as:

Y = C +λ2
−→
CD λ2 ∈ [0,1]

and solve the optimization problem:

{

min
(λ1,λ2)∈[0,1]2

‖Y −X‖2

We have to pay attention to the fact that we project the points on the surface defined by the minimal

distance d, whereas we projected on a line segment or on a circle in the 2D case.

We have now a simplified model of our robot and we can write the constraints that ensure self-

collision avoidance for any configuration. For HRP-2, there was no need to constrain all pairs of links

since some would never enter in collision either because of the geometry or because of the settings of

use.
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Figure 4.12: Extra case showing pair of points to constrain between two line segments in 3D space
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Figure 4.13: The velocity of approach of the center of mass projection to the edges of the support polygon

is damped.

Static equilibrium

The static equilibrium for a humanoid robot standing on a horizontal ground is verified when the

projection of the center of mass of the robot is inside its support polygon.

Call C the projection of the center of mass on the ground. The constraint that keeps C inside the

support polygon is composed of a variable number of the linear differential inequalities. One linear

inequality constraint is added when an edge of the support polygon is directly facing C (see figure 4.13).

We control the maximal velocity of C towards the polygon edges by observing the following inequality:

−〈δ (
−→
PC)|~n〉 ≤ λ (〈−→PC|~n〉−d) (4.19)

where ~n is the normal vector to the considered edge and d is the minimal authorized distance. The

support polygon being fixed when the robot is standing on the ground, the above inequality boils down

to:

−〈JC|~n〉δq≤ λ (〈−→PC|~n〉−d) (4.20)



where JC is the jacobian of C with respect to the joints configuration.

Figure 4.14: The projection of center of mass is constrained inside the left foot while the left hand tries

to reach the front target. The right limbs are not controlled, their motion is caused by their influence on

the position of the center of mass.

4.3 Prioritization

We have applied the proposed algorithm seen in section 3.4.3 to plan local motions for the humanoid

robot HRP-2[Kaneko et al. 2004]. We show in the following examples the ability of our algorithm to

treat any order of priority with both equality and inequality tasks.

The permanent set of constraints

Any task that we require from the robot is subject to a set of constraints that we list here:

• Joint limits

• Static equilibrium

• Self-collision and obstacle avoidance

• Fixed position and orientation of feet

We have already presented the form of linear systems applied to enforce joint limits ((4.3), (4.4)) static

equilibrium (4.19), collision avoidance (4.17) and position and orientation of a body (4.5). For the



kinematic model of our humanoid robot, we defined one support foot as the root node of the tree due

to its constant fixed contact with the environment (see section 4.1). Therefore, the fourth constraint in

the list is satisfied by constraining the non-support foot only. As for collision avoidance constraints, for

the following scenarios, we did not resort to the simplified geometry presented above, we kept the full

model of the robot. The computation of distances between polyhedra was done with the motion planning

software Kineo[Laumond 2006].

Priority under inequality constraints

In this example, we illustrate the utility of prioritizing equality tasks after specification of inequality

constraints. The goal of the motion is to reach a ball underneath an object (blue polyhedron in figure 4.3)

while looking at it. Here is the stack of tasks sorted in decreasing priority:

1. Permanent set of constraints

2. Reach for the ball

3. Look at the ball

For the reaching we specified a three-dimensional position task on the center of the left hand. The gaze

task was defined as in section 4.2. For both tasks, we added a simultaneous optimization criterion as

explained in section 3.4.4 to avoid large updates due to conflicting tasks.

In the resulting motion, the gaze task could be maintained until the robot’s head came close to the

border of the table. When simultaneous looking and reaching became infeasible, the specified priorities

made the robot continue the reaching while its gaze direction drifted off the target. Task 2) was satisfied

at the end of this motion (figure 4.15(b)).

We tried to achieve the same goal while making the looking and the reaching tasks share the same

priority. This time the robot was trapped in an intermediate configuration of the previous motion (frame

4.15(a)) where the looking task was maintained while the head over the table and the reaching hand stuck

away from the ball.

One other method, presented by [Park et al. 1997] and applied to move a robotic arm, should also

permit to solve this scenario. For the next one, there is no available resolution method to our knowledge.

Inequalities below equality tasks

In this example we illustrate the ability of our prioritization algorithm to account for inequality tasks

at low priority. The goal of the motion is to reach for a ball while avoiding, when possible, a region

around the ball (represented in figure 4.3 by a green box). Here is the priority order for this motion:

1. Permanent set of constraints

2. Reach for the ball

3. Look at the ball

4. Avoid the green box



(a)

(b)

Figure 4.15: Under collision avoidance constraints (priority 1), the robot had to reach for the ball (priority

2) and look at it (priority 3). Figure (a) represents the classical case where all equality tasks are solved

with the same equality under inequality constraints, figure (b) shows the result for prioritized equality

tasks under inequality constraints allowed by our algorithm. Towards the end of the motion, the gaze

task could not be maintained because of the hand pulling towards the ball and the presence of the table.

The strict enforcement of priority enabled the reaching task to prevail and succeed.



The idea behind placing the tall box on the ball is to guide the hand out of the vision field to avoid the

occlusion of the ball. In a more rigorous but less simple implementation of this scenario, one would

consider the vision cone linking the robot’s head to the ball. For the illustration of the method, however,

the green box suffices.

For the box avoidance task, four points in the body of the hand were checked for collision. The

reaching task placed at priority 2) is different from the first example as it is one-dimensional only. This

is done by allowing the hand to move on the orthogonal plane to the vector separating it from the target.

In the resulting motion, the hand was forced by task 4) to stay behind a face of the green box until

it became incompatible with task 2). Then, the hand progressively entered the volume of the box and

achieved its goal. As we expected, the inequality task 4) was maintained as long as possible and ended

unsatisfied to the benefit of equality task 2).



(a)

(b)

Figure 4.16: This example illustrates how our algorithm could serve for target occlusion avoidance.The

robot had to reach for the ball (priority 1), look at it (priority 2) while avoiding the green region (priority

3). Figure (a) shows the classical case without inequality task, figure (b) an inequality task is placed as

last task for the hand to avoid the green box. Towards the end of the motion, reaching the task required

the green region to be crossed, rendering the inequality unsatisfied. The higher priority task of reaching

the ball was achieved.





5
Dynamic walk and whole body motion

The human motion of walking is a repeated cycle comprised of two alternated phases:

• Single support phase: the body is supported by a single leg, the other is displaced to its new fall

point.

• Double support phase: this is a shorter phase during which the pressure of the body on the ground

is shifted from a support foot to the next.

The durations of these phases greatly depend on the subject (skeletal structure, weight, clothing, etc...)

and the setting (ground surface regularity, friction, slope, etc). So does the motion of the whole body

during the full cycle.

In the previous chapter, we stated that the equilibrium of a humanoid robot could be maintained if

the robot moves in quasi-static motion while the projection of its center of mass lies within its support

polygon. A way to define quasi-static motion is to view it as the motion that can be “interrupted” and

“resumed” at any time without compromising the equilibrium of the robot. Such motion can be easily

computed to make the robot walk over planned footprints: first, shift the center of mass slowly so that

its projection is under the first support footprint, then move the non-support leg in a slow and regular

trajectory to finally land on the new footprint, the rest of the walking is the repetition of these two phases.

