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Abstract

Purpose: Tumor androgens in castration-resistant prostate
cancer (CRPC) reflect de novo intratumoral synthesis or adrenal
androgens. We used C.B.-17 SCID mice in which we observed
adrenal CYP17A activity to isolate the impact of adrenal
steroids on CRPC tumors in vivo.

Experimental Design: We evaluated tumor growth and
androgens in LuCaP35CR and LuCaP96CR xenografts in
response to adrenalectomy (ADX).Weassessedprotein expres-
sion of key steroidogenic enzymes in 185 CRPC metastases
from 42 patients.

Results: Adrenal glands of intact and castrated mice ex-
pressed CYP17A. Serum DHEA, androstenedione (AED), and
testosterone (T) in castrated mice became undetectable after
ADX (all P < 0.05). ADX prolonged median survival (days) in
both CRPC models (33 vs. 179; 25 vs. 301) and suppressed
tumor steroids versus castration alone (T 0.64 pg/mg
vs. 0.03 pg/mg; DHT 2.3 pg/mg vs. 0.23 pg/mg; and

T 0.81 pg/mg vs. 0.03 pg/mg, DHT 1.3 pg/mg vs. 0.04 pg/mg;
all P � 0.001). A subset of tumors recurred with increased
steroid levels, and/or induction of androgen receptor (AR),
truncated AR variants, and glucocorticoid receptor (GR).
Metastases from 19 of 35 patients with AR positive tumors
concurrently expressed enzymes for adrenal androgen utili-
zation and nine expressed enzymes for de novo steroidogen-
esis (HSD3B1, CYP17A, AKR1C3, and HSD17B3).

Conclusions: Mice are appropriate for evaluating adrenal
impact of steroidogenesis inhibitors. A subset of ADX-resistant
CRPC tumors demonstrate de novo androgen synthesis. Tumor
growth and androgens were suppressed more strongly by
surgical ADX than prior studies using abiraterone, suggesting
reduction in adrenally-derived androgens beyond that
achieved by abiraterone may have clinical benefit. Proof-of-
concept studies with agents capable of achieving true "non-
surgical ADX" are warranted.

Introduction
Androgen deprivation therapy (ADT) remains front-line treat-

ment for patients with locally recurrent or metastatic prostate
cancer, but patients uniformly progress to castration-resistant
prostate cancer (CRPC). Residual intratumoral androgen are
believed to play a critical role in maintaining ligand-dependent
mechanisms of androgen receptor (AR) activation (1). The

source of residual tissue androgens in castrated patients is
believed to reflect the tumoral uptake and intracellular conversion
of the adrenal androgens such as DHEA-sulfate (DHEAS) to
testosterone (T) and dihydrotestosterone (DHT), and/or the
de novo intratumoral synthesis of androgens from cholesterol or
progesterone precursors (2, 3). CYP17A, expressed in the human
adrenal gland, testis and ovary, is a single enzyme with one
active site that catalyzes sequential but independent hydroxylase
and lyase reactions both of which are required for converting
pregnenolone or progesterone to the adrenal androgens DHEA
or androstenedione (AED), respectively. In particular, circulating
levels of DHEA-S (the primary circulating form of DHEA) in
eugonadal men are extremely high and are not reduced by
standard castration (CX) therapy (4–6).

The contribution of adrenal steroids to CRPC progression is
directly supported by historical case reports documenting clinical
responses to adrenalectomy (ADX) in men with CRPC (7), and
indirectly supported in the modern era by the efficacy of the
CYP17A inhibitor abiraterone (ABI) in decreasing circulating
adrenal androgens and improving overall survival for men with
metastatic prostate cancer in the androgen sensitive and CRPC
settings (8, 9). A direct impact of adrenal CYP17A inhibition on
suppressing prostate tissue androgens can be inferred from the
decrease in prostate androgen levels achieved by addition of ABI
to standard ADT in the neoadjuvant setting, wherein tumoral
CYP17A expression and de novo intratumoral androgen synthesis
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has not yet been upregulated (4, 10, 11). However, the antitumor
activity of ABI in the setting of CRPCmay also occur at the level of
the tumor via inhibition of intratumoral CYP17A activity or via
the direct anti-AR activity of ABI (2, 3, 12). Thus, the antitumor
activity of ABI cannot necessarily be ascribed to inhibition of
adrenal androgen synthesis alone, and the specific contribution of
adrenally-derived steroids to intratumoral androgens and CRPC
progression remains unproven.

The role of adrenal steroids in xenograftmodels ofCRPC grown
in castratedmice has not been previously investigated due to early
literature suggesting a lack of functional CYP17A in rodent
adrenal glands (13–17). Accordingly, the source of tumor andro-
gens detected in patient-derived xenograft (PDX)models of CRPC
grown in castratedmalemice has been attributed solely to de novo
intratumoral androgen synthesis (18). However, both historical
studies using radioimmunoassays (RIA) and more recent studies
using mass spectrometry (MS) have suggested functional adrenal
CYP17A activity in rats and mice, including residual prostate
androgens in castrated rats that were eliminated by ADX (19–
23). Although the physiologic contribution of these steroid levels
to normal prostatic biology was considered negligible (22, 23),
this does not rule out a potential pathologic role in stimulating
prostate tumor cells that are hypersensitive to androgen stimu-
lation.We sought to experimentally demonstrate the contribution
of adrenal steroids to intratumoral androgens and tumor pro-
gression in PDXmodels of CRPC grown in castrated male C.B-17
SCID mice in which we demonstrate adrenal CYP17A expression
and activity.

