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A key question in evolutionary genetics is why certain mutations

or certain types of mutation make disproportionate contributions

to adaptive phenotypic evolution. In principle, the preferential

fixation of particular mutations could stem directly from variation

in the underlying rate of mutation to function-altering alleles.

However, the influence of mutation bias on the genetic architecture

of phenotypic evolution is difficult to evaluate because data on

rates of mutation to function-altering alleles are seldom available.

Here, we report the discovery that a single point mutation at a

highly mutable site in the βA-globin gene has contributed to an

evolutionary change in hemoglobin (Hb) function in high-altitude

Andean house wrens (Troglodytes aedon). Results of experiments

on native Hb variants and engineered, recombinant Hb mutants

demonstrate that a nonsynonymous mutation at a CpG dinucleo-

tide in the βA-globin gene is responsible for an evolved difference

in Hb–O2 affinity between high- and low-altitude house wren pop-

ulations. Moreover, patterns of genomic differentiation between

high- and low-altitude populations suggest that altitudinal differ-

entiation in allele frequencies at the causal amino acid polymorphism

reflects a history of spatially varying selection. The experimental re-

sults highlight the influence of mutation rate on the genetic basis of

phenotypic evolution by demonstrating that a large-effect allele at a

highly mutable CpG site has promoted physiological differentiation in

blood O2 transport capacity between house wren populations that

are native to different elevations.

biochemical adaptation | hemoglobin | high altitude | hypoxia |
mutation bias

An important question in evolutionary genetics is whether
certain mutations or certain types of mutation make dispro-

portionate contributions to phenotypic evolution (1–6). Within a
given gene, the mutations that contribute to evolutionary changes
in phenotype may represent a biased, nonrandom subset of all
possible mutations that are capable of producing the same func-
tional effect. The preferential fixation of particular mutations
(substitution bias) could have several causes. Most theoretical and
empirical attention has focused on causes of fixation bias, i.e.,
mutations have different probabilities of being fixed once they
arise, due to differences in dominance coefficients or the magni-
tude of deleterious pleiotropy (1, 2, 4, 7–9). In principle, sub-
stitution bias can also stem directly from mutation bias (some sites
have higher rates of mutation to alleles that produce the change
in phenotype) (4, 9–11). However, empirical evidence for the
importance of mutation bias is scarce for an obvious reason: even
in rare cases where it is possible to document the contributions
of individual point mutations to evolutionary changes in phe-
notype, data on rates of mutation to function-altering alleles are
typically lacking. Rare exceptions include cases where loss-of-
function deletion mutations can be traced to hot spots of chro-
mosomal instability or highly mutable changes in the copy number
of repetitive elements (12). Documenting cases where genetic
changes at highly mutable loci contribute to phenotypic divergence
is therefore important for elucidating the evolutionary significance

of mutation bias. This is especially true for cases where muta-
tions cause fine-tuned modifications of protein activity rather
than simple losses of function.
Here, we report the discovery that a single amino acid re-

placement at a mutational hot spot in the avian βA-globin gene
has contributed to an evolutionary change in hemoglobin (Hb)
function that has likely adaptive significance. By conducting ex-
periments on native Hb variants and engineered recombinant Hb
mutants, we demonstrate that a nonsynonymous mutation at a
CpG dinucleotide in the βA-globin gene of Andean house wrens
(Troglodytes aedon) has contributed to an evolved difference in
Hb–O2 affinity between high- and low-altitude populations. In
mammalian genomes, point mutations at CpG sites occur at a
rate that is over an order of magnitude higher than the average
for all other nucleotide sites (13, 14), and available data suggest a
similar discrepancy in avian genomes (15, 16).
Andean house wrens are compelling subjects for studies of Hb

function because this passerine bird species has an exceptionally
broad and continuous elevational distribution, ranging from sea
level to elevations >4,500 m (17). At 4,500-m elevation, the
standard barometric pressure is ∼450 torr, so O2 partial pressure
(PO2) is <60% that at sea level (∼96 torr compared to ∼160 torr).

Significance

Within a given gene, there may be many possible mutations that

are capable of producing a particular change in phenotype.

However, if some sites have especially high rates of mutation to

function-altering alleles, then suchmutations may make dispropor-

tionate contributions to phenotypic evolution. We report the dis-

covery that a pointmutation at a highlymutable site in the β-globin

gene of Andean house wrens has produced a physiologically im-

portant change in the oxygenation properties of hemoglobin (Hb).

The mutant allele that confers an increased Hb–O2 affinity is pre-

sent at an unusually high frequency at high altitude. These findings

suggest that site-specific variation in mutation rate may exert a

strong influence on the genetic basis of phenotypic evolution.
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Under such conditions, enhancements of pulmonary O2 uptake and
blood O2 transport capacity are required to sustain O2 flux to the
tissue mitochondria in support of aerobic ATP synthesis (18). To
complement changes in the cardiorespiratory system and micro-
circulation, changes in the O2-binding affinity and cooperativity
of Hb can enhance the O2 capacitance of the blood (the total
amount of O2 unloaded for a given arteriovenous difference in
O2 tension). Because the optimal Hb–O2 affinity is expected to
vary according to the ambient PO2, genetic variation in oxy-
genation properties of Hb may be subject to spatially varying
selection between populations that inhabit different elevations.
House wrens colonized South America in the late Pliocene or
early Pleistocene via the newly formed Panamanian land bridge
(19, 20), so the species may have been resident in the Andean
highlands for up to ∼3 million years.
The Hb tetramer is composed of two semirigid α1β1 and α2β2

dimers that undergo a mutual rotation during the oxygenation-
linked transition in quaternary structure between the deoxy (low-
affinity “T”) conformation and the oxy (high-affinity “R”) confor-
mation (21). This oxygenation-linked structural transition between
the T and R states is the basis for cooperative O2 binding, and is
central to the allosteric function of Hb as an O2 transport mole-
cule. Our analysis of house wren Hb highlights the influence of
mutation rate on the genetic basis of phenotypic divergence by
demonstrating that mutation at a CpG dinucleotide produced a
large-effect amino acid replacement at an α1β1 intradimer contact
(β55Val→Ile)—a replacement that produced a significant increase
in Hb–O2 affinity.

Results

We performed an integrative analysis of Hb polymorphism in
Andean house wrens that combined a population genomic
analysis of nucleotide variation with mechanistic studies of pro-
tein function. Our survey of Hb polymorphism in T. aedon was
based on a total of 140 museum-vouchered specimens (Table S1)
that we collected from a broad range of elevations in the Peru-
vian Andes (Fig. S1). Andean house wrens are characterized by a
high degree of phylogeographic structure. In Peru alone, house
wrens are divided into seven highly divergent mtDNA clades that
have allopatric or parapatric distributions across the Andes (20).
To minimize the confounding effects of population structure in
our altitudinal survey of Hb polymorphism, we conducted a de-
tailed population genetic analysis on a sample of 65 specimens
from the western slope of the Andes in central Peru that are
representatives of the same mtDNA clade (20). Comparisons
between highland and lowland population samples were based
on specimens collected from >3,000 and <1,000 m, respectively.

Hb Isoform Composition of Red Blood Cells. Most birds express two
structurally distinct Hb isoforms during adult life: HbA and HbD
(22). HbA is typically the major isoform, constituting ∼60–80%
of adult Hb in passerine birds (22, 23). The major HbA isoform
incorporates α-chain products of the αA-globin gene, and the
minor HbD isoform incorporates products of the αD-globin
gene; both isoforms incorporate β-chain products of the same
βA-globin gene. To characterize the red cell Hb isoform composi-
tion of house wrens, we analyzed blood samples from individual
specimens using a combination of isoelectric focusing (IEF) and
tandem mass spectrometry (MS/MS). Consistent with data from
other passerines, our wild-caught house wrens expressed two
distinct isoforms, HbA (pI = 8.7) and HbD (pI = 7.1–7.2). There
was no clear difference in relative isoform abundance in house
wrens from different elevations: the relative percentages of HbD
were 39% and 42% in high- and low-altitude specimens, respectively
[n = 14 (7 from >3,900 m and 7 from <395 m)]. MS/MS analysis
confirmed that subunits of the two adult Hb isoforms represent
products of the αA-, αD-, and βA-globin genes; products of the em-
bryonic α- and β-type globin genes were not detected.

Altitudinal Patterns of Amino Acid Polymorphism. In birds, as in
other amniotes, the subfamilies of α- and β-type globin genes are

located on different chromosomes (23–26). All oscine passerines
examined to date possess three tandemly linked α-type globin
genes and four tandemly linked β-type globin genes (22–24, 27).
Because the proteomic analyses confirmed that subunits of the
two adult-expressed Hb isoforms are exclusively encoded by the
αA-, αD-, and βA-globin genes, we surveyed nucleotide poly-
morphism at each of these three genes in the full panel of high-
and low-altitude house wrens (n = 140) to identify amino acid
changes that could potentially contribute to intraspecific variation in
Hb function.
This survey revealed a number of low-frequency amino acid

polymorphisms, but only one polymorphism, β55(Val/Ile), exhibited
a significantly nonrandom pattern of allele frequency variation with
respect to altitude (Fig. 1 and Fig. S2). In the central Peru sample,
the frequency of the derived Ile variant was 0.72 at high altitude and
0.31 at low altitude. This allele frequency difference of 0.41 was
roughly twofold higher than that of any other amino acid poly-
morphism in the α- or β-globin genes. The three adult-expressed
globin genes exhibited silent-site diversities of π = 0.0016–0.0105
in the total sample of Andean house wrens (Table S2).

Recurrent Substitutions at a Mutational Hot Spot.We sequenced the
βA-globin gene in 38 songbird species, including 15 species in the
wren family (Troglodytidae) and 23 species representing nine
families of oscine passerines. Phylogenetic analysis revealed that
repeated nonsynonymous substitutions at the first codon position
of β55 were attributable to the recurrent elimination of an an-
cestral CpG dinucleotide. Specifically, recurrent G→A transition
substitutions at the first codon position converted β55Val to Ile
in Andean house wrens and seven other passerine lineages, G→C
transversion substitutions converted β55Val to Leu in several
lineages, and successive A↔C transversions (non-CpG changes)
interconverted β55Ile and Leu in thrushes (Fig. 2). Depending
on the methylation status of the cytosine, eliminations of CpG
dinucleotides via point mutations at either site are expected to
occur at a far higher rate than non-CpG mutations at the same
sites (16, 17). Consistent with this expectation, the estimated per-
path rate for observed substitutions that eliminate the CpG
dinucleotide (CpG→CpA and CpG→CpC) was approximately
fivefold higher than the rate for other possible substitutions at
the same site (0.0196 vs. 0.0043, respectively), and a likelihood
ratio test indicated that the two-rate model provided a signifi-
cantly better fit to the data than a single-rate model (2ΔlnL =

4.75, P = 0.029).

