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Abstract

The objective of this comprehensive review is to summarize and discuss the available evidence of 

how adipose tissue inflammation affects insulin sensitivity and glucose tolerance. Low-grade, 

chronic adipose tissue inflammation is characterized by infiltration of macrophages and other 

immune cell populations into adipose tissue, and a shift towards more pro-inflammatory subtypes 

of leukocytes. The infiltration of pro-inflammatory cells in adipose tissue is associated with an 

increased production of key chemokines such as C-C motif chemokine ligand 2, pro-inflammatory 

cytokines including tumor necrosis factor α and interleukins 1β and 6, as well as reduced 

expression of the key insulin sensitizing adipokine, adiponectin. In both rodent models and 

humans, adipose tissue inflammation is consistently associated with excess fat mass and insulin 

resistance. In humans, associations with insulin resistance are stronger and more consistent for 

inflammation in visceral as opposed to subcutaneous fat. Further, genetic alterations in mouse 

models of obesity that reduce adipose tissue inflammation are – almost without exception - 

associated with improved insulin sensitivity. However, a dissociation between adipose tissue 

inflammation and insulin resistance can be observed in very few rodent models of obesity as well 

as in humans following bariatric surgery- or low-calorie diet-induced weight loss, illustrating that 

the etiology of insulin resistance is multifactorial. Taken together, adipose tissue inflammation is a 

key factor in the development of insulin resistance and type 2 diabetes in obesity, along with other 

factors that likely include inflammation and fat accumulation in other metabolically active tissues.

Introduction

The role of adipose tissue in whole-body metabolic homeostasis has gained appreciation in 

recent decades as a deeper understanding of the essential biological functions of this organ 

has developed. Adipose tissue was originally believed to serve simply as an inert energy 

storage reservoir; however, it is now known to also function as a major endocrine organ that 

secretes adipokines, cytokines, and chemokines (8). These signaling factors regulate diverse 
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metabolic processes in many organs including liver, skeletal muscle, pancreas, and brain, 

and in adipose tissue itself (383). Concomitant with the global increase in obesity prevalence 

in recent decades, there has been an increase in prevalence of type 2 diabetes mellitus 

(T2DM; Table 1) (128). Substantial research efforts have been undertaken to understand the 

molecular and cellular basis of the association between excess adiposity and impaired 

glucose homeostasis that underlies T2DM, and several adipose-tissue centric mechanisms 

have been proposed as potential links. Of these, chronic, low-grade adipose tissue 

inflammation has received considerable attention since its initial characterization in obese 

mice and humans (188, 189). Furthermore, adipose tissue inflammation may be a common 

underlying contributor to some of the other proposed mechanisms mediating the 

development of insulin resistance in obesity.

Here, we review the evidence from rodent and human studies on the role of chronic, low-

grade adipose tissue inflammation in the development of insulin resistance and T2DM. We 

will discuss how adipose tissue inflammation may contribute to the development of insulin 

resistance and the increased risk of T2DM in obesity (Figure 1). We begin with an overview 

of the relationship between obesity and insulin resistance and factors that may mediate this 

association. We also highlight metabolically healthy obesity (MHO) and lipodystrophy, 

which are exceptions to the positive association between adiposity and insulin resistance. An 

overview of the current understanding of immune cell infiltration and associated downstream 

molecular events that commonly accompany chronic caloric excess and impair insulin 

signaling follows. Much of what is known regarding the temporal development of adipose 

tissue inflammation in obesity and associated insulin resistance has largely been gained from 

the study of rodent models under high-fat diet (HFD) feeding conditions. In humans, several 

cross-sectional studies that compare adipose tissue inflammation in non-obese versus obese 

and insulin sensitive versus insulin resistant subjects have been conducted and are 

informative of the association between inflammation and these common metabolic states. 

Data from both rodent and human studies are considered together in the discussion of 

whether and how adipose tissue inflammation may be a key mechanism driving obesity-

associated insulin resistance.

Background

The epidemics of obesity and type 2 diabetes mellitus

Since the 1970s, the United States has experienced an unprecedented increase in the 

prevalence of both obesity and T2DM. Based on the most recently published statistics, 38% 

of US adults were obese in 2013/2014, as defined by a body mass index (BMI) ≥ 30 kg/m2 

(129). This is sharply increased from 13% in 1960 (128). This epidemic of obesity has been 

paralleled with an epidemic of T2DM. Among adults in the United States, National Health 

and Nutrition Examination Survey data estimated the prevalence of diabetes was 14.3% in 

2011/12 (306). Intriguingly, 36% of those individuals who were found to be diabetic had not 

been previously diagnosed (306). Because type 1 diabetes accounts for only 3.6–6.0% of all 

diabetes cases (307), the prevalence of T2DM was at least 13.4%. Possibly as concerning is 

the prevalence of pre-diabetes among US adults, which was 38% in 2011/12 (306).
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Aside from being a health concern, as outlined below, obesity is also a fiscal issue (125, 126, 

465). Direct medical costs are estimated to be up to 45% higher for obese (BMI ≥ 30 kg/m2) 

individuals as compared to those for normal weight (BMI < 25 kg/m2) individuals, with a 

crude overall estimate of 30% higher costs (125, 434, 513). A 2016 meta-analysis of studies 

investigating the economic burden of obesity in the United States reported that the direct 

medical costs of obesity was $1,910 per person annually (234), translating to nearly $150 

billion on the national level (234). For diabetes, healthcare costs in 2012 amounted to $245 

billion, with on average $13,700 in medical expenditures annually for each patient with 

diabetes (19).

Associated health risks with overweight and obesity

Obesity is a serious health concern because it is associated with an increased risk of several 

health conditions including T2DM, hypertension, hyperlipidemia, cardiovascular disease 

(CVD), arthritis, gallbladder disease, certain cancers and non-alcoholic fatty liver disease 

(NAFLD) (Figure 2) (4, 513). In particular, the association between adiposity and T2DM is 

strong, as highlighted in a recent meta-analysis comprised of 18 prospective cohort studies, 

with a sample size of 590,251 individuals across a wide geographic range that included the 

United States, Asia-Pacific, and Europe (3). Overall, obese individuals had a seven fold 

higher risk of diabetes, and overweight individuals had a roughly three fold higher risk of 

T2DM, when compared to normal weight individuals (3). However, it should be noted that 

there were variations in the relative risks according to the study population characteristics 

including gender and study region, as well as study quality characteristics including sample 

size, method of diabetes assessment, and method of BMI ascertainment (3). Of note, obese 

women had a higher risk for T2DM with a relative risk of approximately eight compared to 

obese men who had a relative risk of T2DM of approximately six when compared to normal 

weight peers (3). Although the reasons for these sex differences remain unclear, it may be 

related to fat distribution and mass (3). Additionally, there remains uncertainty as to whether 

the relationship between obesity and T2DM is linear or whether there is a threshold effect, 

as will be discussed in more detail in later sections (3).

Obesity can be measured using a variety of tools including BMI, waist circumference (WC), 

waist to hip ratio (WHR), and more recently waist to height ratio (WHtR) or body adiposity 

index (BAI) (36, 240). BMI and BAI are indicators of overall mass, whereas WC and WHR 

are traditionally thought to capture abdominal obesity, where there are increased levels of 

visceral adipose tissue (VAT) (240). A meta-analysis by Kodama et al. (240) identified 15 

prospective cohort studies that investigated the relationship between obesity measured as 

WHtR and at least one additional obesity indicator (BMI, WC, or WHR) and T2DM. The 

results showed that per one standard deviation increase in WHtR the relative risk for T2DM 

is 1.62 (240). Per one standard deviation increase in BMI, WC, and WHR, the relative risks 

for diabetes were 1.55, 1.63, and 1.52, respectively (240). These results also indicate that 

WC and WHtR may be better indicators of obesity-associated T2DM as compared to WHR 

or BMI. Overall, this suggests that the relationship between adiposity and T2DM may be 

stronger than is indicated by meta-analyses that rely on BMI alone as a measure of adiposity.
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Mechanisms linking obesity to T2DM

Glucose intolerance and T2DM ensue whenever the homeostatic control of plasma glucose 

concentrations is impaired due to a combination of low glucose effectiveness and a decrease 

in insulin sensitivity that is not fully compensated by an increase in the amount of insulin 

produced by the pancreatic β-cell (216, 420).

Glucose effectiveness is the ability of glucose to stimulate its own disposal at higher than 

basal concentrations, in a manner that is independent of insulin (420). Glucose effectiveness 

may account for up to 50% of postprandial glucose disposal (420), and reduced glucose 

effectiveness seems to be similar in importance to reduced insulin sensitivity for T2DM risk 

(291). Even though there is some evidence to suggest that an increase in adiposity reduces 

glucose effectiveness in mice (11), it is unclear whether this finding extends to humans, and 

there is no indication that low-grade chronic adipose tissue inflammation affects glucose 

effectiveness. This manuscript will therefore not consider a potential link between adipose 

tissue inflammation and reduced glucose effectiveness, even though it is important to 

emphasize that the absence of data should not be equated to the absence of a relationship 

between adipose tissue inflammation and glucose effectiveness.

Plentiful data do exist, however, on the relationship between insulin resistance and both 

adiposity and adipose tissue inflammation, in both animal models of obesity as well as 

humans. Insulin resistance is a state characterized by a reduced response of insulin target 

cells, such as myocytes and adipocytes, to the binding of insulin to the insulin receptor. The 

principal effect of insulin in these target tissues is to stimulate glucose uptake in the 

postprandial phase, and to inhibit lipolysis in adipocytes. In hepatocytes, major functions of 

insulin are to inhibit gluconeogenesis and to stimulate de novo lipogenesis (DNL). Any 

degree of insulin resistance needs to be compensated by increased insulin production by the 

pancreatic β-cell in order to prevent hyperglycemia (216). Thus, in healthy, non-diabetic 

individuals, insulin production from the pancreas increases as insulin sensitivity decreases 

(Figure 3), such that the product of insulin sensitivity and β-cell function, the so-called 

disposition index, will remain constant even if insulin sensitivity were to change 

substantially. If the pancreatic β-cell fails to fully compensate for insulin resistance, a 

phenomenon called β-cell dysfunction, glucose intolerance and eventually T2DM ensues 

(216). The causes and contributing factors for pancreatic β-cell dysfunction are incompletely 

understood. While increased adiposity and adipose tissue inflammation may be a 

contributing factor in the etiology of β-cell dysfunction, this relationship is likely mediated 

through insulin resistance itself (158), or plausibly related to pancreatic steatosis due to 

increased flux of nonesterified or free fatty acids (FFA) (216), even though strong evidence 

for this is lacking. As with glucose effectiveness, data suggesting a direct impact of adipose 

tissue inflammation on the pancreatic β-cell are relatively sparse. Therefore, this manuscript 

will largely focus on the impact of adipose tissue inflammation on insulin resistance, as a 

suggested primary mechanism through which adipose tissue inflammation is likely to exert 

an effect on glucose tolerance and therewith T2DM risk.

Over the last decades, numerous mechanisms have been suggested to mediate the impact of 

expanded fat tissue on insulin sensitivity [reviewed in (216, 383)]. One of the earliest 

hypotheses for a link between obesity to insulin resistance and T2DM centered around 
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elevated flux of FFA from the expanded adipose tissue to liver and muscle, which was 

hypothesized to affect insulin sensitivity in these tissues due to acute lipotoxicity and/or 

ectopic fat storage (383). FFA have also been shown to exert lipotoxicity on the pancreatic 

β-cell, suggesting that chronically elevated FFA concentrations, as in obesity, may play a 

role in β-cell dysfunction (216). The recognition of adipose tissue as an endocrine organ 

showed that some secreted hormones, such as adiponectin, could affect systemic insulin 

sensitivity. Specifically, the paradoxical finding of suppressed circulating adiponectin 

concentrations in obese individuals, together with the finding that adiponectin stimulates fat 

oxidation and insulin sensitivity in liver and muscle, gave rise to the hypothesis that 

hypoadiponectinemia could be one of the links between obesity and insulin resistance (532). 

Similarly, increased production of hormones such as resistin, retinol binding protein 

(RBP)-4, or pro-inflammatory cytokines in expanded adipose tissue may contribute to 

systemic insulin resistance (216, 383). Of particular relevance to this manuscript, many of 

the mechanisms known or hypothesized to link obesity and insulin resistance are associated 

with, or a direct consequence of, low-grade chronic adipose tissue inflammation. 

Specifically, insulin resistance in adipocytes induced by pro-inflammatory cytokines, 

including tumor necrosis factor-α (TNFα) and interleukin (IL)-6, attenuates the inhibitory 

effect of insulin on lipolysis and FFA release (216, 383). TNFα also directly inhibits 

adipocyte production of adiponectin (451), and pro-inflammatory signaling upregulates 

resistin production (2).

Objective of this paper

The main objective of this paper is to provide an overview of low-grade chronic adipose 

tissue inflammation, and its relationship with adiposity and insulin resistance, a key 

determinant of glucose intolerance. To provide context, we will initially review the 

relationship between obesity and insulin resistance, with a detailed description of the 

mechanisms linking increased adiposity to insulin resistance.

ADIPOSITY AND INSULIN RESISTANCE

Overweight and obesity develop as a result of chronic excess accumulation of energy in 

adipose tissue depots. Obesity is now widely regarded as one of the greatest risk factors for 

the development of insulin resistance. In this section, we review evidence that demonstrates 

a positive association between adiposity and insulin resistance (Figure 4), first from rodent 

models and then from human studies. We also discuss exceptions to and factors that modify 

the adiposity and insulin resistance association. Finally, we review proposed mechanisms 

that may underlie the association.

Adipose tissue biology overview

A major physiological function of white adipose tissue is to store excess energy during times 

of caloric surplus, i.e., when exogenous fuel supply exceeds that which is required to support 

total energy expenditure. Triacylglycerols, or triglycerides (TG), are the predominant 

energy-storing lipid species in adipocytes, the parenchymal cells of adipose tissue. 

Triglycerides are hydrolyzed, and FFA and glycerol are released into the circulation for 

uptake and use by peripheral tissues during times of energy deficit. In addition to its central 
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role in management of energy availability, adipose tissue exerts extensive control over 

systemic metabolic health largely through the production and secretion of adipokines by the 

adipocyte. Over the past 25 years, the discovery and study of these signaling molecules has 

revealed that they regulate diverse metabolic and physiologic processes including fatty acid 

oxidation, DNL, gluconeogenesis, insulin signaling, glucose uptake, food intake, and energy 

expenditure in metabolically active tissues such as liver, skeletal muscle, and brain (8). 

However, a role for adipose tissue in whole-body metabolic regulation was recognized even 

prior to the discovery of adipokines and their associated metabolic functions. Indeed, 

adverse health consequences associated with both an excess and a lack of fat tissue have 

been known for several decades.

TG are comprised of three fatty acyl chains esterified to a glycerol backbone; there are three 

major sources of fatty acids for TG synthesis. Exogenous dietary lipids and adipose-derived 

FFA are two of the major sources. The third pool are those that are de novo synthesized from 

carbohydrate precursors via the DNL pathway (445). DNL occurs in liver and adipose tissue 

when carbohydrates are available in excess of energy needs and hepatic glycogen capacity. 

In adipose tissue, TG synthesis occurs through the glycerolipid pathway (453). Fatty acids 

are sequentially esterified to a glycerol backbone by three enzymes, all of which have 

multiple isoforms: glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate 

acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT) (424, 453). Insulin 

signaling regulates GLUT4 trafficking to the plasma membrane, thus regulating glucose 

uptake by the adipocyte. Insulin also regulates the expression and/or activity of several of the 

enzymes involved in both DNL and TG synthesis (453, 548). Lipolysis of adipose tissue TG 

results in the release of FFA and glycerol into the circulation for uptake and use by 

peripheral tissues. The fate of FFA upon uptake from the circulation largely depends on the 

tissue (e.g., liver versus skeletal muscle) and the physiological state (eg., fasted versus fed). 

The sequential hydrolysis of fatty acids in lipolysis occur largely through three different 

lipases: desnutrin/adipose TG lipase (ATGL), hormone sensitive lipase (HSL), and 

monoacylglycerol lipase (204). Lipolysis is normally suppressed by insulin signaling, where 

activity of both HSL and desnutrin/ ATGL are controlled by phosphorylation events 

downstream of insulin binding to its receptor (397).

A growing body of evidence suggests that adipose tissue DNL may play a role in 

maintenance of systemic insulin sensitivity in obesity. Expression of lipogenic genes and a 

master regulator of lipogenic gene expression, Srebf1, are reduced in epididymal adipose 

tissue of obese mice (334, 431) and in VAT and subcutaneous adipose tissue (SAT) of obese 

humans, and increase in SAT following bariatric surgery (105). Furthermore, expression of 

lipogenic genes in both VAT and SAT is positively correlated with measures of insulin 

sensitivity (105, 174).

Insulin resistance in genetic rodent models of obesity

There are several rodent models available for the study of obesity and related morbidities; 

these models have been comprehensively reviewed (220, 281, 388, 432). As it is beyond the 

scope of this review to discuss all models with an adiposity or body weight phenotype, we 

review representative and widely used genetic models of obesity. Spontaneous monogenic 

Burhans et al. Page 6

Compr Physiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models of murine obesity provided early evidence suggesting adiposity is associated with 

impaired glucose homeostasis. Mutations in the leptin signaling pathway proved especially 

informative, with readily identifiable hallmark phenotypes including obesity, hyperphagia, 

hyperglycemia, and hyperinsulinemia (81). A recessive mutation causing extreme obesity 

was discovered in 1949 in the Jackson Laboratory colony and named Obese (also referred to 

as ob) (203). More than four decades later, the genetic defect was identified as a nonsense 

mutation in Lep that results in a truncated form of leptin and whole-body leptin deficiency 

(549). Profound insulin resistance in Lepob/ob mice was demonstrated by administration of 

extremely high insulin doses at levels that were lethal in non-obese mice but not in Lepob/ob 

animals. In addition, blood glucose levels remained over 200 mg/dL one hour post-insulin 

injection in the Lepob/ob group (298). Subsequent pair-feeding experiments conducted with 

wildtype and Lepob/ob mice suggested that the insulin resistance was directly associated with 

the obesity; blood glucose levels rapidly responded to exogenous insulin administration in 

wildtype and food-restricted, lean Lepob/ob mice but remained relatively elevated in an obese 

Lepob/ob group (33). Additional evidence for a link between adiposity and insulin resistance 

came from the study of Leprdb/db mice (195) homozygous for a recessive mutation in Lepr, 

which encodes the leptin receptor (74). Leprdb/db mice are obese and develop extreme 

hyperglycemia by six to eight weeks of age (195) while hyperinsulinemia is evident as early 

as three weeks (32). The Zucker rat model has also been widely used to study obesity and 

metabolic health since its discovery in 1963 (555), and subsequent work demonstrated that 

the model has a mutation in the leptin receptor (452). Like their murine counterparts, Zucker 

rats are hyperphagic, obese, hyperglycemic and hyperinsulinemic (554, 555).

Another common obesity mouse model is the Agouti mouse. In wildtype mice, the Agouti 

gene regulates coat color by inhibiting the production of black/brown pigments, to produce a 

red/yellow coat coloration. However, dominant Agouti mutations, such as the lethal yellow 

(Ay) and viable yellow (Avy) alleles, cause an obese phenotype in heterozygotes (220, 328). 

Agouti expression is largely restricted to the hair shaft and skin during neonatal development 

and in the testis in adults among wildtype mice, but Ay mice exhibit ectopic expression in a 

wide panel of tissues (55). The ectopic hypothalamic Ay expression directly contributes to 

the development of obesity through antagonism of melanocortin receptors 3 and 4, both of 

which are downstream of leptin signaling in the arcuate nucleus (326). Ay and Avy mice are 

hyperphagic and develop obesity by early adulthood and develop early onset 

hyperinsulinemia; Avy develop hyperglycemia and glucose intolerance (328).

With disrupted leptin signaling being the common root cause of obesity in these genetic 

models, an adiposity-independent effect of leptin in the regulation of insulin sensitivity 

cannot be ruled out. These rodent models of obesity therefore provide only suggestive 

evidence linking excess adiposity to the development of systemic insulin resistance. 

However, as we will see in the next section, obesity brought on by chronic caloric excess is 

characterized by a similar reduction in insulin sensitivity.

Insulin resistance in diet-induced rodent models of obesity

While there are many advantages to studying metabolic disturbances that accompany 

excessive adiposity in genetic mouse models of obesity (537), obesity induced via dietary 
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manipulation is also a commonly used experimental approach. In contrast to monogenic 

models, diet-induced models of obesity may more closely reflect the natural development of 

adipose tissue accumulation as it occurs in most obese humans. In addition, the timing of 

onset can be readily controlled and developmental defects that may arise in genetic models 

are avoided. However, there is extensive heterogeneity in body weight response to various 

diets among different genetic mouse strains. For example, a study that included more than 

100 inbred mouse strains revealed substantial variation in percent body fat in response to 

consumption of a standard low-fat chow diet and to a high-sucrose, HFD (32% kcal from 

fat), indicating strong genetic control over adiposity in response to dietary composition 

(370). Epigenetic modifications are also known to influence adiposity and weight gain in 

response to diet (293). Thus, our understanding of the relationship between these genetic or 

epigenetic factors that affect susceptibility to weight gain, diet composition, obesity, and 

associated metabolic disease may be hampered or skewed by studies that focus solely on 

animals that are either sensitive or resistant to the effects of a HFD on adiposity. Despite 

these issues, HFD feeding of mice remains a popular method to produce obese rodent for 

studies of metabolic dysfunction. The diet used for the control group is an important factor 

to consider in animal studies of diet-induced obesity, as the interpretation of study results 

can differ significantly depending on the control diet (35). Although standard laboratory 

chow is commonly used, a defined diet that differs from the HFD only in macronutrient 

composition (fat and carbohydrate) is the most appropriate control diet (501). The use of a 

defined low-fat control diet eliminates bioactive dietary components that are common in 

complex chow diets but not in HFD. C57BL/6 mice are a commonly used strain in such 

studies as they are highly susceptible to HFD-induced adiposity with body weight 

divergence from chow-fed controls as early as four weeks of HFD feeding, and they 

continue to gain weight under long-term feeding regimens (450). There is also variability in 

change in total adipose tissue mass among different depots and mouse strains in response to 

HFD (371, 509). The age of animals at the onset of HFD feeding is yet another factor that 

can influence weight gain (51, 246, 517). HFD feeding is commonly associated with the 

development of insulin resistance and impaired glucose homeostasis in many models; 

however, the duration of HFD feeding and diet composition, including dietary fat source, 

influence not only body weight but also the timing of onset and severity of disturbed glucose 

regulation (54). Rapid onset of insulin resistance and impaired glucose tolerance was 

demonstrated in a study with C57BL/6 mice in which measures of glucose homeostasis were 

assessed after three days, one, two, five, or ten weeks of HFD feeding (60% kcal from fat) 

(268). Concomitant with increased adiposity and adipocyte size, glucose intolerance, 

hyperinsulinemia, and systemic insulin resistance were already evident as early as three days 

of HFD; fasting glucose and insulin levels were more elevated and systemic insulin 

sensitivity was reduced with longer-term feeding, as demonstrated by comparison of three-

day versus ten-week HFD feeding (268). However, even diets comprised of a lower fat 

content at a level of 25–30% kcal from fat can induce glucose intolerance and systemic 

insulin resistance in mice (132, 371). Parks et al. demonstrated that genetic background 

contributes significantly to the degree of insulin resistance induced by a HFD regimen (371). 