Materials and Methods
Generation of Murine Samples from Intact, Castrated, and
Adrenalectomized Mice

All experiments involving animals were performed in accor-
dance with protocols approved by the Fred Hutchinson Center
Institutional Animal Care Use Committee (file 1775) and recom-
mendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. All surgery was

carried out under isofluorane anesthesia. All studies utilizedmale
C.B-17 SCID mice (Taconic). Serum samples were collected by
retro-orbital bleed from non-tumor bearing 18- to 20-week-old
intact (eugonadal) male mice, an age-matched cohort of mice at
12 weeks after CX (CX performed at 6–8 weeks), and an age-
matched cohort at 12 weeks after both CX and ADX. Serum was
obtained from a separate cohort of intact and castratedmalemice
for independentmeasurement of serum steroids in the laboratory
of Dr. Penning. Adrenal glands, kidney, liver, and quadriceps
muscle were resected for tissue steroid measurements. Drinking
water was replaced with normal saline supplemented with cor-
ticosterone (Sigma; 25 mg/mL in 0.2% ethanol–0.5% NaCl) at
time of ADX (24). Adrenal glands for assessment of CYP17A
methylation and transcript profilingwere resected from intact and
castrated male mice ranging in age from 12 to 36 weeks (3–8
months) to mirror the ages spanning the course of a typical
xenograft study.

LuCaP Human Prostate Cancer PDX Models and CRPC Tissues
All studies utilizing human tissue sources were conducted in

accordance with recognized ethical guidelines (Belmont Report
and U.S. Common Rule). The LuCaP35CR and LuCaP96CR lines
are CX-resistant (CR) prostate cancer PDX models expressing
wild-type AR established as part of the University of Washington
Medical Center (UWMC) Genitourinary Biorepository as previ-
ously described (21). Cell line authentication is regularly per-
formed via STRprofiling. CastratedmaleC.B-17 SCIDmice aged 8
to 10 weeks were subcutaneously implanted in bilateral flanks
with 30 mm3 tumor pieces. Tumor volume was measured three
times per week and calculated as length � (width2)/ 2. When
tumors reached 200 to 250 mm3, drinking water was replaced
with normal saline supplemented with corticosterone as
described above, and mice were randomized to no further treat-
ment (CX alone) or to undergo ADX (CXplus ADX). Tumors from
n ¼ 4 mice in each PDX model were harvested at 21 to 30 days
following ADX. Mice were monitored until tumors reached
approximately 1,000mm3 (endof study, EOS)or animals became
compromised, at which point animals were euthanized according
to institutional protocol and tumors harvested for flash freezing
and formalin fixation. Because of their prolonged time to tumor
regrowth, a subset of mice in the ADX plus CX arms were
euthanized and the data censored prior to reaching the size
endpoint due to concerns for animal health.

In the LuCaP96CR study, n¼ 8micewere bilaterally implanted
to yield approximately nine evaluable tumors per arm for long
term follow-up (�60% take rate). Based on 25% variation in re-
growth rates, nine tumors per arm is predicted to provide 80%
powerwith two-tailedaof 0.05 todetect a 35%difference inmean
time to regrowth (defined as 750 mm3). Because of the unex-
pectedly prolonged time to regrowth following CX plus ADX in
this model (with interval attrition of mice due to health reasons)
animal number in the combined treatment arm of the
LuCaP35CR study was increased to n ¼ 12.

Metastatic CRPC tissues for creation of the CRPC tissue micro-
arrays (TMA)were obtained as part of the UWMCProstate Cancer
Rapid Autopsy Program, and comprised metastases from 42
patients (including 65 soft tissuemetastases and 120 bonemetas-
tases, with up to four metastatic sites from each patient) as
previously described (25, 26). The UWMC Institutional Review
Board approved all procedures involving human subjects, and all
subjects signed written informed consent.

Translational Relevance

Response to the adrenal CYP17A inhibitor abiraterone in
menwith castration-resistant prostate cancer (CRPC) does not
isolate the contribution of adrenally-derived steroids, as inhi-
bition of intratumoral CYP17A and/or direct anti-AR effects
cannot be excluded. We show C.B-17 SCIDmice have adrenal
CYP17A and are appropriate for testing inhibitors of adrenal
steroidogenesis. Adrenalectomy suppressed tumor growth and
androgens in two xenograft models of CRPC, and did somore
strongly thanprior studies using abiraterone. This suggests that
reduction in adrenally-derived androgens beyond that
achieved by abiraterone may have clinical benefit, and that
proof of concept studies with agents that block ligand synthe-
sis upstream of CYP17A, such as novel CYP11A inhibitors, are
warranted. A subset of adrenalectomy-resistant tumors dem-
onstrate de novo androgen synthesis and/or induction of AR,
truncated AR variants, and GR, suggesting co-targeting AR or
GRwith abrogation of ligand synthesis will still be required for
optimal clinical activity.
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Pyrosequencing, Western Blotting, and Quantitative RT-PCR
Detailed methods for assessment of adrenal CYP17A methyl-

ation status by pyrosequencing, adrenal CYP17A protein expres-

sion by Western blotting, and quantitative RT-PCR in murine
adrenal glands and xenograft tissues are given in the Supplemen-
tary Methods and Supplementary Table S1.
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Figure 1.

Serum steroid levels and adrenal CYP17A expression in male C.B-17 SCID mice. A–F, Levels of the indicated steroids were measured by mass spectrometry in
eugonadal male mice (intact, white bars, n ¼ 8) and age-matched mice at 12 weeks after CX alone (gray bars, n ¼ 7) or CX þ ADX (blue bars, n ¼ 10). G,
Methylation status of CYP17A in adrenal glands resected from intact (age 3months) and castratedmalemice (age 1–3months), compared with amethylation control
ranging from 100% methylated to unmethylated (0%). H, Protein levels of CYP17A by Western blot analysis in adrenal glands resected from intact and
castratedmalemice at the indicated age (inmonths). I, Levels of the indicated steroids in adrenal glands resected from (intact, white bars) and age-matchedmice at
12 weeks after CX alone (gray bars). Data in A–F and I are shown as mean and SD and represent a minimum of six animals per group. P values calculated using the
Mann–Whitney rank test between the indicated groups (P values <0.05 and <0.10 were considered as significant and trending towards significance, respectively).
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Steroid Measurements
Detailed methods for determination of steroids in serum and

tissue samples by mass spectrometry are given in the Supplemen-
tary Methods. The lower limits of quantitation (LLOQ) for ster-
oids in serum were 0.01 ng/mL for pregnenolone, progesterone,
AED, T, and androsterone; 0.02 ng/mL for DHEA and cortisol,
0.04 ng/mL for DHT and corticosterone, and 0.002 ng/mL for
deoxycorticosterone. The LLOQ for steroids in tissue was 0.02 pg/
mg for progesterone, AED, DHT, and T; 0.04 pg/mg for DHEA;
and 0.08 pg/mg for pregnenolone. Methods for determination of
steroids in serum by the Penning Laboratory are as previously
published (27).