If we want the robot to step at a velocity that matches a human’s, we have to apply high accelerations on

the joints of the robot. With the inertia of the body and the induced dynamics, a well calculated motion

can lead to a well controlled jump, an ill-calculated one may result in an unavoidable fall.

We studied a method proposed by [Kajita et al. 2003] to generate dynamic walking motion for a

humanoid robot walking on a flat ground (section 5.1). We looked into integrating this method in the

prioritized inverse kinematics framework described in section 2.4 and 3.4 and found an easy solution to

this problem (section 5.1.4). A generic implementation was prepared for the robot HRP-2 and lead to
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successful field experiments, described in section (5.2).

5.1 Dynamic walk generation

5.1.1 Dynamic constraints

We consider a biped robot modeled as a set of articulated rigid bodies. We denote for rigid body k the

following quantities:

• xk the position of center of mass

• Rk the rotation matrix

• ωk the rotation speed

• Ik the inertia matrix

• mk the inertia matrix

The dynamic wrench of the system of rigid bodies composing the robot is:

�

ṖPP

L̇LL

�

=

�

∑mkẍk

∑xk×mkẍk +RkIkω̇k−Rk��Ik×ωk)×ωk)

�

(5.1)

PPP is the linear momentum of the system and LLL its angular momentum around the frame of reference. The

total wrench of forces acting on the system is denoted:

�

f

τττ

�

=

�

∑mk�g+∑ fi

∑mkxk×�g+∑pi× fi

�

(5.2)

where fi are the forces of contact at positions pi on the robot.

The fundamental principle of dynamics stipulates that the dynamic wrench of the system of rigid

bodies is equal to the total wrench of the forces acting on the system:

�

f

τττ

�

=

�

ṖPP

L̇LL

�

(5.3)

This is a constraint that is always verified for any state �xk� ẋk� ẍk} of the rigid body system and the contact

forces fi may change or cease in time.

For our setting, we are interested in a walk motion on a flat ground without contacts outside the

bottom of the feet. Furthermore, the motion must not produce jumps, which means that the set of contact

points between the bottom of the feet and the ground should never become empty. Finally, the contact

must not be slippery. We label these conditions as w�lk conditions. For these requirements the analysis

conducted by [Wieber 2002] applies and we report the condition derived from equation (5.3) that must

be satisfied:
mgxG×�n+�n× L̇LL×�n

mg+ ṖPP.�n
=

∑ fi.�npi×�n

∑ fi.�n
(5.4)



�n being the normal of the horizontal ground, and xG the position of the center of gravity of the system.

The point whose coordinates are expressed by either of the equation sides is called the Zero Momentum

Point (ZMP [Vukobratović et al. 1990]). As a matter of fact, the horizontal angular momentum around

the ZMP is null. Equation (5.4) shows that the ZMP lies in the convex hull of all contact points pi where

the vertical component fi is strictly positive. At any time t, the walk conditions are thus:



















� : �pi such that fi.�n> 0} �= /0 ground contacts maintained

ZMP ∈ convex hull �� ) dynamics fundamental principle

ṗi =�0 ∀pi ∈ � non slippery contact

(5.5)

From the control point of view, these conditions must be added to other constraints on control variables,

such as torque limits on joint motors, limits on force of impact of feet on the ground during stepping,

constraints such as those we used for the illustrations of section 4.2, etc.

5.1.2 A model approximation

The ZMP criterion (5.4) may appear as a complex constraint when applied to an arbitrary system of

rigid bodies with contacts on the ground. Vukobratovic et al. had the idea to plan a joint motion for

lifting a leg and use the sagittal sway motion for the upper body so that the ZMP falls within the planned

support polygon. Analytical solutions such as this cannot be applied easily to redundant robots, for

which numerical approaches are applied [Kanehiro et al. 2008; Collette et al. 2008]. The algorithms

proposed in these methods rely on minimization of objective functions corresponding to tasks in the

operational space[Khatib 1987] while observing the laws of mechanics, such as the friction cone limit at

contact points, the fundamental principle of dynamics, etc. We have the aim of exploring these methods

while taking advantages of the strict prioritization of linear equality and inequality systems. However,

we rely so far on a simplified model of the dynamics and an optimal controller that allows us to achieve

a dynamic walk within the velocity-resolved inverse kinematics framework.

The simplified model was proposed by [Kajita et al. 2003]. The biped structure is approximated by

a wheeled cart whose mass is equal to the robot’s, moving on top of a mass-less table. The contact area

between the table and the ground represents the support polygon of the robot, the cart represents the

center of gravity of the robot (see figure 5.1). According to [Vukobratović et al. 1990], the distribution

of the reaction force of the ground can be replaced by an equivalent reaction force �R exerted on the zero

momentum point. The other forces acting on the table are the weight of the cart −mg�n and the tangent

force exerted by the wheels on the top’s surface, which is −mẍ. Therefore, letting zh be the height of the

center of mass (the wheeled cart), the dynamic angular momentum at the ZMP is:

τy = �x− px)mg− zhmẍ

which must be equal to 0. The same analysis is conducted on the y coordinate, yielding the position of
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Figure 5.1: Cart-table approximation of the footstep dynamics. The cart represents the center of mass of

the robot in free translation on the plane defined by the top of a mass-less table, representing the contact

of the body with the ground.

the ZMP:
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px

py

�

=
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x− zh
g
ẍ

y− zh
g
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�

(5.6)

When the ZMP is on an edge of the table’s foot, the distribution of the ground reaction force is on that

edge only, meaning that the table (and robot’s foot) has started to topple over. Since this is a difficult

situation to recover from, it would be best if the ZMP stayed close to the center of the support area.

Comparing with the general expression (5.4), the cart-table approximation cancels the the centrifugal

and Coriolis dynamics of the system. This situation is never true since, even if the upper body is not

rotated, the legs’ rotations are not symmetrical during a footstep. The model is still practically efficient.

The remaining question is how to control the ZMP to stay inside the support polygon.

5.1.3 An optimal controller

The equality (5.6) establishes a linear variation of the ZMP in the position of the center of mass and its

second time derivative. As reported by [Kajita et al. 2003], such equality could be inverted by several

means (Fourier transform, piece-wise polynomials fitting,etc), the objective being to plan a valid ZMP

trajectory and control via the center of mass. otherwise expressed, the initial problem of controlling the

full dynamic state to fulfill the dynamic constraints (5.4) is transformed into a problem of controlling the

center of mass alone. Naturally, the approximation of the model does not allow us to account for full

dynamic motions, thus restraining the freedom of motion.

To control the center of mass with respect to a planned ZMP trajectory, Kajita et al. suggest a method

based on an optimal linear-quadratic control with an infinite preview horizon. We report here the method

as they described. Introducing the scalar control variable:

ux =
d3x

dt



the dynamics of the cart-table system along x axis write as:
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The corresponding discrete system for a time period T is described by:

X�k+1) = AkX�k)+bkuX�k)
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The quadratic cost to be minimized for this system is:

J�k) =
+∞

∑
i=k

Qee�i)
2 +∆x�i)TQx∆x�i)+R∆u�i)2

where:

∆u�i) = uX�i) − uX�i−1)

∆x�i) = X�i) − X�i−1)

∆e�i) = px�i) − p
re f
x �i)

pre f denoting the reference ZMP trajectory, Qx a symmetric non-negative definite matrix, Qe and R

strictly positive scalars.

The cost function J�k) minimizes a weighed sum of three terms: the error of ZMP with respect to its

reference trajectory, the variation of the state of the center of mass X and the variation of the control ux.