While percent body fat and depot-specific fat mass were positively associated with HOMA-

IR in both male and female mice fed a high-sucrose, HFD for eight weeks (371), the 

substantial heterogeneity in insulin resistance at any level of adiposity in response to HFD 
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feeding (Figure 5) suggests that factors other than fat mass per se play a major role in 

determining insulin sensitivity.

Obesity and insulin resistance in humans

In the context of human obesity, Bierman et al. suggested as early as the 1960s that excess 

adipose tissue may be a root cause of insulin resistance and subsequent hyperinsulinemia 

(39). Since then, multiple observational studies have demonstrated a positive association 

between measures of adiposity and insulin resistance in humans.

A study of healthy men of European and Asian Indian descent demonstrated that total, 

subcutaneous, and visceral fat areas were all negatively associated with insulin sensitivity as 

assessed by glucose disposal rate in euglycemic-hyperinsulinemic clamp procedures (385). 

A separate cross-sectional study of non-diabetic South American adults found that both BMI 

and WHtR were negatively associated with Homeostatic Model Assessment (HOMA)-

insulin sensitivity (calculated as inverse of HOMA-insulin resistance) (296). A cross-

sectional study of lean and obese men from the United States reported that several indices of 

adiposity, including BMI, WC, and percent body fat, were all negatively associated with 

insulin sensitivity, as assessed by glucose infusion rate (GIR) from euglycemic-

hyperinsulinemic clamps (367). A cross-sectional study of lean and obese, glucose tolerant 

individuals assessed the relationship between adiposity and insulin sensitivity, where 

euglycemic-hyperinsulinemic clamps were performed at three different insulin infusion rates 

(85). When normalized to lean tissue mass, basal hepatic, skeletal muscle, and adipose 

insulin sensitivity were all significantly greater in lean as compared to obese subjects. 

Collectively, these clinical studies demonstrate that regardless of the method used to assess 

adiposity or insulin sensitivity, a negative association between these two phenotypes is 

apparent.

It is also important to note that the relationship between adiposity and insulin sensitivity is 

modified by ethnicity (48, 385). The prevalence of both obesity and T2DM is higher in 

Hispanics and African Americans than Caucasians in the United States (65). Several studies 

have shown that for many ethnic groups, diabetes occurs at a lower BMI, and hence at a 

disproportionate rate as compared to Caucasian individuals of similar age (68, 294, 466). 

The Multiethnic Cohort study of over 180,000 individuals living in the United States 

revealed that the age-adjusted diabetes prevalence was higher in African American, Native 

Hawaiian, Japanese, and Latino populations as compared to Caucasians in every BMI 

category and among both men and women (294). Asian Indians also exhibit significantly 

lower insulin sensitivity as compared to Caucasians of similar age and BMI, which might be 

explained at least in part by the two-fold greater area of VAT in the Asian Indian group 

(385). Additional studies reported increased prevalence of diabetes at a lower BMI in Asian 

populations as compared to Caucasians (68, 466). Indeed, the current evidence 

demonstrating an increased risk for T2DM at a lower BMI in Asian Americans is so strong 

that the American Diabetes Association recommends diabetes testing for any adult in this 

subpopulation with a BMI ≥23 kg/m2 (191). Another study demonstrated that the 

relationship between adiposity and insulin sensitivity differs for Pima Indians when 

compared to Caucasians (48). In the Pima Indian group, there was a negative relationship 

Burhans et al. Page 9

Compr Physiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between glucose disposal rate and percent body fat up to a level of 28% fat, and there was no 

further reduction in glucose disposal rate beyond that level of adiposity. However, in the 

Caucasian population, there was a significant linear negative association between adiposity 

and insulin sensitivity, without any evidence of a threshold effect (48). Another interesting 

finding of a disconnect between adiposity and T2DM risk was seen in Samoa, which has one 

of the highest rates of both obesity and diabetes in the world (82, 83). A recent study 

revealed that a variant of CREBRF common in the Samoan population is associated with an 

increased risk of obesity, and each copy of the variant is associated with an approximately 

1.4 kg/m2 increase in BMI (314). Surprisingly, the variant was also associated with a 

significantly reduced risk for the development of T2DM, indicating that diabetes occurs at 

comparatively higher BMI values in carriers of this variant. Mechanisms through which this 

variant may confer protection against diabetes is not yet known. While this is not an 

extensive list of all ethnic groups that differ in their relationship between adiposity and 

insulin sensitivity, these examples strongly suggest that genetic factors modify the 

relationship between adiposity and insulin resistance in humans, and future work in this area 

should be carried out in ethnically diverse cohorts. Further, these differences across 

ethnicities may be better understood after there is a more comprehensive understanding of 

the mechanisms linking increased adiposity with decreased insulin sensitivity.

Variability in the association between adiposity and insulin resistance

The body of evidence generated from animal models and human studies described 

previously clearly demonstrates a positive association between adiposity and insulin 

resistance. However, there are exceptions to this relationship, wherein low adiposity may be 

met with extreme insulin resistance or morbid obesity may be free of metabolic dysfunction, 

with maintenance of normal glucose tolerance and insulin sensitivity. Examples of such 

individuals are evident in Figure 6, where there is a large amount of variability in GIR at any 

given BMI. The variation in GIR is perhaps most prominent in the obese group, as several 

individuals with extreme obesity (BMI >40 mg/kg2) exhibit high GIRs that are more 

characteristic of non-obese individuals. In addition, at the other end of the adiposity 

spectrum, several individuals in the non-obese group exhibit low GIR that are generally 

characteristic of the obese population. This overlap in insulin sensitivity between lean and 

even morbidly obese individuals suggests that increased fat mass is not likely the singular 

cause of insulin resistance but rather that more complex mechanisms underlie the 

association. Indeed, work conducted after the initial reports of the observed inverse 

association between fat mass and glucose tolerance and insulin sensitivity revealed that 

adipose tissue function, adipose tissue distribution, and age may be strong modulators of 

these associations (266, 362, 463). A relatively recently developed hypothesis by Dr. Roy 

Taylor at Newcastle University that provides an interesting perspective in this regard posits 

that individual fat thresholds determine the degree to which each person’s adipose tissue can 

safely store TG before ectopic fat storage and negative metabolic consequences manifest 

(461).

Adipose tissue distribution and insulin sensitivity—In humans, SAT is estimated to 

account for up to 90% of total fat mass (270). Although VAT accounts for a relatively minor 

portion of total fat mass, approximately only 10–20% in obese and non-obese adults (1), the 
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volume of this depot is recognized as one of the strongest predictors of insulin resistance 

(49). In 1956, Vague proposed that obesity could be categorized by the location of the excess 

adipose tissue, gynoid for lower body and android for upper body, and that android obesity 

was associated with a greater risk for development of T2DM (480). Evans et al. built upon 

this idea using simple anthropometric measurements as a proxy for central adiposity and 

discovered that WHR inversely associated with insulin sensitivity and glucose tolerance 

(114). Follow-up imaging-based studies sought to clarify whether the risk associated with 

central adiposity could be explained by the volume of SAT versus VAT. Bonora reported that 

glucose uptake was significantly inversely correlated with VAT, but not SAT, area in 

nondiabetic obese women (49). Other clinical studies using the euglycemic-

hyperinsulinemic clamp method to assess insulin sensitivity reported similar results, with a 

significant association between insulin sensitivity and VAT, but not SAT, area (49). A study 

of over 500 Filipino, African American, and Caucasian women revealed that age-adjusted 

T2DM prevalence was highest among women in the highest tertile of VAT volume (24). 

Even within this highest VAT tertile, there were stark differences in T2DM prevalence by 

ethnicity, with rates of 46.6% (Filipino), 14.7% (African American), and 9.8% (Caucasian). 

Coincident with greater VAT volume, Filipino women had the highest overall T2DM 

prevalence at 32% although the African American group had a significantly higher BMI and 

greater SAT volume as compared to the Filipino and Cauasian groups (24). Together these 

data suggest that in addition to adipose tissue distribution, genetic or other factors also 

contribute to the risk for T2DM. Other studies suggest that central SAT mass or area may be 

an independent risk factor for insulin resistance (1, 146, 373). In a study of adult men with a 

range of adiposity, glucose disposal rate was more strongly correlated with abdominal SAT 

mass than with VAT mass, although both correlations were significant (1). However, after 

adjusting for total fat mass, the association between glucose disposal rate and VAT was lost 

and the association with SAT only trended towards significance (P=0.06) while the 

associations between glucose disposal rate and truncal skinfold thickness and total 

abdominal fat (SAT plus VAT) were preserved (1).

Other studies suggest that visceral adiposity may simply be a stronger predictor of metabolic 

dysfunction than total or subcutaneous adiposity, but not a causal factor. For example, 

hepatic fat content has been proposed to be a major driver of impaired insulin sensitivity, and 

this hypothesis is supported by clinical studies that have dissociated the effects of visceral 

adiposity and intrahepatic lipid accumulation on glucose homeostasis (116, 285). One study 

assessed multi-tissue insulin sensitivity in obese subjects who differed significantly either by 

liver fat content (3.6% vs. 25.3%) or visceral adiposity (766 cm3 vs. 1946 cm3) while 

matched for BMI, percent body fat, age, and sex (116). Significant differences in insulin 

sensitivity of liver, skeletal muscle, and adipose tissue were detected between the groups that 

differed by liver fat content while no differences in insulin sensitivity were detected between 

the groups that differed by VAT volume (116). In a comparison of insulin sensitivity 

between class I (BMI 30.0–34.9 kg/m2) and class III (BMI ≥ 40.0 kg/m2) obese individuals 

matched for liver fat, there were no differences in plasma glucose, insulin, or FFA, or in any 

measures of insulin sensitivity assessed by euglycemic-hyperinsulinemic clamps (285). A 

separate study of obese adults demonstrated a significant inverse correlation between liver 

fat content and adipose, liver, and skeletal muscle insulin sensitivity. In that study, liver fat 
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was the strongest predictor of insulin resistance in all tissues as compared to several 

measures of adiposity, although VAT volume was also a significant predictor (244). 

However, in a study of over 350 obese or diabetic subjects with a wide range of visceral 

adiposity and liver fat content, Kotronen et al. demonstrated that both of these sites of fat 

accumulation are independent predictors of fasting serum insulin and hepatic insulin 

sensitivity (249). In contrast, only liver fat explained variation in fasting plasma glucose 

levels. This study suggests that while liver fat is a strong predictor of many components of 

metabolic dysfunction, visceral adiposity may also be a significant contributor (249). Taken 

together, these data suggest that the liver is an important site of lipid accumulation that may 

substantially alter whole-body glucose homeostasis through its effects on multi-organ insulin 

sensitivity, although the mechanisms through which the liver may influence extrahepatic 

insulin sensitivity are not yet understood.

There is also a growing body of evidence that suggests the accumulation of lower body SAT 

may be metabolically protective (288, 463). Thus, the detrimental effects of VAT could 

perhaps be partially offset by the beneficial effects of SAT, which could partly explain the 

inverse association between measures of adipose distribution, such as WHR, and insulin 

sensitivity. In addition, it is possible that the differential metabolic effects of distinct adipose 

depots could explain some of the variability in the association between BMI and insulin 

sensitivity. Subcutaneous fat in the lower body region, as compared to upper-body fat, is 

positively associated with insulin sensitivity and a slower rate of lipolysis and FFA release 

into the circulation (288). A cross-sectional study of overweight and obese men and women 

divided into two groups by high or low insulin-mediated glucose uptake found that after 

adjusting for sex and BMI, the insulin resistant group had significantly greater VAT while 

the insulin sensitive group had significantly more subcutaneous abdominal fat and thigh fat 

(301). More direct evidence of the protective effect of SAT came from mouse models of 

adipose tissue transplantation (470). Compared to a sham operated group, mice that received 

transplants of SAT into either the dorsal subcutaneous region or into the visceral epididymal 

region gained less body weight and fat mass and exhibited greater insulin sensitivity in the 

liver and the endogenous SAT several weeks post-surgery. However, the lower body weights 

seen in the SAT transplantation group were not controlled for, so it is not known whether the 

improvement in insulin sensitivity is at least partially explained by lower total body weight 

(470). Collectively, the body of evidence from humans and rodent models supports the 

hypothesis that fat distribution is an important regulator of insulin sensitivity and whole-

body metabolic homeostasis.

Aging, adiposity, and insulin sensitivity—Aging is associated with a decline in 

function at the cellular, organ, and whole-body levels and thus increases the risk for the 

development of disease (131, 278, 341). T2DM is one of many aging-associated diseases; 

CVD, cancer, and neurodegeneration are also included in the list (341, 362). Current 

estimates of the prevalence of diabetes in the United States clearly demonstrate a positive 

association with age, as the rate in the 65+ years age group is substantially higher than that 

of the 45–64 age group (65) (Figure 7). This increase in prevalence occurs despite a 

reduction in the prevalence of overweight and obesity among adults 60+ years of age (352). 

Consistent with increased T2DM prevalence in the elderly, both reduced glucose tolerance 
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and increased insulin resistance are associated with aging (124, 398). These age-associated 

changes in glucose metabolism may be largely explained by changes in adipose tissue 

distribution, with a shift from SAT to VAT (362, 498). Even after controlling for percent 

body fat, parity, and physical activity, an increase in visceral adiposity occurs after the 6th 

decade in women (197). Aging-related alterations in fat distribution are consistent with those 

described in the preceding section that are associated with detrimental effects on insulin 

sensitivity. The observed relationship between insulin resistance and aging in humans has 

been investigated in a systematic way: when total fat mass or VAT mass is controlled for, it 

becomes evident that adiposity, rather than aging itself, is the stronger predictor of insulin 

resistance (18, 31, 64, 86). For example, when young (24 – 47 years) and old (60 – 75 years) 

subjects were matched by either level of fitness or adiposity, there were no differences in 

insulin sensitivity (assessed by clamp) between younger and older subjects (18). In a study 

of young (mean 23.7 years) versus old (mean 70.1 years) subjects who differed significantly 

by BMI, percent body fat, and VAT mass, measures of adiposity were significant predictors 

of insulin sensitivity but age was not (31). Another study assessed the impact of age on the 

major determinants of glucose tolerance in BMI-matched young (27 years) and old (63 

years) individuals with normal glucose tolerance (10). Using the frequently sampled 

intravenous glucose tolerance test, glucose effectiveness was significantly lower in the old 

group while neither insulin sensitivity nor first phase insulin secretion, a measure of 

pancreatic β-cell function, were different between the two groups. However, it should also 

be noted that in addition to changes in fat mass and distribution, aging is also accompanied 

by a loss of lean mass which may also contribute to reduced insulin sensitivity in the elderly 

(248, 308). Additional evidence for a role of VAT accumulation in aging-associated insulin 

resistance came from a rodent study by Gabriely et al. in which VAT or SAT was surgically 

removed from 15-month old rats and indices of insulin sensitivity were measured five 

months later (138). Glucose disposal rate was improved and hepatic glucose output was 

reduced in the VAT removal group as compared to the sham-operated and SAT removal 

groups (138). Furthermore, the level of insulin sensitivity in the VAT removal group was 

similar to that of healthy young (two-month old) rats, again supporting the concept that fat 

distribution is an important determinant of metabolic health in aging. Taken together, current 

evidence clearly indicates that aging is associated with insulin resistance that may be largely 

explained by altered adipose tissue mass and distribution.

Lipodystrophy and insulin sensitivity—As mentioned previously, and observed in 

Figure 6, there are individuals that are outliers to the generally observed inverse association 

between adiposity and insulin sensitivity. The study of these individuals and representative 

mouse models can offer unique insights into the role of adipose tissue in whole-body 

metabolic homeostasis, and will be reviewed in the following sections.

Lipodystrophy and obesity are opposite extremes on the spectrum of adiposity and the study 

of both conditions has provided great insight into the importance of the fat-storing and 

endocrine functions of adipose tissue in whole-body metabolic homeostasis. 

Lipodystrophies are heterogeneous in terms of etiology and severity, as they can be either 

congenital or acquired, with generalized or partial (regional) fat loss (193). Despite the 

dramatic difference in absolute fat mass of lipodystrophic as compared to obese individuals, 
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the overlap in their metabolic phenotypes is striking (Figure 8). Most forms of human 

lipodystrophy are associated with some degree of insulin resistance, hepatic steatosis, and 

dyslipidemia (393). The extent of metabolic dysfunction is generally proportional to the 

level of adipose tissue deficit, such that more extreme fat loss, as seen in generalized 

lipodystrophies, is associated with more severe insulin resistance and development of T2DM 

(193). Genetic mouse models of lipodystrophy also exhibit severe insulin resistance (322, 

426). Many of the known genes responsible for monogenic forms of lipodystrophy are 

directly involved in major functions of adipose tissue, including adipogenesis, TG synthesis, 

or lipid droplet formation, consistent with a central role for functional adipose tissue in 

whole-body metabolic homeostasis (193). Although it is not yet clear why some types of 

lipodystrophy affect certain depots and spare others, the adipose tissue pattern associated 

with this condition commonly presents a double metabolic insult, as subcutaneous 

gluteofemoral fat is generally lost while VAT expands (193).

Metabolically healthy obesity in humans—Obese individuals with greater insulin 

sensitivity than would be predicted based on their BMI, as illustrated in Figure 6, are 

increasingly being viewed not as outliers but as a metabolically distinct group that comprise 

approximately 10–30% of the total obese population (44). These individuals maintain insulin 

sensitivity and glucose tolerance in the face of increasing BMI and offer an intriguing 

opportunity to learn more about the influence of adiposity on metabolic health. The risk for 

cardiovascular and metabolic diseases, such as T2DM, is lower in MHO individuals as 

compared to metabolically unhealthy individuals of similar BMI (44, 438). However, it is 

also hypothesized that because metabolic syndrome, insulin resistance, and fitness are 

strongly associated with age, MHO may be a temporary metabolic state that obese 

individuals transition through on their way to obesity-related insulin resistance (45). While 

the prevalence of MHO does substantially decrease with age, MHO individuals can be found 

in the oldest age categories in different cohorts (44, 485). Indeed, in a combined analysis of 

10 cohorts which included 28,000 obese adults in Europe, the overall age-standardized 

prevalence of MHO was 12% among the obese population (485). Overall, our current 

knowledge of MHO is consistent with the findings discussed above that insulin sensitivity is 

more closely related to intraabdominal and ectopic fat deposition than to total body fat mass, 

i.e. MHO individuals may be the subpopulation of the obese who manage to expand their 

(peripheral) SAT and prevent excessive intraabdominal and ectopic fat deposition (44). 

Consistent with greater insulin sensitivity in MHO individuals as compared to the 

metabolically unhealthy individuals, levels of several circulating factors that are associated 

with insulin sensitivity are also improved in MHO. For example, RBP-4 is directly 

associated with visceral adiposity and inversely associated with insulin sensitivity (141, 

152). In non-obese and obese women, serum RBP-4 was highest among those with visceral 

adiposity as compared to those without, and levels were not different between the non-obese 

and obese groups that did not have visceral adiposity (265). MHO individuals also have 

higher circulating levels of high-molecular weight (HMW) adiponectin (9, 103, 107) and 

lower FFA (340, 482) as compared to insulin resistant obese individuals. These factors may 

contribute to the protection from metabolic dysfunction in MHO despite having excess 

adiposity.
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One limitation in this field is that consensus on the definition of MHO does not currently 

exist, but advocates of an official MHO classification have proposed to define metabolic 

health as the absence of the metabolic syndrome and maintenance of insulin sensitivity 

defined as HOMA-IR <2.5 (44). Alternatively, in some observational studies MHO 

individuals are defined as those with BMI >30.0 kg/m2 who do not have any metabolic 

disorders, including impaired glucose tolerance, dyslipidemia, or hypertension (44).

Adiposity and insulin sensitivity summary

Whole body adiposity is generally associated with insulin resistance in rodents and humans, 

but there is a substantial amount of residual variation likely explained by numerous factors 

that influence the relationship. The examples of obesity and lipodystrophy presented above, 

while differing in external presentation, share a common underlying metabolic phenotype: a 

relative deficit of healthy, functional adipose tissue commonly accompanied by whole-body 

metabolic dysfunction. Lipodystrophy is characterized by reduced total fat mass and altered 

adipose tissue topography while obesity is characterized by excess total fat mass. In contrast, 

the adipose tissue of MHO individuals likely maintains proper functioning capacity, with 

storage of neutral lipids and secretion of adipokines, despite increased total fat mass 

indicative of obesity, thereby preventing excessive ectopic fat storage. An understanding of 

adipose tissue function in these contexts provides further support for the hypothesis that 

absolute adipose tissue mass is not the primary factor driving the association between 

adiposity and the development of metabolic dysfunction (Figure 8). Rather, as mentioned 

above, the health of VAT and SAT depots and low levels of ectopic fat deposition are likely 

key determinants of whole-body insulin sensitivity.