IHC and Image Analysis
Details for creation of the PDX TMA are given in the Sup-

plementary Methods. The CRPC TMA was created as previously
published (26). Detailed methods for immunostaining and
specific antibody clones are given in the Supplementary Meth-
ods and Supplementary Table S2. Quantitative image analysis
of PDX TMA slides stained for AR and ARV7 was performed
using metrics we have previously described and further detailed
in the Supplementary Methods (28). Scoring for all other stains
carried out in a blinded fashion by an experienced pathologist
(L.T. or M.T.). A quasi-continuous IHC score was calculated
by multiplying each intensity level (0 for no stain, 1 for faint
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Figure 2.

ImpactofADXongrowthofCRPCtumormodels invivo.A, Individual tumorvolumecurves for theLuCaP96CRPDXmodel inmice treatedwithCXalone(black curves) or
CX þ ADX (blue curves). B, Kaplan–Meier analysis of progression-free survival in CX vs. CX þ ADX treated LuCaP96CR tumors (defined as tumor size <750 mm3)
with comparison of curves using the Mantel–Haenszel log-rank test. C, Individual tumor growth curves for the LuCaP35CR PDX model in mice treated with
CX (black curves) or CXþ ADX, amongwhich a subset of tumors regrew slowly (slow, blue curves), whereas a subset (rapid, red curves) regrewwith kinetics similar to
the CX only group (black curves). D, Kaplan–Meier analysis of progression-free survival in CX vs. CX þ ADX treated LuCaP35CR tumors. E, Kaplan–Meier analysis of
progression-free survival in LuCaP35CR tumors treated with CXþ ADX, comparing median survival in the tumor subsets with slow (blue) versus rapid (red) regrowth.
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stain, and 2 for intense stain) by the corresponding percentage
of cells (0–100%) at the corresponding intensity and totaling
the results. For all stains data from the two TMA spots per
sample was averaged.

Statistical Analyses
The nonparametric Mann–Whitney rank test was used for all

two sample comparisons. P values < 0.05 were considered sig-
nificant and those <0.10 as trending toward significance. Progres-
sion-free survival in CX versus CX plus ADX treatedmice (defined
as tumor size <750 mm3) was determined via Kaplan–Meier
analysis with comparison of curves using the Mantel–Haenszel
log-rank test. Statistical analyses were carried out using GraphPad
Prism Software.

Results
Impact of ADX on Circulating Steroid Levels in Castrated Mice

To determine the contribution of adrenal androgens to
circulating serum levels in castrated mice, we evaluated steroid
levels in serum from intact (INT) male C.B-17SCID mice, and
from age-matched mice 12 weeks after CX or after CX plus ADX
(Fig. 1). As expected, median levels of pregnenolone and
progesterone in serum were similar in castrated versus intact
mice [0.52 and 0.48 ng/mL pregnenolone, and 1.9 ng/mL vs.
3.2 ng/mL progesterone, p ¼ not significant (ns) for both] and
were significantly decreased following ADX [to 0.12 ng/mL, P ¼
0.002 pregnenolone, and to below detectable limits (bdl) for
progesterone, P < 0.001; Fig. 1A and B], consistent with the
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Impact of adrenal inhibition on tumor steroid levels in CRPC tumor models in vivo. Levels of the indicated steroids were measured by mass spectrometry in tumors
resected from the (A) LuCaP96CR and (B) LuCaP35CR PDX studies shown in Fig. 2, in mice treated with CX alone (gray bars) or CX þ ADX (blue bars), at short
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adrenal origin of these steroids. Notably, median levels of
DHEA in castrate mice were also similar to those in intact
mice (0.03 ng/mL vs. 0.04 ng/mL, p ¼ ns) and decreased to the
limit of detection following ADX (to 0.02 ng/mL P ¼
0.001; Fig. 1C). Following CX median levels of AED and
T observed in intact mice were decreased but detectable
(from 0.03 to 0.01 ng/mL, P ¼ 0.08 AED; from 1.9 to 0.02
ng/mL, P < 0.001 T), only becoming undetectable following
ADX (P ¼ 0.05 and 0.004, respectively; Fig. 1D and E), whereas
levels of DHT in intact mice (0.15 ng/mL) became undetect-
able following CX alone (P ¼ 0.05; Fig. 1F). Serum levels of
DHEA, AED, T, and DHT from a separate cohort of intact and
6-week castrated male C.B-17 mice, were independently mea-
sured in the laboratory of Dr. Penning, and were consistent
with our measurements, with the higher castrate T levels in the
latter likely reflecting the shorter duration of CX (Supplemen-
tary Table S3).

Consistent with literature documenting corticosterone as the
primary circulating mineralocorticoid in mice (13, 14), circulat-
ing levels of cortisol were undetectable (not shown), whereas
levels of 11-deoxycorticosterone were similar in intact and
castrated mice (2.6 ng/dL vs. 4.8 ng/mL, p ¼ ns) and became
significantly decreased following ADX (0.005 ng/dL, P < 0.001;
Supplementary Fig. S1A). Because of the requirement for miner-
alocorticoid replacement (administered as corticosterone in
drinking water), levels of corticosterone in the adrenalectomized
mice were similar to those in the intact and castrated mice;
Supplementary Fig. S1B).