Globin Gene Variation in Genome-Wide Context. For the purpose of
making comparisons with patterns of variation in the adult-
expressed α- and β-type globin genes of Andean house wrens, we
surveyed intronic sequence polymorphism in the ρ- and βH-globin
genes, both of which are located immediately upstream of βA-globin,
and we also surveyed intronic sequence of the unlinked
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Fig. 1. The β55(Val/Ile) polymorphism exhibits a striking altitudinal pattern

of allele frequency variation among 14 natural populations of house wrens

from throughout Peru. The derived β55Ile allele predominates at high alti-

tude and the ancestral Val allele predominates at lower altitudes.
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myoglobin (Mb) gene. In comparisons between the high- and
low-altitude population samples, the βA-globin gene exhibited
a higher level of nucleotide differentiation than each of the
other linked and unlinked globin genes (Table S3).
To complement the multilocus survey of globin variation in

the full panel of high- and low-altitude specimens, we used a
subset of 28 specimens (14 highland, 14 lowland) in a genome-
wide survey of single nucleotide polymorphisms (SNPs) in coding
sequence. This allowed us to interpret altitudinal patterns of β55
polymorphism in a genome-wide context. We restricted the ge-
nomic analysis to 1,272 SNPs that mapped to putative protein-
coding genes in a reference transcriptome (SI Methods). In the
subset of specimens used in the genomic analysis, the site-spe-
cific FST value for β55 was 0.150, representing the upper 0.084
percentile of the empirical genome-wide distribution for coding
SNPs. In the comparison between high- and low-altitude speci-
mens comprising the central Peru sample (n = 108 alleles), the
site-specific FST value for β55 was 0.269, representing the upper
0.013 percentile. The elevational differentiation in allele fre-
quencies at the β55(Val/Ile) polymorphism thus provides sug-
gestive evidence for a history of spatially varying selection.

Oxygenation Properties of Native HbA and HbD Variants. We puri-
fied HbA and HbD variants from highland and lowland house
wren specimens that had representative globin genotypes. Mea-
sured differences in functional properties between the native
HbA and HbD variants of highland and lowland house wrens
reflect the net effects of naturally occurring allelic variation at
two β-chain sites: β55(Val/Ile) and β80(Gly/Ser). Allelic variation
at β80 contributes to amino acid heterogeneity in the set of speci-
mens used in our functional experiments, but—unlike the β55(Val/Ile)
polymorphism—it represents a low-frequency polymorphism in
the global population and it does not exhibit a consistent alti-
tudinal pattern of allele frequency variation (Fig. S3).
We measured O2 equilibria of purified native Hb solutions

under a standardized set of experimental treatments that en-
abled us to test for physiological differences in O2 affinity be-
tween high- and low-altitude Hb variants while simultaneously
providing insights into the molecular mechanism responsible for
observed functional differences. We measured O2 equilibria (i)
in the absence of allosteric effectors (“stripped”), (ii) in the

presence of Cl− ions, added as 0.1 M KCl, (iii) in the presence of
inositol hexaphosphate (IHP) (a chemical analog of the naturally
occurring inositol pentaphosphate), at twofold molar excess over
tetrameric Hb, and (iv) in the simultaneous presence of Cl− and
IHP. This latter treatment is most relevant to in vivo conditions
in avian red blood cells. For each treatment, we estimated P50,
the PO2 at which Hb is 50% saturated, and the Hill coefficient,
n50, a measure of cooperativity.
Because HbA and HbD share the same β-type subunit, func-

tional effects of β-chain mutations should be manifest in com-
parisons between high- and low-altitude variants of both isoforms.
Thus, data from both HbA and HbD provide replicate measure-
ments of the mutations at β55 and β80 on two different α-chain
backgrounds. The O2 equilibrium measurements revealed pro-
nounced differences in O2 affinity between high- and low-altitude
variants of both HbA and HbD (Table S4 and Fig. 3). P50(KCl+IHP)

for the high-altitude HbA variant was 34% lower (O2 affinity was
higher) than that of the low-altitude variant (17.07 vs. 25.88 torr).
Similarly, P50(KCl+IHP) for the high-altitude HbD variant was 17%
lower than that of the low-altitude variant (13.45 vs. 16.29 torr). In
high- and low-altitude samples, O2 affinity differences between the
two isoforms were consistent, as P50(KCl+IHP) was considerably
higher for HbA relative to HbD (Table S4). Both isoforms
exhibited cooperative O2 binding, as estimated Hill coefficients
(n50 values) in the KCl-plus-IHP treatment were 1.36–2.11 for
HbA, and 2.28–2.36 for HbD (Table S4).
In the case of the high- and low-altitude HbA variants, the

slight difference in intrinsic O2 affinity [P50(stripped) = 2.47 vs. 2.80
torr, respectively] was greatly augmented in the presence of IHP
and in the simultaneous presence of Cl− and IHP (Table S4 and
Fig. 3A). In the case of the HbD isoforms, there was no discernible
difference in intrinsic O2 affinity between the high- and low-alti-
tude variants [P50(stripped) = 1.59 vs. 1.58 torr, respectively], but—as
with the HbA variants—there was a highly significant affinity
difference in the presence of Cl− and IHP (Table S4 and Fig. 3B).
Results for high- and low-altitude variants of HbA and HbD in-
dicate that allelic differences in Hb function stem from changes in
both intrinsic O2 affinity and anion sensitivity. In both isoforms,
these changes are clearly attributable to the independent or joint
effect of shared amino acid mutations at β55 and β80.
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Functional Effects of Individual Mutations. To measure the relative
contributions of the mutations β55Val→Ile and β80Gly→Ser, we
used site-directed mutagenesis to engineer four recombinant Hb
(rHb) mutants representing each possible genotypic combination
of allelic variation at the two sites. The measured O2 affinities of
the ancestral genotype (55Val-80Ser) and the β55 single-mutant
(55Ile-80Ser) recapitulated the measured difference between the
native HbA variants from high- and low-altitude populations
(Tables S4 and S5). The β55Val→Ile mutation produced a 25%
reduction in P50(KCl+IHP) (an increase in O2 affinity) on the an-
cestral 55Val-80Ser background (difference in P50 = 5.79 torr,
95% confidence limits of ΔP50 = 11.06, 0.52), and a 9% reduction on
the background with the derived Gly at β80 (Fig. 4 and Table S5)
(difference in P50 = 1.65 torr, 95% confidence limits of ΔP50 = 5.22,
−1.92). The β80Ser→Gly mutation also had a substantial affinity-
enhancing effect on the ancestral background (Fig. 4 and Table S5).

The Structural Mechanism Responsible for Changes in Hemoglobin–O2

Affinity.Results of homology modeling suggest that the β55Val→Ile
mutation increases intrinsic Hb–O2 affinity through indirect effects
on the β-chain distal heme pocket (the site of heme–ligand bind-
ing). The β55Val→Ile mutation results in the insertion of an ad-
ditional carbonyl group in the α1β1 intradimer gap between β55 and
α119Pro, thereby forming a van der Waals contact between the
two residues (Fig. 5). In the deoxy state, this added atomic
contact at the α1β1 interface induces strain on the adjacent D
helix of the β-subunit, as indicated by a 1.3-fold increase in the
single-residue frustration index for the derived β55Ile relative to
Val on the ancestral background (Table S6). This effect propa-
gates to the adjacent E helix, resulting in a subtle repositioning
of key residues at the solvent interface that function as a gate for
ligand entry/exit in the distal heme pocket and that directly or
indirectly stabilize the heme–ligand complex (28).

Discussion

Possible Adaptive Significance of Altitudinal Differences in Hb–O2

Affinity. The evolved difference in Hb–O2 affinity between the
highland and lowland house wrens is consistent with theoretical
and empirical results demonstrating that the optimal blood–O2

affinity varies according to the ambient PO2, reflecting an un-
avoidable trade-off between the need to preserve arterial O2

saturation under hypoxia while simultaneously ensuring adequate
O2 unloading in the peripheral circulation (29–31).
Patterns of convergence in Hb function among different high-

altitude vertebrates also provide insights into the possible adaptive
significance of changes in Hb–O2 affinity. Comparative studies of
Andean hummingbirds revealed that species with extraordinarily
high elevational range limits consistently have higher Hb–O2 af-
finities than closely related lowland species (32). Studies of birds

and mammals have documented altitude-related differences in
Hb–O2 affinity in some cases (32–38), but not in others (39–42).
Andean house wrens provide the first example (to our knowledge)
of a continuously distributed bird species in which high-altitude
natives have evolved a derived increase in Hb–O2 affinity relative
to lowland conspecifics. In contrast to recently documented cases
where changes in Hb function between populations or closely
related species evolved via multiple mutational changes that had
individually minor effects (37, 38, 41), the increased Hb–O2 af-
finity in high-altitude house wrens is clearly attributable to a single,
large-effect mutation.

Insights into Structural Mechanism. Results of the protein-engi-
neering experiments clearly demonstrate the affinity-enhancing
effect of the β55Val→Ile mutation. A different amino acid sub-
stitution at this same site (β55Leu→Ser) has been implicated in
the evolution of an increased Hb–O2 affinity in the Andean
goose (33, 34), although phylogenetic surveys of βA-globin se-
quence variation have revealed that the β55Ser character state is
not uniquely derived in the Andean goose—it is actually a shared,
ancestral character state in South American sheldgeese, and most
species in this group are lowland natives (43). The β55Leu→Ser
substitution eliminates a van der Waals interaction between β55Leu
and α119Pro at the α1β1 intradimer interface, thereby destabilizing
the T-state conformation and shifting the allosteric equilibrium in
favor of the high-affinity R state, resulting in an increase in overall
O2 affinity. Engineering the same β55Leu→Ser substitution into
recombinant human Hb produced the predicted increase in O2 af-
finity, corroborating the hypothesized structural mechanism (33, 34).
In house wren Hb, an amino acid replacement at the same site also

produces a dramatic change in O2 affinity, but the structural mech-
anism is completely different. The affinity-enhancing β55Leu→Ser
replacement in Andean goose Hb eliminates an atomic contact
between α119 and β55, thereby destabilizing the low-affinity T-state
conformation. By contrast, the affinity-enhancing β55Val→Ile
replacement in house wren Hb adds an intradimer atomic contact
in the same α1β1 interface (Fig. 5), which indirectly affects deoxy
β-heme reactivity by reorienting the E helix. This illustrates how
substitutions involving different pairs of amino acid residues at the
same site can alter protein function via different structural and
functional mechanisms.