Overview of mechanisms linking increased adiposity to insulin resistance

Efforts to understand the mechanisms underlying the association between adiposity and 

insulin resistance have been substantial, many mechanisms proposed (383). However, the 

heterogeneous metabolic phenotypes associated with obesity make it difficult to deconstruct 

the association and understand contributing components. This point is exemplified by 

studies demonstrating that the association between adiposity, insulin resistance, and 

impaired glucose homeostasis is not explained simply by absolute fat mass, as described in 

detail above. Accumulating evidence now clearly indicates that the functional capacity or 

‘health’ of adipose tissue is a likely major determinant of whole-body metabolic 

homeostasis. In this section, we briefly describe several of the current leading hypothesized 

mechanisms that may mediate obesity-associated insulin resistance and supporting evidence 

from studies of MHO and lipodystrophy. Within the context of the proposed mechanisms, 

we also discuss functional and metabolic differences of adipose tissue depots that are 

consistent with adipose tissue distribution as an important determinant of metabolic health. 

As will become apparent later in the manuscript, all of these proposed mechanisms may 

partly function as mediators in the relationship between adipose tissue inflammation and 

systemic insulin resistance.

Elevated plasma free fatty acids—Adipose tissue is the primary source of circulating, 

albumin-bound FFA. Circulating FFA increase in concentration with fasting and become 

available for hepatic very low-density lipoprotein synthesis and for energy generation by 
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peripheral tissues (148). Elevated systemic FFA are commonly cited as a hallmark 

characteristic of obesity and are hypothesized to contribute to obesity-associated insulin 

resistance. Although the rate of FFA release per kg fat mass declines with increasing 

adiposity, increased total fat mass in obesity leads to greater total FFA release (315). 

Elevated fasting FFA with increasing adiposity have been demonstrated in some (41, 206) 

but not all human studies, including two large epidemiological studies (224). Variability in 

plasma FFA has also been reported in lipodystrophic mouse models, as FFA were 

significantly elevated in one model (322) but not in a different model (426).

Relative to nondiabetic overweight subjects, plasma FFA were elevated over a 24-hour 

period in age and BMI-matched individuals with mild or severe T2DM (389). In a study that 

included lean and obese insulin sensitive and insulin resistant individuals, Ferrannini et al. 

found that plasma FFA differed significantly by insulin sensitivity but not by obesity (121). 

Consistent with these results, another cross-sectional study demonstrated that FFA were 

significantly lower in the MHO group as compared to the metabolically unhealthy obese 

group, but did not differ from the non-obese metabolically normal group (447). A five-year 

prospective study demonstrated that plasma FFA were highly predictive of risk for T2DM 

when percent body fat, sex, and insulin-stimulated glucose uptake were controlled for. 

Further, the incidence of T2DM was nearly doubled among individuals with high (90th 

percentile) as compared to individuals with low (10th percentile) plasma FFA (365). A 

reciprocal glucose fatty acid cycle was originally proposed by Randle over 50 years ago 

(387). This theory proposed that the elevated FFA in obesity and insulin resistance may 

exacerbate impaired glucose metabolism due to inhibitory effects of products of fatty acid 

oxidation on enzymes central to glucose catabolism (386, 387). Consistent with the Randle 

cycle hypothesis, studies of lipid bolus infusions revealed that elevated FFA are associated 

with many perturbations of glucose metabolism, including reduced whole body glucose 

uptake, reduced skeletal muscle glycogen synthesis and glycolysis, and increased hepatic 

glucose output (47). However, using magnetic resonance spectroscopy, Roden et al. 

demonstrated that FFA act at the site of glucose uptake and/or glucose phosphorylation, in 

contrast to Randle’s proposal that enzymatic inhibition is the driving mechanism in the 

glucose fatty acid cycle (395). More direct evidence that FFA directly impact glucose 

metabolism was demonstrated by pharmacological inhibition of overnight fasting-induced 

elevation of plasma FFA which was associated with improved insulin sensitivity and glucose 

tolerance in obese subjects with T2DM (408).

Elevated plasma and tissue ceramides—Ceramides belong to the class of 

sphingolipids, are comprised of a sphingosine and a fatty acid, and serve as the building 

block for more complex sphingolipid species (305). Early in vitro experiments demonstrated 

that ceramide-mediated disturbance of glucose metabolism occurs predominantly through 

the inhibition of Akt activity (449). This impairment in insulin signaling reduces GLUT4 

protein at the plasma membrane and subsequently reduces glucose uptake in 3T3-L1 

adipocytes (449). Results from animal and human studies implicate ceramides in the 

development of insulin resistance (72). For example, total and select individual plasma 

ceramide species were elevated in obese T2DM individuals as compared to control non-

obese individuals, and insulin sensitivity was inversely correlated with total and individual 
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plasma ceramides (171). However, the relative contribution of adiposity versus ceramides on 

insulin resistance was not addressed in this study. In other studies, ceramides were 

significantly elevated in SAT of obese diabetic as compared to obese nondiabetic individuals 

(42, 71) while ceramide content of VAT did not differ between these groups (71). More 

direct evidence of a role for ceramide in glucose homeostasis has been generated from 

several murine studies of altered ceramide metabolism (71, 150, 183, 384, 476, 522). 

Phenotypes of mice with reduced ceramide synthesis or increased ceramide catabolism are 

consistently characterized by improved glucose tolerance and insulin sensitivity (71, 150, 

183, 476, 522).

Hypoadiponectinemia—The endocrine function of adipose tissue is now well 

appreciated with the discovery and functional characterization of many adipokines. 

Adiponectin was first identified in the mid-1990s (192, 283, 335, 414) and remains a highly 

studied adipokine, as it is well established as an insulin-sensitizing hormone that exerts 

control over several metabolic processes in a panel of different tissues (399, 475).

Adipocytes secrete adiponectin in low-molecular, mid-molecular and HMW complexes that 

are detected in human serum and in culture media conditioned by adipose tissue or mature 

adipocytes (214, 359, 414). Adiponectin is distinct from most other adipokines in that its 

expression and circulating levels are inversely related to adiposity (25, 228, 237). In both 

humans and mice, circulating adiponectin levels are higher in females than in males (80, 

228, 359). Early evidence of a role for reduced levels of adiponectin in obesity-associated 

impaired glucose homeostasis came from studies that demonstrated total plasma adiponectin 

is directly correlated with insulin sensitivity, lower in diabetic as compared to nondiabetic 

patients, and increased with weight loss (25, 190, 510). A cross-sectional study of over 700 

adults compared circulating adiponectin levels between BMI-matched metabolically healthy 

and metabolically unhealthy individuals in six different BMI strata. In each BMI category, 

three of which were obese classes, adiponectin was significantly higher in the metabolically 

healthy groups (7). Another large study of nearly 2500 individuals reported significantly 

higher plasma adiponectin levels among metabolically healthy non-obese and MHO groups 

when compared to the metabolically unhealthy non-obese and obese groups (9). In addition, 

adiponectin levels were not different between the metabolically healthy non-obese and obese 

groups even after controlling for age, sex, BMI, and hormone therapy. Given the results from 

these clinical studies, it is perhaps unsurprising that lipodystrophic humans exhibit very low 

circulating levels of adiponectin and the level of reduction in adiponectin tends to correlate 

with the severity of adipose tissue deficiency (140, 166). In a genetic mouse model of 

lipoatrophy that lacks nearly all abdominal white adipose tissue, serum adiponectin is 

undetectable and the mice present with systemic insulin resistance and ectopic fat deposition 

(532). Administration of recombinant adiponectin to these mice partially restored insulin 

sensitivity and reduced hepatic and skeletal muscle TG accumulation and circulating lipid 

levels. Overexpressing adiponectin in Lepob/ob mice completely prevented the expression of 

a diabetic phenotype, in spite of the fact that the adiponectin transgenic mice had greater 

total fat mass and had substantially lower physical activity (235). Interestingly, the expanded 

fat tissue in the adiponectin transgenic mice was characterized by smaller adipocytes and 

less inflammation, and the animals had lower liver fat content. As additional evidence for 
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adiponectin’s insulin sensitizing effects, administration of recombinant adiponectin 

significantly improved glucose tolerance and insulin sensitivity in HFD and high 

carbohydrate diet-fed C57BL/6 and Leprdb/db mice (532). Maeda et al. demonstrated that 

treatment with the insulin-sensitizing thiazolidinedione (TZD) class of anti-diabetic 

medications increased plasma total adiponectin concentration in a dose-dependent manner in 

both humans and mice (284). Follow-up work by Pajvani et al. showed that the change in the 

ratio of HMW to total adiponectin was strongly and directly correlated to the change in 

insulin sensitivity following TZD treatment while there was no correlation between the 

change in total adiponectin and change in insulin sensitivity, suggesting the HMW 

multimers are the more metabolically potent, insulin-sensitizing form of adiponectin (360). 

In agreement with this hypothesis, Fisher et al. demonstrated that the ratio of HMW to total 

adiponectin correlated with glucose tolerance more strongly than did total adiponectin in a 

study of normal to obese subjects (127). As with total adiponectin, circulating levels of 

HMW adiponectin correlate inversely with adiposity; however, a study of aging in mice 

demonstrated that the association is not significant in animals of advanced age (311).

The metabolic effects of adiponectin are predominantly mediated through the two 

adiponectin receptors, AdipoR1 and AdipoR2 (530, 533). Activation of these receptors 

induces activation of the adaptor protein, phosphotyrosine interacting with PH domain and 

leucine zipper 1 (APPL1), AMP-activated protein kinase (AMPK), peroxisome proliferator-

activated receptor-α (PPARα), and p38 MAPK (mitogen-activated protein kinase) signaling 

pathways (399, 475). Downstream events of these active signaling pathways increase 

glucose uptake and fatty acid oxidation in skeletal muscle. Adiponectin enhances survival of 

the β-cells in the pancreas, and may regulate glucose-stimulated insulin secretion in some 

conditions. In the liver, adiponectin improves insulin sensitivity with an accompanying 

reduction in gluconeogenesis. In addition, work from Holland and colleagues revealed a 

direct role for adiponectin signaling in regulation of cellular ceramide levels (184, 185). 

These in vitro and in vivo studies revealed that both AdipoR1 and AdipoR2 exhibit 

ceramidase activity that is enhanced by adiponectin and reduces cellular ceramide 

concentration (184, 185). Consistent with these data, crystal structures of both AdipoR1 and 

AdipoR2 suggest they possess intrinsic ceramidase activity (487).

Adiponectin also exerts metabolic regulation through anti-inflammatory effects. In vitro 

experiments revealed that adiponectin treatment reduces the expression and secretion of 

several pro-inflammatory cytokines and chemokines including IL-6, IL-8, C-C motif 

chemokine ligand 2 (CCL-2, also called monocyte chemoattractant protein-1, MCP-1), and 

others (97, 553). Furthermore, adiponectin reduced secretion of the anti-inflammatory 

factors IL-10 and IL-1Ra from macrophages and dendritic cells (514). Evidence also 

suggests reciprocal regulation of adiponectin expression by pro-inflammatory factors. For 

example, in vitro experiments with 3T3-L1 adipocytes demonstrated that treatment with 

either IL-6 or TNFα reduces adiponectin expression and secretion (120, 223, 284).

Ectopic lipid accumulation—An essential function of adipose tissue is to store excess 

energy in the neutral lipid form of TG, which prevents ectopic lipid accumulation in tissues 

such as liver, skeletal muscle, and pancreas. The proper storage of fatty acids in adipose 

depots is crucial because the buildup of lipids in tissues whose primary function is not 
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energy storage is strongly associated with the development of metabolic dysfunction. As 

discussed previously, lipid content in non-adipose tissues may be one of the strongest 

predictors of insulin resistance, in obese as well as non-obese individuals. For example, 

lipodystrophy is commonly associated with ectopic fat accumulation, particularly in the liver 

(140, 193, 375). Mouse models of lipodystrophy also exhibit significant hepatic fat 

accumulation (322, 426). Several studies have shown a negative association between hepatic 

lipid content and whole-body insulin sensitivity (116, 244, 285). In one study that included 

over 300 adults, liver fat content and percentage with fatty liver were both significantly 

lower in the insulin sensitive MHO group as compared to the obese insulin resistant group 

(439). In this study, intramyocellular lipid accumulation was also significantly lower in the 

MHO group; however, when the groups were separated by sex this trend was only observed 

among men (439). A separate study of non-diabetic lean adults demonstrated that 

intramyocellular lipid content was negatively associated with insulin sensitivity, and the 

association was independent of age, BMI, and fasting plasma glucose (255). Another study 

demonstrated similar results in a study of non-obese and obese Pima Indians, in which 

muscle lipid content, as measured in tissue biopsy, was negatively correlated with insulin 

sensitivity, again measured by clamp (363). More recent studies suggest that pancreatic fat 

may be an important contributor to pancreatic β-cell dysfunction (173, 442, 515).

Various factors may contribute to ectopic lipid accumulation. Circulating FFA derived from 

adipose tissue lipolysis are a major source of fatty acids for TG synthesis in non-adipose 

tissues. For example, one study of obese subjects with NAFLD estimated that circulating 

FFA provide nearly 60% of the fatty acids in hepatic TG (100). Reduced levels of circulating 

adiponectin and related downstream signaling in liver and muscle likely also contribute to 

the accumulation of lipids, as adiponectin is a major regulator of fatty acid oxidation and 

thus at least partially regulates lipid levels in these tissues (275, 399, 531). Genetic factors 

also affect ectopic fat distribution as differences in organ fat accumulation have been 

demonstrated among ethnic groups. In a study of obese Hispanic, African American, and 

Caucasian adolescents matched for body fat, age, and sex, hepatic fat was elevated in the 

Causcasian and Hispanic groups but was undetectable in the African American group (273). 

There was also differential accumulation of intramyocellular fat, which was significantly 

elevated in the Hispanic group and not different between the African American and 

Caucasian groups (273). Another study showed that among overweight Hispanic and 

African American young adults matched for age and BMI, pancreatic fat was significantly 

higher in the Hispanic group as compared to the African American group (263). Together, 

these studies suggest that inter-ethnic differences in lipid partitioning exist irrespective of 

obesity and may be important determinants of metabolic disease susceptibility.

Systemic inflammation—Obesity is commonly described as a state of chronic low-grade 

systemic inflammation, as excess adiposity is positively associated with mildly elevated 

levels of several circulating cytokines and acute phase response proteins in both mice and 

humans. IL-6 is a well characterized pro-inflammatory cytokine that is produced by certain 

immune cells, such as monocytes, macrophages, and T cells, and by non-immune cells such 

as fibroblasts, endothelial cells, and adipocytes (416, 493); both SAT and VAT depots secrete 

this cytokine (134). Serum IL-6 is elevated in diabetic and nondiabetic obese individuals as 
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compared to non-obese controls (30, 151). Signaling of IL-6 occurs through a receptor 

complex comprised of IL-6R and glycoprotein 130 (gp130) on target tissues, such as the 

liver (416). Hepatic IL-6 signaling stimulates the expression of acute phase response 

proteins, including C-reactive protein (CRP) and serum amyloid protein A (SAA) (416). 

Consistent with elevated IL-6, systemic levels of both CRP and SAA are significantly 

elevated in obese subjects as compared to lean or overweight individuals (497, 534). SAA 

antagonizes insulin signaling in adipocytes and thus elevated levels may contribute to insulin 

resistance (123). Hepatic expression and serum levels of SAA are also induced in mice fed a 

HFD for 16 weeks, consistent with obesity-associated elevation of circulating IL-6 levels 

(413). Circulating levels of other inflammatory proteins, such as TNFα, MCP-1, 

macrophage inflammatory protein (MIP)-1α, IL-1, and IL-8 are also elevated in obesity 

(151, 233). Concurrent with severe insulin resistance, systemic inflammation and 

macrophage infiltration specifically of adipose tissue, but not in other tissues, occurs in 

lipodystrophic mice (176).

Adipose tissue inflammation—Several lines of evidence strongly suggest that low-

grade chronic inflammation in expanded adipose tissue is a major contributor in the 

development of systemic insulin resistance. Early work demonstrated increased expression 

of TNFα in obese, insulin resistant adipose tissue of both mice and humans (188, 189). 

Serum IL-6 is elevated in diabetic and nondiabetic obese individuals as compared to lean 

controls (30), likely predominantly due to increased expression in expanded adipose tissue. 

Furthermore, adipose tissue levels of IL-6 inversely correlated with insulin sensitivity (30). 

These early studies and the body of follow-up work that continues today have shaped our 

understanding of the cellular crosstalk that exists between immune cells and adipocytes, 

illustrating that this crosstalk influences whole-body metabolic regulation. The known or 

suggested effects of adipose tissue inflammation on insulin resistance includes direct effects, 

i.e., the induction of adipocyte insulin resistance by pro-inflammatory cytokines, as well as 

indirect effects mediated in large part by elevated flux of FFA, hypoadiponectinemia, ectopic 

lipid accumulation that may result from increased FFA and low circulating adiponectin, and 

systemic inflammation (Figure 9). In other words, the mechanisms discussed above that are 

likely mediators between obesity and insulin resistance are all influenced to varying degrees 

by low-grade chronic inflammation in adipose tissue. For example, the pro-inflammatory 

cytokine TNFα is known to suppress adiponectin expression in adipocytes in vitro (284), 

which may explain in part the lower concentrations of adiponectin among obese individuals. 

Induction of insulin resistance in adipocytes is also known to increase the flux of FFA to 

ectopic tissues, due to an attenuation of the inhibitory effect of insulin on adipocyte lipolysis 

in the postprandial period (440). Activation of inflammatory signaling pathways is also 

linked with ceramide accumulation. Several studies have demonstrated that TNFα signaling 

regulates ceramide synthesis in vitro (175, 411, 524). In experiments conducted using 

mature adipocytes and chemical inhibition of caspase activity, ceramide production was 

shown to be an essential component of TNFα-mediated insulin resistance (156). 

Lipopolysaccharide (LPS) treatment of isolated skeletal muscle induces ceramide synthesis 

(182). In addition, palmitate stimulates ceramide accumulation in isolated muscles from 

wildtype mice but not in muscles from mice with defective signaling of the Toll-like receptor 

(TLR) 4, suggesting that saturated fatty acid-mediated accumulation of ceramides occurs 
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through the TLR4 pathway (182). In the remainder of this manuscript, we will discuss in 

detail the known associations between adipose tissue inflammation and both adiposity and 

insulin resistance.

ADIPOSE TISSUE INFLAMMATION IN OBESITY

The development of adipose tissue inflammation in obesity and its potential role in driving 

insulin resistance are the major focus points of the remainder of this review. We discuss the 

diverse functions of adipose tissue immune cells and the evidence of whether adipose tissue 

inflammation directly contributes to the development of insulin resistance and T2DM in 

obesity. In this section, we review the accumulating data that demonstrate the development 

of chronic, low-grade inflammation in adipose tissue during obesity (Figure 10).

Overview of acute inflammation and inflammatory response

Inflammation is classically described as an acute response by the host organism to an 

infectious agent or tissue damage. Clinically, acute inflammation often presents as a 

combination of redness, swelling, pain, or increased temperature, either locally or 

systemically (i.e., fever) (261). The inflammatory process itself involves the focused delivery 

of humoral products and leukocytes to the site of inflammation, and is associated with an 

increase in the basal metabolic rate (78, 187, 261, 264, 304, 329). An acute inflammatory 

response involves the actions of surveilling innate resident immune cells, such as 

macrophages and mast cells. Upon exposure to a pathogen or necrotic tissue, these tissue-

resident immune cells initiate an immune response by the release of numerous inflammatory 

mediators that enhance blood flow, increase blood vessel permeability, and facilitate the 

recruitment of leukocytes from systemic circulation. These secreted factors include 

cytokines such as TNFα, IL-1β, IL-6, and interferon (IFN) γ, chemokines such as CCL8 

(IL-8) and CCL2 (MCP-1), adhesion molecules such as ICAM, E-selectin, and P-selectin, in 

addition to histamines, prostaglandins, leukotrienes, and many others (241, 261, 264, 304, 

329, 336). Collectively, their actions serve to facilitate a rapid, short-term response designed 

to neutralize and/or remove the offending insult and restore tissue homeostasis. Of particular 

relevance to this paper, it is well known that acute infections trigger insulin resistance (541), 

plausibly in order to secure sufficient glucose supply for leukocytes involved in the 

inflammatory process.

Infiltrating neutrophils are the first responders to the site of acute inflammation and release 

their granule contents, a combination of reactive oxygen species, myeloperoxidase, and the 

proteases elastase, proteinase 3 and cathepsin G (241, 245, 261, 304, 336, 377). While 

designed to rid the host of invading microbes, these defense molecules can also damage 

surrounding host tissue (261, 304). Neutrophils also contribute to the recruitment, activation, 

and programming of the antigen presenting cells, such as macrophages and dendritic cells 

(336). One principal role of macrophages and dendritic cells is to take up microbes and 

present microbial antigens to cells of the adaptive immune system (333). Resident and 

recruited macrophages also aid in the removal of foreign particles and cellular debris, and 

once the pathogen is eliminated, initiate a repair phase. There is a switch from the 

production and secretion of pro-inflammatory prostaglandins to anti-inflammatory lipoxins 
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during this macrophage-mediated resolution phase. Lipoxins halt the recruitment of 

neutrophils in favor of monocyte recruitment (69). Recruited monocytes differentiate into 

macrophages that then scavenge dead and dying neutrophils and initiate tissue repair (241, 

261, 304, 336). Failure of the acute response to eliminate the pathogen results in a more 

chronic immune cell infiltration mainly comprised of macrophages and lymphocytes, and 

the transition of the immune response from the innate to the adaptive arm (333). Prolonged 

failure to resolve the inflammation, whether by the persistence of the pathogen, the presence 

of foreign bodies that cannot be broken down, or auto-immunity, results in a chronic 

inflammatory state characterized by the formation of tertiary lymphoid tissues and 

granulomas (304).

The signaling cascades at the heart of inflammatory processes include cell surface receptors 

for pro-inflammatory cytokines such as TNFα, ILs, and IFNs. There are also several 

different types of pattern recognition receptors (PRR). These receptors recognize and bind 

pathogen-associated molecular patterns (PAMPs) present on microorganisms or endogenous 

products of damaged tissue (i.e. dead and dying cells) that are released, also called damage-

associated molecular patterns (DAMPs) (210). The PRR family includes TLRs, NOD 

(nucleotide-binding oligomerization-domain protein)-like receptors, and C-type lectin 

receptors. Activation of pro-inflammatory cytokine receptors and PRR signal through the c-

Jun NH2-terminal kinase (JNK) and inhibitor of κ kinase (IκK)/nuclear factor-κB (NF-κB) 

pathways (295, 302, 356, 467).