Expression of CYP17A and Steroid Levels in Adrenal Glands of
Castrated Mice

Previously published data in rats and in the mouse adreno-
cortical Y1 cell line suggested epigenetic regulation of CYP17A
expression in adrenal cells via methylation, possibly via activity
of cAMP responsive element modulator (CREM) isoforms
(29–31). However, we show that CpG islands in the CYP17A
promoter DNA were unmethylated (Fig. 1G) and protein
expression was detectable by Western blot analysis (Fig. 1H)
in adrenal glands of intact and castrated mice ranging in age
from 12 to 36 months (3–8 months; to mirror the ages
spanning the course of a typical xenograft study). Transcripts
of steroidogenic genes required for de novo and adrenal andro-

gen synthesis (Star, Cyp11a, Cyp17a, Hsd3b1) and of Srd5a
(required for production of DHT) were detectable in adrenal
glands of intact mice and were significantly increased after
CX (Supplementary Fig. S1C), as observed previously in some
rodent studies (19, 32, 33). Notably, adrenal expression of
melanocortin 2 receptor (Mc2r; also known as adrenocortico-
tropic hormone receptor; Acth) was also increased following
CX, and is consistent with response to Acth as a driver of
adrenal steroidogenesis in the castrate setting (sufficient serum
for ACTH measurements was not available).

To confirm the functional significance of adrenal steroidogenic
enzyme expression, we evaluated steroid levels in adrenal glands
resected from eugonadal mice and age-matched castrated mice
(12 weeks after CX; Fig. 1I). As expected, median levels of
pregnenolone (4,238 pg/mg) and progesterone (1,876 mg/pg)
were very high in adrenal glands of intact mice and remained
unchanged by CX. Notably, median levels of AED (24.6 pg/mg)
and T (10 pg/mg) in adrenal glands from intact mice were
substantial, while levels of DHEA (0.7 pg/mg), DHT (1.7 pg/mg),
and androsterone (1.4 pg/mL) were easily measurable. Similar to
pregnenolone and progesterone, adrenal levels of AED, T, and
DHT were also unchanged by CX, suggesting that testicular
steroids do not serve as a source of these androgens detected
within the adrenal gland. In contrast, median levels of andros-
terone in the adrenal gland were substantially decreased after CX,
suggesting a testicular contribution to this steroid level (P ¼
0.095).

As serum androgen levels in castrated mice may be influ-
enced by steroid production in other organs with steroidogenic
potential, we assessed steroid levels in liver, kidney and muscle
(Supplementary Fig. S2; refs. 34, 35). Notably, levels of preg-
nenolone, progesterone, AED, T, and DHT in the adrenal gland
of castrated mice were 2–3 orders of magnitude higher than
levels in liver, kidney and muscle (Supplementary Fig. S2A–
S2F), suggesting active production specific to the adrenal gland.
Moreover, while CX did not affect steroid levels in the adrenal
gland (other than androsterone), it significantly decreased
levels of AED in liver (P ¼ 0.10; Supplementary Fig. S2D), of
T in liver, kidney and muscle (P ¼ 0.013, 0.05, 0.028; Supple-
mentary Fig. S2E), of DHT in kidney (P ¼ 0.028; Supple-
mentary Fig. S2F), and of androsterone in liver (P ¼ 0.039;
Supplementary Fig. S2G). These observations demonstrate

Table 1. Change in transcript levels of AR, AR-regulated genes, GR, and steroidogenic enzymes in CRPC tumors after CX vs. CX þ ADX

LuCaP96CR LuCaP35CR
Gene transcript Fold P valuea Fold P valuea

AR 1.6 ns 3.5 <0.001
V7 4.9 0.005 3.6 0.004
GR (NR3C1) 3.6 0.028 1.6 0.017
PSA �2.6 0.009 �1.0 ns
TMPRSS2 �1.3 ns �1.4 ns
FKBP5 2.9 0.068 1.3 ns
CYP17A1 �1.2 ns �2.1 ns
CYB5A 2.1 0.018 3.8 <0.001
NR5A1 2.1 0.026 3.1 0.001
HSD3B1 1.0 ns �1.1 ns
AKR1C3 1.3 ns 8.6 <0.001
HSD17B3 �2.1 ns 1.9 0.06
SRD5A1 3.1 0.018 1.8 <0.001
UGT2B15 4.9 0.014 1.4 ns
UGT2B17 �1.4 0.010 Deleted
�P values from nonparametric Mann–Whitney test comparing end of study tumors treated with CX alone vs. CX þ ADX.
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the testicular contribution to steroid levels detected in liver,
kidney, and muscle, and support the hypothesis that circulating
steroid levels observed in castrated mice are primarily derived
from the adrenal gland rather than other organs.

Impact of ADX on Tumor Growth and Steroid Levels in
CX-Resistant PDX Models

To evaluate the functional relevance of adrenally-derived ster-
oids in CRPC tumor models in vivo, we determined the impact of
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Figure 4.

Impact of ADX on IHC staining for AR, ARV7, PSA, and GR in CRPC tumor models in vivo. IHC staining for the indicated protein in tumors resected from
the (A) LuCaP96CR and (B) LuCaP35CR PDX studies shown in Fig. 3 in mice treated with CX alone (gray bars) or CXþADX (blue bars), at short time points (shaded
blue bars) or at end of study (EOS, open blue bars). For LuCaP35CR, the subset of EOS tumors that regrew slowly (S, blue dots) versus rapidly (R, red
dots) are indicated. Staining for AR, ARV7, and PSA quantified as the average nuclear (AR, ARV7) or cytoplasmic (PSA) staining intensity within tumor epithelium
multiplied by the percentage of positive nuclei (AR, ARV7) or cells with positive cytoplasm (PSA) in tumor epithelium (denoted as AvgNuclearOD�%PosNuclei or
AvgCytoOD�%PosCyto). Semiquantitative scoring for nuclear GR expression calculated by multiplying the intensity level (0 for no stain, 1 for faint stain,
and 2 for intense stain) by the percentage of cells (0–100%) at each intensity level and totaling the results, ranging from 0 (no staining in any cell) to 200 (intense
staining in 100% of the cells). Data are shown as mean and SD. P values calculated using the Mann–Whitney rank test between the indicated groups
(P values <0.05 and <0.10 were considered as significant and trending towards significance, respectively). C, Representative examples of the indicated stains for
LuCaP96CR (top) and LuCaP35CR (bottom) PDX models, showing each stain in an EOS tumor from a CX only or CX þ ADX treatment arm.
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ADX on suppressing tumor growth and intratumoral androgens
in the LuCaP96CR and LuCaP35CR PDX models in castrated C.
B-17 SCID mice. In the LuCaP96CR PDX model (Fig. 2A), tumor
regrowthwasmarkedly delayed by CX plus ADX (CXþADX, blue
curves) compared with CX alone (CX, black curves), with an
increase in median survival (to tumor endpoint of 750 mm3)
from 25 days (in the CX group) to 300 days (in the CX þ ADX
group; P ¼ 0.0002; Fig. 2B). In the LuCaP35CR model (Fig. 2C),
tumor growth was markedly delayed by CX þ ADX in a subset of
tumors (slow, blue curves), whereas a subset (rapid, red curves)
regrew with kinetics similar to the CX only group (black curves).
Median survival in the CX only versus the entire CXþADX cohort
was delayed from 33 to 179 days (P ¼ 0.005; Fig. 2D), with the
growth prolongation primarily contributed by the slow subset of
tumors (median survival not reached vs. 66 days in the Rapid
group, P ¼ 0.008; Fig. 2E).