The optimal control obtained from the minimization of J is known:

uX�k) = −GxX�k)−Ge

k

∑
i=0

e�i)−
+∞

∑
j=0

Gp� j)p
re f � j+ k)



The same analysis and result is conducted to derive the control the control uy of the second coordinate

of the center of mass. The control. thus defined, takes into account the integral of past errors on the

trajectory, the current state of the system and the trajectory of the ZMP to come. The number of terms

due to this last part is infinite. Nonetheless, Gp : k �→Gp�kT ) is a quickly-evanescent function (see figure

5.2), what allows us to take into account a finite number of gain coefficient, thus of future ZMP trajectory

samples. The major advantage is the possibility to run such a controller of the ZMP online.

0 0 . 5 1 1 . 5 2 2 . 5
0

5 0 0

1 0 0 0

1 5 0 0
G a i n s   G p

Figure 5.2: The Gp gains coefficients function of the time (for the robot HRP-2 with its center of mass

at height 0.65m). The coefficients beyond time 1.6s are relatively very small and can be omitted for the

control of the center of mass without noticeable impact on the accuracy.

We show in figure 5.3 an example of spacial planning of the ZMP according to the planned footsteps.

The reference trajectory planned on this path is given in figure 5.4 in dashed line. Notice that the

trajectory is slightly smoothed between a single support phase (indicated by stable coordinates of the

ZMP) and the following double support phase. We show in green line the trajectory of the center of

mass calculated with the optimal controller. While the ZMP is piece-wise linear, the center of mass has

a smooth oscillating trajectory. Figure 5.5 shows the spacial view of both trajectories.

Figure 5.3: Planning the ZMP path within the support polygons. The green discs represent the fixed

ZMP position during a single support phase, the red line represents the path traveled by the ZMp from

one support foot to the other during a double support phase.



Figure 5.4: Reference and result trajectories of ZMP and control trajectory of the center of mass.
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Figure 5.5: Path of the ZMP and center of mass during the walk.

5.1.4 Merger with prioritized inverse kinematics

One of our contributions[Yoshida et al. 2006] was to merge the dynamic walk generation framework

described above with the prioritized inverse kinematics framework described in the first part of this

document. The central idea is to place the tasks which are required for the dynamics walk in first priority

since they involve the equilibrium of the robot and cannot be hindered by any other desired motions. The

tasks to be taken into account are:



1. Position of the center of mass

2. Position and orientation of the non support foot

Let us recall that we constrain a single foot to the ground since the other is considered is non-slippery

contact with the ground, as seen in section 4.1.

The first task is dictated directly by the preview controller: at time step kT , the control

�

uX�kT )

uY �kT )

�

is calculated from the planned samples

�pre f �kT )� ...� pre f ��k+N)T ))

and is used to calculate the state of the center of mass

�

X��k+1)T ) Y ��k+1)T )
�

A task is built at time step k to bring the position of the center of mass to its desired position at time

k+1:
�

x�q)

y�q)

�

=

�

x��k+1)T )

y��k+1)T )

�

The linear equality system derived from this task involves the computation of the jacobian of the center

of mass[Sugihara et al. 2002].

The second task varies according to the walk phase: in double support, the non support foot is

maintained motionless. During the single support phases, the foot is lifted and landed on the target

footprint. While the shape of the motion is not important, we have to abide by the hypotheses of the

simplified dynamics for the biped walk. These stipulate that the angular dynamic momenta of the bodies

composing the robot are null. This condition cannot be satisfied, we focused on the smoothness of the

trajectory and the speed of the motion. We opted for minimum-jerk motion[Shadmehr and Wise 2005]

planning to lift and displace the non-support foot. Furthermore,the rotation of the foot while being moved

was restrained to yaw around the ground normal. We found that planning footsteps with a single support

phase of 0.8 to 1 second and a double support phase with 0.1 to 0.2 second produced very little difference

between the planned ZMP and the achieved ZMP (calculated using 5.4).

With these tasks occupying first priority layer, the desired tasks follow starting from the second. We

implemented Algorithm 2 together with the preview controller described in previous section to provide

a comprehensive tool for whole body motion generation including dynamic stepping (see section 1.4

for further details). . In the following, we report a few examples of research works where this unified

framework was used.



5.2 Experiments

Simultaneous manipulation and stepping

Figure 5.6:

Figure 5.7:

This experiment illustrates the unified framework, first presented by [Yoshida et al. 2006]. The frames

in figures 5.6 and 5.7 show two scenarios. In the first, a step and a whole-body motion is calculated to

reach an object directly in front of the robot. In the second, the motion is for an object on the left side

of the robot. In both cases a heuristical algorithm was used to derive the position and orientation of the

step from the reach task. The motion was dynamically stable, despite the fact that an upper body motion

is applied, while the simplified dynamic model required that the motion of the system of rigid bodies

should be a translation on a fixed horizontal plane. To achieve this, the motion of the had was planned in

workspace as a minimum-jerk trajectory preserving the continuity of velocity and acceleration.



Looking for and retrieving dictated target

Figure 5.8: Overview of scenario: the robot must fetch one ball located on the green box at the other

end of the room.

Figure 5.9: Frame 1 and 2: table detection. Left image shows the HSV image and right image is the

back projection of the table color model in the source image. The rectangle locates the objects found.

Frame 3 and 4: purple ball detection.

This experiment, presented by [Yoshida et al. 2007], was built around four components: voice

recognition, perception of colored targets through stereoscopic vision, dynamic walk generation and

whole-body motion planning including stepping. The user tells the robot to locate a box in the scene.

When the robot reports successful recognition of the object (figure 5.9), it is told to go near it. The

robot calculates and executes a dynamic walk motion using the preview controller presented in previous

section. Near the box, the robot is told to locate a ball of a certain color. If successfully located, it is then

told to pick it up and the robot calculate a whole-body motion to achieve the task. If necessary, a single

step is added to the motion to make the task feasible (according to the heuristical solution presented

by [Yoshida et al. 2006]). Figures 5.10 and 5.11 show a few frame samples from two instances of this

experiment.



Figure 5.10: First experiment instance with remote control (the user was in remote city) of the robot

through natural language interaction. The robot is asked to go to the table, grasp the ball there and come

back to the initial position.

Figure 5.11: Second experiment instance. The robot is asked to give the purple ball to the person sitting

on a chair. It walks toward the table, avoiding known obstacles in the environment. It first fails to grasp

the ball (image 3 and 4), but with a simple error recovery strategy it finally succeeds (image 5) and

accomplishes the mission.



Moving a bulky box

Figure 5.12: A sequence of three elementary rotations realized by whole-body motion in pivoting-based

manipulation. The object is first inclined to stand on one corner (frame 2), then rotated along the vertical

axis (frame 3) and finally inclined back to horizontal stance.

Figure 5.13: Transforming a straight line segment path into a pivoting sequence. The pivoting sequence

is planned using rotation of the endpoints of the supporting edge.