Overview of adipose tissue inflammation

In comparison to a classical acute inflammatory response to a pathogen, obesity-associated 

inflammation differs with respect to its origin, intensity (often described as being low grade 

or sub-acute), and chronic persistence without resolution (154, 187). In addition, the 

metabolic rate normalized to lean body mass is unchanged in obesity (60), in contrast to the 

increase in an acute systemic inflammatory response. Obesity-associated inflammation 

afflicts many organs, including adipose tissue, skeletal muscle, liver, pancreas, and brain 

(154, 187, 302, 356, 464). Adipose tissue is now known to be a significant source of pro-

inflammatory cytokines. Extensive research in rodent models suggests that the inflammation 

of adipose tissue may be a major factor in the development of metabolic disease. With the 

high prevalence of metabolic diseases, adipose tissue inflammation has become a major area 

of interest.

It should be emphasized that inflammation in tissues other than adipose, as well as ectopic 

fat deposition, are also important contributors to development of obesity-associated 

metabolic dysfunction. Genetic models of obesity present with whole-body metabolic 

dysfunction that may be due to a combination of metabolic disturbances that develop across 

several tissues. For example, in addition to massive adiposity, Lepob/ob, Leprdb/db, and 

Agouti obese models all develop hepatic steatosis (21, 469). Extensive inflammation and 

fibrosis also develop in the liver of Leprdb/db mice (406). These phenotypes, commonly 

present along with increased fat mass and adipose tissue inflammation, make it difficult or 

even impossible to disentangle the relative contributions of each factor in the development of 

insulin resistance. That is, most studies conducted in both rodents and humans do not allow 
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a differentiation between the metabolic effects of inflammation in adipose tissue versus that 

in other tissues versus ectopic fat deposition on the development of systemic insulin 

resistance. Furthermore, little is known about the temporal sequence of the development of 

adipose tissue inflammation relative to these metabolic disturbances, and specifically insulin 

resistance in different insulin responsive tissues. Nevertheless, extensive evidence implicates 

a) the infiltration of immune cells, particularly macrophages, into adipose tissue; b) the 

activation of pro-inflammatory pathways leading to increased secretion of chemokines, 

cytokines, and other mediators of inflammation; and c) a range of molecular mechanisms 

such as endoplasmic reticulum (ER) stress, mitochondrial dysfunction, hypoxia, fibrosis, 

cellular senescence, and changes in lipid metabolism in linking obesity to T2DM. The 

following sections will summarize and discuss this evidence from animal and human studies.

Immune cell infiltration

The most salient feature in obesity-associated adipose tissue inflammation is the 

accumulation of pro-inflammatory cytokine-secreting immune cells in adipose tissue (356). 

Two seminal studies conducted in mice identified macrophages as the predominant immune 

cell type that accumulates in obese adipose tissue, accounting for 30–50% of the non-

adipocyte cell fraction (504, 523). Most studies support the notion that VAT contains a 

greater number of macrophages than SAT in both mice (16, 332, 355) and humans (57, 168, 

169), even though this was not seen in all studies (194). To address whether the increase in 

the number of adipose tissue macrophages (ATM) in obesity was due to expansion of the 

local resident population or due to recruitment of cells from non-adipose sources, Weisberg 

et al. lethally irradiated recipient mice that expressed the CD45.2 allele and then 

transplanted bone marrow from donor mice that expressed the CD45.1 allele (504). After six 

weeks of HFD feeding, 85% of the macrophages in the periepididymal adipose depot were 

CD45.1+, i.e., they were newly recruited from the circulation.

More recent studies, however, provide direct evidence in support of localized, resident cell 

proliferation. Specifically, Jenkins et al. observed that local resident tissue cells exhibit the 

ability to rapidly proliferate in response to increasing concentrations of the cytokine IL-4 

(205). In addition, Schulz et al. identified two distinctive myeloid lineages, one that gives 

rise to bone marrow derived circulating monocytes, and the other arising from older yolk sac 

precursors that reside in tissues (419). At the same time, the relative importance of locally 

proliferated vs. newly recruited macrophages for adipose tissue inflammation and its 

downstream sequalae has as yet remained largely unclear. This was expanded upon, in part, 

by Davies et al. demonstrating that proliferating pro-inflammatory macrophages were bone 

marrow derived, and that resident tissue macrophages also have proliferative capability in 

response to inflammation (94). Finally, returning to the diet-induced obesity model, Haase et 

al. reported not only that the number of ATM in adipose tissue increases, particularly in 

association with the formation of crown-like structures (CLS) that surround necrotic 

adipocytes, but importantly that as much as 15% of these supposedly “recruited” ATM were 

in fact derived from proliferation of local resident cells (160). Existing evidence therefore 

would suggest that peripheral recruitment and to a somewhat lesser extent localized 

proliferation are both involved in the inflammatory processes driving the obesity-associated 

increase of macrophage numbers in adipose tissue. However, in human adipose tissue the 
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relative proportion of recruited vs. locally proliferated macrophages in CLS remains 

unknown.

In conjunction with the increase in the number of macrophages in adipose tissue, the 

transcript levels of pro-inflammatory and macrophage-specific genes are upregulated with 

increasing adipocyte mass and adiposity (504, 523). A direct comparison of the adipocyte 

fraction, the stromavascular cell (SVC) fraction, and selectively isolated macrophages 

revealed that many of the pro-inflammatory factors, such as TNFα, IL-6, MCP-1 and others, 

were most abundantly expressed by macrophages (504, 523). Macrophage infiltration of 

SAT and VAT depots with increasing adiposity has also been demonstrated in humans (50, 

56, 92, 93, 169, 545). Several studies have characterized the infiltrating ATM as pro-

inflammatory as opposed to resident non-inflammatory macrophages in lean adipose tissue 

(61, 73, 78, 178, 280, 356, 460). Early work proposed that the pro-inflammatory 

macrophages accumulating in obese adipose tissue were similar to classically activated 

(“M1”) macrophages, while the non-inflammatory macrophages in lean adipose tissue were 

more similar to alternatively-activated macrophages (“M2”) (73, 280, 356). As will be 

discussed in subsequent sections in greater detail, it is now clear that pro-inflammatory ATM 

are not similar to M1 macrophages (253, 526).

Counterintuitively, the number of macrophages in adipose tissue does not immediately 

decrease with weight loss, and even increases in some studies, in both mouse models and 

humans. Kosteli and colleagues report that caloric restriction and weight loss lead to an 

initial increase in the number of ATM (in the first week) in mice, in both epidydimal (VAT) 

and inguinal (SAT) depots, and that ATM numbers only decline with the prolonged weight 

loss that occurs over several weeks (247). In that study, the number of ATM was also 

responsive to the dietary macronutrient composition, with lower ATM numbers on a 

calorically restricted high-carbohydrate vs. high-fat diet. Only partially consistent with these 

findings, Zamarron et al. fed obese mice a hypocaloric normal diet, and found that the 

number of ATMs in epidydimal but not inguinal adipose tissue was reduced (543). However, 

ATMs maintained a pro-inflammatory profile in the mice even after normalizing their body 

weight to that of lean, normal diet-fed mice, which was consistent with persistently high 

levels of insulin resistance in these animals (543). Taken together, this limited evidence from 

mouse models of obesity suggests that macrophage-driven adipose tissue inflammation is 

not attenuated in the initial and even advanced phases of weight loss.

There are also human data to suggest that weight loss does not always reduce ATM numbers 

in adipose tissue, and can even lead to an increase in the number of ATM, although not all 

studies are consistent. Substantial weight loss over 6–12 months following bariatric surgery, 

for example, was associated with an about three-fold increase in the number of ATMs 

(measured by flow cytometry) in SAT (162). Interestingly, in that and another study (254), 

we consistently observed a massive, several-fold increase in the number of neutrophils into 

SAT. This change was seen within two weeks of bariatric surgery and persisted until at least 

6–12 months post bariatric surgery, suggesting that weight loss may be a pro-inflammatory 

stimulus in the adipose tissue. This is supported by data showing that very low-calorie 

induced rapid weight loss of ~10% over ~6 weeks led to a significant increase in the number 

of ATM, as assessed by IHC staining for the macrophage marker CD68 (14). More modest 
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weight loss of 5–10% from either surgery or a lifestyle intervention does not acutely seem to 

reduce the number of ATM in SAT (250, 254), even though Kovacikova and colleagues 

nicely showed that ATM numbers are reduced after a subsequent weight loss maintenance 

phase (250). Contrasting data suggest an immediate reduction in SAT ATM numbers 

(CD68+-cells in IHC) in response to ~6% weight loss from a low-calorie diet in a 12-week 

intervention, a discreptancy that may be explainable by the slower rate of weight loss (27). 

One study by Cancello et al. found a substantial reduction of ~50% in the number of ATM 

(quantified by HAM56+/CD68+-staining in IHC) in SAT three months following Roux-en-Y 

gastric bypass surgery (56). While most studies assessed changes in inflammation and 

adipose tissue leuckoyte populations in response to weight loss only in SAT, one study is 

notable due to the fact that they made use of 55 individuals who had two different bariatric 

surgeries ~12 months apart that allowed them to collect both SAT and VAT (417). These 

authors found that sleeve gastrectomy-induced weight loss over 12 months led to a reduction 

in the number of VAT ATM only in ~60% of the population. Interestingly, metabolic benefits 

such as improvements in insulin sensitivity were seen in all individuals, including those in 

whom weight loss did not trigger a reduction in the number of omental ATM (417). One 

important caveat in these studies that needs to be taken into account is that bariatric surgery 

leads to numerous changes in the body, in addition to substantial weight loss, some of which 

have been described, while others may as yet be unknown. The relationship between 

adiposity, adipose tissue inflammation, and insulin resistance may therefore be confounded 

post bariatric surgery by any of these bariatric surgery-induced changes. Taken together, 

while the data are not fully conclusive, it is clear that weight loss in humans does not 

automatically trigger a reduction in adipose tissue inflammation or the number of ATM, and 

in some cases may even lead to an increase in ATM numbers.

The fact that macrophages accumulate in adipose tissue in the context of both caloric excess/

obesity and fasting/weight loss illustrates that adipose tissue inflammation and macrophage 

accumulation in adipose tissue are not specific to obesity. While it is not currently clear 

whether these diverse exposures trigger adipose tissue inflammation through similar 

pathways, one may speculate that a common denominator may be elevated concentrations of 

nutrients such as fatty acids in adipose tissue. It is also worth pointing out that ATMs can 

become activated as a result of stimuli other than a disruption in energy homeostasis. For 

example, cold exposure potently upregulates IL-4 expression in ATMs (338), which 

mediates several of the adaptive responses to cold. While the resulting ATM phenotype is 

likely different from that of ATMs in the setting of weight gain/obesity or fasting/weight 

loss, the dependency of a physiological response on ATMs illustrates that the presence and 

activation of macrophages in adipose tissue is not per se a pathophysiological event.

While much of the initial work focused on macrophages, a growing body of evidence has 

now revealed that many types of immune cells infiltrate obese adipose tissue, and these 

infiltrating leukocyte populations also contribute to the inflammatory processes within 

adipose tissue, as noted in several recent reviews (78, 264, 295, 329, 460, 507).

As discussed earlier in the context of weight loss, neutrophils are the likely first responders 

to inflamed obese adipose tissue. In mice, HFD rapidly induces neutrophil accumulation in 

adipose tissue, with a significant increase observed within three days of HFD initiation (106, 
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161, 454). Current evidence suggests that this early infiltration of neutrophils is a transient 

phase that is quickly replaced by infiltration of macrophages and other leukocytes. However, 

there are currently no comparable data available from humans, and the limited data that do 

exist warrant further investigation. Nijhuis et al. noted an absence of neutrophils outside of 

the adipose tissue vasculature, based on IHC staining for myeloperoxidase (343). In contrast, 

we recently isolated and identified neutrophils, based on the co-expression of CD15 and 

CD16 by flow cytometry, from the SVC of adipose tissue, and reported that their numbers 

are substantially increased following weight loss (162, 254). Accumulation of several of the 

less abundant myeloid cell types, such as mast cells, dendritic cells, and eosinophils, is also 

influenced by increased adiposity. Murine models of diet-induced obesity exhibit increased 

infiltration of mast and dendritic cells (37, 274), but decreased numbers of eosinophils in 

adipose tissue (516). Evidence from human clinical studies also suggests that obese adipose 

tissue contains more mast and dendritic cells relative to lean adipose tissue (37, 274).

Lymphocytes are also present in adipose tissue, and their relative proportions change with 

increasing adiposity (20, 102, 236, 345, 512, 518). However, where inflammation of adipose 

tissue and classic inflammation may differ is in the temporal sequence of T cell infiltration, 

and to a lesser extent, function. In the classic setting, naïve lymphocytes become activated 

effector cells upon exposure to specific antigens displayed by antigen presenting cells. These 

activated cells then proliferate into CD8+ cytotoxic cells that aid in the removal of infected 

cells or CD4+ helper cells that enhance and regulate the immune response and confer long-

term immunity (333). In contrast to infection-induced inflammation, in obesity-associated 

adipose tissue inflammation infiltration of T cells precedes that of pro-inflammatory 

macrophages and may be necessary for subsequent recruitment and activation of 

macrophages (236, 345). However, the temporal relationship of these events is not fully 

resolved. Lee et al. observed a significant increase in ATM infiltration in diet-induced obese 

lymphocyte-deficient Rag1-null mice, suggesting that lymphocytes are not necessary for 

increased infiltration of macrophages during adipose tissue inflammation (268). HFD 

feeding in mice is associated with a shift in the CD4+ effector T cell population away from 

the predominance of TH2 T cells, as in lean adipose tissue, and towards more TH1 and 

cytotoxic T cells (512). The change in the T cell population composition includes a relative 

loss of regulatory T cells (Tregs) with the onset of obesity, which may be a potential 

mechanism through which subacute chronic inflammation fails to resolve (122, 364, 512). 

As with neutrophils, the temporal sequence for T cell infiltration cannot readily be 

established in humans. However, like that of macrophages, T cell accumulation in human 

adipose tissue does correlate with adiposity (102, 236, 471, 546). There also remains 

uncertainty as to the role of Tregs in the inflammatory process in human adipose tissue. 

Feuerer and colleagues observed lower expression of the Treg-specific gene FOXP3 in VAT 

as compared to SAT of obese subjects (122). In addition, FOXP3 expression negatively 

correlated with BMI, suggesting that this regulatory immune cell population was reduced in 

the VAT of obese individuals; however, this study lacked non-obese controls (122). 

Conversely, two other studies reported that all T cell genes assayed were up-regulated, and 

correlated with obesity and inflammation, in both human SAT and VAT, with no significant 

reduction in Tregs (471, 546). Another T cell subtype, the invariant natural killer T-cell 

(iNKT), also exhibits reduced numbers in human adipose tissue as BMI increases (282). 

Burhans et al. Page 26

Compr Physiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, B cells, which produce antibodies against specific foreign antigens, also accumulate 

in adipose tissue soon after the initiation of HFD feeding in mice (511). B cells may also 

contribute to macrophage and T cell activation in the context of obese adipose tissue.

Pro-inflammatory mediator secretion—Many of the cytokines involved in a classic, 

infection-driven inflammatory response, including TNFα, IL-1β, IL-6, and IFNγ, as well as 

chemokines such as MCP-1 are also produced in expanded adipose tissue of obese rodents 

and humans. In general, infiltrating immune cells are the major sources of pro- and anti-

inflammatory cytokines produced in adipose tissue, although adipocytes and other stromal 

cells also contribute (119, 467, 504, 523, 545). Hotamisligil and colleagues, in their 1993 

landmark paper, were the first to describe that the gene expression and protein secretion of 

the key pro-inflammatory cytokine TNFα was elevated in the adipose tissue of four different 

rodent models of obesity (189). Weisberg et al., in their paper describing the presence of 

macrophages in expanded adipose tissue, were among the first to describe that TNFα is 

expressed almost exclusively in ATM, while other key cytokines such as IL-6 are partly 

expressed by other SVCs (504). Aside from TNFα and IL-6, the concentrations of other key 

pro-inflammatory cytokines including IL-1β and IL-18, both products of the nucleotide-

binding domain, leucine-rich-containing family, pyrin domain-containing 3 (NLRP3) 

inflammasome activation, are increased in the adipose tissue of obese, HFD-fed mice 

compared to leaner, chow-fed littermates (443). Along with the recognition that obesity is 

associated with macrophage infiltration into adipose tissue, it was recognized that 

chemokines such as MCP-1 play a key role in this process. In fact, MCP-1 is upregulated in 

the white adipose tissue of Lepob/ob, Leprdb/db, and HFD-fed wild-type mice, along with 

markers of macrophage infiltration (523). In the HFD-fed animals that continuously gained 

weight on this diet, a lasting increase in the expression of MCP-1 and markers of 

macrophage infiltration did not become apparent until week 11 (even though there was a 

small initial increase in MCP-1 expression three weeks after initiation of the HFD), 

suggesting that the onset of an inflammatory response was delayed (523). As with TNFα 
and IL-6, expression of MCP-1 was highest in the non-adipocyte fraction of adipose tissue 

(523). The adipose tissue expression of adiponectin was first reported to be suppressed in 

diet-induced obese mice by Yamauchi and colleagues (532), in line with the finding that 

adipocyte expression of adiponectin is attenuated by both TNFα and IL-6 [reviewed in 

(451)].

While most of the initial observations were made in mouse models of obesity, very similar 

changes in the expression of cytokines, chemokines, and adiponectin occur in human obese 

adipose tissue (379, 391). Also, systemic concentrations of many pro-inflammatory 

cytokines are elevated during obesity, although the elevation is moderate and remains lower 

than what is typically observed during an infection (29, 30, 53, 118, 229, 330, 459, 467, 

474). Consistent with the reduced adipose tissue expression of adiponectin, the plasma 

concentration of adiponectin is inversely associated with body weight in both mice and 

humans [reviewed in (451)].

The corresponding cytokine and chemokine cell surface receptors and downstream signaling 

cascades are activated in cultured adipocytes and macrophages and in whole adipose tissue 

explants. These downstream signaling cascades include the JNK and NFκβ pathways. 
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Another key pathway in the pathogen-driven immune response is the NLRP3 

inflammasome, which also appears to be responsive to metabolic stimuli [reviewed in 

(391)]. The NLRP3 inflammasome is traditionally thought to be activated by the pore-

forming exotoxins produced by Gram-positive bacteria (304), but is speculated to be 

activated by metabolic signals such as FFA in obesity [reviewed in (444)]. In addition, ATM 

NLRP3 expression is correlated with obesity in humans (112).

Molecular mechanisms underlying adipose tissue inflammation—Many factors 

likely contribute to the development of inflammation in adipose tissue. We will here discuss 

ER stress, hypoxia, adipocyte hypertrophy and death, mitochondrial dysfunction, fibrosis, 

fatty acid-induced activation of macrophages, and a possible role of TLRs, and cellular 

senescence as potential mechanisms contributing to adipose tissue inflammation. Of note, all 

of these should not be seen as mutually exclusive, or as likely primary causes, but rather as 

linking mediators between chronic caloric excess and adipose tissue inflammation, or as 

factors that may perpetuate chronic inflammation in the tissue. It is also important to 

emphasize that this list of putative mechanistic links is almost certainly not exhaustive, and 

that key stimuli for adipose tissue inflammation may not yet be known.

The ER is the central organelle coordinating the synthesis, processing, and trafficking of 

secretory and membrane proteins. Several protein chaperones exist within the lumen of the 

ER to facilitate the proper folding of proteins. The inappropriate accumulation of misfolded 

or unfolded proteins causes ER stress which triggers the unfolded protein response (UPR) 

(499). The UPR then activates specific signaling pathways that can facilitate protein folding, 

reduce protein synthesis, and increase protein degradation, with the goal of reducing the 

misfolded protein burden on the ER (155, 226, 499). There is significant crosstalk between 

ER stress and inflammation in that the UPR activates NFκB and JNK signaling, and pro-

inflammatory cytokines can induce branches of the UPR (154, 358, 477, 499). In addition, 

failure of the UPR to resolve the stress initiates apoptosis and the generation of DAMPs, 

which promotes the pro-inflammatory state (154). Given the interaction between ER stress 

and inflammatory signaling pathways, it is not surprising that expression of markers of the 

UPR are increased in adipose tissue of obese humans and HFD-fed mice (227, 422).

During adipocyte hypertrophy, angiogeneis is also stimulated in order to provide oxygen to 

the expanding tissue. If adipose tissue expansion is too rapid, developing vasculature cannot 

keep up with oxygen demand and hypoxia occurs. Several studies have shown that obese 

adipose tissue is hypoxic as compared to lean adipose tissue (163, 186, 538). The hypoxia-

inducible factor (HIF) family of transcription factors regulate the tissue response to a 

hypoxic environment. In obese mice, several studies have revealed the presence of hypoxic 

regions in adipose tissue, and increased expression of the oxygen sensing transcription factor 

HIF-1α (135, 186, 267, 538). Under normal tissue oxygen (PO2) concentrations, HIF-1α is 

continuously synthesized but degraded. However, low PO2 concentrations cause inhibition 

of hydroxylases that normally inactivate and target HIF-1α for degradation. Activated 

HIF-1α translocates to the nucleus, binds to hypoxia response elements, and induces 

expression of genes involved in angiogenesis, cell proliferation and survival, inflammation, 

and energy metabolism (472, 473). There is also evidence suggesting that activation of 

HIF-1 is necessary for myeloid cell infiltration (88), that hypoxia may polarize ATMs 
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towards a pro-inflammatory phenotype (135), and that this can be enhanced by exposure to 

palmitate (429). In humans, CD14-positive cells isolated from VAT and exposed to hypoxic 

conditions exhibited enhanced secretion of pro-inflammatory cytokines (349). A separate 

study demonstrated that postprandial blood flow to adipose tissue is decreased by as much as 

40% in obese insulin resistant individuals relative to lean insulin sensitive individuals (147), 

although whether this results in hypoxic adipose tissue is less clear (147, 372). Goossens et 

al. reported that obese insulin resistant subjects had 50% higher adipose tissue PO2 relative 

to leaner, more insulin sensitive controls (147). However, this study also noted a 60% 

reduction in adipose tissue O2 consumption among obese individuals, and that the 

expression of mitochondrial function markers was inversely correlated with adipose tissue 

PO2 (147). Nevertheless, the metabolic signature of anaerobic metabolism, with increased 

metabolism of lactate and pyruvate, has yet to be demonstrated in adipose tissue (179).