In LuCaP96CR median intratumor levels of pregnenolone,
progesterone, T, and DHT were decreased by an order of magni-
tude at 30 days after ADX þ CX (ADX d30) compared with CX
alone (pregnenolone 24.3 pg/mg vs, 2.7 pg/mg, P ¼ 0.008 (not
shown); progesterone 1.4 pg/mg vs. 0.03 pg/mg, P¼ 0.001; T 0.9
pg/mg vs. 0.03 pg/mg, P¼ 0.001; DHT 1.2 pg/mg vs. 0.03 pg/mg,
P¼ 0.001; Fig. 3A). Tumor levels of DHEA and AEDwere lower at
ADX d30 versus CX alone, although the decreases did not reach
statistical significance (p¼ ns for both). Although levels of DHEA,
AED, T, andDHT remained suppressed near the limit of detection
in the end of study (EOS) tumors that regrew after CX þ ADX
(ADX EOS), progesterone levels in these EOS tumors were
increased compared with tumors resected at day 30 after ADX
(0.03 pg/mg vs. 0.125 pg/mg, P ¼ 0.0317), although still lower
than tumors in the CX only group.

In LuCaP35CR median intratumor levels of progesterone, T
and DHT were also decreased by an order of magnitude by 21
days after ADX (ADX d21) compared with CX alone (proges-
terone 0.21 pg/mg vs. 0.02 pg/mg, P ¼ 0.002; T 0.6 pg/mg vs.
0.02 pg/mg, P ¼ 0.0004; DHT 3.2 pg/mg vs. 0.25 pg/mg, P ¼
0.0004; Fig. 3B), whereas decreases in AED trended toward
significance (0.03 pg/mg vs. 0.02 pg/mg, P ¼ 0.07, respective-
ly). Steroid levels in tumors that regrew after CX þ ADX (ADX
EOS) were significantly below those in the CX alone group for
progesterone, DHEA, T, and DHT (P ¼ 0.056, 0.02, 0.001, and
0.001, respectively); however, median levels in tumors that
regrew rapidly (red dots in Fig. 3B) trended toward being higher
than levels in tumors that regrew slowly (blue dots) for pro-
gesterone (P ¼ 0.07), T (P ¼ 0.03), and DHT (P ¼ 0.17),
suggesting the more rapid regrowth in these tumors was in part
stimulated by the elevation in tumor androgens. In both
models, serum androgens levels following ADX were largely
below detectable limits (not shown), precluding assessment of
correlation with tumor androgens.

Notably, surgical ADX showed a significantly more profound
impact on suppressing tumor androgens and CRPC tumor
growth than did previously published studies from our group
using ABI, in which LuCaP96CR was classified as an interme-
diate responder, and LuCaP35CR showed no response in one
study and moderate response in another (18, 36). Compared
with these studies, ADX more consistently suppressed tumor
levels of pregnenolone, progesterone, DHEA, and AED (blue
bars, Supplementary Fig. S3A–S3D) than did ABI (red bars),
whereas in at least in one model (LuCaP35CR) ABI was asso-
ciated with increases in pregnenolone and progesterone

(immediately upstream of the first enzymatic function of
CYP17A inhibited by ABI), and DHEA (immediately upstream
of HSD3B1, which is also inhibited by ABI; ref. 37). Similarly,
ABI clearly suppressed EOS levels of T and DHT (red bars, Fig.
3C and D); however, ADX (blue bars) appeared to do so more
consistently.

Induction of AR, ARV7, and GR in ADX-Resistant CRPC
We determined the impact of ADX on key mechanisms of

resistance identified in treatment refractory CRPC including
expression of AR, the prevalent AR splice variant—ARV7, gluco-
corticoid receptor (GR, NR3C1) and steroidogenic enzymes, as
potential mechanisms driving tumor re-growth under the strin-
gent suppression of ligand levels observed in the setting of CX þ
ADX (3, 18, 36).

In LuCaP96CR, we observed no change in transcript levels of
AR, but a significant induction of ARV7 (4.9-fold, P ¼ 0.005),
decrease in PSA (�2.6-fold, P ¼ 0.009), and increase in expres-
sion of GR (3.6-fold, P ¼ 0.028) in the EOS tumors (Table 1).
IHC staining of a TMA created from this PDX model (Fig. 4A)
similarly showed no change in AR following ADX, an increase
in nuclear ARV7 staining (P ¼ 0.08 at EOS, P ¼ 0.05 for EOS vs.
ADX d30), and a decrease in cytoplasmic PSA (P ¼ 0.016 at
ADX d30, P ¼ 0.035 at EOS). However, an increase in nuclear
GR staining was not observed, which instead showed an appar-
ent decrease (P ¼ 0.025 at ADX d30). These data suggest induc-
tion of ARV7 as a significant mechanism of resistance in this
PDX model, potentially accounting for the observation that
transcript levels of some androgen regulated genes (e.g.,
TMPRSS2 and FKBP5) were not necessarily decreased in the
EOS tumors.