Effects of Mutation Bias on Propensities of Molecular Adaptation.
Results of our molecular evolution analysis demonstrated a quan-
titative asymmetry in rates of CpG and non-CpG substitution in the
first codon position of β55, and results of our protein-engineer-
ing experiments demonstrated that the mutationally favored
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Val→Ile replacement at this site produces a significant increase
in Hb–O2 affinity on the ancestral genetic background (Fig. 4
and Table S5). The direction of character state change is con-
sistent with the expectation that an increased Hb–O2 affinity is
adaptive at high altitude. This inference is bolstered by results of
the population genomic analysis, which suggest that the altitudinal
shift in frequency of the derived β55-Ile variant is attributable to a
history of spatially varying selection. Our results therefore demon-
strate how a mutationally favored amino acid change produced a
large phenotypic effect that has likely adaptive significance. The
important question is whether the increased rate of mutation to the
function-altering allele made the observed evolutionary outcome
especially likely to occur. This is relevant to the more general ques-
tion of whether propensities of mutational change cause propensities
in pathways of adaptive molecular evolution (10, 11, 44, 45).
Studies of naturally occurring mutations in human Hb and

engineered mutations in recombinant Hbs, as well as compara-
tive studies of Hbs from different animal species, demonstrate
that there are numerous possible amino acid changes that are
capable of producing fine-tuned increases in Hb–O2 affinity (46–
49). As an adaptive solution to the respiratory challenges of O2

transport at high altitude, there is no reason to think that the
β55Val→Ile replacement was a forced option; any number of
amino acid mutations in the same protein presumably could have
produced a quantitatively similar phenotypic effect. Assuming
that an increased Hb–O2 affinity confers a fitness benefit in birds
living at high altitude, there seems little reason to suppose that
the observed β55Val→Ile mutation would have had a higher
fixation probability than any number of other possible affinity-
enhancing mutations. However, if the rate of β55Val→Ile mutation
is 10-fold higher than the rate of mutation to any other affinity-
enhancing amino acid at any other site in the protein, then—in the
absence of contributions from standing variation—this would
bias evolutionary outcomes in the same way as a 10-fold higher
probability of fixation. When adaptive evolution is mutation-
limited, an increase in the rate of mutation to a particular allele
and a commensurate increase in the mutant allele’s probability
of fixation have the same effect on the odds that the allele will be
the next to fix (4, 10, 11, 50). The extent to which adaptation in
natural populations approximates the mutation-limited scenario
envisioned by origin-fixation models remains an open question in
evolutionary genetics (50). Our findings suggest that variation in
the mutation rate to function-altering alleles may be an impor-
tant factor influencing the preferential fixation of mutations
during phenotypic evolution.

Methods
Sample Collection. We collected 140 house wren specimens from a range of

elevations (120–4,454 m above sea level) in the Peruvian Andes and adjacent

lowlands. All specimens were preserved as vouchers in the ornithological col-

lection of the Museum of Southwestern Biology of the University of New

Mexico and the Centro de Ornitología y Biodiversidad (CORBIDI) (Lima, Peru).

Birds were handled in accordance with protocols approved by the University

of New Mexico Institutional Care and Use Committee (Protocol 08UNM033-

TR-100117; Animal Welfare Assurance number A4023-01). Complete speci-

men data are available via the ARCTOS online database (Table S1). Details

regarding specimen collection and permits are provided in SI Methods.

Characterization of Hb Isoform Composition. We characterized Hb isoform

composition in the mature erythrocytes of 14 house wren specimens

(7 highland and 7 lowland). Native Hb components were separated by means

of IEF, gel bands were excised and digested with trypsin, andMS/MS was used

to identify the resultant peptides, as described in SI Methods.

Molecular Cloning and Sequencing. Details regarding cloning and sequencing

protocols are provided in SI Methods. All sequences were deposited in

GenBank under accession numbers KT759682–KT760400.

Phylogenetic Survey of βA-Globin Sequence Variation in Oscine Passerines. We

sequenced the βA-globin gene in representative wren species and species

from related oscine passerine families. We used a time-scaled supertree (51)

and the “ace” function of the R package ape (52) to test alternative maxi-

mum-likelihood models of character state change and to estimate ancestral

character states for the first codon position of β55. Our model was based on

a 3 × 3 rate matrix representing all possible interconversions among observed

character states at the focal site: A, C, and G (T was not an observed character

state). The null model used a single rate parameter for all six substitution

types. The alternative model included a second rate parameter for sub-

stitutions that eliminated the CpG dinucleotide (CpG→CpA and CpG→CpC).

We used a likelihood ratio test to compare the one-rate and two-rate models.

Population Genetic Analysis. For each of the adult-expressed globin genes

(αA-, αD-, and βA-globin), we computed summary statistics of nucleotide

polymorphism, as described in SI Methods.

Survey of Genomic Differentiation. We used a genotyping-by-sequencing

approach to survey genome-wide patterns of nucleotide differentiation in

coding sequence. Briefly, we used genomic DNA samples from 28 house wren

specimens toproducemultiplexed, reduced-representation Illumina libraries.Details

of library preparation, library sequencing, and quality control filtering are provided

in SI Methods. Parsed Illumina reads have been deposited in the National Center

for Biotechnology Information Sequence Read Archive (SRA) (PRJNA295865).

Protein Purification and in Vitro Analysis of Hb Function. The experimental

analysis of native HbA and HbD variants was based on pooled hemolysates

from seven highland specimens and seven lowland specimens that had

representative genotypes. For each of the pooled hemolysates, we isolated

and purified the HbA and HbD isoforms by means of anion-exchange fast-

protein liquid chromatography, using a HiTrap QHP column (GE Healthcare).

Details regarding sample preparation and the measurement of O2 equilib-

rium curves are provided in SI Methods.

Vector Construction and Site-Directed Mutagenesis. The αA- and βA-globin

sequences were synthesized by Eurofins MWG Operon after optimizing the

nucleotide sequences in accordance with Escherichia coli codon preferences.

The synthesized αA-βA globin gene cassette was cloned into a custom pGM

vector system along with the methionine aminopeptidase (MAP) gene, as

described previously (37, 53). We engineered each of the β-chain codon sub-

stitutions using the QuikChange II XL Site-Directed Mutagenesis kit from

Stratagene. Each engineered codon change was verified by DNA sequencing.

Expression and Purification of Recombinant Hbs. Recombinant Hb expression

was carried out in the E. coli JM109 (DE3) strain as described previously (53).

Additional details are provided in SI Methods.

Structural Modeling. Homology-based structural modeling was performed on

the SWISS-MODEL server (54), using human deoxyHb (Protein Data Bank ID

2hhb) as template. To predict mutational effects on conformational stress,

we computed an index of energetic frustration using the Frustratometer

program (55). Graphics were produced by the PyMol (Schrödinger).
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Fig. 5. Homology model of house wren HbA showing the location of amino

acid replacements that distinguish high- and low-altitude variants. (A) The E

and F helices of the β-chain subunit are shown in blue. The side chain of the

proximal histidine, β92 (which covalently binds the fifth coordination site of

the heme iron) is also shown in blue, and the residues forming the α1β1
intradimer contact between β55 and α119 are shown in red and yellow, re-

spectively, with space-filling representation of van der Waals radii. The site of

the β80Ser→Gly mutation in the EF interhelical loop is shown in pink. (B and C)

There is no interchain atomic contact between β55Val and α119Pro at the α1β1
contact surface. (D and E) Because Ile has an additional carbon atom relative to

Val, a van der Waals interaction is formed between β55Ile and α119Pro.
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SI Methods

Sample Collection.All birds were live-trapped in mist nets and were
sacrificed in accordance with protocols approved by the Uni-
versity of New Mexico Institutional Care and Use Committee
(Protocol 08UNM033-TR-100117; Animal Welfare Assurance
number A4023-01). All collections were authorized by permits
issued by management authorities of Peru (004-2007-INRENA-
IFFS-DCB, 135-2009-AG-DGFFS-DGEFFS, 0377-2010-AG-
DGFFS-DGEFFS, 0199-2012-AG-DGFFS-DGEFFS, and 006-
2013-MINAGRI-DGFFS/DGEFFS).
For each of the 140 house wren specimens, we collected 20–60 μL

of whole blood from the brachial or ulnar vein using heparinized
microcapillary tubes. Red blood cells were separated from the
plasma fraction by centrifugation, and the packed red cells were
flash-frozen in liquid nitrogen. We collected liver and pectoral
muscle from each specimen as sources of genomic DNA and
globin mRNA, respectively. Muscle samples were flash-frozen or
preserved using RNAlater. All tissue and blood samples were
subsequently stored at −80 °C.

Tandem Mass Spectrometry. Database searches of MS/MS spectra
were performed using Mascot (Matrix Science; version 1.9.0).
Specifically, peptide mass fingerprints derived from the MS/MS
analysis were used to query a custom database of avian α- and
β-type globin sequences. These amino acid sequences were de-
rived from conceptual translations of the adult-expressed αA-, αD-,
and βA-globin genes of T. aedon, in addition to the full comple-
ment of embryonic and adult α- and β-type globin genes that
have been annotated in the genome assemblies of other birds
(22–24, 27, 56). We identified all significant protein hits that
matched more than one peptide with P < 0.05. After separating
the HbA and HbD isoforms by native gel IEF and identifying
each band on the gel by MS/MS, the relative abundance of the
different isoforms was quantified densitometrically.

PCR, Cloning, and Sanger Sequencing. We extracted genomic DNA
from frozen tissues of each of the 140 house wren specimens using
the DNeasy Blood and Tissue Kit (Qiagen). We used the PCR to
amplify six autosomal loci, including full-length coding sequences
of the adult-expressed α- and β-type globin genes (αA-, αD-, and
βA-globin), intron 2 sequences of ρ-globin and βH-globin (β-type
globin genes that are located just upstream of βA-globin), and
intron 2 of the unlinked myoglobin gene. Negative controls
were included in each PCR to control for contamination. All
PCR amplicons were purified using ExoSap-IT (USB) and were
sequenced in both directions using dye terminator cycle-
sequencing (BigDye; ABI) on an ABI 3130 automated sequencer
(Applied Biosystems).
For the 14 specimens used in the experimental analyses of Hb

function, we extracted RNA from pectoral muscle tissue using
the RNeasy kit (Qiagen) and we amplified full-length cDNAs of
the αA, αD-, and βA-globin genes using a OneStep RT-PCR kit
(Qiagen). We designed paralog-specific primers using 5′- and 3′-
UTR sequences from passerine species, as described previously
(23). We cloned RT-PCR products using the TOPO TA Cloning
Kit (Life Technologies), and we sequenced at least five clones
per gene to recover both alleles of each globin gene. This en-
abled us to determine full diploid genotypes for each of the three
adult-expressed globin genes in each specimen.