Adipocyte hypertrophy itself may contribute to adipose tissue inflammation. Adipocyte size 

correlates with measures of metabolic dysfunction and may be a determinant of adipose 

tissue insulin resistance. Cross-sectional studies have shown that adipocyte size in VAT 

negatively correlates with insulin sensitivity (167, 348) and positively with the degree of 

hepatic steatosis (348). The mean adipocyte size of VAT is significantly smaller in MHO 

insulin sensitive individuals as compared to insulin resistant obese individuals (238, 348). 

Consistent with these human data, mean adipocyte size of gonadal adipose tissue is 

significantly smaller in insulin sensitive adiponectin transgenic Lepob/ob mice despite overall 

greater fat mass compared to their Lepob/ob counterparts (235). Increased adipocyte size may 

be one factor that initiates an inflammatory response in obese adipose tissue, with the 

production and secretion of the chemokine MCP-1 that functions to attract monocytes to the 

tissue. Mean adipocyte size is significantly increased in Lepob/ob and Leprdb/db mice as 

compared to non-obese wildtype mice, and hypertrophied adipocytes are more susceptible to 

death than are small adipocytes (332). In adipose tissue, macrophages form CLS by 

surrounding necrotic adipocytes, and likely play a major role in taking up released lipids 

from dead adipocytes (79, 332). Although the number of CLS in humans may not be as high 

as that in obese mice, it is estimated that in both mice and humans, nearly 90% of all 

macrophages in obese adipose tissue are localized to such CLS (79).

Impaired mitochondrial function may play a role in adipose tissue inflammation in the 

context of chronic caloric excess. In mice, obesity is associated with altered mitochondrial 

morphology, reduced mitochondrial number, and impaired function and reduced oxygen 

consumption in adipose tissue (396). Evidence suggests a similar reduction in mitochondrial 

function of adipose tissue of obese humans (540). One byproduct of mitochondrial 

dysfunction is the production of reactive oxygen species. Systemic measures of oxidative 

stress correlate with adiposity in both humans and mice. Furukawa and colleagues measured 

lipid peroxidation in obese individuals and observed a significant positive correlation with 

BMI and WC (137). They also observed elevated lipid peroxidation in a mouse model of 

obesity and elevated levels of H2O2, both in circulation and in adipose tissue (137).

Structural and connective components comprise the extracellular matrix (ECM) of adipose 

tissue and serve an essential function of maintaining the basic tissue architecture. However, 

it is now clear that the ECM also plays an important role in adipose tissue function and 
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related metabolic phenotypes. Remodeling of the ECM is essential for adipocyte expansion 

and contraction to accommodate changes in energy stores (400). In adipose tissue, the 

HIF-1α isoform exerts major control over the hypoxic response that may occur during 

adipose expansion and induces angiogenic, inflammatory, and fibrotic gene expression 

programs (90, 163). Thus, with activation of HIF-1α in obese adipose tissue, fibrosis 

develops due to excessive accumulation of ECM components. Direct evidence for a role of 

adipose tissue fibrosis in adipose tissue function, metabolic health, and glucose homeostasis 

has been generated from animal studies. Khan et al. demonstrated that collagen VI 

deficiency in Lepob/ob mice is associated with increased mean adipocyte cell size and 

improved insulin signaling and glucose tolerance (231). Adipose tissue-specific HIF-1α 
overexpression in HFD-fed wildtype mice or in Lepob/ob mice caused adipose tissue fibrosis, 

adipose tissue inflammation, and impaired glucose tolerance (163). In mice lacking one 

copy of matrix metalloproteinase (MMP)-14, ECM remodeling and collagen turnover are 

impaired and adipose tissue expansion is inhibited (77). A study of weight stable obese or 

lean subjects revealed that several genes encoding components of the ECM are significantly 

upregulated in SAT of obese as compared to lean individuals, and direct staining of collagen 

also demonstrated significantly greater SAT fibrosis in the obese subjects (172). Divoux et 

al. reported that VAT fibrosis was significantly greater in obese subjects as compared to lean 

controls (98). Although these studies demonstrate differences in fibrosis with adiposity, data 

implicating fibrosis in impairment of insulin signalling in human adipose tissue are mixed. 

In agreement with evidence from rodent models, obese insulin resistant adipose tissue had 

higher expression of CD68, likely reflective of a higher number of macrophages, higher 

expression of genes encoding ECM proteins (collagen V, MMP7, TSP1), HIF-1α and 

VEGFA as compared to insulin sensitive subjects matched for BMI (262). Other studies 

reported that compared to that from lean subjects, SAT from obese insulin resistant subjects 

was more fibrotic with more collagen VI and less elastin and collagen V (433). Tam et al. 

noted that the rapid onset of IR that accompanies acute overfeeding leads to transcriptional 

induction of ECM genes (457). However, other groups have not found a direct association 

between fibrosis and surrogate markers of insulin resistance. For example, Muir et al. 

reported that obese bariatric surgery patients with T2DM had less fibrosis in VAT compared 

to non-T2DM patients, and the absence of fibrosis was associated with greater adipocyte 

hypertrophy and adipose dysfunction (331). The authors speculated that perhaps fibrosis in 

the context of obesity places a limit on extreme adipocyte hypertrophy in an attempt to 

preserve normal adipocyte function. Furthermore, Lackey et al. observed increased 

expression of collagen VI (COL6A3) in VAT of MHO subjects as compared to obese 

subjects with metabolic syndrome and in healthy subjects as compared to those with T2DM 

(257).

Macrophages express TLR4 and its co-receptor CD14, which detects LPS, a major 

component of the outer membrane of Gram-negative bacteria. LPS exposure strongly 

induces a pro-inflammatory immune response (333, 526). Current evidence indicates 

circulating LPS is increased in diet-induced obese mice and in individuals with T2DM, and 

this LPS may be a contributing factor to obesity-associated inflammation (133). Proposed 

mechanisms for elevated LPS include increased gut permeability (58) and translocation of 

LPS or live gram-negative bacteria through the intestinal mucosa to adjacent mesenteric 
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adipose tissue (17). To which degree humans are actually exposed to gut microbial LPS is 

uncertain. However, lipid species such as palmitate, a long-chain saturated fatty acid, and 

ceramides, which circulate at higher concentrations in obese individuals, can also activate 

macrophages (95, 182, 243, 494). Consistent with this, we have shown that exposure of 

macrophages in vitro to a cocktail of palmitate, glucose, and insulin induces a low-grade 

pro-inflammatory state that we termed ‘metabolic activation’, characterized by elevated cell 

surface expression of ABCA1 and CD36, which may provide a plausible mechanism 

through which ATM could become pro-inflammatory, activated cells in obesity (253, 264, 

545, 547). It has been suggested that fatty acids activate macrophages by binding to TLR4 

(339, 423). However, other evidence indicates that long chain saturated fatty acids are not 

direct ligands of TLR4 but rather that saturated fatty acid-induced inflammation requires an 

initial priming event of TLR4 (110, 258). Intriguingly, mice lacking TLR4 (a) are protected 

from the ability of a systemic lipid infusion to trigger insulin resistance, and (b) become 

obese when fed a HFD but remain relatively insulin sensitive with lower levels of 

inflammation in liver and adipose tissue (423). Thus, while fatty acid-induced pro-

inflammatory activation of macrophages is a plausible mechanism underlying weight gain-

induced adipose tissue inflammation, and while TLR4 likely plays a role in the etiology of 

adipose tissue inflammation, questions remain as to whether fatty acid binding to TLR4 is 

relevant in vivo.

One particular factor that may partly explain inter-individual variability in adipose tissue 

expandability may be a decline in tissue function and flexibility due to cellular senescence. 

Senescence of different cell types within adipose tissue is associated with obesity and 

biological age, both factors that are strong determinants of T2DM risk. Cellular senescence 

is characterized by a state of permanent growth arrest in mitotic cells. Data from mouse and 

human studies provide evidence that senescent cells accumulate in adipose tissue during 

obesity (412, 427, 462, 496) and insulin resistance (313, 412). The potential metabolic 

consequences of senescent cell accumulation in adipose tissue are diverse. For example, 

senescent preadipocytes negatively impact the adipogenic capacity of the depot, as fewer 

progenitor cells are capable of differentiation into mature, energy-storing adipocytes (316, 

525). In endothelial cells, senescence reduces angiogenesis and nitric oxide synthase levels 

and activity (111, 312). Senescent CD4+T cells have also been detected in obese adipose 

tissue of HFD-fed mice (427). Although basic cellular functions are impaired during 

senescence (e.g., differentiation), senescent cells are metabolically active and adopt a 

senescent-associated secretory phenotype (SASP) wherein they secrete pro-inflammatory 

cytokines and signaling factors. Thus, senescence impairs normal adipose tissue function 

and likely directly contributes to the inflammatory tone that is characteristic of obese 

adipose tissue. Furthermore, work over the past decade has demonstrated an active role of 

immune cells in clearance of senescent cells (180). Components of the SASP, including 

cytokines and chemokines, specifically attract immune cells to the site of senescence. In the 

clearance of senescent tumor cells, it is known that neutrophils, macrophages and natural 

killer cells participate in a coordinated response (529), while clearance of pre-cancerous 

cells requires CD4+ T cells (222). Although very little is known about the role of ATM in 

clearance of senescent cells in adipose tissue, it is hypothesized that macrophages are 

important in this capacity in adipose tissue and that with aging, macrophages themselves 
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may become senescent and dysfunctional which leads to an accumulation of senescent cells 

(164). While the existing data suggest a role for cellular senescence in adipose tissue loss of 

function (i.e., limitations in storage capacity) and inflammatory mediator production, 

numerous questions remain about the effect of obesity and aging on cellular senescence in 

adipose tissue, and about the relative contribution of cellular senescence to adipose tissue 

dysfunction and inflammation.

Obesity and adipose tissue inflammation: rodent models

Adipose tissue inflammation is a common phenotype in obese mice. Strong evidence of this 

association was generated in parallel studies by Xu et al. and Weisberg et al. (504, 523). 

Using genetic models of obesity such as Lepob/ob, Leprdb/db, and Ay/+, as well as HFD-fed 

wildtype mice, these papers demonstrated that adipose tissue inflammation develops with 

excess adiposity regardless of the underlying cause. Expression of pro-inflammatory 

cytokines and chemokines, such as TNFα, IL-6, MIP-1α, MCP-1, and macrophage markers, 

such as F4/80 and CD68, are significantly elevated in adipose tissue of these obese animals 

relative to lean, wildtype mice. These studies also were among the first to demonstrate that 

the SVC fraction, as compared to the adipocyte enriched fraction, was the predominant 

source of the cytokines and chemokines (504, 523). Increased macrophage infiltration of 

adipose tissue was also demonstrated by histological staining for F4/80+ in mice, which 

positively correlated with fat mass (504).

Further evidence of the strong link between increased adiposity and adipose tissue 

inflammation is provided by genetic mouse models that are protected against HFD-induced 

or genetic forms of obesity. One such model is the SCD1 knockout (KO) mouse. The 

stearoyl-CoA desaturase (SCD) family of enzymes synthesize monounsaturated fatty acids 

from saturated fatty acid precursors (317). The SCD1 isoform is expressed in metabolic 

organs including adipose tissue and liver (319, 550), and in mice exerts significant control 

over whole-body metabolic regulation. For example, SCD1 deficiency in Ay/a and HFD-

feeding models protects against excessive adiposity, insulin resistance, and hepatic steatosis 

(318, 320, 347). Follow-up work revealed that SCD1 deficiency in both of these models is 

also associated with reduced adipose tissue inflammation, with lower expression of pro-

inflammatory cytokines and chemokines and reduced macrophage infiltration into adipose 

tissue (276). Notably, these animals are hyperphagic on a HFD (320), which supports the 

hypothesis that adipose tissue inflammation is caused by excess adiposity rather than the 

HFD itself, or the excessive energy intake it triggers.

Taken together, strong and consistent evidence from HFD-induced obese as well as 

genetically obese mouse models support the notion that the accumulation of excessive 

adiposity is a key driver of adipose tissue inflammation in mice.

Obesity and adipose tissue inflammation: human studies

Several recent reviews have summarized the relationship between adipose tissue leukocyte 

infiltration and obesity in humans (264, 329). Despite some important differences, the 

overall association between obesity and adipose tissue inflammation appears to be as robust 

in humans as in mice. A summary of cross-sectional human studies that have assessed 
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adipose tissue inflammation and adiposity is presented in Table 2. Even though many 

different measures have been used to assess and quantify the complex biological process of 

adipose tissue inflammation, the overall evidence is consistent that the number of immune 

cells and the expression of pro-inflammatory cytokines is higher in the adipose tissue of 

obese as compared to lean individuals. Specifically, with regard to leukocyte populations, as 

assessed by flow cytometry of the SVC fraction of SAT and/or VAT, investigators 

unanimously found positive associations between the numbers of macrophages (50, 92, 93, 

471, 545), dendritic cells (37), and T-cells (both CD4- and CD8-positive) (102) and 

measures of adiposity. Similarly consistent associations were observed for the number of 

macrophages, as assessed by histological staining, and measures of adiposity (56, 169, 357, 

504). The measurement of transcript levels of genes encoding key proteins in the 

inflammatory process revealed higher expression of TNFα (109, 194), IL-6 (109), and 

markers of T-cell infiltration (546), but lower expression of adiponectin (109) in adipose 

tissue from obese as compared to lean or non-obese individuals (Table 2).

Challenges, controversies & knowledge gaps

A major challenge in the study of adipose tissue inflammation, in particular in humans, has 

been that no clear consensus exists how to assess or even quantify this complex biological 

process. It is also important to note that substantial differences exist between mice and 

humans in the cell surface markers used to identify and phenotype the cells, particularly in 

the case of myeloid cells such as macrophages. In mice, a combination of the markers 

CD11b, F4/80, CD11c, and CD206 (MMR) is commonly used to identify adipose 

macrophages (178, 295), even though it may also be debatable whether all of these markers 

have good specificity for macrophages. In humans, a standardized panel of ATM markers is 

lacking. Indeed, a wide panel of markers have been utilized by different groups to identify, 

classify, and quantify human ATM, including CD1c, CD11b, CD11c, CD14, CD31, CD40, 

CD68, CD163, CD206, MAC2, and HAM56 (26, 50, 56, 92, 93, 169, 504, 508, 545). In this 

regard, it is important to note that there are inherent limitations of employing a single marker 

to phenotype myeloid cells such as macrophages, as many of these markers lack lineage 

specificity or have traditionally been used to identify non-macrophage leukocytes (178, 219, 

232, 252, 264, 547). In addition, distinguishing between true tissue macrophages and 

contaminating blood monocytes in SVC preparations of digested human adipose tissue 

requires at least two markers, CD14 and CD206 (545). Moreover, whereas rodent ATM are 

often characterized as pro- or anti-inflammatory based on their cell surface expression of 

CD11c and CD206, respectively (178, 280, 295), human ATM often exhibit both pro- and 

anti-inflammatory features and function simultaneously (253, 264, 545, 547). In our hands, 

we do neither observe a CD206-negative ATM population nor is CD206 specific to 

macrophages in adipose tissue, and is instead expressed on the cell surface of macrophages, 

dendritic cells and neutrophils, albeit to varying degrees (unpublished observation).

A consequence of the fact that the phenotyping of ATMs is not well standardized is that 

uncertainty exists as to whether the phenotype of ATMs in VAT vs. SAT differs. A major 

limitation of most studies that report ATM data from at least one visceral and one 

subcutaneous depot is that ATM numbers were almost always quantified using a single 

marker (MAC-2 or F4/80 in mice, HAM56, CD68, or CD206 in humans, using IHC) (16, 
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57, 168, 169, 194, 332, 355), which does not provide any information on phenotype, and – 

dependent on the marker used – may also lack specificity for macrophages. Of note, 

numerous published studies have attempted to obtain information on potential differences in 

the ATM phenotype between VAT and SAT by assessing “M1” macrophages by IHC or flow 

cytometric staining for markers such as CD11c or CD40, and “M2” macrophages by 

markers such as CD206. However, none of these markers have any specificity for classically 

activated M1 or alternatively activated M2 macrophages in mice or humans (34, 253). More 

importantly, as discussed further below, the initially proposed adipose tissue inflammation 

paradigm that focused on M1 vs. M2 macrophages could not be confirmed in mice and 

humans. Our data using multi-color flow cytometry, while probably still not sufficiently 

comprehensive, did not reveal any differences in the phenotype of ATM from VAT vs. SAT 

(253). Taken together, due to a lack of generally accepted staining approaches for 

differentially activated/polarized ATM, uncertainty exists about the phenotype of ATM in 

general, and potential phenotypic differences between VAT and SAT ATM in particular, in 

both mice and humans. In fact, the very concept of a homogenous ATM phenotype may be 

misleading. Instead, it seems possible that ATM in adipose tissue exhibit a wide spectrum of 

different phenotypes, with substantial between-subjects and even within-subject variability. 

This is in line with the concept that macrophages are highly plastic cells that can be 

activated within a very wide spectrum depending on their specific microenvironment (528).

Another challenge has to do with the phenotypic switch of ATM from non-activated or anti-

inflammatory in lean adipose tissue to pro-inflammatory in obese adipose tissue, as nicely 

shown by Lumeng and colleagues (280). To summarize, in lean, insulin sensitive mice, 

macrophages present in adipose tissue exhibit a more anti-inflammatory phenotype, owing 

to the production of IL-10 and arginase 1. These macrophages were designated as M2-

polarized, or alternatively activated, based on prior literature describing macrophages 

associated with tumors, parasitic infections, and the regulation of tissue repair and 

inflammation (149, 290). Importantly, these “M2” macrophages contribute to tissue 

remodeling and angiogenesis, two key functions that maintain normal tissue homeostasis 

(50, 61). When faced with nutrient excess, adipose tissue expands. The resulting adipocyte 

hypertrophy and concurrent release of chemokines, like MCP-1, by adipocytes, facilitates 

the recruitment of C-C motif chemokine receptor (CCR)2-positive monocytes to the 

expanding fat. Upon arrival, these monocytes differentiate into macrophages, and become 

activated cells that produce pro-inflammatory factors such as TNFα, IL-6, and in mice, 

iNOS (225, 484). Lumeng and colleagues proposed that these pro-inflammatory 

macrophages may be classically activated or M1 macrophages (280). While this was a 

plausible hypothesis at the time, it is now clear that the pro-inflammatory ATM in obese 

adipose tissue of mice and humans are not similar to M1 macrophages. First, it is important 

to note that the M1/M2 paradigm was established based on experiments in vitro. In vivo, the 

microenvironment acting upon macrophages is more complex, suggesting that ‘pure’ M1 or 

M2 macrophages are unlikely to be found (292). ATM have a complex phenotype, with 

numerous functional and phenotypic changes that are not similar to the pro-inflammatory 

activation seen during classical activation. For example, ATM show upregulation of 

pathways involved in lysosomal biogenesis, lipid metabolism, and autophagy, along with an 

activation of the NLRP3 inflammasome (272, 394, 486, 526). Still, as in classically activated 
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macrophages, the expression of the classic pro-inflammatory cytokines such as TNFα is 

undoubtedly elevated in adipose tissue with increasing adiposity (29, 87, 188, 189, 229, 

230), and macrophages in obese adipose tissue clearly have a more pro-inflammatory 

phenotype. Work by Xu et al. demonstrated that pro-inflammatory activation of 

macrophages isolated from the adipose tissue of obese mice was low-grade, as compared to 

a true M1 phenotype as was observed in the splenocytes of LPS injected mice (526). Further, 

the overall gene expression profile of ATM did not resemble that of classically activated M1 

macrophages, leading these authors to conclude that ATMs do not display an obesity-driven 

switch towards a M1 phenotype (526).

Our own data support this conclusion. We recently demonstrated by a plasma membrane 

proteomics approach that the markers CD38, CD274, and CD319 are highly expressed on 

the cell surface of classically in vitro activated M1 macrophages, and on alveolar 

macrophages isolated from the airways of patients with cystic fibrosis (253). However, ATM 

isolated from both SAT and VAT of lean or obese humans did not express these surface 

markers (253). Thus, while we used a different experimental approach, we concluded similar 

to Xu et al. (526) that the pro-inflammatory macrophages present in the adipose tissue from 

obese mice or humans are not similar to classically activated M1 macrophages (253). Rather, 

ATM from obese humans express high levels of CD36 and ABCA1 on their cell surface, and 

the expression of these markers is upregulated in obese as compared to leaner individuals. 

This may be relevant because macrophages exposed to a combination of high physiologic 

concentrations of glucose, insulin, and palmitate in vitro similarly upregulate CD36 and 

ABCA1 expression on their cell surface, while also increasing their expression of TNFα, 

IL-1β, and IL-6, albeit at levels lower than that seen in in vitro activated M1 macrophages. 

While it is premature to conclude from these experiments that ATM may be pro-

inflammatory cells due to what we called ‘metabolic activation’, we proposed that such 

metabolic activation is more reflective of the chronic, low intensity inflammation seen in 

obese persons with metabolic disease and may provide a better model than the M1/M2 

paradigm (253). Still, the translatability of these in vitro experiments is limited by the fact 

that in vivo, macrophages will be exposed to a more complex microenvironment 

characterized by, for example, complex mixtures of different fatty acids and other lipids 

rather than isolated palmitate. In summary, there are clear changes in the composition, 

abundance, and function of ATM in response to increasing adiposity. While the M1/M2 

paradigm is not consistent with the currently available data on the function and phenotype of 

ATM in mice and humans, questions remain as to the exact phenotype and function of 

macrophages and other immune cells in human adipose tissue, how adipose tissue 

inflammation can best be quantified, and which factors drive the inflammatory response in 

obese adipose tissue.

An important limitation of the literature, particularly in humans, is that the degree to which 

measures of adipose tissue inflammation in the different SAT depots (e.g., abdominal vs. 

peripheral) are correlated with those in the different VAT depots (e.g., omental vs. 

mesenteric). Another important limitation of the existing human literature in this regard is 

that the predominant source of VAT in most human studies is the omentum, because it is the 

most easily accessible VAT depot. The omentum is a distinct intra-abdominal fat depot that 

serves several immunological functions (309). Thus, immune cell infiltration and 
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inflammatory signaling observed in omental VAT may be different from that occurring in 

other visceral depots, such as in mesenteric or peri-renal fat. It should also be pointed out 

that most of the human studies that have reported on VAT inflammation have relied 

predominantly on bariatric surgery patients. This is important to consider for two reasons. 