In LuCaP35CR, we observed a significant induction of AR
(3.5-fold, P � 0.001), ARV7 (3.6-fold, P ¼ 0.004), and GR
message (1.6-fold, P¼ 0.017) in the EOS tumors (Table 1). There
was no change in the androgen-regulated genes PSA, TMPRSS2, or
FKBP5 at the transcript level in this PDX model, although IHC
staining (Fig. 4B) did show a decrease in cytoplasmic PSA (at
ADX d21 and at EOS, P ¼ 0.0016 for both). Consistent with the
transcript results, we observed an increase in nuclear AR, ARV7,
andGR staining in thismodel (Fig. 4B) that wasmoderatelymore
significant at ADX d21 (P¼ 0.004, 0.029, and 0.025, respectively)
than in the EOS tumors (P¼ 0.106, 0.095, and 0.15, respectively).
We did not observe significant differences in AR, PSA, or GR
staining in the EOS tumors that re-grew rapidly (red dots, Fig. 4B)
versus those that regrew slowly (blue dots). However, the increase
in ARV7 seen at ADX d21 is appeared to be sustained in the EOS
tumors that recurred with low androgen levels (blue dots, here
and in EOS T and DHT levels, Fig 3B), but not in the EOS tumors
that recurred with an increase in tumor androgens (red dots, here
and in EOS T and DHT levels, Fig. 3B). These data suggest
induction of AR, ARV7, and GR as potentially significant mech-
anism of resistance in this model, with ARV7 playing a more
important role in tumors that regrew without an increase in
intratumoral androgen levels, consistent with the known inverse
relationship between androgen levels and ARV7 expression (38).
Of note, corticosterone supplementation itself had no impact on
tumor growth (Supplementary Fig. S4A) or IHC expression of GR
(Supplementary Fig. S4B) or of AR and ARV7 (not shown). This
suggests the induction of GR expression in the ADX-treated
tumors in this model reflects the impact of ADX and not the
replacement corticosterone dosing.
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Figure 5.

Expression of steroidogenic enzymes in CRPC metastases. The heatmap summarizes staining observed on a TMA containing multiple bone and soft
tissue CRPC metastases from 43 men collected via rapid autopsy. Each column represents serial staining of the same metastasis for the indicated
proteins, ranging from absent expression (dark blue) to high expression (dark red). Vertical lines demarcate the set of metastases from each patient.
Tumors are grouped based on negative (A) or positive (B, C) AR expression (in the majority of tumors in an individual patient), and then by steroidogenic
potential. A, AR negative tumors with negative PSA staining and low expression of steroidogenic enzymes. Tumors from the two patients indicated
had neuroendocrine histology. B, AR positive tumors with negative (top) or positive (bottom) PSA expression and low steroidogenic potential (based on
low HSD3B1 expression). C, AR positive tumors with high steroidogenic potential. Tumors are grouped based on potential for adrenal androgen
conversion (coordinate expression of HSD3B1 and HSD17B3/AKR1C3 with low CYP17A1, top), or potential for de novo steroidogenesis (coordinate
expression of CYP17A1, HSD3B1, and HSD17B3/AKR1C3, bottom). Among the group with high steroidogenic potential, patients in whom the soft
tissue metastases appear distinctly different than the bone metastases are indicated in red. Representative IHC stains of the metastases labeled a
to e in C are shown in Supplementary Fig. S6.
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Induction of Steroidogenic Enzyme Expression in
ADX-Resistant CRPC

Consistent with the increased intratumoral levels of T and
DHT observed in a subset of the ADX recurrent LuCaP35CR
tumors (red dots, Fig. 3B), we observed increased expression of
several genes involved in mediating steroidogenic enzyme
activity (Table 1; see Supplementary Fig. S5 for schema of
androgen biosynthesis enzymes), including CYB5A (enhances
activity of CYP17A and HSD3B, 3.8-fold P < 0.001), NR5A1
(transcriptional regulator of multiple steroidogenic genes,
3.1-fold P ¼ 0.001), AKR1C3 (8.3-fold P < 0.001), HSD17B3
(1.9-fold P ¼ 0.06), and SRD5A1 (1.8-fold P < 0.001; refs. 39,
40). In contrast, although ADX EOS tumors in the LuCaP96
model also showed increases in expression of CYB5A1 and
NR5A1 (two-fold for both, P ¼ 0.018 and 0.026, respectively)
and SRD5A1 (3.1-fold P ¼ 0.018), they did not show induction
of the steroid producing genes AKR1C3 or HSD17B3 but rather
induction of UGT2B15 (4.9-fold P ¼ 0.014), which conjugates
T and DHT for excretion, potentially explaining the differences
in androgen levels observed in the two models.

Expression of Steroidogenic Enzyme in CRPC Metastases
To further assess the translational relevance of the steroidogenic

enzyme transcripts observed in the ADX-treated tumors, we
evaluated AR axis proteins (AR, PSA) and key enzymes required
for de novo steroid synthesis and/or conversion of adrenal andro-
gens (HSD3B1, CYP17A1, AKR1C3, and HSD17B3; Supplemen-
tary Fig. S5) in a TMA of bone and soft tissue CRPC metastases
from 43 patients (two to six metastases per patient). Despite
some degree of intrapatient heterogeneity, grouping of tumors by
patient of origin revealed several distinct staining profiles, includ-
ing subsets of patients with (i) AR� and PSA� tumors with low
expression of steroidogenic enzymes (Fig. 5A), (ii) ARþ tumors
with negative (Fig. 5B top) or positive (Fig. 5B bottom) PSA
expression and low steroidogenic potential (based on generally
low expression of HSD3B1, which is required for both de novo
synthesis and conversion of adrenal androgen), and (iii) ARþ and
PSAþ tumors with high steroidogenic potential (Fig. 5C, based on
moderate to high expression of HSD3B1). Tumors in the latter
group can be further subdivided based on potential for adrenal
androgen conversion [e.g., coordinate expression of HSD3B1,
HSD17B3/AKR1C3 (which catalyze the same reaction) but low
CYP17A1; Fig. 5C, top], or potential for de novo steroidogenesis (e.
g., coordinate expression HSD3B1, HSD17B3/AKR1C3, and high
CYP17A; Fig. 5C, bottom). Representative images of tumors
showing coordinate expression of HSD3B1, HSD17B3/AKR1C3,
and CYP17A are shown in Supplementary Fig. S6. As we have
previously published, a subset of these tumors show loss of C
terminal AR staining, consistentwith the presence of truncated AR
variant species (41).