Population Genetic Analysis. We computed summary statistics of
nucleotide polymorphism for each of the adult-expressed globin

genes (αA-, αD-, and βA-globin). As a measure of nucleotide
variation, we calculated nucleotide diversity, π, and Watterson’s
θW, an estimator of the population mutation rate (=4Nμ, where
N is the effective population size and μ is the mutation rate per
nucleotide). We calculated Tajima’s D to characterize the dis-
tribution of allele frequencies at silent sites and we calculated
Hudson’s (57) estimator of the population recombination rate,
4Nc, where c is the rate of crossing over between adjacent nu-
cleotides. To test whether measured values of Tajima’s D de-
viated from neutral-equilibrium expectations, we obtained
critical values for each statistic by conducting 10,000 coalescent
simulations (no recombination) that were conditioned on the
observed number of segregating sites.

Genome-Wide Survey of Nucleotide Differentiation Using a

Genotyping-by-Sequencing Approach. To more broadly survey
patterns of genomic differentiation between high- and low-ele-
vation populations, we produced multiplexed, reduced-repre-
sentation Illumina libraries following Parchman et al. (58). Briefly,
we digested genomic DNA samples for a total of 28 individuals (14
from high elevation and 14 from low elevation; Table S1) with two
restriction endonucleases (EcoRI and Mse1). We then ligated
double-stranded adaptor oligonucleotides that contained Illumina
sequencing binding sites and a unique 8- to 10-bp barcode for
individual identification, and PCR amplified these adaptor-ligated
fragments. Details on the adaptor sequences as well as the di-
gestion and PCR conditions can be found in the study by Parchman
et al. (58). We pooled the barcoded amplicons from each individual
in equimolar concentrations, and electrophoresed them on 2.5%
agarose gel for size selection. Fragments that were between 350 and
500 bp in length were excised from the gel and purified using a
QIAquick Gel Extraction Kit (Qiagen). The pooled library was
sequenced in a single lane on the Illumina HiSEq 1000 plat-
form as 100-nt single-end reads at the Keck Center for Com-
parative and Functional Genomics at the University of Illinois,
Urbana–Champaign.
We parsed the resulting reads by individual barcodes and

trimmed adaptor sequences and low-quality bases using custom
Perl scripts, resulting in a final mean read length of 87 nt. To limit
our analysis to putative protein-coding genes, we mapped indi-
vidual T. aedon reads to the published transcriptome of a closely
related passerine, Zontrichia leucophrys (59), using the sensitive-
local settings in Bowtie2 (60). Transcript-aligned reads were
then processed using the program STACKS (61) to identify
single-nucleotide polymorphisms (SNPs) in reads that mapped to
known transcripts using the following input parameters for
pstacks: - m3, –model_type snp, –alpha 0.05. All 28 individuals
were included when compiling the SNP catalog in cstacks.
Downstream population genetic analysis were restricted to loci
that were genotyped in at least 10 individuals per population with
a minimum sequencing depth of 5 reads per locus per individual
and a minor allele frequency of 0.05, resulting in a final dataset of
1,272 unique loci. We calculated locus-specific FST values using the
program POPULATIONS implemented in STACKS (61).

Protein Purification and in Vitro Analysis of Hb Function.We purified
HbA and HbD variants from pooled hemolysates from seven
highland specimens and seven lowland specimens. There was a
nearly fixed difference between the two samples at β55, with Ile
and Val alleles predominating in the highland and lowland
specimens, respectively, but there was also a low level of amino
acid heterogeneity at site β80: a derived Gly allele was present at
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frequencies of 0.36 and 0.07 in the samples of highland and
lowland specimens, respectively (n = 14 alleles in each sample).
Using purified Hb solutions (0.3 mM heme) that were stripped

of organic phosphates and other allosteric effectors, we measured
O2 equilibrium curves at 37 °C, 0.1 M Hepes, pH 7.4, in the
absence (“stripped”) and presence of 0.1 M KCl, IHP (at twofold
molar excess over tetrameric Hb), and in the simultaneous
presence of KCl and IHP. We measured O2 equilibria of 3-μL
thin-film samples in a modified diffusion chamber where ab-
sorption at 436 nm was monitored during stepwise changes in
equilibration gas mixtures generated by precision Wösthoff gas-
mixing pumps. We estimated values of P50 and n50 (Hill’s co-
operativity coefficient at half-saturation) by fitting the Hill
equation Y = PO2

n/(P50
n
+ PO2

n) to the experimental O2 satu-
ration data by means of nonlinear regression (Y = fractional O2

saturation; n, cooperativity coefficient) (22, 62–64). The model
fitting was based on five to eight equilibration steps between
30% and 70% oxygenation. Free Cl− concentrations were mea-
sured with a model 926S Mark II chloride analyzer (Sherwood
Scientific Ltd.).

Expression and Purification of Recombinant Hbs. Recombinant Hb
expression was carried out in the JM109 (DE3) E. coli strain.
Bacterial cells were selected in LB agar with dual antibiotics
(ampicillin and kanamycin) to ensure that transformants re-
ceived both pGM and pCO-MAP plasmids for expression. The
expression of each rHb mutant was carried out in 1.5 L of TB

medium. Bacterial cells were grown in 37 °C in an orbital shaker
at 200 rpm until absorbance values reached 0.6–0.8 at 600 nm.
The bacterial cultures were induced by 0.2 mM isopropyl β-D-1-
thiogalactopyranoside and were then supplemented with hemin
(50 μg/mL) and glucose (20 g/L). The bacterial culture condi-
tions and the protocol for preparing cell lysates are described in
the study by Natarajan et al. (53).
We purified each rHb sample by means of two step ion-

exchange chromatography as described previously (32, 37, 38, 40,
53). Samples were passed through a cation-exchange column
(HiTrap SP-Sepharose; GE Healthcare; 17-1152-01) followed by
equilibration with 20 mM Tris buffer (0.5 mM EDTA, 0.5 mM
DTT, pH 6.0) and elution using a linear gradient of 0–0.5MNaCl.
The eluted fractions were passed through an anion-exchange
column (HiTrap Q-Sepharose; GE Healthcare; 17-1153-01),
followed by equilibration with 20 mM Tris buffer (0.5 mM
EDTA, 0.5 mM DTT, pH 8.5), and elution using a linear gra-
dient of 0–0.5 M NaCl. The samples were desalted by dialysis
against 10 mM Hepes buffer (pH 7.6) at 4 °C. The eluted frac-
tions of each rHb sample were concentrated by using centrifugal
filtrate. The purified rHb samples were analyzed by SDS-
polyacrylamide gel electrophoresis and isoelectrofocusing (IEF).
After preparing rHb samples as oxyHb, deoxyHb, and carbon-
monoxy derivatives, we measured absorbance at 450–600 nm to
confirm that the absorbance maxima match those of the native
HbA samples.

< 1,000 m

> 3,000 m

1,000-3,000 m

Central Peru
Clade

Fig. S1. Phylogeographic population structure of house wrens sampled from throughout Peru. The tree (Left) shows relationships among well-defined

mtDNA clades. In the map (Right), color coding of symbols shows the proportional representation of different mtDNA clades in samples of house wren

specimens from each locality. Specimens comprising the “central Peru clade” served as the focus for the elevational survey of genomic polymorphism, as

described in the main text.
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Fig. S2. The β55(Val/Ile) polymorphism exhibits a striking altitudinal pattern of allele frequency variation in natural populations of Peruvian house wrens.

(A) The β55Ile allele predominates at high altitude, and the Val allele predominates at lower altitudes. (B) Variation in frequency of the derived β55Ile allele

across Peru. The central Peru sample comprises a phylogeographically defined set of specimens that served as the focus for the elevational survey of genomic

polymorphism.
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Fig. S3. In addition to the β55(Val/Ile) polymorphism, β80 is one of the only other amino acid sites that harbors segregating variation in natural populations

of Peruvian house wrens. However, the ancestral Ser allele predominates in population samples from every elevational zone. (A) The derived β80Gly allele

is present at moderate frequencies in population samples from the highlands of southern Peru. (B) Variation in frequency of the derived β80Gly allele across

Peru. The central Peru sample comprises a phylogeographically defined set of specimens that served as the focus for the elevational survey of genomic

polymorphism.
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Table S1. House wren samples used in this study with ARCTOS Museum of Southwestern Biology catalog web

link, sampling details, and mtDNA clade from Galen and Witt (20)

Catalog no. with

embedded web link NK Day Month Elevation, m Department Latitude Longitude mtDNA clade

MSB:Bird:27052 159705 30 Oct 3,040 Lima −11.76 −76.58 1

MSB:Bird:27596 162008 3 Jun 366 Lima −12.01 −76.92 1

MSB:Bird:27606 162022 3 Jun 366 Lima −12.01 −76.92 1

MSB:Bird:27609 162025 3 Jun 366 Lima −12.01 −76.92 1

MSB:Bird:31418 162982 8 Jan 372 Lima −12 −76.92 1

MSB:Bird:31425 162989 8 Jan 351 Lima −12 −76.92 1

MSB:Bird:31433 162997 8 Jan 372 Lima −12 −76.92 1

MSB:Bird:31450 163014 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31454 163018 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31456 163020 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31459 163023 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31469 163033 12 Jan 3,967 Lima −11.63 −76.43 1

MSB:Bird:31482 163046 12 Jan 3,959 Lima −11.63 −76.43 1

MSB:Bird:31489 163053 13 Jan 3,973 Lima −11.63 −76.43 1

MSB:Bird:31498 163062 13 Jan 3,981 Lima −11.63 −76.43 1

MSB:Bird:31503 163067 14 Jan 3,967 Lima −11.63 −76.43 1

MSB:Bird:31739 163411 7 May 3,750 Lima −11.76 −76.55 1

MSB:Bird:31756 163428 21 May 2,400 Lima −11.74 −76.61 1

MSB:Bird:31766 163438 24 May 2,400 Lima −11.74 −76.61 1

MSB:Bird:31767 163439 24 May 2,400 Lima −11.74 −76.61 1

MSB:Bird:32902 168074 15 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32909 168081 15 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32910 168082 15 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32922 168094 16 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32923 168095 16 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32943 168115 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32950 168122 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32966 168138 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32967 168139 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32969 168141 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32982 168154 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32988 168160 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32991 168163 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33001 168173 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33006 168178 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33008 168180 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33310 168529 4 Sep 4,056 Lima −11.77 −76.53 1

MSB:Bird:33329 168548 6 Sep 3,910 Lima −11.76 −76.54 1

MSB:Bird:33351 168570 9 Sep 3,907 Lima −11.77 −76.53 1

MSB:Bird:33370 168589 12 Sep 3,905 Lima −11.77 −76.53 1

MSB:Bird:33416 168635 17 Sep 4,056 Lima −11.77 −76.53 1

MSB:Bird:34736 171462 3 Jul 309 La Libertad −8.39 −78.65 1

MSB:Bird:34739 171465 3 Jul 309 La Libertad −8.39 −78.65 1

MSB:Bird:34763 171489 4 Jul 309 La Libertad −8.39 −78.65 1

MSB:Bird:34830 171556 8 Jul 2,972 Ancash −8.75 −78.05 1

MSB:Bird:34832 171558 8 Jul 2,972 Ancash −8.75 −78.05 1

MSB:Bird:34892 171618 11 Jul 2,972 Ancash −8.75 −78.05 1

MSB:Bird:34903 171629 12 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34907 171633 13 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34916 171642 13 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34920 171646 14 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34921 171647 14 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34953 171679 16 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:34965 171691 17 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:34966 171692 17 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:34967 171693 17 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:35007 171733 21 Jul 3,714 Ancash −9.1 −77.87 1

MSB:Bird:35018 171744 21 Jul 3,714 Ancash −9.1 −77.87 1

MSB:Bird:35538 172264 8 Aug 3,200 Arequipa −15.81 −72.67 1

MSB:Bird:36014 173845 18 May 3,740 Ancash −8.74 −78.04 1

MSB:Bird:36049 173880 23 May 3,740 Ancash −9.02 −77.54 1
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Table S1. Cont.