This experiment by [Yoshida et al. 2008] emphasizes on the capacity of a humanoid robot to perform

tasks that are difficult for other types of robots. It deals with manipulation of bulky objects. The task of

the robot was to move a voluminous box across the workspace. The authors studied a strategy based on

successive pivoting of the box around its corners and proved controllability properties ([Lamiraux and

Laumond 2000; Yoshida et al. 2007]). These properties allow the authors to plan a successful motion

of the box from start to goal position and orientation, then plan the position and orientation of both

hands accordingly. These tasks are given to the inverse kinematics solver which computes whole body

motion to realize the motion. The stepping is triggered as required: the authors monitor the position

and orientation of the robot with respect to the box it manipulate and calculate a footstep when judged

necessary. The footstep’s position and orientation is customized such that the robot stays close enough



to the box, in comfortable manipulation range.

Joystick-steered head

[Sreenivasa et al. 2009] worked on a method for remote steering of a humanoid robot by controlling

its head position and orientation. The motivation behind this approach comes from research in the field

of human neuroscience: in human locomotion it has been found that the head plays a very important

role in guiding and planning motion[Berthoz 2002]. The presented algorithm converts the controls of

a 6D mouse to desired translation and rotation for the head of the humanoid robot. Several criteria

are monitored to assert the feasibility of the user commands. In case of non feasibility, a footstep is

calculated to make the robot move such that the controls input by the user become feasible. The accent

was not put on the method of generation of the footstep, which as in above experiments, was customized

for a specific task: positioning and orienting the head. An analysis has been conducted to determine

when and where to step with respect to the desired values of the head task.

Figure 5.14: Extracted with author permission from [Sree09]. (a) Snapshot of user maneuvering HRP2

while viewing the output from its cameras. (b) The humanoid robot HRP2 in default position. (c)

Magnified view of the 6D mouse with all available motion axes.



Figure 5.15: Extracted with author permission from [Sree09]. (a) HRP2 being maneuvered through

space to find distant, hidden objects. (b) Plot of head position (solid line) and center of mass (CoM)

position (dotted line) during motion. The zig-zag motion of the head and CoM position was due to the

user alternatively looking left and right at every step.



6
Footsteps planning as an inverse kinematics

problem

6.1 Principle of the approach

Consider a humanoid robot that made a few footsteps to stand where it could fulfill a task. Our

approach is based on the following observation: a footstep can be parametrized by a translation and

a rotation of the target footprint from the support footprint. As such, two successive footprints can

be considered as two virtual bodies joined by a virtual link with three degrees of motion freedom.

Connecting the footprints two by two, we obtain a virtual kinematic chain describing the walk path

of the robot as a deformable articulated structure. By linking this chain to the robot at one of its feet,

we establish a direct relationship between the tasks and the configuration of the walk path. We have a

composite kinematic structure, on which certain constraints need to be observed and for which kinematic

tasks are to be completed. All that remains is to apply the framework of numerical resolution reviewed

in the first chapters.

The problem thus formulated becomes a problem of inverse kinematics. Any task that can be solved

with inverse kinematics may be considered an input and prioritized in a stack. As for a robotic arm taking

the shape that satisfies the desired position and orientation of its end effector, we expected the walk path

derived by this method to be shaped directly according to the given tasks. We verified this property on

a variety of scenarios, illustrated at the end of this chapter. Additionally, we had the idea to connect

several instances of this virtual kinematic structure in series and optimize the walk path for tasks which

are consecutive in time.
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6.2 Construction of inverse kinematics problems

To define the problems of inverse kinematics associated with each case of footstep planning, we will

define the subject kinematic structure, the set of permanent kinematic constraints and the set of prioritized

tasks. We will make use of Algorithm 4 presented in section 3.4.3. We will denote a call to this algorithm

by:

δq= solve��C}��T}�q) (6.1)

for a kinematic structure of configuration q ∈ ℜn subject to the set of constraints �C} and considering

the set of prioritized tasks �T}.

6.2.1 A single footstep

After making a single step without slipping with its support foot, the humanoid robot has modified its

support polygon by changing the position and orientation of its stepping foot on the ground. Our focus

is not on the actual motion of the stepping, which require a shift of the body balance on the support foot,

a displacement of the foot and a repositioning of the balance. We want first to known the configuration

of the target support polygon that motivates the stepping. To do so, we associate a 3-degree-of-freedom

configuration to the support polygon to denote the position and orientation of its moving footprint with

respect to the support footprint. A 2D frame is associated with each footprint and the parameters of the

configuration are denoted �∆x�∆y�∆θ) (see figure 6.1).
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Figure 6.1: Degrees of freedom for one footstep

Before considering making a step, we have probably evaluated that the tasks to be done were not

feasible otherwise. Recall the constraints that were applied to solve the scenarios of section 4.3 which

supposed a fixed support polygon:

• Joint limits

• Static equilibrium

• Self-collision and obstacle avoidance

• Fixed position and orientation of feet

Presently, we consider the robot in what we may call a planning mode where we try to solve the given

set of tasks without modeling the friction on the ground. Then, instead of imposing null linear and

angular velocities on the stepping foot, we authorize a translation along the plane of the ground and a



yaw rotation around its normal�z. By doing so, we relax the last constraint of the above list and allow the

support polygon to accommodate to the motion of the legs moved by the tasks. At this time, we have not

yet augmented the state of the kinematic structure of the robot. We have simply allowed a virtual motion

of a foot on the ground. However, there are additional constraints to be observed due to this relaxation.

First, the feet must not collide during the planning motion. This may be taken into account at the

level of self-collision avoidance constraints if they cover all pairs of bodies in the robot, or by setting

ad-hoc constraints on the feet. In our case, we chose the second solution consisting in forbidding a foot

to enter a half space containing the other foot (see figure 6.2). This constraint is achieved by damping the

velocity of the upper and lower interior corners of each foot near the border of other foot’s half space.

The calculation of the corresponding linear systems follows (4.19) and (4.20).

�

�

Figure 6.2: Each footprint lies in an associated half space where the other foot cannot enter. This

constraint is achieved by damping the velocity of the upper and lower interior corners of each foot near

the border of other foot’s half space.

Second, the calculation of the linear system for the static equilibrium constraint changes since the

support polygon is now deformable. Recall the static equilibrium constraint:
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�

Figure 6.3: The velocity of approach of the center of mass projection to the edges of the support polygon

is damped.



−�δ �
−→
PC)|�n�δq≤ λ ��

−→
PC|�n�−d)

(see illustration 6.3). The point P, projection of the center of mass on an edge of the support polygon, is

no longer necessarily fixed, therefore the differentiation of the constraint leads to:

�JP− JC|�n�δq≤ λ �� �PC|�n�−d)

where JP is the jacobian of the position of point P. In case P belongs to the edge of a support foot, the

jacobian JP is null and the linear system is the same as the one calculated in (4.20).

Third, the support polygon must be feasible at all times in quasi-static motion. To achieve this, an

admissible stepping region is defined for each foot with respect to the other. We have, as a matter of fact,

to constrain both feet to keep the support polygon valid for further stepping with any foot. The shape of

the admissible stepping regions depends on the robot’s capabilities. Since we generalize this method to

any number of steps, we did not judge useful to accurately estimate the maximal stepping region of our

robot and we set rather restrictive bounds. If one small step is not enough to solve the task, we increment

the number of steps (more on this matter will follow in the next section). Consider the region defined by

the simple bounds:

∆xmin ≤ ∆x≤ ∆xmax

∆ymin ≤ ∆y≤ ∆ymax

∆θmin ≤ ∆θ ≤ ∆θmax

Figure 6.4 shows the authorized area that results from the bounds. The symmetry of the bounds is applied

to left foot with respect to right. The calculation of the linear inequality systems follow (4.3) and (4.4).