First, these patients are morbidly obese and the metabolic characteristics of VAT in these 

individuals may not be adequately representative of the inflammatory and/or metabolic state 

of VAT in individuals of lower BMI with T2DM or insulin resistance. Second, surgeons 

typically require patients to go on a low-calorie diet for several weeks prior to bariatric 

surgery; inflammation measured in adipose tissue samples collected during surgery may 

therefore be changed as a result of this active weight loss phase, and the relationship 

between adipose tissue inflammation and insulin resistance may be altered.

ADIPOSE TISSUE INFLAMMATION AND INSULIN RESISTANCE

Early data on role for inflammation in insulin resistance

A link between insulin resistance and inflammation was first suggested nearly 150 years ago 

when the administration of salicylates improved glucose homeostasis in patients with T2DM 

(428). Subsequently, there have been many other clinical studies that examined sepsis, viral 

infections, and rheumatoid arthritis, all of which revealed the presence of insulin resistance 

in concert with an active, ongoing inflammatory response (154). By the mid-1990’s, it was 

known that the canonical pro-inflammatory mediator TNFα is expressed in adipose tissue 

and induces insulin resistance in adipocytes (505). Additional pro-inflammatory factors 

secreted from adipose tissue that negatively impact insulin action have since been identified. 

In this section, we discuss the evidence generated from animal studies and human clinical 

studies on the association between adipose tissue inflammation and insulin resistance 

(Figure 11).

Adipose tissue inflammation and insulin resistance: rodent models

The etiology of insulin resistance and associated metabolic disease is complex, and rodent 

models have been among the most prominent tools utilized to understand pieces of this 

puzzle. Consistently, rodent studies have concluded that in the context of obesity, 

inflammation of adipose tissue is strongly implicated in the development of insulin 

resistance. The most common genetic strain of mice used in these studies, C57BL/6J, 

rapidly becomes obese, insulin resistant, and develops adipose tissue inflammation when fed 

a HFD (268, 350, 421). Genetic models of obesity and diabetes, such the Lepob/ob and 

Leprdb/db mice, also develop adipose tissue inflammation and insulin resistance concurrently 

with the increase in adiposity (221, 235, 458, 551).

To date, numerous genetic mouse models have been used to study the association between 

adipose tissue inflammation and insulin resistance in the context of obesity, typically 

employing the HFD regimen. The earliest such studies included alterations in the expression 

of some of the genes encoding key factors that had been implicated in adipose tissue 

inflammation, such as TNFα. A whole body KO of TNFα reduces adipose tissue 

inflammation and significantly improves insulin sensitivity (479, 490), while a KO of 

adiponectin significantly decreases insulin sensitivity (256). Adiponectin overexpression 
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leads to improved insulin sensitivity associated with reduced adipose tissue inflammation 

(84, 235). However, all of these models also have an adiposity phenotype, i.e., the transgenic 

and wildtype mice differ with regard to adiposity. As a further limitation, the models used in 

the earlier studies were commonly not well phenotyped in terms of adipose tissue 

inflammation and other factors relevant for insulin sensitivity such as liver fat content or 

inflammation, which are likely to change along with adipose tissue inflammation as seen in 

Kim et al. (235), as discussed below. It is therefore hard to attribute any effect of the targeted 

genetic disruption on insulin sensitivity to changes in adipose tissue inflammation alone 

from these studies. What these early studies clearly established, however, is that key pro-

inflammatory cytokines such as TNFα and anti-inflammatory factors such as adiponectin 

play central and antagonizing roles in energy and glucose homeostasis.

Several transgenic mouse models have shed light on the processes that contribute to adipose 

tissue inflammation, the specific cells and molecules involved, and the relative importance of 

adipose tissue inflammation for the development of insulin resistance. Here, we have 

identified those mouse models of obesity in which the aim was to influence inflammation, 

and in which adipose tissue inflammation and insulin sensitivity were assessed, and – in 

order to minimize confounding by fat mass and distribution – that do not have an adiposity 

phenotype (Table 3). The goal was to obtain a comprehensive overview of those mouse 

studies that are most likely to be informative about the importance of adipose tissue 

inflammation for the development of insulin resistance relative to other commonly 

associated factors. We identified a large number of studies that have consistently 

demonstrated that a KO of proteins involved in the initiation of inflammation, such as CCL2 

(MCP-1), it’s receptor (CCR2), TLR4, or HIF-1α reduces the level of inflammation in 

adipose tissue when the animals are fed a HFD compared to wildtype (208, 221, 267, 380, 

402, 503). Similar effects are seen with a KO of mediators of inflammation, including the 

leukotriene receptor-1 (BLT-1) or the cytotoxic T-cell surface marker CD8 (345, 435). In all 

of these cases, the reduction in measures of adipose tissue inflammation is associated with 

improved insulin sensitivity. In most cases in which a transgenic mouse does not display 

differential adipose tissue inflammation response with the onset of obesity, such as KO of 

PDCD4, IL-10, class A scavenger receptor, or the G protein-coupled receptor 120 (251, 354, 

500, 552), this lack of a differential response in adipose tissue inflammation was associated 

with no change in insulin sensitivity. Cumulatively, these highly consistent associations of 

changes in adipose tissue inflammation and insulin sensitivity have been seen as supporting 

the hypothesis that adipose tissue inflammation is a key factor underlying the etiology of 

insulin resistance. It is important to note in this context, however, that many ‘adipocyte-

specific’ transgenic mouse models use the aP2 (Fabp4) promoter to drive deletion/

overexpression of the gene of interest. Results generated from such models should be 

interpreted cautiously as aP2 is also expressed in macrophages, and may therefore affect 

inflammation in tisues other than adipose. Indeed, in three such mouse models, Makowski et 

al. demonstrated increased expression of genes under control of the aP2 promoter in isolated 

peritoneal macrophages (287), although other studies have not found aP2 promoter-driven 

gene expression changes in macrophages in their transgenic models (267, 403). As 

illustrated in Table 3, one key limitation of almost all of these models, however, is that a 

reduction in adipose tissue inflammation is commonly also associated with a reduction in 
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hepatic inflammation and/or liver fat content (for those studies that reported such data), 

making it impossible to confidently link the insulin sensitivity response (or lack thereof) to 

adipose tissue inflammation alone. At the same time, the very consistent association 

between adipose tissue inflammation and hepatic steatosis suggests a causal link, which may 

plausibly be mediated through adipose tissue inflammation-induced increased plasma 

concentrations of FFA and hypoadiponectinemia, as outlined earlier.

Several notable exceptions, however, help disentangle the relative importance of adipose 

tissue inflammation vs. inflammation in other tissues in the development of insulin 

resistance and glucose intolerance. In one study, Aouadi and colleagues successfully 

employed small interfering RNA (siRNA) to selectively silence the expression of TNFα and 

osteopontin in ATMs (22), which led to improved insulin sensitivity and glucose tolerance. 

Another particularly informative study is based on a KO of fat-specific protein 27 (FSP27). 

Mice with this genotype exhibit reduced overall adiposity, reduced adipose tissue 

inflammation, and increased adiponectin concentrations when crossed into the Lepob/ob 

background or fed a HFD (551), a phenotype that one would expect to be associated with 

improved insulin sensitivity compared to wildtype. However, insulin sensitivity is reduced in 

this phenotype, possibly related to increased inflammation and fat content in the liver 

(551).This rare example of a dissociation between adipose tissue inflammation and insulin 

resistance illustrates the importance of inflammation and/or fat accumulation in the liver 

(and potentially other metabolically active tissues that were not considered in this paper) 

(551). Another study that provided insights into the importance of adipose tissue 

inflammation in the etiology of insulin restance included longitudinal analyses of adipose 

tissue inflammation and insulin resistance in wildtype and immunocompromised mice 

consuming a HFD (268). In wild-type mice, just three days of HFD feeding induced insulin 

resistance and upregulated pro-inflammatory mediators in adipose tissue. Over time, as the 

animals continued to gain weight, adipose tissue inflammation became more pronounced 

and insulin resistance worsened, consistent with a role for adipose tissue inflammation in the 

etiology of insulin resistance. Three models of immunocompromised models were used in 

this study, lymphocyte-deficient Rag (recombination activation gene)-1 knockout mice, mice 

treated with clodronate which depletes phagocytic cells, including macrophages and Kupffer 

cells, and mice treated with gadolinium, an inhibitor of Kupffer cells. With short-term (up to 

one week) HFD feeding, these immunocompromised models exhibited reduced glucose 

tolerance, as in the wildtype mice, indicating that inflammation may not play a major role in 

mediating the initial detrimental effects of a HFD on glucose tolerance and insulin 

sensitivity. Hepatic and skeletal muscle accumulation of FFA, diacylglycerol, and ceramide 

after three days of HFD feeding were not different between wildtype and clodronate treated 

mice, suggesting ectopic fat accumulation may be a potential mediator of early insulin 

resistance in response to short-term HFD feeding. As in the FSP27 KO mouse, the 

development of systemic insulin resistance in response to a HFD in the absence of the 

normal adipose tissue inflammation response supports the multi-factorial etiology of insulin 

resistance in the context of diet-induced obesity. However, these models did show some 

protection against impaired glucose tolerance under longer-term (14 weeks) HFD diet 

feeding conditions or in genetically obese Leprdb/db mice, consistent with the majority of the 

other transgenic mouse models shown in Table 3.
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The relationship between lipid metabolism, immune cell function, and adipose tissue 

inflammation has been demonstrated through mouse models of genetic manipulation of lipid 

metabolism and transport enzymes. Adipose tissue-specific DGAT1 overexpression was 

associated with increased adiposity but improved metabolic phenotypes including improved 

insulin sensitivity and glucose tolerance and reduced adipose tissue inflammation and 

hepatic fat accumulation in HFD-fed mice (242). Macrophage-specific DGAT1 

overexpression was sufficient to replicate the improvements in glucose tolerance, insulin 

sensitivity, and adipose tissue inflammation, possibly explained by the increase in lipid 

storage capacity of DGAT1 overexpressing macrophages. Surprisingly, these improvements 

occurred despite increased hepatic and skeletal muscle TG accumulation (242). 

Hematopoietic-specific loss of CD36 was associated with reduced adipose tissue 

inflammation and improved adipose tissue insulin signaling but without improvements in 

systemic insulin sensitivity (342). An adipose tissue-specific deletion of HSL was associated 

with lipodystrophic phenotypes including reduced adiposity, adipose tissue dysfunction, and 

impaired insulin sensitivity demonstrating that TG lipolysis is essential for maintenance of 

whole-body metabolic regulation (521). This is consistent with observations of humans with 

HSL deletion mutations, which are associated with impaired glucose homeostasis, with a 

redistribution of adipose tissue to visceral depots, adipose tissue inflammation, and an 

increased risk for T2DM (12).

Taken together, the data generated from these models are generally consistent with the 

hypothesis that adipose tissue inflammation is associated with insulin resistance, and that 

disruption of pro-inflammatory pathways results in reduced levels of adipose tissue 

inflammation and improved insulin sensitivity. Because other metabolic benefits such as 

reduced steatosis and inflammation in the liver are commonly associated with reduced levels 

of adipose tissue inflammation, it is difficult to isolate the contribution of adipose tissue 

inflammation to insulin resistance from these models. Models in which inflammation was 

selectively silenced in adipose tissue and exhibited improved insulin sensitivity demonstrate 

that adipose tissue inflammation is undoubtedly a major contributing factor in the etiology 

of insulin resistance. On the other hand, the few rare models in which adipose tissue 

inflammation is dissociated from insulin resistance make it clear that adipose tissue 

inflammation is almost certainly just one of several factors involved in the etiology of 

insulin resistance.

Adipose tissue inflammation and insulin resistance: human studies

How, then, should we apply the body of literature generated from rodent models to shape 

our understanding of the disease process in humans? Long-term overfeeding studies such as 

those carried out in rodents are obviously not feasible to the same extent in humans. 

Therefore, in humans, we must largely rely on observational evidence. In these observational 

studies, ‘adipose tissue inflammation’ is typically characterized by flow cytometry, 

immunohistological staining for markers of specific types or subtypes of leukocytes such as 

CD3 for T-cells or CD68 for macrophages, and/or quantification of transcript levels of genes 

encoding specific components of leukocytes or inflammatory mediators.

Burhans et al. Page 39

Compr Physiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The positive association between plasma biomarkers of inflammation (CRP and IL-6) and 

insulin resistance was first observed in humans in the 1990’s. Yudkin et al. (542) noted that 

the secretion of CRP by the liver was regulated by circulating IL-6, which had been shown 

in vivo to be released from SAT (321). In a cross-sectional analysis, plasma CRP was 

significantly correlated with IL-6, and those subjects with CRP <1.35 μg/mL were 

significantly more insulin sensitive than those with elevated plasma CRP (542). While the 

authors did not adjust for confounders such as age or adiposity, these early observations 

suggested that inflammation was associated with insulin resistance. However, differences in 

the relationship between markers of inflammation and insulin sensitivity across different 

ethnic groups may occur. For example, in a study of healthy, overweight, premenopausal 

African American and Caucasian women matched for BMI, circulating CRP was 

independently and inversely associated with insulin sensitivity in the Caucasian women only, 

after adjustment for VAT (198). Insulin sensitivity was lower among the African American 

women independent of obesity, fat distribution, and inflammation (198).

Perhaps the strongest evidence of a relationship between adipose tissue inflammation and 

insulin resistance in humans comes from Kloeting et al. who have published using data from 

a repository of over 220 fat donors for whom hyperinsulinemic-euglycemic clamp data were 

also available (Table 4). In these morbidly obese individuals, the strongest predictor of 

insulin resistance was the extent of inflammation in VAT (238). In one of their studies, 

subjects were separated into insulin sensitive vs. insulin resistant groups and then age, sex, 

and BMI-matched to provide 30 pairs of subjects differing by insulin sensitivity (Figure 6). 

While there were no significant differences in SAT morphology between groups, VAT 

differed substantially. Tissue from insulin resistant subjects contained adipocytes of larger 

diameter and significantly lower insulin-stimulated glucose uptake as compared to that from 

insulin sensitive individuals. Independent of age, BMI, and whole body fat mass, VAT area 

was strongly, inversely associated with insulin sensitivity (238). Additionally, macrophage 

infiltration into omental adipose tissue was strongly inversely associated with insulin 

sensitivity, with no difference in macrophage infiltration into SAT between insulin sensitive 

and insulin resistant individuals (238). One of the most striking findings from this study was 

that a model including % macrophage infiltration into VAT and fasting plasma adiponectin 

concentrations almost perfectly predicted insulin sensitivity (GIR from hyperinsulinemic 

euglycemic clamp) (r2=0.98, p<0.0001) (238). Inclusion of liver fat content data (by 

magnetic resonance imaging) did not further improve the model (238).

Hardy et al. (167) observed a similar relationship in their study of obese insulin-resistant 

patients (HOMA2-IR > 2.4) vs. insulin-sensitive patients (HOMA2-IR < 2.4) of equivalent 

BMI prior to bariatric surgery. VAT of insulin resistant subjects contained adipoctyes of 

significantly larger diameter, with greater macrophage infiltration and greater expression of 

pro-inflammatory mediators compared to insulin sensitive patients, while there was no 

difference in these variables in SAT between the groups. Insulin resistance, but not BMI, 

was associated with adipocyte size and degree of macrophage infiltration into VAT. Evidence 

from these two studies suggest that inflammation of VAT specifically – independent of BMI 

and possibly independent of ectopic fat content – may play a key role in the etiology of 

insulin resistance.
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In a population of healthy Pima Indians, SAT macrophage content and expression of 

macrophage-specific genes (CD68, CD11b, and CSF1R) was correlated with age and 

adiposity, but not with insulin sensitivity independent of adiposity (357). This is consistent 

with Kloeting et al.’s finding that inflammation of VAT as opposed to SAT is a more critical 

factor (238). These data suggest that the quantity of macrophages in SAT is not a direct 

contributor to the etiology of systemic insulin resistance. However, in contrast to the 

findings of Kloeting et al. (238) and Hardy et al. (167), Viardot et al. observed no correlation 

between SAT and VAT macrophage numbers and insulin resistance (HOMA-IR) in obese 

subjects undergoing bariatric surgery (492).

Based on the finding by Lumeng and colleagues that pro-inflammatory macrophages in 

obese mouse adipose tissue express CD11c (280) some investigators have used CD11c in an 

attempt to identify pro-inflammatory ATM in humans. For example, Wentworth et al. found 

that ATMs present in CLS stained positive for CD11c (508). In their study, CD11c+ ATM 

also expressed IL-1β, IL-6, IL-8, TNFα, and CCL-3, consistent with the idea that these 

macrophages may be a pro-inflammatory subtype. Interestingly, and contrary to findings by 

Kloeting et al. (238), the number of CD11c+ ATM was greater in SAT vs. VAT, and 

correlated with HOMA-IR (508). But overall, the evidence is not particularly strong that 

CD11c+ ATM in humans (or mice) constitute a phenotypically or functionally homogenous 

subtype of ATM that is fundamentally different from CD11c- ATM. One factor impeding 

progress in this area has been that no conclusive data exist as to which cell surface markers 

should be consistently used to specify pro-inflammatory ATM populations in humans.

Other than the study by Kloeting and colleagues (238), none of these studies measured 

ectopic fat content. While overall, the studies have relatively consistently reported 

associations between insulin resistance and different measures of adipose tissue 

inflammation, particularly the macrophage content of VAT, questions remain if adipose 

tissue inflammation would consistently remain a significant contributor to insulin resistance 

if adiposity, body fat distribution, and ectopic fat content were experimentally or statistically 

controlled for. The Kloeting et al. data showing that VAT macrophage infiltration, together 

with plasma adiponectin concentrations, was almost perfectly correlated with a gold-

standard measure of insulin sensitivity, independent of liver fat content or any other measure 

of adiposity, is certainly intriguing (238). It is also not entirely clear why inflammation and 

macrophage accumulation in VAT tends to be more strongly associated with insulin 

resistance than inflammation in SAT. One hypothesis is that VAT has a more direct access to 

the liver through the portal vein, thereby more directly exposing the liver to inflammatory 

mediators or FFA from inflamed VAT (401).

One line of work that raises some doubts about the relative importance of adipose tissue 

inflammation in the etiology of insulin resistance and T2DM are genome-wide association 

studies (GWAS), which have not found associations between genetic variants in key 

mediators of inflammation and incidence T2DM [reviewed in (239)]. Instead, genetic 

analyses have suggested that limited storage capacity of peripheral subcutaneous adipose 

tissue is an important etiological contributor to insulin resistance (279). An intriguing 

hypothesis in this regard is the personal fat threshold hypothesis (461). This hypothesis 

proposes that interindividual differences in the storage capacity of adipose tissue, 
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particularly SAT, determine the degree to which excess energy can be safely stored in 

adipose tissue, beyond which it would be deposited in ectopic depots, leading to metabolic 

dysfunction. The basis for the personal fat threshold hypothesis is the often-overlooked fact 

that T2DM affects numerous non-obese and even normal weight individuals, while many 

obese individuals do not develop T2DM. While to some degree genetic differences in 

pancreatic β-cell function may account for the fact that some individuals manifest glucose 

intolerance at a lowered BMI, this by itself is unlikely to explain the substantial 

heterogeneity in BMI and even body fat mass in people with T2DM. The work of Taylor and 

colleagues showing that weight loss through a very-low calorie diet can restore normal 

glucose tolerance in most individuals with T2DM (441, 442) is consistent with the 

hypothesis that absolute fat mass is less relevant than whether an individual personal fat 

threshold has been crossed. Once this threshold is passed, an individual is unable to safely 

store excess calories in SAT and storage of lipids in liver, muscle, and pancreas occurs, 

impairing the ability of these organs to maintain whole-body glucose homeostasis. At the 

same time, individual limitations in the storage capacity of SAT would be expected to trigger 

expansion and inflammation of VAT. Thus, another potential explanation for the strong 

association between macrophage accumulation and inflammation in VAT may be that the 

expansion and subsequent inflammation of VAT are a direct consequence of, and indicator 

for, limited storage capacity of peripheral SAT. It is possible that excessive ECM in the 

development of fibrosis in SAT, which may limit SAT expansion, or factors that inhibit 

adipogenesis itself, such as the accumulation of senescent preadipocytes, may at least 

partially mediate inter-individual differences in adipose tissue storage capacity.

Taken together, even though numerous lines of evidence link adipose tissue inflammation to 

insulin resistance and glucose intolerance, more data on the complex interrelationship 

between adiposity, fat distribution, adipose tissue inflammation, and ectopic fat deposition is 

needed to confidently conclude that adipose tissue inflammation is a major independent 

contributor in the development of insulin resistance. Doubts remain particularly because 

GWAS fail to link genetic variation in key mediators of inflammation to insulin resistance or 

T2DM, as outlined above, and because of conflicting data generated in the context of weight 

loss studies, as will be discussed in the next section.

Adipose tissue inflammation following bariatric surgery- or dietary caloric 

restriction-induced weight loss—Because obesity is strongly associated with insulin 

resistance, weight loss interventions offer an opportunity to determine whether adipose 

tissue inflammation and insulin resistance might be causally linked. If so, a caloric deficit 

should lead to reductions in inflammation with concomitant metabolic improvements. 

Dietary restriction-based weight loss studies have been inconsistent in the amount of weight 

loss and improvement in insulin sensitivity achieved. In contrast, surgical weight loss 

interventions have demonstrated unique efficacy in inducing rapid, massive weight loss, 

along with marked improvements in metabolic health and reductions in systemic 

inflammation (67, 181, 199–202, 325, 368, 468, 489, 491, 527) regardless of the type of 

bariatric surgery (gastric banding, vertical sleeve gastrectomy, or Roux-en-Y gastric bypass). 

Notably, metabolic improvements following surgery typically appear within days, and well 

before significant weight loss, which has prompted investigation into weight loss-
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independent mechanisms that might be driving the improvements in glucose homeostasis. A 

reduction in adipose tissue inflammation following surgery, but prior to weight loss, has 

emerged as a leading hypothesis that might explain this phenomenon. We have reviewed 

studies in this area that included surgery or diet-based interventions designed to reduce or 

increase body weight and that included assessments of both insulin sensitivity and adipose 

tissue inflammation (Table 5).