Catalog no. with

embedded web link NK Day Month Elevation, m Department Latitude Longitude mtDNA clade

MSB:Bird:36081 173912 30 May 3,350 Ancash −8.84 −77.93 1

MSB:Bird:36568 175520 22 Oct 4,000 Lima −11.77 −76.53 1

MSB:Bird:36573 175525 24 Oct 4,116 Lima −11.77 −76.53 1

MSB:Bird:36574 175526 24 Oct 4,123 Lima −11.77 −76.53 1

MSB:Bird:32351 167523 15 Jul 2,052 Amazonas −6.1 −78.34 2

MSB:Bird:32619 167791 22 Jul 2,066 Amazonas −6.1 −78.34 2

MSB:Bird:32855 168027 28 Jul 2,073 Amazonas −6.1 −78.34 2

MSB:Bird:32862 168034 29 Jul 2,073 Amazonas −6.1 −78.34 2

MSB:Bird:33894 169120 26 Dec 143 Lambayeque −5.9 −79.79 2

MSB:Bird:34057 169283 22 Dec 2,215 Piura −5.84 −79.51 2

MSB:Bird:34076 169302 23 Dec 2,215 Piura −5.84 −79.51 2

MSB:Bird:34773 171499 4 Jul 309 La Libertad −8.39 −78.65 2

MSB:Bird:34902 171628 12 Jul 357 La Libertad −8.69 −78.38 2

MSB:Bird:27066 159722 26 Nov 3,120 Cusco −13.63 −71.72 3

MSB:Bird:27076 159732 27 Nov 3,120 Cusco −13.63 −71.72 3

MSB:Bird:27083 159740 28 Nov 3,120 Cusco −13.63 −71.72 3

MSB:Bird:27131 159789 4 Dec 4,300 Cusco −13.2 −72.16 3

MSB:Bird:27132 159790 4 Dec 4,300 Cusco −13.2 −72.16 3

MSB:Bird:27154 159814 8 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27174 159834 9 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27179 159840 9 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27181 159842 10 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27203 159868 12 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27218 159887 13 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:31835 163507 18 Jun 3,710 Junin −11.98 −74.93 3

MSB:Bird:33119 168338 12 Mar 4,030 Cusco −13.19 −72.23 3

MSB:Bird:33650 168876 4 Dec 3,573 Apurimac −14.41 −73.09 3

MSB:Bird:33659 168885 5 Dec 3,548 Apurimac −14.41 −73.09 3

MSB:Bird:34084 169310 9 Jan 4,369 Apurimac −14.06 −73.01 3

MSB:Bird:34085 169311 9 Jan 4,454 Apurimac −14.06 −73 3

MSB:Bird:34089 169315 9 Jan 4,375 Apurimac −14.06 −73.01 3

MSB:Bird:34106 169332 9 Jan 4,384 Apurimac −14.06 −73.01 3

MSB:Bird:34109 169335 10 Jan 4,375 Apurimac −14.06 −73.01 3

MSB:Bird:34114 169340 10 Jan 4,401 Apurimac −14.06 −73.01 3

MSB:Bird:34202 169428 14 Jan 4,363 Apurimac −14.06 −73 3

MSB:Bird:34295 171021 30 May 1,500 Cusco −12.65 −72.32 3

MSB:Bird:34359 171085 3 Jun 1,500 Cusco −12.65 −72.32 3

MSB:Bird:35522 172248 8 Aug 3,200 Arequipa −15.81 −72.67 3

MSB:Bird:35700 172426 28 Sep 2,671 Apurimac −14.17 −73.32 3

MSB:Bird:35822 172637 5 Aug 3,201 Cusco −13.08 −72.37 3

MSB:Bird:35907 172722 21 Sep 2,672 Apurimac −14.17 −73.32 3

MSB:Bird:35908 172723 21 Sep 2,671 Apurimac −14.17 −73.32 3

MSB:Bird:28029 162535 20 Jun 322 San Martín −6.65 −76.07 4

MSB:Bird:33581 168807 19 Nov 2,500 Cusco −13.56 −70.88 4

MSB:Bird:36130 173961 13 Jun 1,673 San Martin −7.42 −76.29 4

MSB:Bird:36909 176089 23 Jun 292 Madre de Dios −11.71 −69.21 4

MSB:Bird:37014 176194 26 Jun 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37084 176264 28 Jun 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37149 176329 30 Jun 290 Madre de Dios −11.71 −69.21 4

MSB:Bird:37202 176382 1 Jul 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37318 176498 4 Jul 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37341 176521 5 Jul 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:33720 168946 15 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33725 168951 15 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33758 168984 16 Dec 129 Lambayeque −5.9 −79.78 5

MSB:Bird:33778 169004 18 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33779 169005 18 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33844 169070 21 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33889 169115 25 Dec 143 Lambayeque −5.9 −79.79 5

MSB:Bird:34698 171424 2 Jul 309 La Libertad −8.39 −78.65 5

MSB:Bird:34699 171425 2 Jul 309 La Libertad −8.39 −78.65 5
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Table S1. Cont.

Catalog no. with

embedded web link NK Day Month Elevation, m Department Latitude Longitude mtDNA clade

MSB:Bird:34893 171619 11 Jul 2,972 Ancash −8.75 −78.05 5

MSB:Bird:35250 171976 13 Jul 2,500 Cajamarca −7.4 −78.78 5

MSB:Bird:35330 172056 17 Jul 2,550 Cajamarca −7.4 −78.78 5

MSB:Bird:35393 172119 21 Jul 2,550 Cajamarca −7.4 −78.78 5

MSB:Bird:35402 172128 22 Jul 2,550 Cajamarca −7.4 −78.78 5

MSB:Bird:35035 171761 30 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35043 171769 31 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35046 171772 31 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35047 171773 31 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35057 171783 1 Aug 740 Tacna −17.56 −70.67 6

MSB:Bird:35442 172168 1 Aug 2,200 Tacna −17.39 −70.35 6

MSB:Bird:35476 172202 3 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35491 172217 4 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35493 172219 4 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35507 172233 4 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35512 172238 5 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:31626 163191 29 Jan 2,798 Huánuco −9.73 −76.11 7

MSB:Bird:35697 172423 27 Nov — Ancash — — 7

Table S2. Summary of nucleotide polymorphism at adult-expressed globin genes of high- and

low-altitude house wrens

Gene Sample Na Sb h Hd π (Sil) θW/bp (Sil) Tajima’s D 4Nc

αA-globin (671 bp) High altitude 44 7 5 0.385 0.0011 0.0019 −0.9087 0.0000

Low altitude 66 12 9 0.724 0.0019 0.0047 −1.5318 0.0033

Total 110 13 10 0.626 0.0016 0.0048 −1.6378 0.0004

αD-globin (345 bp) High altitude 48 11 16 0.850 0.0126 0.0162 −0.6671 0.3953

Low altitude 64 8 13 0.694 0.0089 0.0101 −0.3082 0.0241

Total 112 13 22 0.769 0.0105 0.0147 −0.7543 0.0823

βA-globin (1,297 bp) High altitude 46 35 35 0.989 0.0049 0.0078 −1.2418 0.0818

Low altitude 58 41 44 0.984 0.0052 0.0089 −1.3942 0.1258

Total 104 58 72 0.991 0.0053 0.0111 −1.6527 0.1096

Estimates of π, θW, and Tajima’s D are based on variation at silent sites. h, no. haplotypes; Hd, haplotype

diversity; N, no. sampled chromosomes; S, no. segregating sites.

Table S3. Nucleotide differentiation of globin genes between

high- and low-altitude populations of Andean house wrens

(<1,000 and >3,000 m above sea level, respectively)

Gene L, bp N S FST

αD-globin 345 112 13 0.006

αA-globin 671 110 13 0.023

ρ-globin 595 100 28 0.054

βH-globin 617 82 36 0.094

βA-globin 1,297 104 58 0.133

myoglobin 426 110 19 0.008

Estimates of FST are based on sets of specimens comprising the central

Peru sample (see text for details). The α-type globin genes (αA and αD), the

β-type globin genes (ρ, βH, and βA), and myoglobin are located on different

chromosomes. L, length of sequenced fragment; n, number of sampled chro-

mosomes; S, number of segregating sites.
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Table S4. O2 affinities (P50, torr; mean ± SEM) and cooperativity coefficients (n50) for native HbA and HbD

isoforms of high- and low-altitude house wrens

Property Lowland HbA (β55Val) Highland HbA (β55Ile) Lowland HbD (β55Val) Highland HbD (β55Ile)

P50, torr

Stripped 2.80 ± 0.25 2.47 ± 0.07 1.58 ± 0.03 1.59 ± 0.03

+KCl 4.57 ± 0.01 2.96 ± 0.20 2.67 ± 0.09 2.47 ± 0.04

+IHP 33.90 ± 1.61 21.39 ± 0.32 22.60 ± 0.74 17.54 ± 0.31

KCl + IHP 25.88 ± 1.22 17.07 ± 0.79 16.29 ± 0.19 13.45 ± 0.29

n50

Stripped 1.48 ± 0.15 1.53 ± 0.04 1.47 ± 0.07 1.36 ± 0.10

+KCl 1.91 ± 0.07 1.36 ± 0.09 1.92 ± 0.11 1.81 ± 0.02

+IHP 1.98 ± 0.25 1.37 ± 0.14 2.39 ± 0.06 2.22 ± 0.14

KCl + IHP 2.11 ± 0.13 1.36 ± 0.01 2.36 ± 0.12 2.28 ± 0.10

O2 equilibria of purified Hb solutions were measured in 0.1 M Hepes buffer at pH 7.40, 37 °C (heme, 0.3 mM). Measurements were

conducted in the absence of anionic effectors (stripped), in the presence of 0.1 M KCl or IHP (IHP/Hb tetramer ratio = 2.0), and in the

presence of both effectors, as indicated. [Heme], 0.3 mM. For each population sample, the predominant allelic state of site β55 is given

in parentheses.