�

Figure 6.4: Stepping region for the right foot. The gray region is forbidden to the center of the right foot.

Anti-collision constraints bound the stepping region from the left. The constraint on yaw rotation is not

represented here.

Let us summarize the set of constraints �C} used in this case:



• Joints limits

• Static equilibrium (with deformable support polygon)

• Support polygon configuration bounding

• Collision avoidance (including feet)

• Feet sliding on the ground (only horizontal translation and yaw rotation allowed)

Given a stack prioritized tasks, we iterate the resolution of (6.1) until convergence. If the final robot

configuration does not achieve its primary task, we may want to consider re-planning with more than one

footstep.

6.2.2 Several footsteps

� �

�

Figure 6.5: Virtual kinematic chain linking successive footsteps

We consider the general case where the robot makes p > 1 steps to fulfill its tasks. We view two

successive footsteps as two virtual links joined by a joint possessing three degrees of motion freedom

(figure 6.5). Define:

Qi = �∆xi�∆yi�∆θi) (6.2)

the configuration of the support polygon of the i-th step. We define the augmented robot state

q̃= �Q1� ...�Qp−1�q) (6.3)

where we remind that q is the vector of configuration of the robot. q̃ is the configuration vector of the

kinematic model of the robot augmented with a virtual kinematic chain of footprints (represented in

figure 6.6).

Considering the permanent set of constraints for the inverse kinematics problem, those are comprised

of:

• List of constraints seen for the single step case.

• For each additional step:

– Support polygon configuration bounding

– Collision avoidance between footprints and with environment.



Figure 6.6: The kinematic model of the robot is augmented with a virtual kinematic chain of footprints.

– Footprints sliding on the ground

The difference in this case lies in the fact that the jacobians involved in the linear systems derived from

constraints and tasks are calculated with respect to the entire kinematic structure. The same algorithm 6

applies. Call �C̃} the set of constraints and �T̃} the set of prioritized tasks. By repeating the operation:

δ q̃= solve��C̃}��T̃}� q̃) (6.4)

we are solving a prioritized inverse kinematics problem numerically, gradually unfolding our composite

kinematic structure from the start support polygon to the configuration allowing the robot to achieve the

tasks.

Let us now notice that we have supposed the number of steps p known. In the general case, this

information is not accessible, even though it can be estimated. We have also assumed that the first

stepping foot has been chosen before starting the numerical resolution. These parameters can be chosen

objectively, as described in the following section.

6.3 Tuning the parameters

6.3.1 Number of footsteps

At a given iteration of the inverse kinematics problem designed for several footsteps, the kinematic

structure is fixed and so is the number of footsteps. This does not prevent us from modifying the

kinematic model for the following iterations. There are several factors that can be considered to decide

on augmenting or diminishing the virtual chain of footprints. A first method is summarized by Algorithm

7 and illustrated in figure 6.7: given a task T �q) = 0 at the top priority level, we start from a single step

and add one whenever the decrease in the norm of task becomes too slow, i.e violating a condition such



as the following:
�T �q�t+∆t))−T �q�t))�

∆t
< minthreshold

where the function T �q�t)) represents the value of the task T �q) at time t. The slowing of the convergence

announces a local minimum for the inverse kinematics we are solving. Thus, it is natural to try to extend

the accessible space of the kinematic structure by giving more “slack” to the virtual chain of footprints.

This, however, results in a “tense” chain, that is to say, a walk path that is always stretched towards the

support polygon required by the tasks.
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Figure 6.7: Adding footprints according to task progression.

Suppose that we solved a problem using this first method of adding footsteps as needed by the task. In

a second phase, we seek to modify the shape of the path so that it has for instance, more steps, smaller

treads, smoother curvature, etc. All there is to do then is to express these desired properties into a task and

derive the corresponding linear system which is added in last priority, below all the tasks of the original

problem. For instance, consider an ideal configuration q̃ideal for the kinematic structure and define the

following posture task:

q̃= q̃ideal

q̃ being defined by (6.3). Our aim is to reduce �q̃− q̃ideal� as much as possible while keeping the tasks

solved. In order to do so, we start from the solution to the first problem, add this task at the end of

the stack, then add a footstep, iterate on the new inverse kinematics problem until a local minimum is

reached. We keep this process until addition of footsteps does not reduce the residual norm anymore.

This is the same as Algorithm 7. The evolution of �q̃− q̃ideal� follows the example shown in figure 6.7.

Notice that it is possible to perform the resolution of the original problem and the optimization of

the path’s shape simultaneously. This can be useful for instance to avoid stretching the robot’s structure

before it arrives to effective action range.

The same idea could be applied to shorten the chain of footprints. Imagine that the resolution of



Algorithm 7 Solve tasks �T1�q̃) = 0� ...�Tk�q̃) = 0} and expand number of footprints as needed

1: Define εp the minimum task value progression required to continue

2: Call p the measure of task value progression

3: repeat

4:

5: Do Block 1:

6: �
7: for i from 1 to k do

8: Calculate value of task i: T 0
i �q̃)

9: end for

10: Solve prioritized linear systems (Algorithm 2)

11: q̃ ← q̃+δ q̃

12: for i from 1 to k do

13: Calculate value of task i: T 1
i �q)

14: Evaluate progression p= T 1
i �q̃)−T 0

i �q̃)
15: if p> εp then

16: break.

17: end if

18: end for

19: }
20:

21: if p< εp then

22: Expand q̃ with one footprint: q̃ ← �Qnew� q̃)
23: Redo Block 1

24: end if

25:

26: until p< εp

the initial problem started with a number of footsteps that turned out larger than necessary. To reduce

this number, a posture task is applied to fold a number of undesired footprints back to the initial support

polygon. Figure 6.8) illustrates this process.

6.3.2 Starting footstep

To get rid of the last a-priori information concerning which foot to start stepping with, we can make

calculations for both available choices, left and right. If the tasks are solved for both cases, we may

pick the choice that gives the least number of required steps. To avoid an arbitrary decision in case the

number of steps is identical for both choices, we may select the start foot based on the result of an extra

task that minimizes the deformation of the solution posture with respect to a reference rest posture. This

task which writes as qrobot = qrest is systematically added with lowest priority in the stack of tasks. We

keep the solution producing the smallest residual task value �qrobot −qrest�. More sophisticated criteria

may naturally be used instead of this criterion intended as a default one.
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Figure 6.8: The footprint of the first step must be folded back to its initial position before it can be

removed.

6.4 Illustration

We have applied our footstep planner to a variety of scenarios. The feet’s relative position and

orientation bounds were chosen as follows (left foot w.r.t right foot, the opposite case is taken

symmetrical):

−0.22cm< ∆x< 0.22cm

0.07cm< ∆y< 0.25cm

−0.1rad < ∆θ <
π

4

These bounds are small enough to guarantee quasi-statical stepping for the robot HRP-2. It is not

necessary to estimate the maximal bounds unless one wants to minimize the number of steps to achieve

a given task.