Following bariatric surgery, systemic inflammation appears to persist at least through the 

first month, as indicated by circulating CRP, IL-6, and PAI-1 concentrations at or near pre-

surgery levels (162, 254, 310, 368). Clear reductions in CRP are more apparent three to four 

months post-operatively, when presumably surgery-related inflammation has subsided (52, 

202, 488), even though this is not seen in all studies (310, 483). Six to 12 months post-

surgery, CRP, IL-6, PAI-1, and MCP-1 consistently are reduced relative to pre-surgery levels 

(6, 28, 108, 157, 162, 181, 199–202, 254, 310, 323, 327, 368, 468, 483, 489). There may 

also be changes in serum levels of the insulin sensitizing hormone adiponectin following 

bariatric surgery. While Sams et al. (407) observed significant increases in circulating 

adiponectin two weeks following surgery, our studies revealed no improvement one to 12 

months post-surgery (162, 254).

With respect to adipose tissue, the data are less consistent (Table 5). Several studies reported 

that weight loss between 5% and ~10% in response to a dietary restriction-based 

intervention (59, 250, 436, 456, 495) led to improvements in insulin sensitivity that were not 

associated with concurrent reductions in adipose tissue inflammation when follow-up 

measurements were taken immediately at the end of the weight loss period (i.e., when 

participants were still in a state of caloric deficit). This dissociation between insulin 

sensitivity and adipose tissue inflammation was even apparent in one study in which 

participants were kept weight stable for three weeks following 5% weight loss (286). In that 

study, insulin sensitivity (by clamp) was improved in response to weight loss, leading the 

authors to conclude that reductions in adipose tissue inflammation are not necessary for an 

increase in insulin sensitivity (286). Two other studies found that a weight stabilization 

period following active weight loss eventually led to reductions in measures of adipose 

tissue inflammation (59, 250), indicating that – aside from the active phase of caloric deficit 

and weight loss – adipose tissue inflammation will be reduced from a reduction in body fat 

mass. However, insulin sensitivity improved only during the period of active weight loss 

when adipose tissue inflammation was unchanged, while insulin sensitivity did not improve 

further when measures of adipose tissue inflammation were reduced after the weight 

stabilization period (59, 250). Greater weight loss of 11%−16%, however, was associated 

with a reduction in the expression of inflammation-related genes in adipose tissue, 

concurrent with improvements in insulin sensitivity and reduction in liver fat content (286).

In some studies of weight loss of 15% - 17% following bariatric surgery, improvements in 

insulin sensitivity tended to be concurrent with reductions in measures of adipose tissue 

inflammation (26, 56, 492), even though these measures showed no correlation with one 

another in two of these studies (56, 492). Other investigators found either no or only very 

minor changes in measures of adipose tissue inflammation following weight loss of 7% to 

37% following bariatric surgery (162, 254, 368), in spite of sometimes substantial 
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improvements in insulin sensitivity, again illustrating a dissociation between adipose tissue 

inflammation and insulin resistance.

It is a potential important limitation in all of these longitudinal weight loss studies that they 

were forced to rely on SAT, because VAT cannot feasibly be collected twice in an 

intervention study for before-and-after comparison. Because some authors, most notably 

Kloeting and colleagues as discussed above find stronger associations between insulin 

resistance and measures of adipose tissue inflammation in VAT vs. SAT, it is possible that 

potentially relevant effects of weight loss on VAT inflammation that may (partly) mediate 

improvements in insulin sensitivity were not detectable. The one exception in this regard is a 

particularly informative study by Schmitz and colleagues (417). These authors were able to 

obtain SAT, VAT, and liver biopsies during a vertical sleeve gastrectomy (VSG) surgery 

(baseline) from 55 morbidly obese individuals, and again one year later, following 

substantial weight loss, when subjects were undergoing Roux-en-Y gastric bypass surgery. 

They found that while VSG-induced weight loss was associated with a reduction in 

measures of adipose tissue inflammation and the number of ATM in VAT in most 

individuals, no changes in the number of ATM or inflammation markers in VAT were seen in 

23 participants. Nevertheless, improvements in systemic insulin sensitivity (assessed by 

HOMA in all subjects, and confirmed by clamp in a subgroup) were seen in all participants, 

independent of whether VAT adipose tissue inflammation was reduced.

Another potential limitation of studies in this area is the persisting uncertainty about the 

specific functional and phenotypical characteristics of adipose tissue macrophages and other 

leukocyte populations. This impairs our ability to assess whether weight loss-related changes 

in the phenotype of adipose tissue leukocytes may contribute to improvements in insulin 

sensitivity.

Taken together, improvements in insulin sensitivity during periods of weight loss from either 

dietary restriction or bariatric surgery are commonly not or not consistently associated with 

reductions in measures of adipose tissue inflammation, thus illustrating that active weight 

loss is an example of dissociation between adipose tissue inflammation and insulin 

resistance.

Adipose tissue inflammation following overfeeding—To understand whether 

chronic, low-grade inflammation plays a causal role in insulin resistance in humans, Tam 

and colleagues overfed 36 healthy normal to overweight men and women by 1,250 kcal/day 

for four weeks to observe the relationship between obesity, inflammation, and insulin 

resistance (457) (Table 5). Despite a gain in body weight and fat mass of approximately 

3.5% of baseline levels, and a reduction in insulin sensitivity that corresponded with elevated 

circulating CRP and MCP-1 concentrations, there were no measurable increases in the 

expression of pro-inflammatory gene expression (CD68, IL-6, CCL2, ADIPOQ, NF-κB, and 

VCAM) or evidence of increased CD68-positive macrophage infiltration into SAT (457). 

Similar results were seen by Johannsen et al., who overfed 29 men over eight weeks by 

~40%, for an average weight gain of ~10% (212). While the weight gain was associated with 

a decline in insulin sensitivity, no change in a variety of measures of SAT inflammation was 

seen. Both of these overfeeding studies exposed relatively young and healthy individuals to a 
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substantial caloric overfeeding paradigm, and saw body weight gain associated with 

reductions in insulin sensitivity, in spite of no change in measures of adipose tissue 

inflammation. Thus, these overfeeding studies constitute another example of dissociation 

between adipose tissue inflammation and insulin resistance.

Anti-inflammatory drugs: impact on adipose tissue inflammation and insulin 

resistance—Another potential way to obtain insight into the relative contribution of low-

grade chronic inflammation to insulin resistance is to consider the response to anti-

inflammatory drugs. Several naturally occurring and bioengineered compounds that reduce 

inflammation have been tested in clinical trials to determine their effect on insulin 

resistance. Salicylates are naturally occurring compounds that have been used since antiquity 

to treat pain, inflammation, and fever. Functionally, salicylates target cyclooxygenase (COX) 

1 and 2, which regulate the production of pro-inflammatory prostaglandins (145, 277). 

Prostaglandins are powerful vasodilators that also contribute to inflammatory processes by 

prolonging and enhancing the effects of other pro-inflammatory mediators (261). At high 

doses, salicylates also interfere with IKKβ-dependent activation of the NF-κB pathway 

(539), which activates the inflammasome and the maturation and release of IL-1β (113, 264, 

444). Acetylsalicylic acid (aspirin) was introduced in the late 19th century. Aspirin reduces 

blood glucose in patients with T2DM (390) but not in individuals with normal glucose 

tolerance (142, 337). More recently, several studies, including six randomized, blinded and 

placebo controlled trials, demonstrated marked improvements in glucose tolerance and 

reduced HbA1c with salsalate treatment among obese patients with and without T2DM (13, 

117, 130, 143–145, 196). In addition, in five of the six trials, salsalate treatment reduced 

markers of systemic inflammation (CRP, IL-6, or CD40L) or increased adiponectin (13, 130, 

143, 145, 196). However, none of these trials directly measured adipose tissue inflammation.

Another approach used to target inflammatory pathways utilizes bioengineered compounds. 

Studies in rodents using such compounds to selectively inhibit TNFα and IL-1β 
significantly reduced obesity-associated inflammation (139, 189, 299, 478, 479, 506). Based 

on the compelling results from the rodent-based studies, several anti-inflammatory drug 

trials have since been conducted in humans, the results of which have been less promising. 

For example, a four-week intervention using a single dose of either a TNFα-neutralizing 

antibody, CDP571, or the antagonist Ro 45–2081, a fusion protein of the soluble TNF-

receptor linked to the Fc portion of human IgG1, did not improve insulin sensitivity (351, 

366). Similarly, a four-week course of the TNFα antagonist etanercept, given twice weekly 

at 25 mg by subcutaneous injection, failed to improve insulin sensitivity relative to non-

treated controls despite clear reductions in systemic CRP concentrations (99). Longer 

treatment of six months with 50 mg of etanercept in obese individuals without autoimmune 

or inflammatory conditions improved fasting glucose and circulating adiponectin compared 

to placebo, although insulin sensitivity did not change (437). However, in individuals with 

inflammatory joint disease, long-term use of the TNFα-inhibitor infliximab improved 

insulin sensitivity (353, 535, 536).

Selective targeting of IL-1β has produced more promising results from randomized 

controlled trials. In patients with T2DM, daily subcutaneous injections of 100 mg of the 

recombinant IL-1 receptor antagonist anakinra for 13 weeks did not alter insulin sensitivity 
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but improved HbA1c and β-cell function, and reduced systemic inflammation when 

compared to placebo (260). Results from other studies that used human monoclonal 

neutralizing antibodies against IL-1β were inconsistent. For example, intravenous injections 

of gevokizumab reduced HbA1c, improved insulin sensitivity, and reduced circulating CRP 

(62). In contrast, in a large trial of adults with controlled T2DM, four different doses of 

canakinumab did not significantly alter fasting glucose, insulin, or HbA1c relative to 

placebo (392).

Statins are commonly prescribed drugs that lower cholesterol levels by inhibiting the rate-

limiting enzyme of endogenous cholesterol synthesis. However, this is a pleiotropic class of 

drugs that also exerts several anti-inflammatory effects (43, 544). Despite these anti-

inflammatory effects, several studies have now shown statin use to be associated with an 

increased risk for T2DM (89, 91, 381, 410). Furthermore, results from Cederberg et al. 

suggest that statins reduce insulin sensitivity and insulin secretion (63). On the other hand, 

thiazolidinediones (TZDs) are commonly prescribed antidiabetic insulin-sensitizing drugs 

that also exert anti-inflammatory effects (66). TZDs are potent PPARγ ligands and work in 

mice demonstrated that macrophage PPARγ activity is required to elicit their full capacity to 

increase insulin sensitivity and glucose tolerance (177). Adipocyte PPARγ and 

adipogenesis/lipid metabolism as one alternative pathway through which TZDs may affect 

insulin sensitivity (269). At the same time, the degree to which the insulin sensitizing effects 

of TZDs are due to their anti-inflammatory actions as compared to other pathways is not 

fully understood.

Collectively, results from human clinical trials that selectively targeted key components of 

pro-inflammatory pathways have yielded mixed results on insulin sensitivity and glycemic 

control. It is important to emphasize, however, that despite any metabolic improvements, 

there is no evidence that such improvements arise directly from reductions in adipose tissue 

inflammation. These studies only provide indirect evidence of a relationship between 

inflammation and insulin resistance, and these studies therefore provide limited insight to 

what extent inflammation of adipose tissue, relative to inflammation of other tissues, 

contributes to systemic insulin resistance.

Summary and conclusion

Hotamisligil and colleagues pioneered work on adipose tissue inflammation and its 

importance for insulin sensitivity, with their seminal paper showing that in rodents, TNFα 
interferes with insulin signaling, and that by blocking inflammation, obese mice were 

protected from developing insulin resistance (189, 479). Extensive data from both rodent 

models and humans have since largely confirmed that accumulation of excess adipose tissue 

is strongly associated with adipose tissue inflammation, and that adipose tissue 

inflammation is associated with insulin resistance. A key limitation in studies in this area is 

that adipose tissue inflammation is strongly associated with other factors known or 

suspected to affect insulin sensitivity, most importantly liver inflammation and steatosis. 

Most studies in this field have been unable to experimentally or statistically separate the 

relative contribution of adipose tissue inflammation (in various depots) from that of liver fat 

content, for example, making it impossible to confidently conclude at this time to which 
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degree both are contributors in the etiology of insulin resistance. Some limited evidence 

suggests that insulin resistance and adipose tissue inflammation can be dissociated. These 

include FSP27 KO mice that are insulin resistant in spite of reduced adipose tissue 

inflammation when made obese (551), or human studies following acute weight loss or gain 

in which insulin sensitivity improved and decreased, respectively, in spite of unchanged 

measures of adipose tissue inflammation (Table 5). All of these pieces of evidence suggest 

that insulin resistance is affected to a substantial degree by factors other than adipose tissue 

inflammation. At the same time, one of the largest and strongest studies, by Kloeting and 

colleagues, suggests that adipose tissue inflammation (as assessed by quantifying 

macrophages) in VAT, together with fasting plasma adiponectin concentrations (which are 

also affected by adipose tissue inflammation), can perfectly predict systemic insulin 

sensitivity (238). Thus, taken together, the data collectively demonstrate that while adipose 

tissue inflammation is clearly a key factor, insulin resistance is affected by other factors as 

well. These include most likely inflammation and fat deposition in other metabolically active 

tissues such as the liver.

Adipose tissue inflammation: a physiologic adaptive response to chronic 

caloric excess

Obesity, adipose tissue inflammation, and insulin resistance – a short history

It was nearly 25 years ago that the first reports were published that obesity is associated with 

an increase in the adipose tissue expression of inflammatory cytokines, such as TNFα (188, 

189, 479), and that this inflammation in adipose tissue may be a key mediator between 

increased adiposity and insulin resistance (479). Two landmark papers published in 2003 

then solidified these initial findings of a key role of adipose tissue inflammation in insulin 

resistance. Weisberg and colleagues demonstrated that macrophages infiltrate adipose tissue 

in large numbers in obesity, and that these cells are the major source of key inflammatory 

cytokines (504). Xu and colleagues showed that low-grade inflammation in obesity was to a 

large extent specific to adipose tissue, and that the timing of development of adipose tissue 

inflammation and insulin resistance is quite strongly associated in a diet-induced obesity 

mouse model (523). In quick succession, as discussed in detail previously (Table 3), 

numerous reports, mostly from KO mouse models, were published showing that impairing 

the ability of a mouse’s immune system to mount an inflammatory response made them 

more insulin sensitive and glucose tolerant when obese. Cumulatively, the mouse models led 

to a clear and straightforward paradigm: an increase in adiposity triggers low-grade chronic 

inflammation in adipose tissue, which suggests that adipose tissue inflammation may be a 

major contributor to insulin resistance in obesity. As will be discussed in the next section, 

this paradigm would benefit from some minor and major additions or corrections to more 

adequately reflect new data illustrating that the relationship between adiposity, adipose 

tissue inflammation, and insulin resistance is more complex than previously appreciated. 

Specifically, it is now clear that the immune cells infiltrating adipose tissue in obesity, and 

their pro-inflammatory activation, play an important role in the ability of the tissue to 

expand in response to chronic caloric excess. Further, the complexity of the interrelationship 

between adipose tissue inflammation and other factors impairing insulin sensitivity was, and 

still may be, underappreciated. And lastly, it is now clear that rodent models of obesity differ 
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in some ways from human obesity, even though insights into the specific series of events 

leading to adipose tissue inflammation and its relationship to insulin resistance in humans 

are more scarce, and constitute a major knowledge gap that needs to be addressed in future 

studies.

A newly emerging paradigm

The immune system plays an underappreciated role in the normal physiology of adipose 

tissue, particularly in the adaptive processes that become necessary in the context of long-

term excessive caloric intake (Figure 12). Specifically, macrophages break down and secrete 

extracellular matrix proteins (213, 418), an essential continuous process that allows the 

tissue to expand through hyperplasia or hypertrophy. Similarly, new blood vessels are 

needed to provide oxygen and nutrients to expanded adipose tissue, and macrophages play a 

critical role in this angiogenesis (75), through mechanisms that are not entirely clear. The 

activation of pro-inflammatory pathways within immune cells such as macrophages, 

resulting in the production of pro-inflammatory cytokines including TNFα, IL-1β, and IL-6 

that induce insulin resistance in adipocytes (and potentially other cell types) is an important 

mechanism limiting further growth of hypertrophic adipocytes that would otherwise increase 

their risk of cell death (211, 324). Macrophages are also able to store TG from the lipid 

droplets of dead adipocytes (79, 382), or buffer FFA that adipocytes are unable to store 

(526).

Considering these essential adaptive physiologic functions of immune cells and particularly 

macrophages in adipose tissue, the ‘old’ paradigm that regarded adipose tissue inflammation 

as a purely pathophysiological event, to be treated with anti-inflammatory drugs, is 

inadequate. Instead, currently available evidence suggests that immune cells and particularly 

macrophages play important physiological and adaptive roles in adipose tissue. While 

numerous details have yet to be worked out, a new paradigm has begun to emerge, which we 

would like to summarize and outline here as a working concept:

• Compensated expansion of adipose tissue: Excessive caloric intake over 

extended periods of time will initially be compensated by adequate and healthy 

expansion of adipose tissue, particularly SAT. This will occur initially largely by 

hyperplasia, i.e., the recruitment of pre-adipocytes that differentiate into mature 

adipocytes (153). This expanded tissue will be characterized by still mostly small 

adipocytes, with little to no increased immune cell infiltration and very few, if 

any, dead adipocytes. Evidence from time-series studies in mice fed an 

obesogenic HFD suggests that the caloric excess induced by the highly palatable 

HFD promotes a mild increase in the expression of genes encoding several key 

mediators of inflammation, such as TNFα, MCP-1, or IL-6 within as few as 

three days of switching to the HFD (268). However, the development of more 

substantial adipose tissue inflammation is typically not seen until week 16.

• Reaching adipocyte storage capacity triggers adipose tissue inflammation: 

One current hypothesis posits that the main storage organ for excess fuel, SAT, 

can initially expand sufficiently to store excess nutrients as TG in enlarging 

existing adipocytes (hypertrophy) or newly-differentiated adipocytes 
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(hyperplasia). As the ability of the tissue to induce adipogenesis and differentiate 

preadipocytes becomes limited, which may occur for a number of reasons, the 

burden of continued exposure to excess nutrients is increased for existing 

enlarged adipocytes causing them to upregulate pro-inflammatory pathways, 

which increases the expression of key chemokines including MCP-1 (209). The 

resulting influx of monocytes differentiating to macrophages may have a number 

of different functions, as outlined above, from intermittent lipid storage 

(buffering) (526) to induction of insulin resistance in adipocytes to prevent their 

death to removal of adipocytes once they have undergone apoptosis or necrosis 

(79, 382).

• When exactly SAT becomes unable to expand to compensate for the chronic 

nutrient overexposure may differ substantially between individuals, as has been 

suggested in the personal fat threshold hypothesis (461). Factors that may affect 

when the individual storage capacity has been reached may include fibrotic 

adipose tissue, age-related senescence of preadipocytes, or genetic variability in 

genes involved in adipogenesis, as discussed in previous sections. Once an 

individual is unable to safely store excess calories in SAT, low-grade chronic 

inflammation in SAT will develop, storage of lipids will shift to VAT, eventually 

triggering inflammation in VAT, and ultimately leading to gradual shifts in lipid 

storage to ectopic depots such as liver, muscle, and pancreas.

• Negative metabolic consequences of persistent long-term adipose tissue 

inflammation: During short-term exposure to caloric excess, modest ATM 

activation and associated induction of inflammatory signaling pathways may 

provide more time for the tissue to appropriately expand to ultimately 

accommodate storage of the excess nutrients (or the insult, caloric excess, to 

subside), thereby preventing flux of lipid to ectopic depots such as the liver or 

muscle. However, if the caloric excess and the resulting adipose tissue 

inflammation persists over extended periods of time, then the inflammation itself 

may contribute to ectopic fat storage, partly through the continued adipocyte 

insulin resistance, which attenuates the ability of insulin to inhibit lipolysis in the 

postprandial state, thereby leading to increased flux of FFA to ectopic depots, 

partly through inhibited adiponectin expression leading to hypoadiponectinemia 

(440). Thus, while the basic macrophage functions and inflammatory signaling 

pathways may be very similar under short- and long-term caloric excess, the 

effect on whole-body metabolic regulation may differ due to the longer-term 

consequences of continued elevated flux of FFA to ectopic depots and chronic 

hypoadiponectinemia. Available evidence suggests that inflammation of VAT is 

particularly strongly associated with metabolic dysfunction, possibly due to the 

more direct delivery of inflammatory mediators and FFA to the liver (401).

• Adipose tissue inflammation and ectopic fat deposition as key components 

of metabolic dysfunction: Persistent adipose tissue inflammation, together with 

systemic inflammation, hypoadiponectinemia, and ectopic fat accumulation, are 

the principal players in the etiology of systemic insulin resistance. It is important 

to emphasize the strong interrelationship of these factors with each other, making 
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it hard in many cases to disentangle to relative contribution of one factor over the 

others in the development of insulin resistance. As illustrated in Figure 13, it is 

clear that adipocyte size remains smaller, with less inflammatory activity in 

adipose tissue and less ectopic fat content in obese individuals who remain 

relatively insulin sensitive. It is also clear that the average size of adipocytes 

tends to be larger in obese, insulin resistant subjects, associated with more 

substantial leukocyte infiltration and pro-inflammatory cytokine secretion in 

adipose tissue, increased plasma FFA concentrations, hypoadiponectinemia, and 

increased TG content in liver and muscle. The key differentiating factor between 

these two scenarios is likely the ability vs. inability of adipose tissue, particularly 

SAT, to expand in a healthy fashion in response to chronic caloric excess.

• Human studies conducted in the context of bariatric surgery- or lifestyle change-

induced weight loss suggest that while adipose tissue inflammation is a major 

contributor to systemic insulin resistance, it is by itself not sufficient, and 

substantial improvements in insulin sensitivity are associated with a reduction in 

ectopic fat mass despite persistent inflammation in SAT and VAT (286, 417).