Table S5. O2 affinities (P50, torr; mean ± SEM) and cooperativity coefficients (n50) for purified

house wren rHbs measured in 0.1 M Hepes buffer at pH 7.40, 37 °C

Property β55Val-β80Ser (LA) β55Ile-β80Ser (HA) β55Val-β80Gly β55Ile-β80Gly

P50, torr

Stripped 3.21 ± 0.04 3.17 ± 0.07 2.74 ± 0.02 3.40 ± 0.08

+KCl 5.07 ± 0.06 4.03 ± 0.01 4.21 ± 0.09 4.17 ± 0.10

+IHP 30.82 ± 5.09 26.23 ± 4.93 27.87 ± 3.64 25.23 ± 1.05

KCl + IHP 23.65 ± 2.00 17.86 ± 1.80 18.53 ± 1.61 16.88 ± 0.85

n50

Stripped 1.61 ± 0.03 1.49 ± 0.05 1.52 ± 0.01 1.66 ± 0.06

+KCl 1.76 ± 0.04 1.77 ± 0.01 1.82 ± 0.06 1.46 ± 0.05

+IHP 1.00 ± 0.13 0.85 ± 0.11 1.17 ± 0.14 1.25 ± 0.05

KCl + IHP 1.30 ± 0.13 0.92 ± 0.09 1.30 ± 0.13 1.16 ± 0.06

Measurements were conducted in the absence of anionic effectors (stripped), in the presence of 0.1 M KCl

or IHP (IHP/Hb tetramer ratio = 2.0), and in the presence of both effectors, as indicated. [Heme], 0.3 mM. “HA”

and “LA” notations refer to two-site genotypes that are characteristic of high- and low-altitude house wrens,

respectively.

Table S6. Single-residue frustration indices for two mutant sites

in house wren HbA

Single-residue frustration

index, arbitrary units

Two-site genotype β55 β80

β55Val-β80Ser 1.5 0.9

β55Ile-β80Ser 2.0 1.0

β55Val-β80Gly 1.5 0.2

β55Ile-β80Gly 2.1 0.3

At β55 (the sixth residue position of the D helix), the replacement of Val

with the more bulky Ile at the α1β1 intersubunit interface induces conforma-

tional strain on the β-chain D helix. This is reflected by the fact that β55Ile

has a uniformly higher frustration index relative to Val at the same residue

position. At β80, the hydroxyl side chain of Ser forms a helix-capping hydro-

gen bond with β83Asn, the penultimate C-terminal residue of the EF inter-

helical loop. The helix-capping hydrogen bond between β80Ser and β83Asn

confers added rigidity to the E helix, and is reflected by the consistently

higher frustration index for β80Ser relative to Gly at the same position.
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SI Methods

Sample Collection.All birds were live-trapped in mist nets and were
sacrificed in accordance with protocols approved by the Uni-
versity of New Mexico Institutional Care and Use Committee
(Protocol 08UNM033-TR-100117; Animal Welfare Assurance
number A4023-01). All collections were authorized by permits
issued by management authorities of Peru (004-2007-INRENA-
IFFS-DCB, 135-2009-AG-DGFFS-DGEFFS, 0377-2010-AG-
DGFFS-DGEFFS, 0199-2012-AG-DGFFS-DGEFFS, and 006-
2013-MINAGRI-DGFFS/DGEFFS).
For each of the 140 house wren specimens, we collected 20–60 μL

of whole blood from the brachial or ulnar vein using heparinized
microcapillary tubes. Red blood cells were separated from the
plasma fraction by centrifugation, and the packed red cells were
flash-frozen in liquid nitrogen. We collected liver and pectoral
muscle from each specimen as sources of genomic DNA and
globin mRNA, respectively. Muscle samples were flash-frozen or
preserved using RNAlater. All tissue and blood samples were
subsequently stored at −80 °C.

Tandem Mass Spectrometry. Database searches of MS/MS spectra
were performed using Mascot (Matrix Science; version 1.9.0).
Specifically, peptide mass fingerprints derived from the MS/MS
analysis were used to query a custom database of avian α- and
β-type globin sequences. These amino acid sequences were de-
rived from conceptual translations of the adult-expressed αA-, αD-,
and βA-globin genes of T. aedon, in addition to the full comple-
ment of embryonic and adult α- and β-type globin genes that
have been annotated in the genome assemblies of other birds
(22–24, 27, 56). We identified all significant protein hits that
matched more than one peptide with P < 0.05. After separating
the HbA and HbD isoforms by native gel IEF and identifying
each band on the gel by MS/MS, the relative abundance of the
different isoforms was quantified densitometrically.

PCR, Cloning, and Sanger Sequencing. We extracted genomic DNA
from frozen tissues of each of the 140 house wren specimens using
the DNeasy Blood and Tissue Kit (Qiagen). We used the PCR to
amplify six autosomal loci, including full-length coding sequences
of the adult-expressed α- and β-type globin genes (αA-, αD-, and
βA-globin), intron 2 sequences of ρ-globin and βH-globin (β-type
globin genes that are located just upstream of βA-globin), and
intron 2 of the unlinked myoglobin gene. Negative controls
were included in each PCR to control for contamination. All
PCR amplicons were purified using ExoSap-IT (USB) and were
sequenced in both directions using dye terminator cycle-
sequencing (BigDye; ABI) on an ABI 3130 automated sequencer
(Applied Biosystems).
For the 14 specimens used in the experimental analyses of Hb

function, we extracted RNA from pectoral muscle tissue using
the RNeasy kit (Qiagen) and we amplified full-length cDNAs of
the αA, αD-, and βA-globin genes using a OneStep RT-PCR kit
(Qiagen). We designed paralog-specific primers using 5′- and 3′-
UTR sequences from passerine species, as described previously
(23). We cloned RT-PCR products using the TOPO TA Cloning
Kit (Life Technologies), and we sequenced at least five clones
per gene to recover both alleles of each globin gene. This en-
abled us to determine full diploid genotypes for each of the three
adult-expressed globin genes in each specimen.

Population Genetic Analysis. We computed summary statistics of
nucleotide polymorphism for each of the adult-expressed globin

genes (αA-, αD-, and βA-globin). As a measure of nucleotide
variation, we calculated nucleotide diversity, π, and Watterson’s
θW, an estimator of the population mutation rate (=4Nμ, where
N is the effective population size and μ is the mutation rate per
nucleotide). We calculated Tajima’s D to characterize the dis-
tribution of allele frequencies at silent sites and we calculated
Hudson’s (57) estimator of the population recombination rate,
4Nc, where c is the rate of crossing over between adjacent nu-
cleotides. To test whether measured values of Tajima’s D de-
viated from neutral-equilibrium expectations, we obtained
critical values for each statistic by conducting 10,000 coalescent
simulations (no recombination) that were conditioned on the
observed number of segregating sites.

Genome-Wide Survey of Nucleotide Differentiation Using a

Genotyping-by-Sequencing Approach. To more broadly survey
patterns of genomic differentiation between high- and low-ele-
vation populations, we produced multiplexed, reduced-repre-
sentation Illumina libraries following Parchman et al. (58). Briefly,
we digested genomic DNA samples for a total of 28 individuals (14
from high elevation and 14 from low elevation; Table S1) with two
restriction endonucleases (EcoRI and Mse1). We then ligated
double-stranded adaptor oligonucleotides that contained Illumina
sequencing binding sites and a unique 8- to 10-bp barcode for
individual identification, and PCR amplified these adaptor-ligated
fragments. Details on the adaptor sequences as well as the di-
gestion and PCR conditions can be found in the study by Parchman
et al. (58). We pooled the barcoded amplicons from each individual
in equimolar concentrations, and electrophoresed them on 2.5%
agarose gel for size selection. Fragments that were between 350 and
500 bp in length were excised from the gel and purified using a
QIAquick Gel Extraction Kit (Qiagen). The pooled library was
sequenced in a single lane on the Illumina HiSEq 1000 plat-
form as 100-nt single-end reads at the Keck Center for Com-
parative and Functional Genomics at the University of Illinois,
Urbana–Champaign.
We parsed the resulting reads by individual barcodes and

trimmed adaptor sequences and low-quality bases using custom
Perl scripts, resulting in a final mean read length of 87 nt. To limit
our analysis to putative protein-coding genes, we mapped indi-
vidual T. aedon reads to the published transcriptome of a closely
related passerine, Zontrichia leucophrys (59), using the sensitive-
local settings in Bowtie2 (60). Transcript-aligned reads were
then processed using the program STACKS (61) to identify
single-nucleotide polymorphisms (SNPs) in reads that mapped to
known transcripts using the following input parameters for
pstacks: - m3, –model_type snp, –alpha 0.05. All 28 individuals
were included when compiling the SNP catalog in cstacks.
Downstream population genetic analysis were restricted to loci
that were genotyped in at least 10 individuals per population with
a minimum sequencing depth of 5 reads per locus per individual
and a minor allele frequency of 0.05, resulting in a final dataset of
1,272 unique loci. We calculated locus-specific FST values using the
program POPULATIONS implemented in STACKS (61).

Protein Purification and in Vitro Analysis of Hb Function.We purified
HbA and HbD variants from pooled hemolysates from seven
highland specimens and seven lowland specimens. There was a
nearly fixed difference between the two samples at β55, with Ile
and Val alleles predominating in the highland and lowland
specimens, respectively, but there was also a low level of amino
acid heterogeneity at site β80: a derived Gly allele was present at
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frequencies of 0.36 and 0.07 in the samples of highland and
lowland specimens, respectively (n = 14 alleles in each sample).
Using purified Hb solutions (0.3 mM heme) that were stripped

of organic phosphates and other allosteric effectors, we measured
O2 equilibrium curves at 37 °C, 0.1 M Hepes, pH 7.4, in the
absence (“stripped”) and presence of 0.1 M KCl, IHP (at twofold
molar excess over tetrameric Hb), and in the simultaneous
presence of KCl and IHP. We measured O2 equilibria of 3-μL
thin-film samples in a modified diffusion chamber where ab-
sorption at 436 nm was monitored during stepwise changes in
equilibration gas mixtures generated by precision Wösthoff gas-
mixing pumps. We estimated values of P50 and n50 (Hill’s co-
operativity coefficient at half-saturation) by fitting the Hill
equation Y = PO2

n/(P50
n
+ PO2

n) to the experimental O2 satu-
ration data by means of nonlinear regression (Y = fractional O2

saturation; n, cooperativity coefficient) (22, 62–64). The model
fitting was based on five to eight equilibration steps between
30% and 70% oxygenation. Free Cl− concentrations were mea-
sured with a model 926S Mark II chloride analyzer (Sherwood
Scientific Ltd.).