Reaching an object

In this scenario, the robot stands 2m from the target ball. A simple obstacle is modeled with a disc

region and the feet are constrained to avoid the corresponding area placed on the ground. For this we

use velocity dampers between the center of the obstacle and its projections on each footprint. Figure

6.9 shows the state of the kinematic structure at various intermediary steps from the iterated inverse

kinematics problem. Initially, the virtual chain is folded down and all support polygons coincide with

the start polygon. The chain unfolds continuously until the robot has either satisfied its tasks or the

structure has been trapped in a local minimum. The second case may occur when the tasks are absolutely

unfeasible, which points to a task planning problem or a physical limitation of the robot. It can also

occur when the chosen number of steps is insufficient. This can be investigated with one of the methods



described above. For this test scenario, nine steps were needed to accomplish the task. This resulted in

(28 degrees of freedom of HRP-2) + (3x9 degrees of freedom from the virtual chain of support polygons)

= a total dimension of 55 for the state parameters.

Picking up from the floor

For this second scenario, the robot has to pick up an object that lies on the ground between its feet. To

avoid generating a footprint on the target object, a virtual obstacle for the feet only is placed around it.

Figure 6.10 shows a progression to the solution for this scenario. We planned an actual motion based on

the foot placements to validate the method on the humanoid robot HRP-2. We used the method described

by [Kajita et al. 2003] to calculate a dynamic walk motion.

Recovering a comfortable posture

In this third scenario, the robot has already performed a motion to look at the pink ball without making

steps. The achieved posture is awkward and continuing to stare at the target in that shape is not very

well looking. The robot may recover a comfortable posture by making a few steps. This scenario was

presented in [Sreenivasa et al. 2009] with a heuristical method to derive the position of the required

footsteps. We tackled the same problem in a generic way using our planner: we defined a comfortable

posture qrest for the robot and the posture recovery task written as:

q−qrest = 0

q the configuration of the robot alone. This task was applied under the constraint of keeping to look at

the ball. We presented the expression of this task in section 4.2. We found that four steps were needed to

achieve a posture close to the initial configuration (see figure 6.12).

Consecutive tasks

In this final scenario, we create a more complex kinematic tree that is composed of alternations

of virtual kinematic chains and robots. If the former design may be labeled the centipede robot this

design might remind of the mythical creature Cerberus. Unlike it, however, this design allows complete

separation of several robot instances with an arbitrary number of virtual footsteps in between. The aim of

this design is to plan a single walk for a succession of tasks. The configuration of the kinematic structure

resembles:

q̃ = �qwalk1�qrobot1� ...�qwalkN �qrobotN)



Figure 6.9: States of the full kinematic structure at different steps of the optimization. The task is to

grasp the pink ball without stepping on the green region (obstacle). The last view shows the solution

footprints retained for the actual robot locomotion.



Figure 6.10: Planning footsteps to pick up an object on the floor. A virtual obstacle (green disc) is added

around the object to avoid stepping on it.

Figure 6.11: HRP-2 picking up an object (in yellow) lying between its feet. First a dynamic walk is

planned over the support plygons produced by our local foot placement planner, then the whole body is

driven by a reaching task under permanent self-collision avoidance constraints.



Figure 6.12: Planning footsteps to recover a comfortable posture in the middle of another task (here to

look at the ball).



And the tasks to achieve are specified for each robot:

T1�qwalk1�qrobot1) = 0

T2�qwalk1�qrobot1�qwalk2�qrobot2) = 0

...

The scenario on which this idea was tried was the following: the robot is facing a trash bin which is 2.5m

from him, there are two objects to be collected on the floor and thrown in the bin, one slightly to the right,

the other to the left. The kinematic chain was built as a sequence of 4 footsteps, a first robot, 2 footsteps,

a second robot, 2 footsteps and the final third robot. The tasks were three: robot1 collects the right object

with the right hand, robot2 collects the left object with left hand and third robot places both of his hands

over the trash bin. Starting from the initial position where all robots and footprints were superimposed

over the start support polygon, we specify an inverse kinematics problem as in the previous scenarios to

solve the set of tasks. The result is shown in the last two frames of figure 6.13.

As expected the computation time was much higher than in previous cases due to the very large

number of parameters involved. Yet, as the illustration shows, the final walk path is optimized for the

sequence of tasks. The path is little deviated by the first and second collections and is rather straightly

oriented to the bin.

If the computation time is an issue, the problem can be tackled differently. The tasks are solved

separately one after the other, first the right collection, second the left collection starting from first

task’s support polygon, and last the disposal task starting from second task’s support polygon. Thus,

the involved number of parameters is roughly divided by three and a solution for each task can be found

quickly. The final phase will then follow to connect the successive solutions together, thus building the

complex kinematic structure described above, then solve the posture task described by (6.3) to optimize

the number of footsteps. The advantage of this algorithm lies in the fact that the heavy optimization aspect

is left to the end: once we have a basic sub-optimal solution answering the three tasks, we iterate on the

optimization of the full path until convergence, or until the time we allocate for this extra optimization is

over, then the last reached state is picked as the final path.

6.5 Conclusion

We have presented an inverse kinematics formulation of the footsteps planning problem. The tasks are

directly related to the shape of the walk path and the final support polygon guarantees the fulfillment of

the tasks.

As expected, the computation times grew rapidly as the footstep planning problems required higher

number of parameters. Our planner may not be suitable for tasks requiring a long locomotion. For

such tasks, one would prefer an algorithm that plans a walk path to a remote goal position and

orientation[Yoshida et al. 2008] or that allowa a human operator to interviene to guide the robot near

close to where it could perform its tasks [Chestnutt and Kuffner 2004]. Our method is best used as a

fine-tuning algorithm that takes over the end of the planned walk path and reshapes the last few steps



Figure 6.13: Planning footsteps for three consecutive tasks: pick right then left ball from the floor and put

them in the bin. Three virtual kinematics chains of footprints and robots are connected in series (colored

in red, green, and blue), each being affected with a task. The solution path is optimized, there is little

zig-zag from the right to the left ball and then to the bin.



precisely according to the tasks.

Despite the fact that the footsteps are planned on a flat terrain, we believe we have advanced a robust

method to relate whole body motion to locomotion.



7
Integration

7.1 The full algorithm

Let us summarize the elements at our disposal:

• A wide palette of kinematic tasks

• A generic algorithm that solves a set of tasks with priority

• An generic algorithm which plans the footprints based on a set of tasks

• A method to calculate dynamic or quasi-static walk motions for series of footprints.

We made a few connections between these elements, described in figure 7.1, to build an algorithm that

computes a whole-body motion and locomotion which are task-only dependent.

The algorithm starts by trying to solve the given set of tasks from the initial robot configuration

q0, using Algorithm 5. If it fails, the last configuration reached be the robot is augmented with virtual

footstep link and given to Algorithm 7 which, by solving the tasks for the virtual structure, plans the

needed footsteps for the tasks. At this point, the algorithm might fail solving the requested tasks (End

2 in the figure). The reasons have been reviewed in previous section, they could relate to a conflicting

tasks definition (reaching with both hands two objects that are two far with the same priority), inadequate

geometry of the robot (reaching an object placed too high), singularity of a task with respect to the

configuration (an arm is all stretched out while a task is requested to position the hand on the shoulder).

We would need a higher level component to assess the feasibility of tasks and potentially plan an

intermediate set of before coming back to solve the original tasks.

If, on the contrary, the footsteps planner succeeds in producing a walk path which fulfills the tasks,

the result is given to the locomotion planner, seen in section 5.1.4. The latter calculates stepping motion
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in quasi-static or dynamic mode which moves the robot to the last support polygon, adapted for the tasks.

Finally, a satisfying whole body motion is generated using Algorithm 5.