Discussion
Clinical studies of ABI in men with metastatic prostate cancer

are consistent with an important role for CYP17A-mediated
adrenal androgen production in CRPC progression, particularly
as higher pretreatment levels of circulating adrenal androgens
associate with better response to CYP17A inhibition (42–44).
However, inhibition of intratumoral CYP17A activity is not
excluded, and ABI and its metabolites can directly target the AR
(12). Thus, these studies do not actually isolate the specific

contribution of adrenal steroids in CRPC progression. It has been
widely held that rodent adrenal glands do not produce adrenal
androgens and that rodent models cannot, therefore, be used to
test this facet of prostate cancer biology. We now show that
adrenal CYP17A is present in C.B-17 SCID mice, that steroids
downstream of CYP17A are detectable in the adrenal glands and
serum of castrated mice, and that surgical ADX markedly sup-
presses serum and tumor steroid levels and delays tumor re-
growth beyond that observed with CX alone in two PDX models
of CRPC. This is the first study to demonstrate the specific impact
of adrenal steroids on intratumoral androgens and CRPC tumor
growth in vivo.

Functional CYP17A is transiently present in rodent adrenal
glands during the fetal/early postnatal period (45, 46) and then
decreases, likely via epigenetic methylation and repression (29).
This phenomenon is not universal however, as we show that
adrenal CYP17A DNA is unmethylated and detectable in C.B-17
SCID mice, consistent with the spiny mouse (Acomys cahirinus)
that is known to express functional CYP17A (46). Gonadectomy
induces adrenal gland expression of steroidogenic genes and
increases circulating levels of AED and T in certain inbred mouse
strains (33). We did not observe differences in CYP17A methyl-
ation status or in transcript and protein levels between intact and
castrated mice, although we did observe statistically significant
increases in transcript expression of STAR, CYP11A, HSD3B1, and
SRD5A2 at 12 weeks following CX.

Importantly, we show levels of adrenal androgens (DHEA,
AED) and downstream metabolites (T, DHT, and androster-
one) are easily detectable in adrenal glands of intact mice and
do not decrease following CX. The adrenal levels of DHEA (0.7
pg/mg, range 0.44–1.2 pg/mg) and AED (44 pg/mg, range 4–97
pg/mg) in our study are consistent with the findings of Hu and
colleagues who reported levels of DHEA (�4–7 pg/mg) and
AED (�2–4 pg/mg) in the adrenal glands of rats (Wistar, via
GC/MS) 8 weeks after CX, equivalent to levels in intact rats
(23). Moreover, we show adrenal levels of AED, T, and DHT in
castrated mice to be nearly 2 orders of magnitude higher than in
kidney, liver, or muscle (other organs shown to have steroido-
genic capacity in mice; refs. 34, 35), suggesting active produc-
tion specific to the adrenal gland.

An existing body of data, published primarily in the endocrine
literature and not well-recognized in the prostate cancer field,
supports functional adrenal CYP17A activity in adult rodents and
may reflect strain-specific differences. Although some rodent
adrenal suspension studies failed to detect production of 17-
hydroxyprogesterone or AED (products of CYP17A hydroxylase
and lyase activity, respectively) via RIA (13), others did measure
AED or DHEA (via RIA; refs. 46, 47) or showed metabolism of
[3H]DHEA or [3H]AED to T and DHT in vitro (48, 49). Similarly,
serum levels of T, DHT, and AED were undetectable in some
strains of castrated rats (Holtzmann, via RIA; ref. 50); Wistar, via
LC/MS; ref. 51), but detectable in others (Sprague–Dawley, via
LC/MS (19, 52). Kyprianou and Isaacs detected circulating (T 0.10
ng/mL and DHT 0.16 ng/mL) and prostatic levels of T and DHT
(via RIA) in castrated Copenhagen rats that were eliminated by
ADX (22), although a study in Wistar rats showed a decrease in
prostate levels of T andDHT after CX but no sustained decrease in
AED or DHEA (via GC/MS), consistent with an adrenal origin
(23). In context of this study, the relevance of this literature
becomes more apparent and provides significant support for our
findings.
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Strain-specific differences in adrenal androgen production are
suggested by the observation that certain inbred strains of mice
(DBA/2J, CE/J, C3H, NU/J, BALB/c, and B6D2F1) are highly
sensitive to gonadectomy induced sex-steroid producing adreno-
cortical neoplasia, whereas others (C57BL/6 and FVB/N) are not
(53). The mouse strains associated with adrenal androgen pro-
duction in the literature are consistent with those susceptible to
adrenal neoplasia, with androgens observed in BALB/c mice (via
RIA; ref. 13) but not in C57BL/6 mice (via LC/MS; ref. 54). In this
respect it is notable that the C.B-17 SCID mice used in our study
are derived from the BALB/C strain.

Notably, surgical ADX showed a significantly more profound
impact on suppressing tumor androgens andCRPC tumor growth
than did previously published studies from our group using ABI
(18, 36). Although ABI clearly suppressed EOS levels of T and
DHT in theprior studies (redbars, Fig. 3C andD), ADX (bluebars)
appeared to do so more consistently. Differences in growth
suppression might also reflect the AR agonist activity attributed
to a 5a reduced metabolite of ABI (55), an effect that would be
absent in the ADX-treated tumors.