Expression and Purification of Recombinant Hbs. Recombinant Hb
expression was carried out in the JM109 (DE3) E. coli strain.
Bacterial cells were selected in LB agar with dual antibiotics
(ampicillin and kanamycin) to ensure that transformants re-
ceived both pGM and pCO-MAP plasmids for expression. The
expression of each rHb mutant was carried out in 1.5 L of TB

medium. Bacterial cells were grown in 37 °C in an orbital shaker
at 200 rpm until absorbance values reached 0.6–0.8 at 600 nm.
The bacterial cultures were induced by 0.2 mM isopropyl β-D-1-
thiogalactopyranoside and were then supplemented with hemin
(50 μg/mL) and glucose (20 g/L). The bacterial culture condi-
tions and the protocol for preparing cell lysates are described in
the study by Natarajan et al. (53).
We purified each rHb sample by means of two step ion-

exchange chromatography as described previously (32, 37, 38, 40,
53). Samples were passed through a cation-exchange column
(HiTrap SP-Sepharose; GE Healthcare; 17-1152-01) followed by
equilibration with 20 mM Tris buffer (0.5 mM EDTA, 0.5 mM
DTT, pH 6.0) and elution using a linear gradient of 0–0.5MNaCl.
The eluted fractions were passed through an anion-exchange
column (HiTrap Q-Sepharose; GE Healthcare; 17-1153-01),
followed by equilibration with 20 mM Tris buffer (0.5 mM
EDTA, 0.5 mM DTT, pH 8.5), and elution using a linear gra-
dient of 0–0.5 M NaCl. The samples were desalted by dialysis
against 10 mM Hepes buffer (pH 7.6) at 4 °C. The eluted frac-
tions of each rHb sample were concentrated by using centrifugal
filtrate. The purified rHb samples were analyzed by SDS-
polyacrylamide gel electrophoresis and isoelectrofocusing (IEF).
After preparing rHb samples as oxyHb, deoxyHb, and carbon-
monoxy derivatives, we measured absorbance at 450–600 nm to
confirm that the absorbance maxima match those of the native
HbA samples.
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> 3,000 m

1,000-3,000 m

Central Peru
Clade

Fig. S1. Phylogeographic population structure of house wrens sampled from throughout Peru. The tree (Left) shows relationships among well-defined

mtDNA clades. In the map (Right), color coding of symbols shows the proportional representation of different mtDNA clades in samples of house wren

specimens from each locality. Specimens comprising the “central Peru clade” served as the focus for the elevational survey of genomic polymorphism, as

described in the main text.
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Fig. S2. The β55(Val/Ile) polymorphism exhibits a striking altitudinal pattern of allele frequency variation in natural populations of Peruvian house wrens.

(A) The β55Ile allele predominates at high altitude, and the Val allele predominates at lower altitudes. (B) Variation in frequency of the derived β55Ile allele

across Peru. The central Peru sample comprises a phylogeographically defined set of specimens that served as the focus for the elevational survey of genomic

polymorphism.
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Fig. S3. In addition to the β55(Val/Ile) polymorphism, β80 is one of the only other amino acid sites that harbors segregating variation in natural populations

of Peruvian house wrens. However, the ancestral Ser allele predominates in population samples from every elevational zone. (A) The derived β80Gly allele

is present at moderate frequencies in population samples from the highlands of southern Peru. (B) Variation in frequency of the derived β80Gly allele across

Peru. The central Peru sample comprises a phylogeographically defined set of specimens that served as the focus for the elevational survey of genomic

polymorphism.
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Table S1. House wren samples used in this study with ARCTOS Museum of Southwestern Biology catalog web

link, sampling details, and mtDNA clade from Galen and Witt (20)

Catalog no. with

embedded web link NK Day Month Elevation, m Department Latitude Longitude mtDNA clade

MSB:Bird:27052 159705 30 Oct 3,040 Lima −11.76 −76.58 1

MSB:Bird:27596 162008 3 Jun 366 Lima −12.01 −76.92 1

MSB:Bird:27606 162022 3 Jun 366 Lima −12.01 −76.92 1

MSB:Bird:27609 162025 3 Jun 366 Lima −12.01 −76.92 1

MSB:Bird:31418 162982 8 Jan 372 Lima −12 −76.92 1

MSB:Bird:31425 162989 8 Jan 351 Lima −12 −76.92 1

MSB:Bird:31433 162997 8 Jan 372 Lima −12 −76.92 1

MSB:Bird:31450 163014 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31454 163018 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31456 163020 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31459 163023 9 Jan 352 Lima −12.01 −76.92 1

MSB:Bird:31469 163033 12 Jan 3,967 Lima −11.63 −76.43 1

MSB:Bird:31482 163046 12 Jan 3,959 Lima −11.63 −76.43 1

MSB:Bird:31489 163053 13 Jan 3,973 Lima −11.63 −76.43 1

MSB:Bird:31498 163062 13 Jan 3,981 Lima −11.63 −76.43 1

MSB:Bird:31503 163067 14 Jan 3,967 Lima −11.63 −76.43 1

MSB:Bird:31739 163411 7 May 3,750 Lima −11.76 −76.55 1

MSB:Bird:31756 163428 21 May 2,400 Lima −11.74 −76.61 1

MSB:Bird:31766 163438 24 May 2,400 Lima −11.74 −76.61 1

MSB:Bird:31767 163439 24 May 2,400 Lima −11.74 −76.61 1

MSB:Bird:32902 168074 15 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32909 168081 15 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32910 168082 15 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32922 168094 16 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32923 168095 16 Oct 935 Lima −12.03 −76.65 1

MSB:Bird:32943 168115 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32950 168122 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32966 168138 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32967 168139 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32969 168141 18 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32982 168154 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32988 168160 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:32991 168163 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33001 168173 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33006 168178 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33008 168180 19 Oct 352 Lima −12.01 −76.92 1

MSB:Bird:33310 168529 4 Sep 4,056 Lima −11.77 −76.53 1

MSB:Bird:33329 168548 6 Sep 3,910 Lima −11.76 −76.54 1

MSB:Bird:33351 168570 9 Sep 3,907 Lima −11.77 −76.53 1

MSB:Bird:33370 168589 12 Sep 3,905 Lima −11.77 −76.53 1

MSB:Bird:33416 168635 17 Sep 4,056 Lima −11.77 −76.53 1

MSB:Bird:34736 171462 3 Jul 309 La Libertad −8.39 −78.65 1

MSB:Bird:34739 171465 3 Jul 309 La Libertad −8.39 −78.65 1

MSB:Bird:34763 171489 4 Jul 309 La Libertad −8.39 −78.65 1

MSB:Bird:34830 171556 8 Jul 2,972 Ancash −8.75 −78.05 1

MSB:Bird:34832 171558 8 Jul 2,972 Ancash −8.75 −78.05 1

MSB:Bird:34892 171618 11 Jul 2,972 Ancash −8.75 −78.05 1

MSB:Bird:34903 171629 12 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34907 171633 13 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34916 171642 13 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34920 171646 14 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34921 171647 14 Jul 357 La Libertad −8.69 −78.38 1

MSB:Bird:34953 171679 16 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:34965 171691 17 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:34966 171692 17 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:34967 171693 17 Jul 3,439 Ancash −9.34 −77.51 1

MSB:Bird:35007 171733 21 Jul 3,714 Ancash −9.1 −77.87 1

MSB:Bird:35018 171744 21 Jul 3,714 Ancash −9.1 −77.87 1

MSB:Bird:35538 172264 8 Aug 3,200 Arequipa −15.81 −72.67 1

MSB:Bird:36014 173845 18 May 3,740 Ancash −8.74 −78.04 1

MSB:Bird:36049 173880 23 May 3,740 Ancash −9.02 −77.54 1
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Table S1. Cont.

Catalog no. with

embedded web link NK Day Month Elevation, m Department Latitude Longitude mtDNA clade

MSB:Bird:36081 173912 30 May 3,350 Ancash −8.84 −77.93 1

MSB:Bird:36568 175520 22 Oct 4,000 Lima −11.77 −76.53 1

MSB:Bird:36573 175525 24 Oct 4,116 Lima −11.77 −76.53 1

MSB:Bird:36574 175526 24 Oct 4,123 Lima −11.77 −76.53 1

MSB:Bird:32351 167523 15 Jul 2,052 Amazonas −6.1 −78.34 2

MSB:Bird:32619 167791 22 Jul 2,066 Amazonas −6.1 −78.34 2

MSB:Bird:32855 168027 28 Jul 2,073 Amazonas −6.1 −78.34 2

MSB:Bird:32862 168034 29 Jul 2,073 Amazonas −6.1 −78.34 2

MSB:Bird:33894 169120 26 Dec 143 Lambayeque −5.9 −79.79 2

MSB:Bird:34057 169283 22 Dec 2,215 Piura −5.84 −79.51 2

MSB:Bird:34076 169302 23 Dec 2,215 Piura −5.84 −79.51 2

MSB:Bird:34773 171499 4 Jul 309 La Libertad −8.39 −78.65 2

MSB:Bird:34902 171628 12 Jul 357 La Libertad −8.69 −78.38 2

MSB:Bird:27066 159722 26 Nov 3,120 Cusco −13.63 −71.72 3

MSB:Bird:27076 159732 27 Nov 3,120 Cusco −13.63 −71.72 3

MSB:Bird:27083 159740 28 Nov 3,120 Cusco −13.63 −71.72 3

MSB:Bird:27131 159789 4 Dec 4,300 Cusco −13.2 −72.16 3

MSB:Bird:27132 159790 4 Dec 4,300 Cusco −13.2 −72.16 3

MSB:Bird:27154 159814 8 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27174 159834 9 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27179 159840 9 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27181 159842 10 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27203 159868 12 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:27218 159887 13 Dec 3,380 Cusco −13.25 −72.17 3