The advantage of this algorithm for the developer is obvious: it deals with the redundancy of the

system, observes the priorities between the tasks and takes into accounts the locomotion ability of the

system to help achieve a task. The developer can thus focus on higher level planning, (or higher level

of artificial intelligence as we called it in the introduction) without having to design specific strategies to

coordinates locomotion and manipulation. We describe in the following how we used this algorithm to

solve a full scenario.

7.2 Illustration

We sketch hereby a realizable field experiment. In the scenario, the robot must take cups from shelves

and place them on a table. Successive sub-tasks must be planned to fulfill this objective.

The first task is to grasp the cups. The reason why the robot sees the targets is that there is a direct

space volume free of obstacles between the cameras and the cups. We observed that if we kept a little

free space around its body, the robot was always able to place its hands in its vision field . Therefore,

a strategy to reach for any seen object could be the composition of two motions: a first motion to make

the hand enter the direct volume between the cameras and the targets, then the reaching motion under

collision avoidance constraints.

However, it will be very difficult for perception algorithms to accurately model the shelves from the

initial position of the robot, two meters from the targets. We try first to bring the robot closer to the cups.

The initial problem is thus a simplified one where the footprints are planned such that the hands reach

for the cups without taking the arm-shelf collisions into account (see figure 7.3). The planned footprints

are constrained not to collide with a cylinder around the table and a vertical plane in front of the shelves.

The footprints are further more enlarged such that the real locomotion of the robot, involving a sway

from a foot to the other, does not produce body collisions with surrounding objects.

The robot is now in front of the cups, the free vision volumes separating the cameras from the cups

can be better identified, a whole-body motion is calculated such that the position of the hands come

in inside the volume (figure 7.4). The second part of the strategy presented above consists then in

calculating a whole-body motion to reach for the cups while avoiding collision. The orientation of a

hand is controlled with three tasks: two tasks of type coplanar (4.13) to ensure that the axis of the cup

becomes in the sagittal plane of the cup, a third task of type tilt to define a solid angle containing the

possible directions of the vertical axis of the hand (4.11)). The resulting motion is shown in figures 7.4

and 7.5.

To draw the cups back, the robot has to pull the hands out of the shelves. However, to avoid dragging

the cups on the shelf, they are wrapped in a simplified geometry (cylinder capped with half spheres) that

purposefully intersects the shelf. A collision avoidance task (not constraint) is set in first priority such

that, in absence of any other task, the cup is slightly pushed above the shelf. Equality position tasks

are placed in second priority to draw the cups out while they are being pushed by the anti-collision task
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Figure 7.1: The full algorithm for task-driven motion planning



Figure 7.2: Field scenario: the robot has to place cups on the table.



Figure 7.3: Phase 1: plan the footsteps that bring the robot close to the cups. The footsteps must not

make the robot collide with the table and the shelves, which can be enforced through constraints on the

footprints alone.

(figures 7.6 and 7.7).

The remaining task to fulfill the objective is to turn around and leave the cups on the table. In this

particular situation, the algorithm did not find a solution for the task of looking at the table (necessary

to identify a free manipulation volume). The robot is stuck (figures 7.8) in one of the local minima to

which most numerical algorithms are prone. The reason here is simple: the space between the front

plane of the shelves and the table is actually very narrow for an on-spot turn. We have to resort to an

additional algorithm to avoid this limitation of the footstep planner. One can for instance use a random

two dimensional shooter and quickly end up in the situation of figure 7.9.

From the new position, the robot sees the table, identifies a useful volume for its tasks and is able to

place the cups (figure 7.10). We have reached this result through usage of our algorithm coupled with a



Figure 7.4: Phase 2: place the hands in the vision field, where a an obstacle-free volume is implicitly

identified between the cameras and the targets. Collision with self and obstacles is avoided by wrapping

the pairs of potentially colliding entities in simplified geometry.



Figure 7.5: Phase 3: reach for the targets while avoiding avoiding obstacles.



Figure 7.6: The final orientation of the hands with respect to the cups is not specified: tasks are set such

that a hand’s grasping plane contains the axis of a cup.

very simple random shooter that could be interpreted as a higher-layer of intelligence.



Figure 7.7: Phase 4: drawing back the hands. To avoid dragging the cups on the shelf, they are wrapped

in a simplified geometry that purposefully intersects the shelf. A collision avoidance task (not constraint)

is set in first priority such that, in absence of any other task, the cup is slightly pushed above the shelf.

Position tasks (which can be replaced by plane inequality tasks to define target regions) are placed in

second priority to draw the cups out.



Figure 7.8: The cups end in an inclined orientation due to a configuration task always placed at lowest

priority to regain a rest posture (as in figure 7.2) as much as possible.

Figure 7.9: Phase 5: the robot is trapped in a local minimum with respect to its final task. The algorithm

could not plan footsteps that bring the robot directly from the stance of figure 7.8 to one allowing to put

the cups on the table or at least look at it. The space between the table and the shelves is too narrow.



Figure 7.10: Phase 6: a higher layer of planning was required to escape eternal shelf contemplation.

A random planner can give the robot an intermediary target before resuming usage of lower level

algorithms.



Figure 7.11: Phase 7: from the intermediary position the objective could be achieved.



8
Conclusion

Outcomes

We believe we have advanced towards the goals we set for the planning component of our humanoid

robot. We designed a generic algorithm that relates a class of static tasks, functions of the configuration

of the robot, to a path of footsteps. We rid ourselves from heuristical stepping strategies, which had to

be customized to each task and each humanoid robot.

We looked into numerical frameworks for whole-body motion control and generalized the notion of

static tasks to inequality functions of the robot configuration. We proposed to extend the formulation of

strictly prioritized task-oriented kinematic control to static inequality tasks. Unlike the methods based

on potential fields[Khatib 1986] where a hard inequality constraint is enforced by means of an equality

constraint based on a measure of distance before constraint violation, we strived to characterize the set of

controls which are rigorously defined by an inequality constraint. This lead us to characterize the sets of

controls when both equality and inequality constraints are taken into account and consider the problem

when prioritization is involved.

We were successful in developing an optimization algorithm that computes an optimal solution for

a hierarchy of linear equality and/or inequality constraints while enforcing a strict priority order. We

emphasize again the generality of this solver, presented in chapter 3 independently of the inverse

kinematic setting.

We have investigated a dynamic method to generate dynamic walk motion for humanoid robots which

we integrated within inverse kinematics frameworks, allowing simultaneous dynamic locomotion and
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whole-body motion. Assembling all elements together, we obtained a powerful local motion controller

that takes advantage of the rich mechanical system of the humanoid robot and its bipedal locomotion

capabilities. While we relied on a kinematic control framework to show the principle of the approach, it

can be applied in a dynamic control framework such as the one developed by [Khatib et al. 2004].

Limitations� extensions

The frameworks for local control present the advantage of low computation cost and easy goal

description in work space, where the entire body’s motion is driven by the desired motion and/or force

of an end effector. Local controller are, however, prone to local minima.

In complement to the local motion control techniques there is a body of motion planning algorithms

based on probabilistic search. The principle of these algorithms is to explore the configuration space to

find a feasible, collision-free path of configurations linking an initial configuration of the robot to the

configuration that makes its achieve a given task. One technique builds a probabilistic roadmap (PRM)

[Kavraki et al. 1996] that is in fact a set of randomly sampled configurations, checked against collision,

connected by paths of valid configurations which are calculated using a local motion planning algorithm.