Conclusion

Adipose tissue inflammation, particularly in visceral fat depots, is clearly a contributor in the 

etiology of systemic insulin resistance, glucose intolerance, and T2DM. However, it is 

critical to recognize that the immune system and inflammation play important roles in the 

adaptive adipose tissue response to chronic caloric excess, rather than regarding adipose 

tissue inflammation as a purely pathophysiological process. There is some uncertainty about 

the relative impact of adipose tissue inflammation on insulin resistance relative to ectopic fat 

content and inflammation in other metabolically active tissues. Several pieces of evidence, 

such as rare transgenic mouse models in which adipose tissue inflammation and insulin 

resistance are dissociated, as well as the often substantially improved insulin sensitivity in 

the context of human weight loss in spite of persistent adipose tissue inflammation, suggest 

that adipose tissue inflammation is neither necessary nor sufficient to induce systemic 

insulin resistance, and that ectopic fat accumulation and inflammation in organs such as liver 

and muscle are almost certainly critical contributors. It cannot be ruled out, however, that the 

sequence of events that ultimately induce insulin resistance in obesity is distinct from the 

sequence of events that ameliorate insulin resistance upon weight loss. That is, while the 

evidence suggests that reduced adipose tissue inflammation is not a major mediator of 

improved insulin sensitivity in individuals with significantly improved insulin sensitivity and 

glucose tolerance upon moderate or even substantial weight loss, it may play a more 

important role in the gradual development of insulin resistance that is associated with weight 

gain. It is also worth emphasizing that in almost all models discussed in this paper, both 

rodent and human, adipose tissue inflammation is associated with, and may well be an 

important contributor to, ectopic fat deposition. Thus, taken together, the currently available 

evidence suggests that adipose tissue inflammation is an important factor in the development 

of insulin resistance and glucose intolerance in obesity, along with other factors that likely 

include ectopic fat deposition and inflammation in other metabolically active tissues.
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Didactic Synopsis

Major teaching points:

• Low-grade chronic inflammation includes the accumulation of pro-

inflammatory macrophages and other immune cells in adipose tissue, and 

their secretion of mediators of inflammation such as tumor necrosis factor α 
and interleukins 1β and 6.

• Low-grade chronic adipose tissue inflammation is strongly and consistently 

associated with excess body fat mass in mouse models of obesity as well as 

overweight and obese humans.

• Adipose tissue inflammation is also consistently associated with systemic 

insulin resistance, a major determinant of glucose intolerance, and genetic 

alterations that reduce adipose tissue inflammation are very consistently 

associated with improved insulin sensitivity.

• Rare exceptions in which adipose tissue inflammation and insulin resistance 

are not associated with one another illustrate that other factors contribute to 

the etiology of insulin resistance as well. These include lipid accumulation 

and inflammation in other metabolically active tissues such as the liver.
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Figure 1. Associations between obesity, insulin resistance, and adipose tissue inflammation.

Obesity is associated with both insulin resistance and adipose tissue inflammation in humans 

and rodent models. Adipose tissue inflammation and insulin resistance are also associated, 

but the direction of causality is controversial. This review will explore each of these 

relationships, highlighting evidence generated from studies conducted in both humans and 

rodents.

Teaching points: Obesity is associated with both insulin resistance and adipose tissue 

inflammation in humans and animal models. Adipose tissue inflammation and insulin 

resistance are also associated, but the direction of causality is controversial.
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Figure 2. Causes of and health risks associated with obesity.

Several factors contribute to the development of obesity; these factors may have an 

environmental, biological, or genetic basis. Obesity subsequently increases the risk for the 

development of many diseases and disorders, including CVD, T2DM, and cancer, three of 

the top ten killers of adults in the United States. Abbreviations: SES, socioeconomic status; 

PCOS, polycystic ovary syndrome; CVD, cardiovascular disease; T2DM, type 2 diabetes 

mellitus; NAFLD, nonalcoholic fatty liver disease; GERD, gastroesophageal reflux disease.

Teaching points: The development of obesity is complex and many factors are known to 

contribute to it; these factors may have an environmental, biological, or genetic basis. 

Obesity increases the risk for the development of many other diseases and disorders, 

including CVD, T2DM, and cancer, three of the top ten killers of adults in the United States.

SES, socioeconomic status; PCOS, polycystic ovary syndrome; CVD, cardiovascular 

disease; T2DM, type 2 diabetes mellitus; NAFLD, nonalcoholic fatty liver disease; GERD, 

gastroesophageal reflux disease.
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Figure 3. Insulin sensitivity, pancreatic β-cell function, and glucose effectiveness in the regulation 
of glucose homeostasis

Glucose tolerance, i.e. the body’s ability to maintain glucose within a relatively narrow 

homeostatic range, is regulated by three key factors: insulin sensitivity, pancreatic β-cell 

function, and glucose effectiveness (A) (38, 215, 420). Insulin sensitivity is the 

responsiveness of liver and extrahepatic tissues, such as skeletal muscle and adipose tissue, 

to insulin (215). There are a number of physiological and pathophysiological mechanisms 

that affect insulin sensitivity, as we will discuss throughout this paper. In healthy, glucose 

tolerant individuals, as insulin sensitivity declines, the pancreatic β-cell will compensate by 

producing more insulin (B) (217). Only when the β-cell is unable to fully compensate for a 

given degree of insulin resistance will glucose intolerance ensue (217). This phenomenon, 

commonly called β-cell dysfunction, is a critical component of glucose homeostasis (217). 

In fact, in healthy, glucose tolerant individuals, the product of insulin sensitivity and 

pancreatic β-cell function, the disposition index, is constant as insulin sensitivity changes 

due to physiologic or pathophysiologic events (217). Put more simply, highly insulin 

sensitive individuals release little insulin in response to glucose stimulation, simply because 

more is not needed and would, in fact, be harmful, while less insulin sensitive individuals 

secrete more insulin to maintain normal glucose homeostasis. It is only when insulin 

production and secretion cannot fully compensate for insulin resistance that the disposition 

index declines and glucose intolerance and eventually T2DM ensues (217). The third key 

factor contributing to glucose homeostasis is glucose effectiveness, the ability of glucose to 

drive its own disposal and inhibit endogenous gluconeogenesis, in a manner independent of 

insulin (38, 420). Even though glucose effectiveness clearly exhibits substantial inter-

individual variability (420), and reduced glucose effectiveness is as much a risk factor for 
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T2DM as reduced insulin sensitivity (291), little is known about factors affecting glucose 

effectiveness. Glucose effectiveness is therefore often overlooked in studies of glucose 

homeostasis (101). Figure 3b reproduced from Kahn et al. (216), with permission.

Teaching points: Glucose tolerance is the body’s ability to maintain glucose within a 

relatively narrow homeostatic range and is regulated by three key factors: insulin sensitivity, 

pancreatic β-cell function, and glucose effectiveness (A) (38, 215, 420). Insulin sensitivity is 

the responsiveness of target cells to insulin signaling (215). In healthy, glucose tolerant 

individuals, a decline in insulin sensitivity is compensated for by an increase in insulin 

production and secretion (shown in green, normal glucose tolerance) (B) (217). Only when 

the pancreatic β-cells are unable to fully compensate for a decline in insulin sensitivity will 

glucose intolerance (shown in yellow, impaired glucose tolerance) and eventually T2DM 

(shown in red) ensue (217). Figure 3b reproduced from Kahn et al. (216), with permission.
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Figure 4. Obesity is associated with the development of insulin resistance.

The association between excess adiposity and insulin resistance is well established; however, 

there are exceptions to the relationship wherein obese individuals may be insulin sensitive 

and individuals with a deficit of adipose tissue, as in lipodystrophy, may be severely insulin 

resistant.

Teaching points: The association between excess adiposity and insulin resistance is well 

established in humans and animal models. However, there are known exceptions to this 

relationship wherein some obese individuals may be insulin sensitive while some individuals 

with a deficit of adipose tissue, as in lipodystrophy, may be severely insulin resistant.
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Figure 5. Variation in adiposity and insulin resistance among inbred strains of mice.

Males and females of more than 100 inbred strains of mice were fed a high-sucrose high-fat 

diet for eight weeks. Adiposity and systemic insulin resistance were highly variable in 

response to this diet. (A) HOMA-IR was determined in males and females. HOMA-IR was 

correlated with total body fat percentage (B and F) and with mesenteric (C and G), gonadal 

(D and H), and retroperitoneal (E and I) adipose depots of both male (B – E) and female (F – 

I) mice. The substantial variability in insulin resistance at any given level of adiposity can be 

appreciated in panels B – I. These data reveal that there is substantial genetic control over 

these metabolic phenotypes and that total adiposity may not be the primary factor driving 

insulin resistance. Reproduced from Parks et al. (371), with permission.

Teaching points: This large-scale animal study very clearly showed that genetic variation has 

a major impact on both adiposity and insulin sensitivity in response to a high calorie diet. In 

this study, over 100 inbred mouse strains were fed a high-sugar high-fat diet for eight weeks 

and fat mass, percent body fat, and insulin resistance were measured. This study design 

allowed the authors to assess the effect of genetics on these metabolic phenotypes. The 

substantial variability in adiposity and insulin sensitivity across the different mouse strains 

in response to the high-sugar high-fat diet is evident and indicates that genetic variation 

exerts significant control over these phenotypes. These results also support the idea that total 
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adiposity may not be the primary factor driving the development of insulin resistance. 

Reproduced from Parks et al. (371), with permission.
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Figure 6. Insulin sensitivity and adiposity are negatively associated in humans.

Insulin sensitivity was determined by glucose infusion rate from euglycemic-

hyperinsulinemic clamps and plotted against adiposity as estimated by BMI. These data 

highlight the variability in insulin sensitivity at any given BMI. Although an inverse 

association between BMI and insulin sensitivity generally applies on a population level, 

however there is large variability in insulin sensitivity at any given BMI, particularly at 

among the overweight and obese BMI categories (>25 kg/m2). Of note, there are obese 

individuals who maintain a level of insulin sensitivity equivalent to those with BMI around 

25 kg/m2. These individuals may be referred to as ‘metabolically healthy obese (MHO)’ and 

comprise approximately 10–30% of the obese population. These individuals remain free 

from the metabolic syndrome and glucose intolerance that would be expected based on their 

BMI. Reproduced from Kloeting et al. (238).

Teaching points: In this study, the authors used the euglycemic hyperinsulinemic clamp 

procedure to measure the glucose infusion rate (y-axis) needed to maintain glucose 

concentrations in plasma constant under high insulin concentrations, which is the gold-

standard method for the determination of insulin sensitivity. A high glucose infusion rate is 

indicative of high insulin sensitivity. In non-obese to obese individuals (body mass index, 

BMI, on the x-axis), they found that adiposity and insulin sensitivity are negatively 

correlated. In addition, this study also highlights the variability in insulin sensitivity that 
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exists at any given BMI, indicating that total fat mass is not the only determinant of insulin 

sensitivity. Indeed, there are obese individuals who maintain a level of insulin sensitivity 

equivalent to those with a non-obese BMI. These individuals may be referred to as 

‘metabolically healthy obese (MHO)’ and are estimated to comprise approximately 10–30% 

of the obese population. These individuals do not develop metabolic syndrome, insulin 

resistance, and impaired glucose tolerance that would be expected based on their BMI. 

Figure reproduced with permission (Reproduced from Kloeting et al. (238).
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Figure 7. Type 2 diabetes is an aging-associated disease.

The prevalence of diabetes increases with age, and is substantially increased in the 65 and 

older population as compared to the 45 – 64 year old population (65).

Teaching points: The prevalence of diabetes increases with age and is nearly doubled in the 

65 and older population as compared to the 45 – 64 year old population (65). Aging is also 

associated with insulin resistance that may be largely explained by a shift in adiposity from 

subcutaneous to visceral depots and an increase in ectopic fat accumulation.
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Figure 8. Metabolic characterization of obesity, metabolically healthy obesity (MHO), and 
lipodystrophy.

Metabolically functional, healthy adipose tissue may be a key determinant of overall 

metabolic health. Although all obese individuals are characterized by excess adiposity, not 

all obese individuals develop metabolic dysfunction. An estimated 10 – 30% of the obese 

population may be metabolically healthy and exhibit reduced ectopic fat accumulation and 

are more insulin sensitive compared to metabolically unhealthy obese individuals (44, 45). 

Lipodystrophy is characterized by reduced adiposity but is accompanied by metabolic 

dysfunction including ectopic fat deposition and severe insulin resistance (140). The 

metabolic differences among obese, MHO, and lipodystrophic populations reveal that total 

adiposity is not likely the major determinant of metabolic health but rather that 

metabolically functional adipose tissue that maintains insulin sensitivity is a major 

contributor to whole-body metabolic health.

Teaching points: The study of obesity, metabolically healthy obesity (MHO), and 

lipodystrophy reveals that healthy, functional adipose tissue may be a key determinant of 

overall metabolic health. Although all obese individuals are characterized by excess fat 

tissue, not all obese individuals develop metabolic dysfunction such as insulin resistance. A 

small proportion of the obese population maintains a state of metabolic health in which they 

remain more insulin sensitive as compared to metabolically unhealthy obese individuals (44, 

45). Lipodystrophy, on the other hand, is characterized by a reduced amount of adipose 

tissue, but is usually accompanied by ectopic fat deposition and severe insulin resistance 

(140). These examples strongly suggest that total adiposity is not likely the primary 

determinant of metabolic health.
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Figure 9. Adipose tissue inflammation may be a driving factor in the development of systemic 
insulin resistance (IR).

Chronic, low-grade adipose tissue inflammation is associated with the development of 

systemic IR in obesity. There are several mechanisms through which adipose tissue 

inflammation may contribute to IR: a) the secretion of cytokines by obese adipose tissue 

directly contributes to systemic inflammation which is associated with IR; b) adipose tissue-

derived cytokines also impair local adipocyte insulin sensitivity which leads to increased 

lipolysis and secretion of free fatty acids; c) inflamed adipose tissue is also associated with 

reduced secretion of the insulin-sensitizing adipokine adiponectin. Adiponectin receptors 

contain intrinsic ceramidase activity, and reduced adiponectin as well as increased pro-

inflammatory cytokine signaling may lead to increased levels of ceramides which are 

associated with adipose tissue inflammation and insulin resistance; d) elevated circulating 

free fatty acids and reduced adiponectin are associated with increased ectopic fat deposition. 

Hepatic and skeletal muscle fat accumulation are associated with impaired insulin signaling 

and systemic IR.

Teaching points: Chronic, low-grade adipose tissue inflammation is associated with the 

development of systemic IR in obesity. There are several potential mechanisms through 

which adipose tissue inflammation may contribute to the development of IR, including an 

increase in the production and secretion of pro-inflammatory cytokines that directly 

contributes to systemic inflammation and impairs adipocyte insulin sensitivity. IR at the 

level of the adipocyte results in increased lipolysis and secretion of free fatty acids. Adipose 

tissue inflammation is also associated with reduced secretion of the insulin-sensitizing 
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adipokine adiponectin. Reduced adiponectin and increased pro-inflammatory cytokine 

signaling may lead to increased levels of ceramides which are also associated with adipose 

tissue inflammation and insulin resistance. Many of these mechanisms also contribute to the 

development of ectopic fat accumulation, in organs such as the liver and skeletal muscle, 

which is also strongly associated with systemic IR.
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Figure 10. Obesity is associated with adipose tissue inflammation.

The development of chronic, low-grade adipose tissue inflammation is common in obesity.

Teaching points: The development of chronic, low-grade adipose tissue inflammation is 

common in obesity.
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Figure 11. Insulin resistance and adipose tissue inflammation are strongly associated.

Although insulin resistance and adipose tissue inflammation generally characterize obese 

adipose tissue, the direction of causality has not been conclusively determined.

Teaching points: Although insulin resistance and adipose tissue inflammation generally 

characterize obese adipose tissue, the direction of causality has not been conclusively 

determined.
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Figure 12. Key functions of macrophages in adipose tissue physiology.

Leukocytes infiltrating adipose tissue, particularly macrophages, play key roles in processes 

that allow growth of adipose tissue in the context of chronic caloric excess. These include 

the breakdown of extracellular matrix proteins as cells expand and to create room for new 

adipocytes, and laying down new extracellular matrix, processes that are collectively known 

as ‘tissue remodeling’ (A). Macrophages also play a critical role in the formation of new 

blood vessels as the tissue expands, i.e., angiogenesis (B). The activation of inflammatory 

pathways in adipocytes and immune cells (C) also may play an important physiological role, 

because the induction of insulin resistance in adipocytes (D) may serve to limit excessive 

hypertrophy of these cells, which is known to trigger cell death. Macrophages are also able 

to intermittently store lipid (E), which could become important whenever the lipid-storage 

capacity of adipocytes is (temporarily) restricted. And lastly, macrophages play a key role in 

the removal of cellular debris from necrotic or apoptotic adipocytes or senescent cells (F).

Teaching points: Although obesity is associated with the development of chronic, low-grade 

adipose tissue inflammation, the immune cells that infiltrate the adipose tissue perform 

several different functions that allow for healthy expansion of adipose tissue during chronic 

caloric excess. Examples of functions of macrophages in adipose tissue include the 

breakdown of extracellular matrix proteins as cells expand and to create room for new 

adipocytes, and laying down new extracellular matrix, processes that are collectively known 

as ‘tissue remodeling’ (A). Macrophages also play a critical role in the formation of new 

blood vessels as the tissue expands, i.e., angiogenesis (B). The activation of inflammatory 

pathways in adipocytes and immune cells (C) also may play an important physiological role 

because the induction of insulin resistance in adipocytes (D) may serve to limit excessive 

hypertrophy of these cells, which is known to trigger cell death. Macrophages are also able 

to intermittently store lipid (E), which could become important whenever the lipid-storage 
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capacity of adipocytes is (temporarily) restricted. And lastly, macrophages play a key role in 

the removal of cellular debris from necrotic or apoptotic adipocytes or senescent cells (F).
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Figure 13. Adipose tissue inflammation, ectopic fat deposition, and insulin resistance in obesity.

In the context of chronic caloric excess, adipose tissue is challenged to store excess calories 

in the form of TG. This requires either the differentiation of preadipocytes to mature 

adipocytes (hyperplasia) or hypertrophy of existing adipocytes. Currently available evidence 

suggests that the ability of adipose tissue, particularly subcutaneous adipose tissue, to 

expand in a healthy fashion is reliant primarily upon hyperplasia, which prevents excessive 

adipocyte hypertrophy. This is one key differentiating factor between obese individuals that 

remain relatively insulin sensitive (upper panel) from those that become insulin resistant 
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(lower panel). Larger adipocytes are more susceptible to cell death and are more strongly 

associated with immune cell infiltration and activation of pro-inflammatory pathways within 

adipocytes and infiltrating leukocytes. Together these processes promote insulin resistance 

within the expanded adipose tissue. Inflammation and insulin resistance in adipose tissue are 

major contributors to low-grade chronic systemic inflammation, hypoadiponectinemia, and 

an elevated flux of free fatty acids (FFA) to the liver, muscle, and pancreas, eventually 

contributing to excessive ectopic fat storage in these organs. Elevated concentrations of TG 

in liver and muscle are considered a major contributor to insulin resistance in these organs, 

and TG stored in the pancreas may contribute to pancreatic β-cell dysfunction, i.e., the 

inability of the β-cell to fully compensate for insulin resistance. The importance of adipose 

tissue inflammation in driving systemic insulin resistance relative to the other, interlinked 

factors outlined here is currently unclear, particularly in humans.

Teaching points: During chronic caloric excess, a major challenge for adipose tissue is to 

store the excess calories as triglycerides. This requires the adipose tissue to expand, either by 

increasing the number of adipocytes (hyperplasia) or by increasing the size of existing 

adipocytes (hypertrophy). Currently available evidence suggests that the ability of adipose 

tissue, particularly subcutaneous adipose tissue, to expand in a healthy fashion is reliant 

primarily upon hyperplasia. An increase in the number of functional lipid-storing adipocytes 

prevents excessive adipocyte hypertrophy. This is one key differentiating factor between 

obese individuals that remain relatively insulin sensitive (upper panel) from those that 

become insulin resistant (lower panel). Larger adipocytes are more susceptible to cell death 

and are more strongly associated with immune cell infiltration, activation of pro-

inflammatory pathways, and a state of insulin resistance. Inflammation and insulin 

resistance in adipose tissue are major contributors to low-grade chronic systemic 

inflammation, low adiponectin concentrations in the circulation, and an elevated flux of 

adipose tissue-derived free fatty acids (FFA) to organs such as liver, muscle, and pancreas. 

Accumulation of triglycerides in liver and muscle are considered a major contributor to 

insulin resistance in these organs, and triglycerides stored in the pancreas may impair the 

inability of the β-cell to fully compensate for insulin resistance. The importance of adipose 

tissue inflammation in driving systemic insulin resistance relative to the other, interlinked 

factors outlined here is currently unclear, particularly in humans.
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Table 1.

List of abbreviations

AGPAT 1-acylglycerol-3-phosphate acyltransferase

AMPK AMP-activated protein kinase

APPL1 adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1

ATGL adipose triglyceride lipase

ATM adipose tissue macrophages

BAI body adiposity index

BMI body mass index

CCL C-C motif chemokine ligand

CCR C-C motif chemokine receptor

CLS crown-like structures

COX cyclooxygenase

CRP C-reactive protein

CVD cardiovascular disease

DAMP damage-associated molecular pattern

DGAT diacylglycerol acyltransferase

DNL de novo lipogenesis

ER endoplasmic reticulum

FFA free fatty acids

GIR glucose infusion rate

GPAT glycerol-3-phosphate acyltransferase

GWAS genome-wide association study

HFD high-fat diet

HMW high-molecular weight

HOMA homeostatic model assessment

HSL hormone sensitive lipase

IκK inhibitor of κ kinase

IL interleukin

IFN interferon

JNK c-Jun NH2-terminal kinase

KO knockout

LPS lipopolysaccharide

MAPK mitogen-activated protein kinase

MCP-1 monocyte chemoattractant protein-1

MHO metabolically healthy obesity

MIP macrophage inflammatory protein

NAFLD non-alcoholic fatty liver disease

NLRP3 nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3

PAMP pathogen-associated molecular pattern

PPAR peroxisome proliferator-activated receptor

PRR pattern recognition receptors
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RBP retinol binding protein

SAA serum amyloid protein A

SAT subcutaneous adipose tissue

SCD stearoyl-CoA desaturase

SVC stromavascular cell

T2DM type 2 diabetes mellitus

TG triglyceride

TLR toll-like receptor

TNFα tumor necrosis factor-α

TZD thiazolidinedione

UPR unfolded protein response

VAT visceral adipose tissue

VSG vertical sleeve gastrectomy

WC waist circumference

WHR waist to hip ratio

WHtR waist to height ratio
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