MSB:Bird:31835 163507 18 Jun 3,710 Junin −11.98 −74.93 3

MSB:Bird:33119 168338 12 Mar 4,030 Cusco −13.19 −72.23 3

MSB:Bird:33650 168876 4 Dec 3,573 Apurimac −14.41 −73.09 3

MSB:Bird:33659 168885 5 Dec 3,548 Apurimac −14.41 −73.09 3

MSB:Bird:34084 169310 9 Jan 4,369 Apurimac −14.06 −73.01 3

MSB:Bird:34085 169311 9 Jan 4,454 Apurimac −14.06 −73 3

MSB:Bird:34089 169315 9 Jan 4,375 Apurimac −14.06 −73.01 3

MSB:Bird:34106 169332 9 Jan 4,384 Apurimac −14.06 −73.01 3

MSB:Bird:34109 169335 10 Jan 4,375 Apurimac −14.06 −73.01 3

MSB:Bird:34114 169340 10 Jan 4,401 Apurimac −14.06 −73.01 3

MSB:Bird:34202 169428 14 Jan 4,363 Apurimac −14.06 −73 3

MSB:Bird:34295 171021 30 May 1,500 Cusco −12.65 −72.32 3

MSB:Bird:34359 171085 3 Jun 1,500 Cusco −12.65 −72.32 3

MSB:Bird:35522 172248 8 Aug 3,200 Arequipa −15.81 −72.67 3

MSB:Bird:35700 172426 28 Sep 2,671 Apurimac −14.17 −73.32 3

MSB:Bird:35822 172637 5 Aug 3,201 Cusco −13.08 −72.37 3

MSB:Bird:35907 172722 21 Sep 2,672 Apurimac −14.17 −73.32 3

MSB:Bird:35908 172723 21 Sep 2,671 Apurimac −14.17 −73.32 3

MSB:Bird:28029 162535 20 Jun 322 San Martín −6.65 −76.07 4

MSB:Bird:33581 168807 19 Nov 2,500 Cusco −13.56 −70.88 4

MSB:Bird:36130 173961 13 Jun 1,673 San Martin −7.42 −76.29 4

MSB:Bird:36909 176089 23 Jun 292 Madre de Dios −11.71 −69.21 4

MSB:Bird:37014 176194 26 Jun 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37084 176264 28 Jun 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37149 176329 30 Jun 290 Madre de Dios −11.71 −69.21 4

MSB:Bird:37202 176382 1 Jul 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37318 176498 4 Jul 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:37341 176521 5 Jul 297 Madre de Dios −11.71 −69.21 4

MSB:Bird:33720 168946 15 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33725 168951 15 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33758 168984 16 Dec 129 Lambayeque −5.9 −79.78 5

MSB:Bird:33778 169004 18 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33779 169005 18 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33844 169070 21 Dec 133 Lambayeque −5.9 −79.79 5

MSB:Bird:33889 169115 25 Dec 143 Lambayeque −5.9 −79.79 5

MSB:Bird:34698 171424 2 Jul 309 La Libertad −8.39 −78.65 5

MSB:Bird:34699 171425 2 Jul 309 La Libertad −8.39 −78.65 5
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Catalog no. with

embedded web link NK Day Month Elevation, m Department Latitude Longitude mtDNA clade

MSB:Bird:34893 171619 11 Jul 2,972 Ancash −8.75 −78.05 5

MSB:Bird:35250 171976 13 Jul 2,500 Cajamarca −7.4 −78.78 5

MSB:Bird:35330 172056 17 Jul 2,550 Cajamarca −7.4 −78.78 5

MSB:Bird:35393 172119 21 Jul 2,550 Cajamarca −7.4 −78.78 5

MSB:Bird:35402 172128 22 Jul 2,550 Cajamarca −7.4 −78.78 5

MSB:Bird:35035 171761 30 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35043 171769 31 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35046 171772 31 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35047 171773 31 Jul 740 Tacna −17.56 −70.67 6

MSB:Bird:35057 171783 1 Aug 740 Tacna −17.56 −70.67 6

MSB:Bird:35442 172168 1 Aug 2,200 Tacna −17.39 −70.35 6

MSB:Bird:35476 172202 3 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35491 172217 4 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35493 172219 4 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35507 172233 4 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:35512 172238 5 Aug 2,975 Tacna −17.32 −70.25 6

MSB:Bird:31626 163191 29 Jan 2,798 Huánuco −9.73 −76.11 7

MSB:Bird:35697 172423 27 Nov — Ancash — — 7

Table S2. Summary of nucleotide polymorphism at adult-expressed globin genes of high- and

low-altitude house wrens

Gene Sample Na Sb h Hd π (Sil) θW/bp (Sil) Tajima’s D 4Nc

αA-globin (671 bp) High altitude 44 7 5 0.385 0.0011 0.0019 −0.9087 0.0000

Low altitude 66 12 9 0.724 0.0019 0.0047 −1.5318 0.0033

Total 110 13 10 0.626 0.0016 0.0048 −1.6378 0.0004

αD-globin (345 bp) High altitude 48 11 16 0.850 0.0126 0.0162 −0.6671 0.3953

Low altitude 64 8 13 0.694 0.0089 0.0101 −0.3082 0.0241

Total 112 13 22 0.769 0.0105 0.0147 −0.7543 0.0823

βA-globin (1,297 bp) High altitude 46 35 35 0.989 0.0049 0.0078 −1.2418 0.0818

Low altitude 58 41 44 0.984 0.0052 0.0089 −1.3942 0.1258

Total 104 58 72 0.991 0.0053 0.0111 −1.6527 0.1096

Estimates of π, θW, and Tajima’s D are based on variation at silent sites. h, no. haplotypes; Hd, haplotype

diversity; N, no. sampled chromosomes; S, no. segregating sites.

Table S3. Nucleotide differentiation of globin genes between

high- and low-altitude populations of Andean house wrens

(<1,000 and >3,000 m above sea level, respectively)

Gene L, bp N S FST

αD-globin 345 112 13 0.006

αA-globin 671 110 13 0.023

ρ-globin 595 100 28 0.054

βH-globin 617 82 36 0.094

βA-globin 1,297 104 58 0.133

myoglobin 426 110 19 0.008

Estimates of FST are based on sets of specimens comprising the central

Peru sample (see text for details). The α-type globin genes (αA and αD), the

β-type globin genes (ρ, βH, and βA), and myoglobin are located on different

chromosomes. L, length of sequenced fragment; n, number of sampled chro-

mosomes; S, number of segregating sites.
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Table S4. O2 affinities (P50, torr; mean ± SEM) and cooperativity coefficients (n50) for native HbA and HbD

isoforms of high- and low-altitude house wrens

Property Lowland HbA (β55Val) Highland HbA (β55Ile) Lowland HbD (β55Val) Highland HbD (β55Ile)

P50, torr

Stripped 2.80 ± 0.25 2.47 ± 0.07 1.58 ± 0.03 1.59 ± 0.03

+KCl 4.57 ± 0.01 2.96 ± 0.20 2.67 ± 0.09 2.47 ± 0.04

+IHP 33.90 ± 1.61 21.39 ± 0.32 22.60 ± 0.74 17.54 ± 0.31

KCl + IHP 25.88 ± 1.22 17.07 ± 0.79 16.29 ± 0.19 13.45 ± 0.29

n50

Stripped 1.48 ± 0.15 1.53 ± 0.04 1.47 ± 0.07 1.36 ± 0.10

+KCl 1.91 ± 0.07 1.36 ± 0.09 1.92 ± 0.11 1.81 ± 0.02

+IHP 1.98 ± 0.25 1.37 ± 0.14 2.39 ± 0.06 2.22 ± 0.14

KCl + IHP 2.11 ± 0.13 1.36 ± 0.01 2.36 ± 0.12 2.28 ± 0.10

O2 equilibria of purified Hb solutions were measured in 0.1 M Hepes buffer at pH 7.40, 37 °C (heme, 0.3 mM). Measurements were

conducted in the absence of anionic effectors (stripped), in the presence of 0.1 M KCl or IHP (IHP/Hb tetramer ratio = 2.0), and in the

presence of both effectors, as indicated. [Heme], 0.3 mM. For each population sample, the predominant allelic state of site β55 is given

in parentheses.

Table S5. O2 affinities (P50, torr; mean ± SEM) and cooperativity coefficients (n50) for purified

house wren rHbs measured in 0.1 M Hepes buffer at pH 7.40, 37 °C

Property β55Val-β80Ser (LA) β55Ile-β80Ser (HA) β55Val-β80Gly β55Ile-β80Gly

P50, torr

Stripped 3.21 ± 0.04 3.17 ± 0.07 2.74 ± 0.02 3.40 ± 0.08

+KCl 5.07 ± 0.06 4.03 ± 0.01 4.21 ± 0.09 4.17 ± 0.10

+IHP 30.82 ± 5.09 26.23 ± 4.93 27.87 ± 3.64 25.23 ± 1.05

KCl + IHP 23.65 ± 2.00 17.86 ± 1.80 18.53 ± 1.61 16.88 ± 0.85

n50

Stripped 1.61 ± 0.03 1.49 ± 0.05 1.52 ± 0.01 1.66 ± 0.06

+KCl 1.76 ± 0.04 1.77 ± 0.01 1.82 ± 0.06 1.46 ± 0.05

+IHP 1.00 ± 0.13 0.85 ± 0.11 1.17 ± 0.14 1.25 ± 0.05

KCl + IHP 1.30 ± 0.13 0.92 ± 0.09 1.30 ± 0.13 1.16 ± 0.06

Measurements were conducted in the absence of anionic effectors (stripped), in the presence of 0.1 M KCl

or IHP (IHP/Hb tetramer ratio = 2.0), and in the presence of both effectors, as indicated. [Heme], 0.3 mM. “HA”

and “LA” notations refer to two-site genotypes that are characteristic of high- and low-altitude house wrens,

respectively.

Table S6. Single-residue frustration indices for two mutant sites

in house wren HbA

Single-residue frustration

index, arbitrary units

Two-site genotype β55 β80

β55Val-β80Ser 1.5 0.9

β55Ile-β80Ser 2.0 1.0

β55Val-β80Gly 1.5 0.2

β55Ile-β80Gly 2.1 0.3

At β55 (the sixth residue position of the D helix), the replacement of Val

with the more bulky Ile at the α1β1 intersubunit interface induces conforma-

tional strain on the β-chain D helix. This is reflected by the fact that β55Ile

has a uniformly higher frustration index relative to Val at the same residue

position. At β80, the hydroxyl side chain of Ser forms a helix-capping hydro-

gen bond with β83Asn, the penultimate C-terminal residue of the EF inter-

helical loop. The helix-capping hydrogen bond between β80Ser and β83Asn

confers added rigidity to the E helix, and is reflected by the consistently

higher frustration index for β80Ser relative to Gly at the same position.
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