The more powerful the local motion planning algorithm, the less the configuration space is sampled. Our

local footsteps planner may be used in this prospect. Instead of random sampling, one may use a diffusion

process like a Rapidly-exploring Random Tree [Kuffner and LaValle 2000; Hsu et al. 1999] to sweep the

configuration space from initial to desired configuration. Again, the connection between new diffusion

nodes and previous ones is made by a local motion planning algorithm whose performance influences

greatly the progression rate of the diffusion process. These search methods rely on a perfectly known

environment, which may be subject to sudden changes that invalidate the current PRM/RRT from which

a motion is being executed. Some works [Khatib et al. 2004; Brock and Khatib 2004; Khatib et al.

1998] have addressed this problem and highlighted the efficiency of local motion planning techniques

for online trajectory revision while the global strategy is updated more slowly by the search algorithms.

In chapter 7, we illustrated a case where narrow space around the robot made the local footsteps

planner fail to calculate a solution for the tasks at hand. Little bricks placed on the ground around

the robot would have also caused the planner to fail since its feet are constrained to “slide” during the

planning phase. [Kuffner et al. 2001] have addressed the problem of planning footsteps for a goal position

in presence of obstacles that can be stepped over. Thee search from among a discrete set of plausible

statically-stable single-step motions built as a decision tree from the start to the desired position for the

robot. A general study of the coupling of search-based techniques with local minima was proposed by

[Barraquand and Latombe 1991; Barraquand et al. 1992]. It is in a similar fashion that we view the

integration of our footsteps local planner with probabilistic search algorithms in future works.

Thoughts on future work



The constraints and tasks shown in 4 were used throughout this work to design motion for the

humanoid robot HRP-2, they can be viewed as a vocabulary for motion generation. If we construct a

function that recognizes the motion of humans and translates it into a vocabulary of motion we will

have made a significant step in the design of autonomous anthropomorphic systems. The recognition

subfunction has been the focus of extensive research [Campbell and Bobick 1995; Aggarwal and Cai

1999; Wang et al. 2008; Horaud et al. 2009]. The adaptation to robots has gained attention lately as testify

the works by [Suleiman et al. 2008] which proposed a method to transform Motion Capture data into

dynamically stable motion for humanoid robots, or the works by [Billard et al. 2008; Pastor et al. 2009]

on learning by demonstration and the work of [Kulic et al. 2008; Lee and Nakamura 2009] on recognition

and mimesis of whole-body motion. These emerging motion acquisition methods are essential to the

autonomy of humanoid robots as they would allow it to acquire previously non-encountered solutions

to known problems and identify them on a basis of motion generation vocabulary. Combining this

function with the inference of motion task semantics from observation should allow the robot to come

with solutions for unknown problems involving motion and manipulation of objects. This is a vast and

open research field to be applied to explored.
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LIÉGEOIS, A. 1977. Automatic Supervisory Control of the Configuration and Behavior of Multibody

Mechanisms, IEEE trans. IEEE Transactions on Systems, Man, and Cybernetics 7, 12, 868–871. 3, 8

MANSARD, N. AND CHAUMETTE, F. 2007. Task Sequencing for High-Level Sensor-Based Control.

IEEE Transactions on Robotics 23, 1, 60–72. 3

MANSARD, N., KHATIB, O., AND KHEDDAR, A. 2008. Integrating unilateral constraints inside the

Stack Of Tasks. IEEE Transactions on Robotics. 3

MARCHAND, E. AND HAGER, G. 1998. Dynamic Sensor Planning in Visual Servoing. In IEEE

International Conference on Intelligent Robots and Systems. 1988–1993. 3

NAKAMURA, Y. 1990. Advanced robotics: redundancy and optimization. Addison-Wesley Longman

Publishing. 3, 8, 11, 13, 21

NAKAMURA, Y. AND HANAFUSA, H. 1986. Inverse kinematic solutions with singularity robustness

for robot manipulator control. Journal of dynamic systems, measurement, and control 108, 3, 163–171.

11

NEO, E., YOKOI, K., KAJITA, S., AND TANIE, K. 2007. Whole-body motion generation integrating

operator’s intention and robot’s autonomy in controlling humanoid robots. IEEE Transactions on

Robotics 23, 4, 763–775. 3

PARK, K., CHANG, P., AND SALISBURY, J. 1997. A unified approach for local resolution of

kinematic redundancy with inequality constraints and its application to nuclear power plant. In IEEE

International Conference on Robotics and Automation. Vol. 1. 766–773. 44

PASTOR, P., HOFFMANN, H., ASFOUR, T., AND SCHAAL, S. 2009. Learning and generalization

of motor skills by learning from demonstration. In IEEE International Conference on Robotics and

Automation. 93

PEINADO, M., BOULIC, R., LE CALLENNEC, B., AND MEZIAT, D. 2005. Progressive cartesian

inequality constraints for the inverse kinematic control of articulated chains. Eurographics, 93–96. 17
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Titre: Contribution á la planification de mouvement pour robots humanoı̈des

Résumé de la thèse: cette thèse porte sur des algorithmes de contrôle et de planification de

mouvements pour les robots humanoı̈des. Le grand nombre de paramètres caractérisant ces systèmes

a conduit au développement de méthodes numériques, d’abord appliquées aux bras manipulateurs et

récemment adaptées pour les structures plus complexes. On relève particulièrement les formalismes de

commande cinématique et dynamique par priorité qui permettent de produire un mouvement selon une

hiérarchie pré-établie des tâches. Au cours de ce travail, nous avons identifié le besoin d’étendre ce

formalisme afin de tenir compte de contraintes unilatérales. Nous nous sommes par ailleurs intéressés

à la planification de la locomotion en fonction des tâches. Nous proposons une modélisation jointe du

robot et de sa trajectoire de marche comme une structure articulée unique saisissant à la fois les degrés

de liberté actionnés (articulations motorisées du robot) et non-actionnés (positionnement absolu dans

l’espace). L’ensemble de ces algorithmes, qui seront longuement illustrés, ont été implémentés au sein

du projet HPP (Humanoid Path Planner) et validés sur le robot humanoı̈de HRP-2.

Mots clés: cinématique inverse, contrôle optimal, optimisation sous contraintes, priorité, locomotion
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Title: Task-driven motion control for humanoid robots

Abstract of the thesis: this thesis is related to motion control and planning algorithms for humanoid

robots. For such highly-parameterized systems, numerical methods are well adapted and have thus been

the center of increasing attention in the recent years. Among the prominent numerical schemes, we

recognized the prioritized inverse kinematics and dynamics frameworks to hold key features to plan

motion for humanoid robots, such as the possibility to control the motion while enforcing a strict priority

order among tasks. We have, however, identified a lack of support of strict priority enforcement when

inequality constraints are to be accounted for in the numerical schemes and we were successful in

proposing a solution to this shortcoming. We also considered the problem of planning bipedal locomotion

according to any given tasks. We proposed to model this problem as an inverse kinematics problem, by

considering the kinematic structure of the robot and its walk path as a single unified structure that captures

both the degrees of freedom of the robot which are actuated (motorized joints) and those which are not

(position and orientation in space). The presented algorithms, which will be abundantly illustrated, have

been implemented within the HPP (Humanoid Path Planner) project and validated on the humanoid robot

HRP-2.

Keywords: inverse kinematics, optimal control, constrained optimization, priority, bipedal locomotion,

humanoid robot, motion planning
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