Given the clear impact of both ADX and ABI on tumor andro-
gen levels, we sought to determine whether mechanisms of
resistance to ADX mirrored those observed with ABI. Consistent
withour previousfindings in LuCaP96CR tumors treatedwithABI
(36), we observed increased transcript levels ofARV7 andGR, and
no increase in transcript or nuclear staining for full-length AR in
the ADX-treated tumors (although we did not observe increased
nuclear expression of GR as noted in that study). In LuCaP35CR
tumors, we observed increased transcript expression and nuclear
staining of AR and ARV7 and an increase in nuclear GR staining
after ADX, consistent with prior data (although increased AR
expression was only observed in one of the prior studies likely
due to PDX heterogeneity; refs. 18, 36). These data suggest
induction of ARV7 as a potentially significant mechanism of
resistance following ADX in LuCaP96CR, and induction of AR,
ARV7, and GR as potentially significant mechanisms of resistance
in LuCaP35CR. Although AR and ARV7 share an overlapping
transcriptome, transcripts of AR target genes are not consistently
increased in the ADX-treated tumors, consistent with prior obser-
vations that ARV7 is not necessarily as potent as full-length AR in
inducing the expression of canonical AR genes (56, 57).

Our data suggest that the adrenal gland contributes substan-
tially to levels of T and DHT in CRPC tumors grown in castrated
mice, and is consistent with our data demonstrating expression of
enzymes required for adrenal androgenutilization in amajority of
ARþ CRPC metastases examined (Fig. 5C). However, a subset of
ADX-resistant LuCaP35CR tumors demonstrate induction of ste-
roidogenic enzymes andmoderate reconstitution of intratumoral
progesterone, T and DHT (similar to our prior data in ABI-
recurrent LuCaP35CR tumors (18). These suggest that at least
some tumormodels are also capable of de novo steroid production
and is consistent with the concurrent expression of enzymes
required for de novo steroidogenesis in a subset of the CRPC
tumorswe evaluated (Fig. 5C, bottom). As increased progesterone
levels were present in a subset of the ADX EOS tumors versus
earlier time points in both PDX models, we determined whether
these EOS tumors showed induction of the progesterone receptor
(PR) as possible mechanism of progression (58). However, stain-
ing for PRwas low to undetectable in the CXonly tumors, without
any difference in the ADX-treated tumors (data not shown). A
direct effect of progesterone on stimulation of growth via wild-

type (WT)AR cannot necessarily be excluded, as Kumagai et al. did
not detect downstream conversion of progesterone to T orDHT in
VCaP cells (which has WT AR), yet still observed modest
activation of growth (59). Activation of WT AR by a metabolite
directly downstream of progesterone (20b-hydroxy-5a-dihydro-
progesterone) has also been recently demonstrated (60). We did
not measure levels of this particular steroid in our assay, but as its
production from progesterone is not mediated by CYP17A it
suggests another reason why surgical ADX appears to have better
anti-tumor efficacy than CYP17A inhibition with ABI.

We and others have previously demonstrated transcript expres-
sion of steroidogenic enzymes in subsets of CRPCmetastases, but
data on concordant protein expression of key enzymes required
for androgen synthesis from adrenal androgens or earlier pre-
cursors are limited (2, 3, 61–66). Here, we demonstrate clear
subsets of tumors with coordinate expression of the critical
enzymes required for de novo steroid synthesis and/or conversion
of adrenal androgens. Steroidogenic enzyme expression is gener-
ally low in AR negative tumors (Fig. 5A), and in AR positive
tumors with low PSA expression (Fig. 5B, top), indicative of poor
response to agents targeting the AR or ligand synthesis. Low
expression of steroidogenic enzymes is also observed in a subset
of AR and PSA positive tumors (Fig. 5B, bottom), suggesting AR
axis signaling in response to exogenous ligand is maintained, but
without intratumoral androgen production. In contrast, tumors
from nearly half the patients (Fig. 5C) appear potentially capable
of androgen production from adrenal androgens (based on
concordant expression of HSD3B1 with AKR1C3 or HSD17B3,),
and of these, half also show concordant expression of CYP17A
(Fig. 5C, bottom), suggesting capacity for de novo steroidogenesis.

Althoughwe did not observe consistent differences in steroido-
genic capacity between bone and soft tissue tumors overall, there
was more pronounced staining in bone versus soft tissue metas-
tases in several patients (red arrows in Fig. 5C), potentially
consistent with the observation that osteoblasts may induce
steroidogenic enzymes in CRPC cells (67). Unexpectedly, some
tumors with loss of C terminal AR staining (consistent with the
presence of ligand-independent AR variants) also demonstrated
steroidogenic enzyme expression, suggesting that in certain cases
the response toCXmay include both induction of AR variants and
upregulated steroid production. Alternatively, ARV7 is a strong
inducer of the glucuronidating enzyme UGT2B17, which con-
jugates active androgens for excretion, and could therefore con-
tinue to promote AR variant production in the presence of
concomitant steroidogenesis (41).

In summary, we show that adrenally-derived steroids are pro-
duced in C.B-17 SCID mice and contribute to tumor androgen
levels and growth in two PDX models of CRPC, demonstrating
that C.B-17 SCID mice are an appropriate model for evaluating
the impact of steroidogenesis inhibitors in CRPC xenograft stud-
ies. Although the potential impact/availability of low circulating T
levels may be magnified in mice compared with humans due to
the lack of circulating sex hormone binding globulin (SHBG) in
mice (68), castrate levels of DHEA, AED, T, and DHT in this study
were similar to those in ABI-treated CRPC patients (as previously
reported for T; ref. 68). These suggest a reduction in adrenally-
derived androgens beyond those achieved by ABI may have
clinical benefit in men with CRPC, and is consistent with our
observation that tissue androgens and tumor growth were sup-
pressed more strongly by surgical ADX in this study than in
previously reported studies using ABI. These suggest that proof-
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of-concept studies testing agents capable of achieving true "non-
surgical ADX" are warranted (such as the recently reported
CYP11A inhibitor ODM-208; ref. 69) and that optimal clinical
efficacy may be obtained by a combination of CYP11A and
CYP17A inhibition. Although beyond the scope of the current
work, PDX studies testing CYP11A inhibition are planned. We
find that mechanisms of resistance after surgical ADX in CRPC
models are similar to those observed following ABI, including the
induction of AR, truncated AR splice variants, GR, and steroido-
genesis. This is consistent with the fact that both approaches act
via suppression of tissue androgen levels, and suggests optimal
clinical activity will be achieved by combination strategies cotar-
geting AR or GR with agents capable of fully abrogating adrenal
and intratumoral ligand synthesis.
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